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Abstract— Phase of flight (POF) prediction estimates the future 
state of aircraft along planned trajectories, allowing the prediction 
of potential conflicts as well as optimization of air space, controlled 
by the Federal Aviation Administration. In this paper, we present 
a study conducted to develop three different POF forecasting 
machine learning models and a statistical regression model using 
four-dimensional GPS and RADAR Track data from 57 flights 
provided by an En Route Computer System. The investigated 
machine learning models include Long Short-Term Memory 
Recurrent Neural Network (LSTM-RNN), Support Vector 
Machine (SVM), and Neural Ordinary Differential Equations 
(NODE). These were developed to forecast the horizontal and 
vertical POF of the current aircraft for the next time step. The 
results in this study indicate that LSTM-RNN models are more 
suitable for POF prediction than SVM and statistical regression 
models, with NODE being a promising model for future trajectory 
prediction research.  

Keywords-Trajectory Prediction; Machine Learning; Long 
Short-Term Memory; Support Vector Machine; Neural Ordinary 
Differential Equations; Regression; Phase of Flight 

I.  INTRODUCTION 
The Federal Aviation Administration (FAA) and other related 
global organizations routinely use trajectory prediction to 
estimate the position of an aircraft when it deviates from its 
planned route. Lateral deviation is commonplace in aviation for 
a multitude of reasons; different conflicts arise between takeoff 
and touchdown that aircraft must maneuver around for safe and 
efficient travel. Inclement weather, turbulence, pilot behavior, 
and the presence of other aircraft nearby are some of the 
primary reasons that force the subject aircraft to alter the course 
of travel. The circumstances vary for each flight, so different 
avoidance tactics are warranted. According to Dupuy and 
Porretta [3], the current trajectory prediction methodology is 
broken down into four parts: (i) preparation, (ii) trajectory 
prediction, (iii) trajectory export, and (iv) trajectory update. 
Preparation involves generating a flight script that defines 
instructions for each segment of the trajectory. Trajectory 
Prediction uses computational methods and algorithms to turn 

the flight script into a trajectory using models such as aircraft 
performance and meteorological data.  

The particular state of the aircraft is critical to the trajectory 
prediction process, such as position, speed, and phase of flight 
(POF).  The goal of this study was to develop a model that 
utilizes artificial intelligence (AI) to predict vertical and 
horizontal POF, which is a critical part of trajectory prediction. 
This paper presents the development of three machine learning 
models for predicting aircraft vertical and horizontal POF as 
well as a statistical regression algorithm for developing ground 
truth datasets. These machine learning models are Support 
Vector Machine (SVM), Long Short-Term Memory Recurrent 
Neural Network (LSTM-RNN), and Neural Ordinary 
Differential Equations (NODE). The statistical algorithm that 
was used as a foundation for this paper and the data used for 
training and testing was provided by the FAA and is explained 
in detail in a research paper published by Paglione and Oaks in 
2006 [17]. 

II. RELATED WORK 

A. Existing Trajectory Prediction Practices 
Every aircraft is equipped with radio transponders that RADAR 
systems can use to identify the flight. Most aircraft are equipped 
with a Global Positioning System (GPS), which provides the 
position of the aircraft during flight. RADAR systems and GPS 
provide the ground truth data about the position of the aircraft, 
which can be utilized to (1) develop trajectory prediction 
models as well as (2) evaluate the accuracy of these models 
during post-analysis. However, the standard data transmission 
interval of RADAR systems (typically 12 seconds) and the 
noise in the measurements (i.e., sensor data, specifically 
RADAR sensor) are primary limitations that impact estimation 
of actual flight path [2]. The current practice is to obtain an 
accurate tracking function to ensure efficient performance in air 
traffic control despite this shortcoming. Trajectory estimation 
is performed to create a better representation of the aircraft’s 
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actual flight path, which can be achieved in two ways. The first 
method involves developing a model that utilizes an aircraft's 
position to estimate the trajectory of its remaining path. The 
second method includes determining the lateral deviation from 
the actual flight path and utilizing this information to estimate 
the remaining trajectory.  

In addition to RADAR track and GPS positioning data, 
researchers have utilized various algorithms with additional 
parameters to analyze flight data. Some methods include 
geometric properties, for example, algorithms that consider the 
angle between the heading of the plane after deviation occurs 
compared to its original track [1]. Along with coordinate data 
for latitude, longitude, and altitude, trigonometric calculations 
can determine maneuvers for the plane to return to the optimal 
route of travel. Groundspeed can also be utilized for kinematic 
modeling or other physics-based models. Once thresholds for 
permissible values are established, algorithms can determine if 
a flight is following its intended path, and if not, it can 
determine how much difference in position lies between the 
actual and theoretical position [17]. This statistical approach is 
one of the methods used in this study. The outcomes of the 
statistical approach were compared with machine learning 
models. 

B. Limitations 
A fundamental limitation for current trajectory prediction 
methods is the accuracy of the GPS and RADAR track 
measurements. Accuracy is evaluated by running simulations 
to examine phases where the flight follows a straight trajectory 
and where it performs a maneuver. Paglione and Ryan, 2005, 
analyzed several flights for measurement accuracy and, for one 
flight sample, reported that "The radar track swung wide of the 
GPS positions, being offset by 0.33 nm, and lagged the GPS 
positions by several seconds" [2]. This study compares the 
forecasting performance of each model, using both GPS and 
RADAR track data. Other studies have identified potential 
room for error in the data, which are used to inform the 
trajectory prediction system. Dupuy and Porretta [3] argue that 
uncertainty arises from aircraft intent, current aircraft position, 
aircraft performance library data, and meteorological library 
data. This uncertainty is further compounded by the use of 
different mathematical models when predicting the trajectory, 
which may model the aircraft using either center of gravity and 
angular velocity or forces and moments. Uzun and Koyuncu [4] 
confirmed this observation by demonstrating how takeoff mass 
affects climb speed in a way that is not accounted for in current 
trajectory prediction systems. They also establish the 
framework for a system that would not only predict the 
trajectory of the aircraft and its overall flightpath but also 

actively adapt to changes in route to reduce the error, as 
mentioned above [4]. The desire to modify these existing 
systems with real-time aircraft positional data is the motivation 
for developing improved trajectory prediction, which considers 
these and other proposed parameters. 

C. Phase of Flight Prediction 

The National Transportation Safety Board (NTSB) defines the 
phases of flight as distinct, standardized characterizations of the 
different possible “period[s] within a flight” [5]. The NTSB 
establishes a taxonomy for the individual phases to allow for 
better reporting of incidents and clarity across multiple aviation 
industries. An increasing amount of research, spurred in part by 
the FAA’s NextGen initiative [6], is drawing from this 
knowledge of the phases of flight to create an increasingly 
robust trajectory prediction system to improve air travel safety 
and decrease the burden on air traffic controllers. Knowing the 
active phase of an aircraft in real-time, as well as predicting 
when an aircraft is likely to transition between phases, is vital 
to modernizing trajectory prediction systems. The research in 
this paper is concerned with the determination of an aircraft’s 
horizontal and vertical POF. 

III. CURRENT AND PROPOSED TRAJECTORY & PHASE OF FLIGHT 
PREDICTION SYSTEMS 
The current research demonstrates that there are multiple 
approaches to change or improve trajectory prediction. Table 1 
is a matrix table that shows the parameters and methods of each 
study. This detailed review of the current and proposed 
prediction systems helped the research team to determine the 
direction of the research method outlined in this paper. 

IV.  METHOD 
The research approach for this study involved the re-creation of 
a regression algorithm and the development of SVM, LSTM-
RNN, and NODE machine learning models. The first step was 
to prepare the ‘ground truth’ dataset for training the machine 
learning models. ‘Ground truth’ refers to the dataset with the 
aircraft’s true POF for each recorded timestep. The data, 
provided by the FAA, includes 57 flights recorded between 
January and February 2005 from the Salt Lake City Air Route 
Traffic Control Center. This is the same dataset used in [17]. 
The purpose of re-creating the regression algorithm was to 
verify the ground truth dataset and to create a baseline for 
comparison with the machine learning models. The results that 
were obtained are useful for further research and development 
for multi-step time series forecasting models with additional 
layers and dataset parameters. 

 



ICRAT 2020 

 

3 

 

TABLE I.  OUTLINE OF CURRENT AND PROPOSED TRAJECTORY & PHASE OF FLIGHT PREDICTION SYSTEMS 

Parameter 4D Rate of climb or 
descent TAS Mass Route Intent 

Language 
Machine 
Learning Wind Genetic 

3D Position [7] [8] [9] [10] 
[11] [12] [13] [3] [14] [15] [3] 

[16]  [1] [3] 
[17] 

[18] [19] [20] 
[21] 

[22] [23] [24] 
[25] [16] [26] 

[27] 

Time [7] [8] [9] [10] 
[11] [12] [13] [3] [14]   [1] [3] 

[17] 
[18] [19] [20] 
[21]   [26] 

[27] 

Airspeed  [14] [3] [15] [3] 
[16] [4] [1] [3] 

[17] 
[18] [19] [20] 
[21] 

[22] [23] [24] 
[25] [16]  

Altitude  [13] [3] [14] [3] [28] [29] 
[4] 

[1] [3] 
[17] 

[18] [19] [20] 
[21] 

[22] [23] [24] 
[25] [16]  

Mass    [28] [29] 
[4]  [18] [19] [20] 

[21] 
[22] [23] [24] 
[25]  [26] 

[27] 
Other Physical 
Features    [28] [29] 

[4]  [18] [19] [20] 
[21] 

[22] [23] [24] 
[25]  [26] 

[27] 

Environment  [13] [3] [14] [15] [3] 
[16]   [18] [19] [20] 

[21] 
[22] [23] [24] 
[25] 

[30] [31] 
[32] [16] 

[26] 
[27] 

Flight Plan     [1] [3] 
[17] 

[18] [19] [20] 
[21]   [26] 

[27] 

Control Input     [1] [3] 
[17] 

[18] [19] [20] 
[21] 

[22] [23] [24] 
[25] [16] [26] 

[27] 

Intent/Language     [1] [3] 
[17] 

[18] [19] [20] 
[21] 

[22] [23] [24] 
[25]  [26] 

[27] 

Angle     [1] [3] 
[17] 

[18] [19] [20] 
[21] 

[22] [23] [24] 
[25] [16]  

Thrust      [18] [19] [20] 
[21] 

[22] [23] [24] 
[25]   

Lift  [14]    [18] [19] [20] 
[21] 

[22] [23] [24] 
[25]   

Drag  [14]  [28] [29] 
[4]  [18] [19] [20] 

[21] 
[22] [23] [24] 
[25] 

[30] [31] 
[32] [16]  

Performance  [14]  [28] [29] 
[4]  [18] [19] [20] 

[21] 
[22] [23] [24] 
[25]  [26] 

[27] 

Energy rate  [14] [15] [3] 
[16] 

[28] [29] 
[4]  [18] [19] [20] 

[21]    

V. DATA 
The algorithms were trained and tested with 4D aircraft 
positional data provided by an En Route host Computer System 
(HCS). For each aircraft (labeled acid_cid, unique aircraft 
identifier), the train and test datasets consisted of time (time), 
an x-position (xCoord), a y-position (yCoord), and an altitude 
(altitude) associated with each timestep. Horizontal POF was 
available for training, labeled pofHorz with outputs straight 
(STR), and turn (TRN). For machine learning purposes, 
pofHorz was converted to binary values, 0 and 1, for TRN and 
STR, respectively. Similarly, vertical POF was labeled pofVert 
with outputs descending (DSC), ascending (ASC), and level 
(LVL). PofVert was converted to -1, 1, and 0, respectively.   

The only ground truth vertical POF data that was available 
for this study was GPS data. GPS data consisted of 103070 
timesteps for 57 flights and RADAR track data at 11307 unique 
data points for 57 flights. Both GPS and RADAR track datasets 
were then separated by acid_cid for training and testing, giving 
57 unique datasets. Training and testing datasets were created 
with a 2:1 ratio. There was an average class imbalance of 

87.6/12.4 percent. For the machine learning models, class 
weights were implemented to place more emphasis on the 
minority classes for the classifiers to learn equally from all 
classes. The RADAR track data has more noise than the GPS 
data. The method of data transmission has a significant impact 
on how noisy a dataset is. The RADAR track data used in this 
study was interpolated to have timesteps of ten seconds, 
whereas the GPS data has one-second timesteps. The 
performance of the models using GPS and RADAR track data 
is analyzed by taking into account this noise in the results 
section. 

VI. MODELS 

A. Regression 
The Python script that was developed for the regression model 
used the algorithm outlined in [17]. To verify the accuracy of 
the Python script developed for this study, the set of flight data 
and accuracy metrics from [17], were used. The development 
of this statistical approach also helped verify that the datasets 
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being used to train and test the machine learning models 
presented in this paper were the same datasets used in [17]. 

 

 

 
1) Horizontal POF 

The algorithm uses two tiers of testing to determine whether 
the aircraft is considered to be flying straight or turning. 
These tiers of testing are inherently conditional statements 

containing thresholds that determine the POF of an aircraft 
at a given timestep. 

If the first tier isn’t conclusive enough to determine 
the POF that the aircraft is in, then the second tier of testing 
is used. The first tier uses the Pearson correlation coefficient 
(Pearson’s r) for the XY coordinates in a time window 
surrounding the current row of flight data. This coefficient 
has a value between -1 and +1, which represents the linearity 
between different variables. The two thresholds that make up 
the first tier of testing are horzPearsonThreshHi and 
horzPearsonThreshLo [17]. If the Pearson’s r value was 
greater than the horzPearsonThreshHi, the aircraft is 
determined to be flying straight. If the value is less than the 
horzPearsonThreshLo, the aircraft is determined to be 
turning [17]. The SciPy Python library was used for 
calculating Pearson’s r and for deriving the linear regression 
equation [44]. 

The second tier of testing uses quadratic regression 
analysis and a flatness metric to provide the final POF 
determination. This tier can be seen as a filter to help reduce 
noise in the dataset [17]. Numpy was used for the rotation of 
data, the creation of the polynomial, and the flatness metric 
[47]. 

TABLE II.  HORIZONTAL AND VERTICAL THRESHOLDS 

Threshold* Value 
Vertical 

vertSlopeThresh 0.5, 1.5, 2.5 
vertTimeWindow 25, 55, 120 

Horizontal 
horzPearsonThreshHi 0.998, 0.997, 0.995 
horzPearsonThreshLo 0.6, 0.1 
horzRSqrThresh 0.92, 0.82, 0.4 
horzFlatnessThresh 0.25, 0.1 
horzTimeWindow 25, 40, 50, 60, 70, 80 

*Threshold definitions are provided in Appendix A. 

2) Vertical POF 

A detailed algorithm is given in [17], which calculates the 
slope of altitude data for a given time window to determine 
vertical POF. The SciPy Stats library was used to calculate 
the slope for the time window surrounding each timestep 
[44]. The parameters that can be changed in this program to 
lower the probability of error are the vertical slope threshold, 
vertSlopeThresh, and the vertical time window, 
vertTimeWindow. A design of experiments study was 
performed by [17] to determine the best set of thresholds for 
determining vertical POF. 

The regression model was run with vertical POF 
ground truth data for all 57 flights using the combination of 
thresholds given in Table 3. The error probabilities for the 

Figure I.  Research Approach 

Figure II. 2D Trajectory – RADAR Track Data 

Figure III. 2D Trajectory - GPS Data 
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model were compared with the error probabilities from the 
study performed in [17]. The results are described in detail 
in the ‘Results’ section of this paper. 

3) Preparing the Program for Combined Flight Data 

An acid_cid needs to be associated with each timestep, to 
run the program with combined flight data. The program 
uses a filter to split the dataset by flight to create an array of 
flight datasets. A loop structure is used to handle each flight 
separately and apply the tiers of testing to the changing time 
window. The output consists of a text file containing the total 
combined probability of error for all combined flights, as 
well as individual flight results.  

B. Support Vector Machine 
The preprocessing steps that were taken to shape the problem 
into a supervised learning problem included splitting the flights 
by their acid_cid and turning a sequence of five observations 
into a single vector with an output (𝑛 − 1) times for 𝑛 
observations. 

The way that the new vector is developed for supervised 
learning is as follows. Suppose that there are two consecutive 
observations with xCoord, yCoord, altitude, and the POF. The 
corresponding vector is formed by taking the magnitude of the 
difference between consecutive xCoords, yCoords, and 
altitudes as the three components of the input X and the 
classification of the second observation as the output Y. This 
process is done for each pair of consecutive observations in the 
flight record to obtain the input file for the supervised learning 
algorithm. The supervised learning algorithm used is the Scikit-
learn SVC module with a linear kernel and 1/(number of 
features) for gamma 𝛾 [48].  

In attempts to improve the accuracy of our model, we used 
multiple methods of preprocessing our data. One such method 
was computing the angles between time steps, aiming for a 
connection between larger angles and turning trajectory, but 
this was inaccurate because the time steps were too close 
together to produce any meaningful differentiation between 
turning and non-turning states, as the angles were too small. We 
attempted to remedy this by taking angles between larger time 
steps, which also was unable to produce good results. We also 
tried placing the angles on a logarithmic scale to magnify 
differences between turning and not turning states. The best 
SVC model with our preprocessing methods obtained a 73% 
average accuracy over 10 runs, using the difference in latitude 
and longitude as input to the algorithm. In addition, we found 
that adding a vertical component (i.e., keeping the altitude 
variable) did not improve results. 

C. Long Short-Term Memory (LSTM) 
The Long Short-Term Memory (LSTM) model was utilized 
next to improve results. LSTM networks are specialized 
machine learning models for handling sequential data. These 
are based on recurrent neural networks (RNNs); however, they 
do not suffer from gradient vanishing or exploding problems. 
An LSTM captures correlation in timesteps of a sequential 
dataset and is an ideal candidate model for the aircraft trajectory 
prediction [38]. 

 There have been a few studies that use LSTM models for 
aircraft trajectory prediction [45] [46]. Whereas these studies 
tend to focus on overall trajectory prediction in four dimensions 
which include inclement weather, human behavior, and other 
uncertainties, this paper is focused on using an LSTM network 
to significantly reduce the amount of error in a small area of 
trajectory prediction which is the determination of an aircraft’s 
POF. 

 The Keras Python Library was used to design a multivariate 
time series one-step forecast model [43]. The first task was to 
prepare the dataset for the model, which involved converting 
the time series data into a format for supervised learning. 
Formatting the problem for supervised learning included 
normalizing the data, defining an input sequence, and defining 
an output sequence [41][42]. 

 Since horizontal POF is concerned with binary 
classification (1 and 0) and vertical POF is concerned with 
multi-class classification (1, 0, and -1), two separate models 
were developed to tackle each problem separately (Figure IV). 
The sequential model network for horizontal POF consists of a 
hidden LSTM layer with 50 neurons and an activation layer 
with a sigmoid function. The network was trained using 8 
epochs and a batch size of 72. The only change for the vertical 
POF model was that a 𝑡𝑎𝑛ℎ activation function was used in the 
activation layer, and the model was trained using a batch size 
of 150. The loss functions used to calculate the accuracy of the 
models were 'binary cross-entropy' for horizontal POF and 
‘hinge’ for vertical POF. 

 The hyperparameters used for these models were 
determined using a simple search. Throughout development, if 
overfitting or underfitting occurred, the hyperparameters were 
changed accordingly. The final set of hyperparameters 
produced the highest accuracy. 

 For determining the final forecasted POF, filters were 
applied to the outputs of the activation functions. These filters 
rounded the outputs to 0 and 1 for horizontal POF, and 0, 1, -1 
for vertical POF. These filters, when combined with the proper 
activation functions, are shown to prove accurate results, as 
shown in the results section.
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Figure IV LSTM Models 

D. Neural Ordinary Differential Equations (NODE) 
We also utilized a Neural Ordinary Differential Equations 
(NODE) model [39]. NODE is a type of machine learning 
model formulated from the popular Residual Network (ResNet) 
architecture [40]. The residual connection blocks formed in 
ResNets are considered as steps in Euler’s Method for solving 
an Ordinary Differential Equation (ODE). Once this realization 
is made, the solution method can be arbitrarily modified, 
opening this class of models to a vast range of mathematical 
tools that have been in development for, in some cases, 
centuries. Many of these solution methods offer significant 
advantages over the standard residual network. In particular, 
the adjoint method for solving the ODE backward in time offers 
fixed memory cost, a remarkably valuable asset for large 
models [39].  

 The primary advantage of NODE in our problem is the 
ability to be defined continuously, with no fixed number of 
layers as would be in the classical models. This advantage 
means that a flight trajectory, which is a continuous physical 
process, can be modeled more closely. Our model defines the 
dynamics of the network through a simple convolutional 
network and solves the resulting problem using the adjoint 
method. As a first step, our model must have some function 
representing the dynamics for the model, allowing the ODE 
solver to integrate through time and produce a prediction. The 
network used for this purpose is a convolutional network with 
2 sequential blocks. In each block, a 1x1 convolution with a 
length 3 filter is applied to a sample, and the output is passed 
through the ReLU activation function. 

 The central part of the model is the ODE solver. We used 
the solver proposed in [39]. Using PyTorch and the adjoint 
method described in detail in [39], we developed a model that 
propagates from the initial state to the final state. Our solver 
can produce features of the data that are, (1) activated using a 
ReLU function, (2) flattened for input to a linear classifier, and 
(3) finally run through the classifier. The model does not have 
a fixed number of layers as in the LSTM model and can run 
with a constant memory cost. Optimization of the network is 
performed using stochastic gradient descent with momentum 
(learning rate of 0.1) and mean square error as the loss function. 

 The NODE model is currently able to classify one variable, 
meaning that only horizontal POF or vertical POF may be 
determined in a single model. However, we look to extend this 
so that the model can perform multiple classifications, i.e., 
allowing the model to classify both horizontal and vertical POF. 
Our model does well with classifying horizontal and vertical 
POF individually, so we believe that adding the ability to 
perform multiple classifications will make this model quite 
useful for an all-in-one trajectory modeler.  

VII. RESULTS 
The events used to calculate the probability of false calls and 
missed calls of each model [17] can be seen in Table 3.  

 𝑃(𝑀𝐶)  =  
𝑀𝐶

(𝑀𝐶 +  𝑉𝐶)
 (1) 

The probability of missed calls “is the estimated probability of 
falsely detecting a turn/vertical transition that actually does not 
occur” [17]. 

 𝑃(𝐹𝐶)  =  
𝐹𝐶

(𝐹𝐶 +  𝑁𝐶)
 (2) 

The probability of false calls is where the algorithm determines 
the incorrect aircraft POF. Although the loss function accuracy 
was calculated for each machine learning model, these 
probabilities are the most useful way to compare performance. 

TABLE III.  HORIZONTAL AND VERTICAL EVENT CALLS [17] 

  Algorithm - Detected Event 

  Turn No Turn 

  Ascending or 
descending Level 

Actual 
Event 

Turn 
Valid Call (VC) Missed Call 

(MC) Ascending or descending 
No Turn 

False Call (FC) Valid No 
Call (NC) Level 

 

When compared to the results obtained by the program in [17], 
it was seen that the Python regression program developed in 
this study had slightly lower probabilities of error. For 
horizontal POF, the probability of false calls was reduced by 
3.45%, and the probability of missed calls was reduced by 
6.01%. For vertical POF, the probability of false calls was 
reduced by 4.39%, and the probability of missed calls was 
reduced by 3.76%. Note that the results for the regression 
model varied as the thresholds were changed and most often 
performed closer to the error probabilities of the legacy 
program created in [17].  

 The LSTM-RNN model performed the best out of all the 
models. Since this model was created for single-step forecasts, 
it can also be used as a replacement to the classic regression 
algorithms that have been used up to this point in the post-flight 
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analysis. When this LSTM-RNN model is further developed for 
multi-step prediction, it will become useful for real-time 
trajectory prediction. Our results prove that LSTM-RNN 
models are suitable for aircraft POF forecasting and provide a 
solid foundation for further research using these networks in 
practice. 

TABLE IV.  POF WITH GPS DATA 

Phase of Flight 
with GPS Data 

Type of Model 
Legacy Regression SVM LSTM NODE 

Probability 
False 
Calls 

Horz 0.079 0.0445 0.08 0.00 0.06 

Vert 0.050 0.0061 0.14 0.01 0.06 

Probability 
Missed 
Calls 

Horz 0.069 0.0089 0.22 0.00 0.07 

Vert 0.048 0.0104 0.02 0.00 0.05 

Accuracy 
(Loss 
Function) 

Horz X X 0.70 1.00 0.87 

Vert X X 0.84 0.99 0.89 

TABLE V.  HORIZONTAL POF WITH RADAR TRACK DATA 

Horizontal Phase of Flight 
with RADAR Track Data 

Type of Model 
Regression SVM LSTM NODE 

Probability False Calls 0.0445 0.11 0.00 0.06 
Probability Missed Calls 0.0089 0.16 0.00 0.03 

Accuracy (Loss Function) X 0.73 1.00 0.91 

 

We found the SVM model not to be suitable for this problem. 
We were able to achieve only at best mediocre results with 
significant preprocessing of data, whereas the other models 
performed better with less human intervention. Our tests show 
that the SVM struggles significantly to classify turning states, 
and this is likely due to a significant imbalance of data in the 
training set. Due to this imbalance, the SVM overfits the dataset 
and performs poorly on new examples, leading to a high error 
in testing. 

 NODE seems to be a promising step forward for flight 
trajectory prediction. With their previously mentioned benefits, 
including naturally continuous dynamics, extendibility to 
modeling a path entirely, and computational benefits, we 
believe that NODE will provide a useful framework for a more 
general-purpose analysis. Although less specialized in POF 
prediction than the LSTM, the other advantages of NODE make 
them an appealing option for producing flight trajectory curves 
using limited data.  

VIII. CONCLUSION 
As technology reduces the burden on ground control, a higher 
number of aircraft can occupy the airspace, making air travel 
both safer and more accessible. POF prediction and real-time 
aircraft data acquisition, processing, and analytics, in 
particular, are emerging technologies that will modernize 
traditional trajectory prediction systems. This paper presented 
a regression model to create a baseline for evaluating three AI 
models, LSTM-RNN, NODE, and SVM.  

FUTURE RECOMMENDATION 
The research presented in this paper gives a strong foundation 
for future optimization of the machine learning models by 
adding more layers and extending the proposed models, 
specifically LSTM and NODE for multi-step forecasting. If 
aircraft POF can be predicted in advance with a low probability 
of error, the performance of complete trajectory prediction 
systems will improve. The developed models treated horizontal 
and vertical POF as two separate problems for simplicity.  

LIMITATIONS OF RESEARCH 
There are a few limitations of this research. One limitation is 
that the results only show the probability of error for single-step 
forecasts. While the LSTM-RNN model performed better for 
the available data, further evaluation with additional data set 
and k-fold cross-validation is required to assess the robustness 
of the model. 
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Appendix A. Definitions of Data Parameters And Thresholds 

Name Definition 
acid_cid The unique aircraft identifier, used to filter the 

data by flight. 
vertSlopeThresh Threshold which determines the bound where an 

aircraft is determined to be ascending or 
descending [17]. 

vertTimeWindow The window of timestamps surrounding the 
current timestamp in the vertical regression 
algorithm [17]. 

horzPearsonThreshHi The upper Pearson’s r bound which determines 
whether an aircraft is straight [17]. 

horzPearsonThreshLo The lower Pearson’s r bound which determines 
whether an aircraft is turning [17]. 

horzRSqrThresh Determines whether an aircraft is turning in the 
second level of testing using the R squared 
metric [17]. 

horzFlatnessThresh Determines whether an aircraft is turning in the 
second level of testing using the flatness metric 
explained in detail in [17]. 

horzTimeWindow The window of timestamps surrounding the 
current timestamp in the horizontal regression 
algorithm [17]. 

 

https://doi.org/10.2514/6.2004-4788
https://doi.org/10.1162/neco.1997.9.8.1735
https://machinelearningmastery.com/sequence-classification-lstm-recurrent-neural-networks-python-keras/
https://machinelearningmastery.com/sequence-classification-lstm-recurrent-neural-networks-python-keras/
https://machinelearningmastery.com/multivariate-time-series-forecasting-lstms-keras/
https://machinelearningmastery.com/multivariate-time-series-forecasting-lstms-keras/
https://keras.io/
https://www.scipy.org/
https://doi.org/10.1109/IJCNN.2018.8489734
https://numpy.org/
https://scikit-learn.org/stable/modules/svm.html

	I.  Introduction
	II. Related work
	A. Existing Trajectory Prediction Practices
	B. Limitations

	III. current and proposed trajectory & phase of flight prediction systems
	IV.  Method
	V. Data
	VI. Models
	A. Regression
	1) Horizontal POF
	*Threshold definitions are provided in Appendix A.
	2) Vertical POF
	3) Preparing the Program for Combined Flight Data

	B. Support Vector Machine
	C. Long Short-Term Memory (LSTM)
	D. Neural Ordinary Differential Equations (NODE)

	VII. Results
	VIII. Conclusion
	Future recommendation
	Limitations of research
	Contributions
	Acknowledgments
	References


