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Energy conservation is a basic physics principle, the breakdown of which often implies new physics.
This paper presents a method for data-driven “new physics” discovery. Specifically, given a trajec-
tory governed by unknown forces, our Neural New-Physics Detector (NNPhD) aims to detect new
physics by decomposing the force field into conservative and non-conservative components, which
are represented by a Lagrangian Neural Network (LNN) and a universal approximator network
(UAN), respectively, trained to minimize the force recovery error plus a constant A times the mag-
nitude of the predicted non-conservative force. We show that a phase transition occurs at A = 1,
universally for arbitrary forces. We demonstrate that NNPhD successfully discovers new physics in
toy numerical experiments, rediscovering friction (1493) from damped double pendulum, Neptune
from Uranus’ orbit (1846) and gravitational waves (2017) from an inspiraling orbit. We also show
how NNPhD coupled with an integrator outperforms previous methods for predicting the future of

a damped double pendulum.

I. INTRODUCTION

Energy conservation is a fundamental physical law, so
when non-conservation is observed, physicists often con-
sider it evidence of an unseen body or novel external
forces rather than questioning the conservation law it-
self. In this paper, we will therefore refer to energy non-
conservation as simply mew physics and strive to auto-
detect it'. Many experimental new physics discoveries
have manifested as apparent violation of energy conser-
vation, for example friction [2], Neptune [3], neutrinos
[4], dark matter [5, 6], extra-solar planets [7] and grav-
itational waves [8]. We focus on classical mechanics in
this paper, but the idea extends to all fields of physics
including quantum mechanics. We illustrate several clas-

form. The key novel contribution in this paper is that
our proposed model, dubbed the Neural New Physics De-
tector (NNPhD), can discover the new physics even when
the form of the conservative “old physics” is not known.

Data-driven discovery has proven extremely useful in
physics, yet also non-trivial. For example, Kepler spent
25 years analyzing astronomical data before formulating
his eponymous three laws. In this paper, we aim to au-
tomate and accelerate data-driven new physics discovery
using machine learning tools. More concretely, given the
trajectory of one or several objects governed by some
force, we aim to decompose the force into conservative
and non-conservative parts, followed by a symbolic re-
gression module for explanation. As a trivial example,

sic examples in FIG. 1. In these cases, the new physics we aim to decompose the force f = —kq—¢ of a damped
was historically identified from the residual force after harmonic oscillator into conservative part f. = —kq and
fitting data to a conservative force of a known functional  a non-conservative part f, = —~vq.
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FIG. 1: NNPhD can auto-rediscover several classic examples.
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! In contrast, “new physics” in high energy physics specifically
refers to “new fundamental particles” or “new fundamental in-
teractions” beyond the Standard Model [1].
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FIG. 2: NNPhD predicts dynamics by decomposing the force into conservative and non-conservative components,
which can reveal new physics and improve trajectory extrapolation.

Conservation laws have been introduced into neural
networks as strong inductive biases, such as in the La-
grangian Neural Network (LNN) [9], the Hamiltonian
Neural Network (HNN) [10] and variants [11-14]. The
limitation of these models lies in their inability to model
non-conservative dynamics, where the non-conservation
can be caused by dissipation, external driving forces, etc.
Our proposed NNPhD can resolve this limitation by aug-
menting LNN with a universal approximation network
(UAN), illustrated in FIG. 2. Although prior works [9-
35] attempt to learn the general or conservative force
from data, most of these methods are unable to per-
form force decomposition, except for [32, 35] which as-
sume (partial) knowledge of physics thus lose generality.
Moreover, while the current literature mostly focuses on
model predictability, we pay extra attention to explain-
ability made possible by symbolic regression.

The rest of this paper is organized as follows: In
Section II, we review the problem framing and useful
results, define force decomposition with minimal non-
conservation and propose NNPhD to learn this force de-
composition. In Section ITI, we carry out numerical ex-
periments to verify our theoretical analysis of the pre-
sented algorithm, as well as to demonstrate the potential
of NNPhD for new-physics discovery.

II. METHOD
A. Notation

We consider the general classical physical system de-
scribed by an n-dimensional vector q of generalized co-
ordinates whose time-evolution q(t) is governed by a
second-order ordinary differential equation

where f : R?"+!1 & R™. The acceleration ¢ is intimately
related to force according to Newton’s second law. In the
following, we for simplicity refer to f(q,q,t) as a force
field (dynamics perspective) or acceleration field (kine-

matics perspective) interchangeably. The dynamical sys-
tems in our numerical examples consist of k particles in
d dimensions, so n = kd and q = [q1, - ,qx] € R", but
our NNPhD method is fully general and makes no such
assumptions.

An important subset of dynamical systems are known
as conservative because they conserve energy, which can
be described by Euler-Lagrange Equation:

d
where £(q,q) is the Lagrangian and V is the gradient
operator. As reviewed in Appendix A and [9], the La-
grangian mechanics formalism implies that such systems
allows equation (1) to be re-expressed as

d=(VqVgL) "' [VoL — (VaVgL)d] (3)
For readers whose background is primarily in machine
learning rather than physics, Appendix D provides a brief
review of the Lagrangian mechanics formalism that we
use in this paper.

B. Lagrangian neural networks

To guarantee energy conservation, inductive biases
have recently been embedded into neural networks, in-
cluding Lagrangian Neural Network [9], Hamiltonian
Neural Network [10] and variants [11-14]. As shown in
FIG. 2, a LNN uses a neural network to parametrize the
Lagrangian £(q, ¢) and output fV(q,q) through eval-
uating Eq. (3). For a given loss function defined be-
tween model output fVV(q,q) and ground truth g, the
LNN parameters can be learned using standard optimiza-
tion algorithms. A trained LNN therefore contains a La-
grangian that determines conservative dynamics. Since
not all physical systems conserve energy, the Lagrangian
mechanics is insufficient for describing non-conservative
dynamics, motivating the NNPhD framework.



C. The force decomposition minimizing
non-conservation

Following the problem setting of LNN, we focus on the
simple setting where the acceleration q is a known func-
tion i.e., @ = f(q,q,t). Our goal is therefore not to learn
the force field, but to decompose the force field. In prac-
tice, where only discrete points on trajectory {(q®,¢(®)}
are known, q(? and §¥ can be extracted using a Neural
ODE module [16].

The main goal is to decompose the force field
flaq,q,t) : R2"*1 — R™ into a (time-independent) con-
servative component f.(q,q) : R?*” — R" and a non-
conservative component f,(q,q,t) : R+ — R” such
that

fla,q,t) = fo(a,q) + fula,q,1). (4)

In general, the decomposition is not unique. We desire
the decomposition that minimizes the non-conservative
component f,(q,q,t). To define the distance between
two functions, we embed all functions f(q,q,t) in a
normed vector space (F,| - ||) and define its conserva-
tive subspace F. C F as

3L(q,q):R®" =R,  s.t.
{f €| Hqa—(v, VL)1 (Val- (quTL>q)}

We formally define the force decomposition as follows:

Definition I1.1. (force decomposition with mini-
mal non-conservation) The conservative component
of f(q,q,t) is defined as

fe(a,q) = arg min If(a,a,t) —g(aq,q)]- (5)

We denote fu(q,q,t) = f(q,4,t) — fe(q,d) the non-
conservative component of f and denote the decompo-

sition £(q,d) = fo(q, &) + fu(a, &,1) the force decompo-
sttton minimezing non-conservation.

D. Neural New-Physics Detector (NNPhD)
framework

To learn the force decomposition minimizing non-
conservation, we define a learning framework dubbed
the Neural New-Physics Detector (NNPhD). Specifically,
NNPD learns f. and f,, jointly. As illustrated in FIG. 2,
NNPhD consists of two parallel modules, a Lagrangian
Neural Network (LNN) and a Universal Approximator
Network (UAN). The LNN takes in (q,q) to predict a
Lagrangian £(q, q; w.) in the intermediate layer and out-
puts fVN(q,q;w,) calculated from Eq. (3), where w.
are LNN parameters. The UAN is a pure black box (a
fully connected neural network) that takes in (q, q,t) and
outputs fNV(q, q,t; w,) where w, are parameters of the
black box. The two outputs are summed to predict the
full force field

(a,9,t; wy).
(6)

YN (@, @t we, wy) = fNV (q, ¢ we) + fo Y

We take both recovery error and minimal non-
conservation into considerations to design our loss func-
tion: (1) fN¥N should recover ground truth f; (2) we
make maximal use of fN¥V and reduce fNV as much
as possible (e.g. when f is conservative, we hope that
NN vanishes). Guided by these two principles, we de-

fine our loss function as follows (denoting the i'" sample
X = (q,4("):

Lynphp(We, wn) = Le(we, wn) + ALy (wn),

P
NN z) (z)
Lyfw,) = (NnZu y n>|p> ,

Le(we, wy)

(NnZ”f Viwe) + fNN(x“),t“);wn)—f(x“),t“’)|”>

(7)

where p > 1 and the regularization coefficient A > 0.
The factors % and % average over samples and degrees
of freedom, respectively. Here we use L, function norms,
ie. ||fll = (J|fIPdu)'/?, where the integral is replaced
by averaging over finite training samples. L. is the re-
covery error and L; penalizes the black box module to

discourage it from learning conservative dynamics.

E. The regularization phase transition

Does minimizing Eq. (7) yield the force decomposi-
tion of Eq. (5)? We offer an affirmative answer to this
question by presenting Theorem 1 informally here. Ap-
pendix F provides a rigorous formulation and proof of
this theorem.

Theorem 1. (Informal) Suppose fNN and fNN can
represent any conservative force field and any (contin-
uous) force field, and (fZ, f) denotes the pair that min-
imizes NNPhD loss from Eq. (7). Then we have a phase
transition at A = 1 such that (f¥, f¥) = (fc, fn) when
0< A<, and (fZ, ) = (fc,0) when A > 1.

Theorem 1 has two interesting and useful implications:
(1) sharp phase transition: The recovery error L, = 0
when A < 1 and L, = || fu]| > 0 when A > 1. As a result,
non-conservative dynamics predicts an error jump of L.
at A = 1, while conservative dynamics does not. This
phenomenon justifies the term “detector” in our model
name, in the sense that non-conservative dynamics is de-
tected by the sharp phase transition at A = 1. (2) ef-
fortless A tuning: Any X\ € (0,1) would achieve the force
decomposition. Below we report numerical experiments
showing that in practice, too small A do not regularize
UAN effectively, and force decomposition results are ro-
bust for 0.05 < A < 1 independent of dynamical systems
at study.

As we will see in Appendix F, the proof is more com-
plicated than one might naively expect. If conservative



force fields formed a linear subspace, then the conser-
vative component f, from equation (5) would simply be
the orthogonal projection onto that space, and the non-
conservative residual f,, would be orthogonal to that sub-
space. But conservative force fields as we have defined
them generally do not form a linear subspace, i.e., the
sum of two energy-conserving force fields may not con-
serve energy, which is related to the nonlinear nature of
equation (3).

III. RESULTS FROM NUMERICAL
EXPERIMENTS

In this section, we test our NNPhD algorithm with a
series of numerical examples defined in Table I. In Sec-
tion IIT A, we quantify its ability to rediscover symbolic
expressions for “new physics” such as friction, Neptune
and gravitational waves. In Section III B, we show that,
although NNPhD is designed for new physics detection,
it can also outperform baseline trajectory prediction for
the damped double pendulum example. In Section IIIC,
we use toy examples to verify and quantify the aforemen-
tioned A-dependent phase transition, and explore how the
choices of p and X in Eq. (7) influence algorithm behavior.
Finally we discuss how data quality affects identifiability
of new physics in Section III D. Further technical details
on model parameters, simulations and neural network ar-
chitecture are provided in Appendix A.

A. Discovery of New Physics

We now test NNPhD on three numerical examples de-
fined in Table I, to see if it can rediscover friction (1493),
Neptune (1846) and gravitational wave emission (2017).
In all three cases, the force fields defined by the right
hand side are the sum of a conservative part (the first
term) and a non-conservative “new physics” part (the
second term) that we hope to discover. Before delving
into our numerical experiments, let us briefly comment
on how we model these three dynamical systems.

1. Physical systems tested

Friction Italian polymath Leonardo da Vinci first
recorded the basic laws of friction in 1493. We add
friction to the double pendulum system and to test if
NNPhD can automatically discover the friction force
solely from data. The damped double pendulum ex-
ample can be described by two angles and their deriva-
tives i.e., q = (01,02) and q = (01,62). In our nu-
merical experiment, we choose the physical parameters
m1:m2:g:h:l2:1,'y:0.02.

Neptune Le Verrier postulated the existence of Nep-
tune in 1846: astronomers had found that Uranus’ or-
bit around the Sun precessed in a way suggesting the

presence of a force of unknown cause, later identified
as Neptune. Neptune was invisible at the time in the
sense that contemporary astronomers could not observe
its position or velocity, but Le Verrier (and NNPhD)
were able to identify the existence of a third body by
identifying a non-conservative contribution to the force
field of the two-body system. For our numerical experi-
ments, we make the simplifying assumptions that (1) the
Sun remains fixed at the origin, (2) the elliptical orbits
of Uranus and Neptune are circular (have eccentricity
e = 0) and lie in the same plane, (3) Neptune’s orbit is
unaffected by Uranus, and (4) the effects of other plan-
ets are negligible. Here x and y denote the coordinates of
Uranus, and time ¢ is measured in units such that Uranus’
orbital period is 27v/23. We choose G = 1, mass of Sun
Mg = 1. Neptune’s mass, orbital radius and angular
velocity are M,, = 0.005, 7, = 3 and w, = 372 ~ 0.192.

Gravitational Radiation As predicted by Einstein,
the gravitational two-body problem is non-conservative,
since the system radiates gravitational radiation that car-
ries away energy and causes orbital decay. Experimen-
tal confirmation of this garnered Nobel Prizes both in
1993 (for the Hulse-Taylor pulsar) and in 2017 (for the
LIGO discovery of gravitational waveforms from black
hole mergers), and there is great current interest in
exploiting such signals both for gravitational wave as-
tronomy and for precision tests of general relativity.
To test whether NNPhD can auto-discover the non-
conservative force caused by gravitational wave back-
reaction solely from black hole trajectories, we simu-
late a binary black hole inspiral using the approxima-
tion from [36] that the radiated gravitational wave power
P= 3—52%/1%4(26 = 3—5%#22—2 in a slowly decaying circu-
lar orbit (of radius r, angular frequency © and reduced
mass u = (M; ! + M;')~") equals the energy loss rate
—dE/dt = vf from a dissipative back-reaction force f.
Using Q o 7~3/2 and v o r~/2 from Kepler’s 3rd law
gives P oc v'0, with a total force

GMlMgr O B2MPMEF (M7 + M3)
7”3 5G65(M1 + M2)6

f=pr=— v, (8)

corresponding to an acceleration

_G(M1 +M2)r— 32M1M2(M12+M22),08v (9)
73 5Gc® (M + Ms) ’

'i::

where r = ro — r; and v = v9 — v1. We choose these
physical parameters to be G = My = My =1,¢ = 3.

2. Detection of new physics

These three physical systems have d = 2 degrees of
freedom, obeying the second-order coupled differential
equations in Table I. Including the corresponding con-
jugate momenta, a system’s state is thus a point moving
along some trajectory in a 2d-dimensional phase space,
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TABLE I: We test if NNPhD can automatically decompose these three force fields into a conservative part (first
term) and a non-conservative part (second term) corresponding to the “new physics”.

satisfying a 2d coupled first-order coupled differential
equations. We solve these equations and compute the
trajectories numerically using a 4th-order Runge-Kutta
integrator at Ny, = {300, 1000, 300} timesteps of size
e ={0.1,0.1,0.05} for the three physical systems, using
the following initial conditions:

(017927é1792) = (1707030)
. 1
(xayaxay) - (3703(); 73) (10)
(3372/,56,1)) = (0727 _170)

Once trajectory points are calculated, the ground truth
forces f at those points are evaluated using the formula
in TABLE I 2. We do not hold back any testing data
in this section, since many insights can be gained solely
from training data. We will hold back testing data and
verify NNPhD’s generalization ability in Section IIIB.

We then train NNPhD on the aforementioned trajec-
tory data as detailed in Appendix B. FIG. 3 shows the
resulting NNPhD prediction loss L. as a function of A, re-
vealing a striking phase transition at A = 1: for A < 1, L,
is almost zero, while for A > 1, L. is an approximately
constant positive number, indicating the magnitude of
non-conservative components.

As we showed above, such a phase transition is a
smoking-gun signature of new physics manifesting as
non-conservative dynamics. The observed phase tran-
sitions thus justify the NNPhD name.

3. Modeling of New Physics with Symbolic Expressions

After detecting the existence of new physics, physicists
are interested in understanding and explaining this new

2 In more realistic settings, one would first extract ¢ from trajec-
tory data, e.g. with Neural ODE [16] or AI Physicist [27], and
then use g as labels to train NNPhD. We treat g = f(q,q,t) as
an oracle in this paper since we focus on the force field decom-
position aspect.
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FIG. 3: In all our three examples, clear phase
transitions at A = 1 indicate the existence of new
physics.

physics by describing it with via symbolic expressions.
We found that if we did not impose any inductive bi-
ases on the LNN, we unfortunately did not auto-discover
ant meaningful symbolic expressions. We therefore drew
inspiration from the history of physics, where inductive
biases have routinely been used. For example, physi-
cists often knew and used analytic formulas for the old
physics when quantifying new physics. In this spirit, we
constrain the form of LNN Lagrangian so that only a set
of coefficients are learnable, while the UAN remains to
a fully general feedforward neural network with two hid-
den layers containing 200 neurons each. Specifically, we
?aﬁametrize the Lagrangians for our three examples as
ollows:

Leric = c1cosby + cocosha + 039% + 0493 + 059192005(91 —02)

. . C3
L =cC 332 C 2 —
neptune 1 + coy® + ) +y2 (11)
. 5 C:
Cgrav = CICCQ + CQy2 + B -
Va2 4+ y?

This is implemented by inputting hand-crafted features
(cost, 2%, etc.) into a learnable linear layer which outputs
the predicted Lagrangian. We adopt a train-and-explain
strategy:

1. Training: Like before, we train the whole NNPhD
(LNN and UAN are updated simultaneously) with
A = 0.2 using the ADAM optimizer with anneal-
ing learning rate {1072,1073,1074,1075} for 2000



TABLE II: Symbolic Formulas Discovered by NNPhD

Physics Example

Target| Ground Truth “New Physics”

NNPhD+Symbolic

Double Pendulum (
02

01 —0.02(?1 - 0.00(?2 —0.0186,
—0.000; — 0.020-

— 0.00102>

—0.0016; — 0.0186-

Neptune

052(—y+3.004sin(0.192t))

~ 0.005(—z 1 3c0s(0.1927)) 0.0052(—213.004c0s(0.1927))
T [(z— 3cos(0 192t))2+(y 3sin(0. 192t))2]§ [(z—3. 004505(0 192t))2+(y—3.004sin(0.192t))2 ]i
y 05(—y+3sin(0.192t)) 0.0
3
2

[(y—35in(0.192¢))% 4 (y—3sin(0.192¢))2] 3

[(y—3.004sin(0. 192f))2+(y 3. 004>|n(0 1921))2]

Gravitational Radiation i
1

<:1':1) (—0.00165(:&% + zﬁ)“ﬁcl) ( 0.00170(32 + y2)> 4'1)

—0.00165 (i + §2)%4

—0.00170(i3 + 42) %%,

steps.

2. Explaining: After training, we aim to extract
more interpretable physics from the UAN via con-
strained nonlinear optimization of free parameters
(displayed as bold in Table II) to explain the out-
put of the black-box, since ground truth symbolic
forms are available.

In Table II, we show ground truth “new physics” and
NNPLD discovered symbolic expressions. Fitted coeffi-
cients are seen to match ground truth quite well: (1)
damping coefficient; (2) orbital radius and angular ve-
locity of Neptune around the Sun; (3) magnitude and
velocity dependence of gravitational wave emission.

B. Prediction of Trajectories

In addition to discovering new physics, as we saw
above, NNPhD can also compete with other methods on
simple trajectory prediction, and we will now test its per-
formance for out-of-distribution generalization. Specif-
ically, we test how accurately it can extrapolate the
trajectory of the damped double pendulum from Sec-
tion IIT A 2, whose state is specified by two angles (61, 62)
and corresponding angular velocities (6;,60,). We com-
pute a trajectory with a 4*"-order Runge-Kutta integra-
tor at Ngiep = 2000 timesteps of size ¢ = 0.1 using the
initial conditions (61, 6o, 6, 92) = (1,0,0,0). Our test
task is to extrapolate beyond ¢t = 30, so we split the tra-
jectory into a training dataset (0 < ¢ < 30) and a test
dataset (30 <t < 200).

We train NNPhD with A = 0.2 and feed its prediction
f into a 4'"-order Runge-Kutta integrator to produce the
predicted trajectory. Figure 4 compares the performance
with that from a LNN and a pure black box neural net-
work. The left panel shows that both NNPhD and the
black box can fit 6; well on training samples and extrap-
olate for a short period, but fail at larger times due to
accumulated errors and sensitive phases. In contrast, we
see that the LNN cannot even fit the training data, be-
cause it has the invalid energy-conservation assumption
built in. The right panel shows that ground-truth energy
is decaying exponential over time due to friction, while
the LNN stubbornly predicts constant energy. NNPhD is
seen to predict the energy decay best of the three meth-
ods, while the black-box slightly overpredicts the the en-

ergy for a while and then incorrectly transitions to pre-
dicting approximate energy conservation.

C. Theory Verification and Algorithm
Benchmarking

In this section, to better understand its algorithmic
behavior, we test NNPhD on the six simple dynami-
cal systems in physics in Table III: conservative exam-
ples involve a harmonic oscillator (HO), a magnetic field
(MF)? and constant gravity (CG) and non-conservative
examples include linear damping (LD), constant damp-
ing (CD) and a periodic force (PF). We combine these
into five examples to obtain two conservative systems
(HO+MF, HO+CG) and three non-conservative systems
(HO+LD, HO+CD, HO+PF), whose dynamical equa-
tions are summarized in Appendix A. For each system,
we train NNPhD with the ADAM optimizer for 2,000
iterations, using batch size 32, learning rate schedule
{0.01,0.001,0.0001,0.00001} and 500 iterations for each
learning rate.

We now explore how the performance of the
NNPhD depends on the regularization coef-
ficient A and norm index p by testing A =
{0.01,0.02,0.05,0.1,0.2,0.5,1,2,5,10,20,50,100}  and
p =1,2,3. Instead of simulating trajectories to generate
data as in previous sections, we compute q = f(q,q,t)
at N random points (q¥) q(Z t;). We first generate all
positions, velocities and times as independent Gaussian
random variables with zero mean and unit standard
deviation, then explore more complicated coverage in
Section IIID. We generate 10 training samples and 103
testing samples (q, q,t).

How performance depends on p: In Figure 5(a),
we plot the dependence of the prediction error L. on
A (p = 1), again verifying the phase transition pre-
diction from Section IIE: The non-conservative systems
(HO+LD, HO+CD, HO+PF) are seen to have a large
error jump at A = 1 while, in contrast, L. does not in-
crease at A = 1 for the conservative systems (HO+MF,
HO+CG). In fact, HO+MF has even lower prediction

3 Note that we refer to the magnetic force as conservative because
it conserves energy, even though physicists customarily limit that
term to velocity-independent forces that can be written as the
gradient of a potential function.
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dynamics; (b) NNPhD correctly predicts the exponential energy decay on testing samples, while the black-box
generalizes worse, and LNN incorrectly conserves energy.
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FIG. 5: NNPhD is seen to behave robustly for 0.05 < A < 1 and p > 1. We test NNPhD on five examples (the first
two are conservative, and last three are non-conservative). (a)-(d) prediction error L. as a function of A with
different norms as loss function: for (a)-(c) || - ||,(p = 1,2, 3), non-conservative dynamics has an error jump at A = 1,
while conservative dynamics does not. In (d), mean squared loss leads to a smooth phase transition for

non-conservative dynamics; (e)-(h) for the linear damping case § = —q — %q, we show how
and fPHY for different loss functions and different \.

with fPHY

error at larger A, showing the advantage of employing
a Lagrangian Neural Network as opposed to a black box
for conservative systems. Figure 5(a) shows that NNPhD
has the ability to distinguish between conservative and
non-conservative dynamics by looking at prediction loss
around A = 1, ¢.e., a sharp phase transition indicates
non-conservative dynamics. The above observations also

fNN fNN
C n

and are aligned

apply to Figure 5(b)(c) when p = 2 and p = 3. However
Figure 5(d) shows that mean-squared-error loss (where
the Lo-norm is squared) leads to a smooth transition,
known as second-order phase transition in physics.

How performance depends on \: We then quantify
how accurately the conservative and non-conservative
components are modeled for different A-values. Figure



TABLE III: Examples of Conservative and Non-conservative Dynamics

Classes Model Equation Lagrangian
i < TR — 7 — 2
Conservative Harmonic Oscillator (HO) g = qq g = E]q /2 - (;43
PHY . . 1= q2 = 1 — 42
o M tic Field (MF .. . .
( ) agnetic Field (MF) G = —dn (2 4+ q1)%/2
Constant Gravity (CG) Gj=-—1 L=¢/2—q
) . Linear Damping (LD) Gg=—q
Non (COI?Z?;WVQ Constant Damping (CD) [§ = —sgn(q) NA
» Periodic Force (PF) G = sin(t)
(a) Data Coverage (b) Data Bias
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—— (I =l
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FIG. 6: Dependence on data distribution parameters « and . Low quality data might prevent new physics
discovery via (a) incomplete data coverage and (b) biased data distribution.

5(e) shows our results for the damped oscillator exam-
ple § = —q — %q', comparing fNV with fPHY = —¢
and fNN with fPHY = f%q. As Theorem 1 suggests,
we observe that (1) when A > 1, fNV predicts 0 while
NN ~ fPHY . (2) when 0.05 < \ < 1, fNV PHY
and fNN ~ fPHY . (3) when A < 0.05, although in the-
ory it behaves similarly to (2), a small A does not have
much incentive to penalize the black box, which there-
fore absorbs part of the conservative component. Figure
5(f)(g)(h) show that the alignments between the ground
truth components and the the predictions from NNPhD
are quite robust for different choices of loss function.

~

D. Physics Discovery Requires High-Quality Data

Although NNPhD does not assume any data distribu-
tion to achieve the decomposition, we will now see that
NNPOD can only learn to accurately decompose the force
into conservative and non-conservative parts if the data
has high quality, specifically, if the data distribution has
(1) adequate coverage of the state space x = (q,q) and
(2) is unbiased.

Incomplete data coverage: We now explore the sit-
uation where data points are only accessible in a pie-
shaped subset of space covering an angular fraction of
a € [0,1], as illustrated in Figure 6(a). We consider
the 1D constant damped oscillator § = —q — %Sgn(CjL
train NNPhD with A = 10 on datasets with different
fractions a and calculate the prediction loss L.. Recall
that when A = 10, a high prediction error L. is a sign of
non-conservation. Figure 6(a) shows that when o < 0.5,

no samples are generated in the lower half plane (where
¢ < 0), then the prediction error L, is nearly zero, re-
vealing no sign of non-conservation. For a > 0.5, on the
other hand, NNPhD has a large L., revealing the non-
conservative nature of the damping force. This observa-
tion makes physical sense since, if only ¢ > 0 samples are
observed, the damping force acts as a constant conserva-
tive force (like gravity) which can be included as a (—1¢)
term in a Lagrangian £ = %QQ — %q, making the
dynamics appear energy conserving.

Imbalanced data distribution Even in the case
when data is available everywhere in all relevant parts of
phase space, the data set can still be imbalanced, e.g.,
contain more ¢ > 0 samples than ¢ < 0 ones. Fig-
ure 6(a) show that this is not a sever problem in the
sense that it does not preclude us from identifying the
existence of non-conservative dynamics, since the pres-
ence of since merely a few samples with ¢ < 0 suf-
fices to give a clear signal of non-conservation. How-
ever, such imbalance may harm the accuracy of our de-
omposmon We consider the linear damped oscillator
§g=—q— fq where a fraction 8 of the data is in the up-
per half plane while the remaining fraction 1 — (3 is in the
lower half-plane. We set A = 0.5, train on datasets with
different 8 and compare learned conservative and non-
conservative force fields with ground truth. We found
the learned functions fNV and fVV are not necessarily

aligned with the ground truth decomposition fZH#Y = —q



and fPHY = —%q. We define misalignment as
1 X

. . 1

me = (== 37 AN () = 21 (D) )2,
i=1

N

1 i i i i i

= (2 DIV, 00) = 1P O, D)2
i=1

(12)
Figure 6(b) shows this misalignment as a function of 3,
revealing a minimum with nearly zero misalignment for
the 8 = 0.5 case when the data is balanced. In summary,
these last numerical experiments show that high-quality
data is important for new physics discovery, regardless of
whether the data is analyzed by intelligent human scien-
tists or machine learning.

IV. CONCLUSION

We have presented the Neural New-physics Detector
(NNPhD), a method for decomposing a general force field

into components that do and do not conserve energy. We
showed that NNPhD was able to do this robustly for a
series of physical examples without access to symbolic
equations, providing clear evidence of the existence of
conservation-violating new physics. We also found that
NNPhD could extrapolate time series more accurately
than both LNN and black-box neural networks. As ever-
larger science and engineering datasets become available
for dynamical systems, we hope that NNPhD will help
enable more accurate prediction as well as aid discovery
of interesting new phenomena.
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Appendix A: Toy Example details

For each dynamical system, the left hand side is q, and right hand side is physical ground truth where conservative
and non-conservative dynamics is explicitly separated as {fZ#Y (q,q)} + {fFHY (q,q,t)}.

HO+MF (k=B =1):
(B)=tr () +m (2 1(5) )

i={-kx—g}+{0} (A2)

HO+LD (k=1,7y=1)
i = {—ka} + {—i} (A3)

HO+CD (k=1,7y=1)
& ={—kx}+{—ysgn(s)} (A4)

HO+PF (k=1,a=1%)
i = {—ka} + {asin(t)} (A5)

Appendix B: Neural network training details

We parameterize both the our LNN (conservative) and our UAN (non-conservative) force models as non-weight-
sharing fully connected feedforward neural networks with two hidden 200-neuron layers. The LNN uses a mixture of
softplus and quadratic activation (see Appendix C for details) and has Eq. (3) hard-coded right before outputting

NN while the UAN uses LeakyReLU activation (with negative slope a = 0.2) and does not involve in any other
inductive biases.

We measure the performance of NNPhD for

X € {.01,.02,.05,.1,.2,.5,1,2,5,10, 20,50, 100} (B1)

by first initializing and training NNPhD with A = 0.01 using the ADAM optimizer with learning rate
{1072,1073,107%,107°} for 2000 steps (500 steps for each learning rate), and iteratively increasing A and train
for 2000 steps for each new A-value. The model parameters of LNN and UAN are updated simultaneously.

Appendix C: Tricks to Boost LNN Training

As mentioned in [9], LNN is unstable and inefficient to train with traditional initializations in ML. As a result,
expensive grid search of proper initializations is required. We propose two simpler tricks that have some improvements
and are easy to implement. We use the example of a harmonic oscillator. The Lagrangian £ = é(f - %qz contains
only quadratic terms. We build a two hidden-layer networks with width 4-200-200-2.

Activation Trick: [9] uses Softplus as activation function, which is general but inefficient to represent a quadratic
function. However the quadratic function is common and useful in physics, we propose to divide neurons into two
groups, where one group uses Softplus as activation, and the other group uses quadractic function as activation.

Split Trick: One of instability when forwarding LNN comes from inversion of V¢V¢£L. In physical terms, Vg VgL
represents a mass scalar (matrix) which is positive (positive definite). However this constraint is not explicitly
embedded to LNN, leading to training instabilities. We split £ into two parts:

1
L=L+Ly=LNnN+ §aqT¢l (C1)

where £; is learned by LNN, while £5 is a fixed quadratic term (we choose a = 1). At initializations when £y ~ 0,
L~ %aqTq is positive definite.

To test how the proposed two tricks operate, we implement four models in Figure 7 to fit 1D harmonic oscillator:
Softplus or quadratic activation, and w/wo the split trick. The best performance one is the LNN using quadratic
activation and the split trick.
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FIG. 7: Tricks to boost LNN training

Appendix D: Lagrangian mechanics for machine learning readers

For readers whose background is primarily in machine learning rather than physics, this section provides a brief
review of the Lagrangian mechanics formalism that we use in this paper.

Conservative dynamics describes a dynamic where there exist conserved quantities (energy, momentum, angular
momentum etc). Conservation laws are important in physics, as it corresponds to symmetries of our mother nature,
according to Noether’s theorem [37]. In particular, energy conservation is equivalent to time translational symmetry.
To describe dynamics that conserves energy, physicists employ (time-independent) Lagrangian or Hamiltonian for-
mulation. Since our work and prior work Lagrangian Neural Network (LNN) [9] are based on Lagrangian mechanics,
we provide a brief introduction here.

The Lagrangian formalism models a classical physics system with trajectory x(¢t) = (q,q) that begins in one
state x(tp) and ends up in another state x(¢1)(t1 > %), where q and q are called the generalized coordinates
and velocities respectively. There are many paths that these states might take as they pass from x(¢p) to x(¢),
and Lagrangian mechanics tells that there is only one path that the physical system will take, i.e., the path that
minimizes ftil (T(q(t),q(t)) — V(a(t),q(t)))dt, where T is kinetic energy and V is the potential energy. The term
L(q,q) = T(q,q) — V(q,q) is called Lagrangian and the path (trajectory) of the system is determined by FEuler-
Lagrange equation:

d
ZVal = VL.

Based on the formulas in Lagrangian Neural Network (LNN) [9], Euler-Lagrange equation %Vqﬁ = VoL can be
rewritten by applying a chain rule £VIL = (VqVEL)q + (VqV4L)q resulting in:
4= (VaVgL)  (Val — (VqV4L)a) (D1)

One inductive bias brought by Lagrangian mechanics is that Eq. (3) describes conservative physical dynamics.
That is, the energy function defined as

is constant along a trajectory (q(t),q(t)) driven by Eq. (3). The proof of H(q,q) conservation can be found in
standard physics textbooks [38] and is included here for completeness.

Lemma 1. Given a Lagrangian L£(q,q), the energy defined in Eq. (3) is conserved along the trajectory (q(t),q(t))
driven by Eq. (2).

Proof. Invoke the chain rule one obtains the time derivative of L:

ac

- = IV L+ G VoL (D3)
Eq. (4) is equivalent to Euler-Lagrangian equation 4 V4L = V4L, so we replace VgL with 4V, L:
¢ .pd T _d . dH _ d .o _
il dthE—&-q Vol = p (@' VgLl) — pral e (@' VelL—-L)=0 (D4)
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Since not all physical system conserves energy, Lagrangian mechanics is insufficient to describe non-conservative
dynamics, motivating the design of NNPhD framework. We prove that linear damp example is non-conservative, i.e.,
it cannot be represented by Lagrangian mechanics.

Lemma 2. Let function f : R?> — R be defined as f(q,¢) = cq, where ¢ can be any real non-zero constant. Then,
f cannot be represented by Eq. (3) for any Lagrangian £ € D*(q,q) (D*(q,q) is the function space consisting of all
twice-differentiable functions with respect to (q,q)).

Proof. We prove the claim by reduction to absurdity. Suppose there exists a Lagrangian £ € D?(q,q), such that,

ol = (qu<q7 q))_l (Saa- ((f;aﬁqm, @)a). (D5)

By multiplying (g;ﬁ (q, q)) to both sides of eq. (D5), we have

. q7 q q q) q . q7 q q)
W hl'Ch by eq. (D2) fllIt}leI leadS l()

oOH

Salad) + %—Zl(q, &) = 0. (D6)

By variable substitution, let H(q,q) = g(cq + q,q — ¢q). By eq. (D6),

d(cq +q) dq  9(cq+q) 9q  9(cqa+4q)
:iaH(CLQ) n 10H(q,q) —0
2¢ dq 2 99 '

Therefore, H(q,q) is invariant of c¢q + ¢ and only relies on the value of q — ¢q. Thus, we can further abbreviate

H(q,q) as g(q — cq).
On the other hand, by eq. (D2),

g(—cq) = g(0 — cq) = H(q,q) = —£L(q,0).

Therefore,
99 |gq=o a0 q
¢34 (q,4) — g(4 — cq) + g(—cq)
= lim -
q—0 q
«) 0L(q, ¢
WD (o),
q q=0

where eq. (*) is due to that %‘é’q)(q, q) is differentiable (thus continuous).

Therefore, we have ¢’(q) = 0 for any q, which further leads to H(q,q) is a constant function and

, L. .\ 'oH(q,q)
cq=— (8(12((1’ Q)) Tq =0.

The proof is completed since ¢ # 0. O
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Appendix E: Learning perspectives of Section II C

We describe the learning task based on the force decomposition in Section IIC. Given samples
(@, q® t®;§#),i = 1,--- N that are uniformly drawn from the trajectories of dynamic § = f(q,q,t) with
t € [0,T] or a given distribution p, we aim to learn both f. and f,, from data. Because the ground-truth dynamic and
its vector space are unknown, we need to select a model space (G, || - ||g) which is also a normed vector space to find

the best model in it. For this learning problem, we learn the model pair (fN, f¥V) simultaneously by solving the
following constrained minimization problem

min  Ls(fFNV, YY) = Nznf a®,a®) + Y@, 4@, 09) - 49

(PN PN
NN _ - (i) () ¢
+. = = _
st fl arg;glgrlN;Hq 9@, aM)||g

We make the following discussions on the learning task: We denote the optimal models of the above optimization
problem as (fNV* fNN*) The interpolating prediction ability (which is measured by the gap between fOT | NN 4
FNN= _§||dt and Lg(fNN*, fNN*)) is determined by the approximation ability of G and the number of training data.
As the number of tralmng data N increases, the gap will be smaller. As the approximation ability of G becomes

stronger, the gap will be smaller.

Appendix F: Theorem 1 (formal)

Theorem 1. We suppose the ground-truth hypothesis space (G,| - |p), Let fNN(q,q;w.) be the Lagrangian Neu-

ral Network with parameters w. in NNPhD framework, and fNV(q,¢,t;wy) be the black box neural network
with parameters w, in NNPhD framework. Assume the black box neuml network can interpolate every contin-

uous function of (q,d,t) at any N points, i.c., for any dataset {(q?,q® tO}N| with distinguished elements,
NN (@@, q@D 100 )WY - w, € Rbwn} = RN, where dyy, s the dimension of wy. Then, given any continuous

function f and any norm || - || on function space C(q, q,t), the following claim stands:
(1) For X\ > 1, optimizing LxNprp is equivalent to optimize || fNN (-, -;w.) — q|| while keeping fNN(-, -, ;wy) as zero,
that is,

S =

) N s L i 1 N s
argwrglg;n< Zlif A a5we) + V(@40 O = GO (IR @O, 1))

P
= (e e e Sarerg < S (@9, 40 we) — t‘:“”’) L NN (@, 9,19 a0,) = 0
We
i=1

(2) For 0 < \ < 1, optimizing Lynpnrp is also equivalent to optimize ||fNN (-, ;we) — @| while keeping fNN (-, -, -;wy)
as f — fNN(., ~;wc) that is,
N 1
arg min < Z 1FAN (@, a5 we) + fVN (@D, 4,65 wn) — é'l(i)||]”> T (%Hfr].VN(q(i)yq(i),t(i);wn)llp) ’
wes i=1
1

P
= { (we, wa) : we € argmin < lefNN a®, 4 we) — 4 ||P> LN (@@, 4D D) = @@, gD, @) — N (gD, g we)

We will provide proof of Theorem 1. We will actually show our results hold for general norms which include the
discrete norm we use in Theorem 1. Concretely, Theorem 1 holds as a special case as the following theorem:

Theorem 2 (Theorem 1, extended to general norms). Let fNV(q,¢;w.) be the Lagrangian Neural Network with
parameters w, in NNPhD framework, and fNV(q, ¢, t;wy) be the black boxr neural network with parameters wy, in
NNPLD framework. Assume the black box neural network can represent every continuous function of (q,q,t) under

the norm || - ||, i.e., {g(q,q,t) : Jwn, |lg(q,q,t) — fFNN(q,qw,)| = 0} = C(q,d,t). Then, given any continuous
function f, the following claim stands:
(1) For A > 1,

arg min [|f(q,q,t) — £V (q, @G we) — fo " (a, @ G wa)l| + ALY (a4t wn) |

We, Wn

:{(wc,wn):wc € argmin || f(q,q,t) = f7V (@, qgwe)ll, 1™ (a4t wn)| =0}.
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(2) For 0 < X\ <1,

arg min [|f(q,q,?) - NN (q, q;we) — FVN(q, @, 6wy + AN (q, @, wn) |

= {(wc,wm twe € argmin || f(a, 4,1) — O (@, G5 we) [ 127 (0 6,8 wn) = f(a,6,1) + S5 (@, 6 we) || = 0} :

Proof. We prove the two cases above separately.
(1) If A > 1, for any w. and wy,

=l1f(aa,t) = £ (@ @y we) = S (@t wa) |+ 1Y (s dstswn) |+ (= DI (0,6, 85|

(*) , , .
> || f(a,é,t) — FAN(a, & we) || + (A= DI FEN (@, d, 6 w,)]|. (F1)
Since A —1 >0,

argwmii} (”f(qv (.L t) - chN(qv q’ wC)H + (>‘ - 1)||fr]1VN(q7 qvt;wn)H)

c,Wn

= (arg min || f(q, @, 1) = £ (@ wo) | argy, 12 (@, 4.t wa)| = 0) :

For any (w?,w?) where w? € argmin,, ||f(q,q,t) — f¥V(q,q;w.)|| and || f¥N(q,q;w?)|| = 0, the equality of

inequality (x) of Eq. (F1) is obtained. Therefore,
(wl,wy) € arg min | f(q,q,t) = f (q, qwe) — £ (a4, twa) [+ ALY (@, 4t wa) |
which further leads to

arg min (|[f(q,q,t) — f2 (@, @ we) | + (A= DIV (@, 6, twn))

c,Wn

Carg min (If(a,a,t) = £ (a, @ we) — o ¥ (a, @, 15 wn) |+ ALY (@, a6 wa) )

c,Wn

and

We,Wn

= min ([[f(q,a,t) = f5 (q, @ we) | + (= DI (@, 4,5 wa)]) - (F2)

We , Wn

Combining Eq. (F1), Eq. (F2) further leads to
arg min (| f(a,q,t) = fON (@ qgwe) — £ (a4t wn) |+ M| FY (4,1 wa) )

The proof for A > 1 is completed.
(2) If A < 1, for any w, and wy, we decompose || f(q, a,t) — fVN (a, @ we) — [N (@, &, 6 wa) |+ A £V (@, @, 8 wn) |
as follows:

If(a,é.t) — fN(q, @ we) — AN (@, @, twn)[| + MY (q, ¢, 6 w,) |
=\ + 1 =) f(a,a,t) — FNN(q, @ we) — F¥N (aq, é, twn) || + N Y (a, é, 6w,
) _ _ . . .
> M fla,a,t) — YN (@, @ we) || + (L= N f(a,@,t) — F (a, @ we) — fFYV (@, é, 8w, (F3)

where eq. (%) is due to triangle inequality.
On the other hand, for any fixed w,, minimum of eq. (F3) is obtained if and only if || fNV(q,d,t;w,) — f(q,q,t) +
NN (q, ¢;we)|| = 0, in which case equality of eq. (*x) is also obtained. Therefore, for a given w.,

min || £(q, G, 1) = (a0 @ we) — £ (a4, G5 wa) |+ ALY (a0 4 6 wn) |
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and
argmin || f(q, ¢, t) — £ (q @y we) — £ (a4 wa) |+ ALYV (@, 6 wa)|

NN (@, .t wn) — fla,a,) + F3N (q, & we) || = 0} (F4)

={wy :

Since
arg min [|£(a,4,) = £ (a, g we) = f™ (@, @ wn) | + AL (@ a0t wn)|
=argminmin||f(q, 4,¢) = £ (@, & we) — £ (@ @t wa)l| + A £ (@, 6,8 wa)
by applying eq. (F4), we finally have

arg min || f(q,q,t) — S (q @ we) — S (a0 @ s wa) |+ AIAT (a6t wn) |
= {(wcvwn) Twe € argrriinAHf(q, q, t) - chN(qa q; wc)”v ||fr]1VN(q7 qat;wn) - f(qa q, t) + chN(qa q; wc)” = 0}

= {(wc,wn) twe € argmin||f(q, q,) — £ (@, qwo) [ 1YY (@, @t wa) — fla,a.) + 7Y (q @ we) || = 0} :

The proof is completed. O

The above theorem describes the case that fNV(q, ¢, ¢;w,) can represent every continuous function. However, in
practice, the black box neural network can only access functions close to the original solution. In this general case,
we instead have

Corollary 2.1. Let fN¥V(q,q;w.) be the Lagrangian Neural Network with parameters w. in NNPhD framework, and
FNN(q,q,t;wy) be the black box neural network with parameters wy, in NNPhD framework. Assume the black box
neural network can approximate every continuous function of t,q,q by error € > 0 under some norm || - || on function
space C(q,q,t), i.e., Vf € C(q,q,t), there exists a wi, such that, |fNN(q,¢q,t,wl) — f(q,d,t)| < e. Furthermore,
assume there exists wy, such that, fNN(q,d,t;wo) = 0. Then, given any continuous function f, the following claim
stands:

o For A\ > 1,

arg min [|f(q,q,t) - NN (q, qwe) — FNN(q, .t w) || + MY (q, q, 5 wy)|

~ (oremin (a.a0) ~ 2% @ G w00

e For A <1, for any (w¢, wy) € argmine, w, || f(a, & t)—f& (@, & we) = fVY (a, @, 1 wn) [ A £ (a, &, 15 00) |,

. ) . 14+ A
1™ (@4 tswy) = Fla,at) + fEN (@ gw) | < e, (F5)

Proof. When A > 1, the claim can be proved following exactly the same routine as Theorem 1. When A < 1, we follow
the same routine as Theorem 1 to decompose the optimization problem into a two step minimization problem: fixed
we, let g(q,¢,t) = f(q,q,t) — F¥V(q, ¢; we). Then, there exists a wd, such that

1N (a4, tw)) — g(q,q, 1) <e.
Therefore,
min (If(a a,t) — AN (@, & we) — fV N (a, &, tswa) || + AlLf N (9, 6.t wa)]])

< f(a,at) — FN (@, @ we) = f¥ N (@, tw) |+ ALY (a, 4, 6 wd)|
<A+ Mf(aat) — FN(a, @ we) — [N (q, é, twd)]| + M| f(a . t) — FN (g, & we)|
<A f(a,a,t) — YN (@, @ we)) ||+ (1+ Me.
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Let w, = argming, (| £(a,a) — ¥ (@, & we) — F¥ (a,d, 15w, + A F¥Y (q, @ ¢ w,)])). Then,

(1 - )‘)Hf(qv qa t) - f(fVN(qv qa wc) - frjl\[N((L qat7wn)H
< f(a,at) = F2 (@, @ we) = f N (@, @, twa) | + A f2 Y (@4, 65w, |

_)‘||f(q7 q7t) - chN(q7 q? 'wc))H
<(1+ N, (F7)

which finishes the proof of Eq. (F5).
Let h(w,) = miny, [[f(q,q,t) = £ (q, @ we) = £V (q, @, t5wn) | + A £ (@, @, ¢ wa) | By Eq. (F7),

[h(we)|| — Allf(a,é,t) — FN (q, @ we)|| < (14 Ne,
which further leads to

min [h(we)| < (1+ \)e -+ Amin £ (q &) ~ £V (q é w0

This completes the proof. O
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