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ABSTRACT. We propose a data-driven learning framework for the analytic con-
tinuation problem in numerical quantum many-body physics. Designing an ac-
curate and efficient framework for the analytic continuation of imaginary time
using computational data is a grand challenge that has hindered meaningful
links with experimental data. The standard Maximum Entropy (MaxEnt)-
based method is limited by the quality of the computational data and the
availability of prior information. Also, the MaxEnt is not able to solve the
inversion problem under high level of noise in the data. Here we introduce
a novel learning model for the analytic continuation problem using a Adams-
Bashforth residual neural network (AB-ResNet). The advantage of this deep
learning network is that it is model independent and, therefore, does not re-
quire prior information concerning the quantity of interest given by the spectral
function. More importantly, the ResNet-based model achieves higher accuracy
than MaxEnt for data with higher level of noise. Finally, numerical examples
show that the developed AB-ResNet is able to recover the spectral function
with accuracy comparable to MaxEnt where the noise level is relatively small.

1. Introduction. Analytic continuation is a challenging problem appears in pure
mathematics, applied physics, and other branches of applied sciences. The prob-
lem can be formulated mathematically in the realm of complex analysis. Given a
complex function f with domain Q C C,

f:QcC—oc,

analytic continuation process is to find an analytic complex function f: Q@ ¢ C — C
satisfies,

f(z)=2zVze

Analytic continuation can be found in a broad range of physical studies, such as
quantum field theory, condensed matter physics, image reconstruction, etc. For
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many situations mentioned above, the knowledge of f(£2) can be affected by un-
certainties that come from numerical or experimental determination of the value
of the function. In this paper, we focus on one type of physical applications arises
in condensed matter physics where analytic continuation originate from a mapping
between real time and imaginary time:

f(t) — f(—ir).

Calculations for the imaginary-time propagator are generally well behaved. Meth-
ods to compute imaginary-time correlation functions, e.g., quantum Monte Carlo
(QMC), are crucial for the study of strongly correlated physical systems. QMC
methods are intrinsically formulated in imaginary time and yield estimation of
correlation functions. It is thus challenging to perform the analytic continuation
to infer real-time properties. Specifically, one typical problem in this context is
the estimation of spectral functions of many-body quantum systems starting from
imaginary-time correlation functions. In this work, we introduce a novel data-driven
framework with state-of-the-art deep neural network method for the analytic con-
tinuation process of density spectral function estimation.
The spectral function of a many body physical system is defined as follows,

iHt A iH

Alw) = /00 iei“Jt<e i Ae” i Bdt, (1)

2

— 00

where (-) denotes expectation value on the state, fl, B are given operators acting on
the Hilbert space of the system whose Hamiltonian operator is H, and h is Planck’s

constant. The imaginary-time correlation function for the many-body system is
defined as

G(r) = ('F Ae=F B). 2)

The two equations (1) and (2) are related by the celebrated Wick rotation, a map-
ping between the quantum mechanical evolution operator and the imaginary-time
propagator:

For analytic continuation, the spectral function A(w) is what are looking for while
G(7) corresponds to the observations. These two functions are related from a
Fourier transform and the Wick rotation mapping. Thus, an inverse problem can
be formulated by a Fredholm integral equation

G(r) = /jo K(r,w)A(w)dw, (3)

where the kernel function K(7,w) = (w)e™™ can be complemented by a prioir
knowledge and defined in different ways for some properties with #(w) being the
Heaviside distribution [5, 7]. We use Fermionic kernel distribution in this work.
Quantum Monte Carlo (QMC) methods are widely used to study the finite tem-
perature physics of strongly interacting electron systems. The underlying algorithms
are generally formulated on the imaginary time axis to treat the finite temperature
dynamics of the many-body system. To extract the real time dynamics, an ad-
ditional analytic continuation of the imaginary time 7 data to the real time or
frequency w-axis is required to extract the quantity of interest. This process is a
highly ill-conditioned inverse problem so that small perturbations of the input data
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result in large uncertainties in the resulting spectral function A(w). The challenge
is rooted in the integral equation

Glr) = / T ). )

o 1+ e Bw

Here G(7) is the imaginary time QMC data for a fermionic observable such as
the single-particle Green’s function, K(7,w) = exp(—7w)/(1 + exp(—pw)) is the
Fermionic kernel function with 8 = 1/T the inverse temperature, and A(w) is the
quantity of interest. The process of inverting this equation is numerically unstable
because of the exponentially small tails in the kernel function for large w, and is
especially sensitive to the Monte Carlo sampling error in G(7) [27].

Several approaches have been proposed to address the analytic continuation
problem. The most commonly used framework based on Bayesian inference is the
MaxEnt method [17], pioneered in the works [22, 39] for the analytic continuation
problem given by Eq. (4). The MaxEnt method regularizes the inversion problem
through the introduction of an entropy-like term that measures the deviation from
a default spectrum and then determines the most probable spectrum A(w) using
deterministic optimization. A related method that uses consistent constraints for
the regularization was introduced in [37]. Both methods have the drawback that
prior information about the possible spectrum A(w) is needed for the regularization.

An alternative idea, which in principle does not rely on prior information is based
on stochastic optimization. The work [38] uses Monte Carlo sampling of possible
spectra weighted by Boltzmann weights with a fictitious temperature. This method
was later related to MaxEnt in a certain limit in the paper [5, 16]. The effort [16]
showed that Bayesian inference can be used to eliminate the ficticious temperature
in a similar fashion as the regularization parameter of the MaxEnt approach is
removed. Moreover, the work [34] developed a stochastic optimization based method
to randomly sample possible optimal solutions A(w), which implicitly regularizes the
problem by allowing less optimal solutions. Also, stochastic inference approaches
based on bayesian statistic for the analytic continuation of QMC data was studied
in [1, 16, 22]. A more accessible and less complex variant of this approach that uses
a Gaussian process for implicit regularization was recently introduced in [4, 13] and
shown to provide spectra similar to MaxEnt.

With the modern development and success of deep learning, the data-driven dis-
covery of physical systems becomes extremely popular for many applications. The
artificial neural network has been widely used to study physics-related problems.
Much recent work has been proposed on the mathematical connections between
residual neural network (ResNet) and differential equations, see, e.g., [6, 29, 31, 33].
The work [11] introduced ODE-net which parametrize the derivative of the hid-
den state using deep ResNet. Other efforts [9, 10, 18, 32] proposed the dynamical
system view of ResNet and provide connections between numerical ODE and deep
ResNet architecture. Moreover, the functional approximation ability of ResNet has
also been explored [14, 40, 41]. The work [30] proved ResNet can be considered
as a universal approximator with one hidden layer and has certain advantages to
fully connected neural networks. Data-driven models with machine learning for the
analytic continuation problem have been introduced recently. [35] proposed a sparse
modeling approach to eliminated redundant degrees of freedom for solving the ill-
conditioned analytic continuation. The paper [15] presented a general framework for
building an artificial neural network to approximate the kernel of the inversion. [44]
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introduced the convolution neural network based machine learning method with
stochastic gradient descent optimizer to train the continuation kernel. Motivated
by the recent development of residual networks [19], we propose a Multistep resid-
ual network architecture with Adams-Bashforth scheme to generate a more stable
inversion of the kernel under high-noise data for the analytic continuation problem.

This paper is strucuted as follows: Section 1 introduces the background infor-
mation about analytic continuation in details. In Section 2, we describe the general
computational framework for analytic continuation with details about the MaxEnt
method in Section 2.2. In Section 3, we present the recent mathematical interpre-
tation of ResNet and our new network architecture. In Section 4, we demonstrate
the effectiveness of our method by using numerical experiments. In Section 5, we
discuss some further works need to investigate for our model.

2. Analytic continuation.

2.1. Bayesian statistics. To computationally solve the equation (4) for spectral
A(w), we discretize the real frequency axis into N intervals, {w, }, the numerical
inversion of (4) becomes,

N
G; = ZKilAh (5)
i=0

where the discretized kernel K; = Aw;/(iw, — w;), A4; is the discretized spectral
function, G, is an observable single particle Green’s function measured in frequency
iwn, and Aw; = w41 — wy is the frequency interval. For the linear system (5), the
matrix K is ill-conditioned which causes large errors in the quantity of interest
A; with small deviations of G;. There exist several approaches for solving the
analytic continuation problem that regularize the problem by making use of prior
knowledge. Among these methods, the most common approach is the maximum
entropy (MaxEnt) method, which is based on Bayesian statistical inference. For
the equation (5), one can consider the Bayesian formula,

P(A|G) o< P(G|A)P(A), (6)

with P(A|G) proportional to the posterior probability of the spectrum A given
the data G, P(A) is the prior probability contains prior information about A, and
P(G|A) is the likelihood function that measures the quality of the fit between G
and KA. The MaxEnt method is to find the most probable spectrum A that
maximizes the conditional probability of P(A|G), which is equivalent to optimizing
the likelihood function and prior,

max P(A|G) x max P(G|A)P(A). (7)

2.2. Maximum entropy. In MaxEnt, prior information P(A) is added by spec-
ifying a default distribution A(w) that corresponds to the expected results in the
absence of data. The algorithm iteratively searches for a distribution that max-
imizes the entropy with respect to A(w). It can be formulated as a least square
fitting. The likelihood function defined according to central limit theorem as

P(G‘A) = G_XZ[A]/27 (8)

N N g 2
el = Y (B ) )

where

0
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represents the quality of the fit of G computed by the spectrum distribution A(w)
in (5). G, is the mean value of the total number of M different quantum Monte
Carlo (QMC) samples, i.e.

S
1 n
and the variance
1 M
2 n _ N2
o= ;(Gl Gi)% (11)

The above formulation assumes there are no correlations between different frequen-
cies presented in the QMC sample data G;. In general, when correlations are con-
sidered, the covariance matrix has to be diagonalized with both the QMC data G;
and the kernel K have to be rotated into diagonal representation [36]. The quality
of fitting for the samples A; and the corresponding G; becomes,

M
XA = ) (G = GMCL (G = G™), (12)
n,m=1
with C,, being the diagonal covariance matrix. The entropy term, also named as

Kullback-Leibler (KL) divergence, which measures the difference between distribu-
tions is defined relative to a positive definite and normalized function D(w),

SU) = - [146) - D) - Aw)in S a
= A(wr)
= - ;[A(wl) = D(wi) — A(wr) In D(wl)mwl (13)
The prior distribution in (7) is given by
P(A) = eSHAL, (14)

where « is a positive constant representing the regularization parameter for the
optimization problem. The MaxEnt method uses least-square to minimize y? with
KL divergence as the regularization S[A], namely:

S[A] = /de(w)ln(gé;”;). (15)

Therefore, instead of maximizing the posterior probability P(A|G), the MaxEnt
method minimizes the following least square function with the following regulariza-
tion

LA - as]A] (16)

QU] = ;
It is obvious that the Bayesian optimization of the posterior probability P(A|G)
is a deterministic optimization for the regularized least square fitting Q[A]. The
parameter « controls the weights between x?[A] and the prior information contained
in the entropy S[A] to prevent over-fitting. There are several methods for fixing «,
which often yield different results when applied in practice. In our numerical tests,
the MaxEnt results are obtained by averaging over the optimal spectra A, with
various «.
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2.3. Data-driven learning. With the fast development of machine learning, data-
driven modeling is becoming increasingly important in research areas such as quan-
tum mechanics, Monte Carlo methods, and computational physics. The MaxEnt
approach based on Bayesian statistical methods for solving Fredholm integral equa-
tion (4) has been successfully applied in many situations. Recently, several works
have shown that the machine learning approach is suitable for solving inverse prob-
lems in analytic continuation [2, 12, 23, 28]. The main idea of these data-driven
methods is to distill the prior knowledge into simulated training datasets allow-
ing higher flexibility in the regularization of the dataset compared to the MaxEnt
method. [12] introduced a reinforcement learning framework for solving the Fred-
holm inverse integral equation. [2] utilizes the data-driven approach for the fermionic
spectral density function (4). A database of spectral functions that resemble exper-
imental data and the corresponding Green’s function was considered in their work.
A Kernel ridge regression performed on the database for training yielded results
comparable to those obtained via MaxEnt. In [15], an artificial neural network was
used for solving a physically more relevant scenario with known Hamiltonian and
the data of interest obtained from QMC simulations.

The general framework of data-driven learning approach for solving the ana-
lytic continuation problem (4) is illustrated in Fig. 1. Unlike the classical MaxEnt

Input(G)

|

Learning /~
Data ——— > Model

Output(A)

FiGUre 1. Ilustration of data-driven learning framework for ana-
lytic continuation

method, the data~-driven method produces the quantity of interest, i.e. the spectral
density function A, directly from a learned model given the input data G. The
model is trained offline from a large dataset. One advantage of this approach is
that the prior information is implicitly embedded in the training dataset, whereas
the MaxEnt method uses prior knowledge as the regularizer in the optimization.
We can see that the dataset and model selection are crucial to the performance of
the data-driven approach as they will determine the accuracy of the output. We
use a neural network based model as a convenient framework in this paper. First,
the universal approximation theorem ensures that neural networks can approximate
any kind of continuous functions under mild assumptions. Moreover, the availabil-
ity of powerful libraries allows for an efficient implementation of different network
architecture that can take advantage of data structures, thus making the neural
network a very versatile tool. Inspired by the recent work of the neural ordinary
differential equation, we propose a novel multi-step neural network architecture for
training the model in this work. The details of the neural network structure will be
discussed in Section 3.



ANALYTIC CONTINUATION OF NOISY DATA 883

3. Adams-Bashforth (AB) residual network.

3.1. Artificial neural network. The drastic improvements in computing power
make deep neural networks become state-of-the-art technology for a wide range of
practical data-driven tasks such as image classification, face recognition, natural
language processing, system prediction etc. see, e.g., [20, 21, 24, 25, 26, 42, 43].
A neural network effectively implements a mapping approximating a function that
is learned based on a given set of input-output pairs, typically through the back-
propagation algorithm. The basic structure of the simple artificial neural network
consists of an input layer, one or more hidden layers, and a final layer of output.
Each of these layers has an associated transfer function, and each unit cell (neuron)
has an associated bias. Any input to the neuron has a bias added to it followed by
activation through the transfer function. Fig. 2 shows a typical single hidden layer
network architecture, where lines connecting neurons are also shown. To describe

ONONONG®,
ONONONONONONONO,

Input Layer € R* Hidden Layer € R® Output Layer € R®
FI1GURE 2. Single hidden layer neural network structure

this process using equation, we have for the output, h;, of neuron 4 in the hidden
layer is

N
hi = O’(Z Wi T4 + bl), (17)
j=1

where o(-) is called transfer (activation) function, N is the number of neurons in
the layer, w;; are the weights, z; are the inputs from the previous layer, and b; is
the bias term. The weights and biases will be updated by solving the optimization
process with backpropagation algorithm to compute the gradient. In theory, any
differentiable function can qualify as an activation function, however, only a small
number of functions which are bounded, monotonically increasing, and differentiable
are used for this purpose [45].

It has been shown that a single hidden layer neural network can approximate any
computable function. Numbers given to the input neurons are independent variables
and those returned from the output neurons are dependent variables to the function
being approximated by the neural network. The powerful computing resources
can afford us to train a very deep neural network, which has been successfully
applied in many supervised learning applications. Supervised learning is the task
of learning the correspondence between input data X and output data Y from a
training set of input-output pairs(z;,y;). There are two categories for supervised
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learning: regression problems, for which the outputs take continuous values, and
classification problems, consisting in the prediction of categorical labels. The neural
network adopted in this paper for solving the analytic continuation problem is a
regression task.

3.2. ODE representation of neural network. In this section, we describe re-
cent mathematical representation of deep Residual Neural Network (ResNet). For
a comprehensive introduction see, e.g., [10, 18, 32]. We outline the most impor-
tant part of deep ResNet which is the forward propagation. For notational con-
venience, we stack the training features and target row-wise into matrices X =
[GY,G?,...,G%]T € R®*™ and A = [A!, A%, ..., A®] € R*SN. We consider a simplified
version of ResNet model that has been successful in classifying images. The input
values of forward propagation in the ResNet is given by

Xt+1:Xt+O'(XtWt+bt) tZO,....,N—l, (18)

where N is the number of layers in the network architectures, Xy € R%*™ is the
initial input value. This propagation is parametrized by the nonlinear activation
function o : R**™ — R**™ and affine transformations represented by their weights,
Wo,..., Wn_1 € R" ", and biases by, ...,by_1 € R**". Fig. 3 shows the structure

F

—~—— | FC ||ReLu —A

X -
' X1 = Xi + F(Xy)

Drop
it

FIGURE 3. Residual neural network block

of a single ResNet block consists of fully connected layer, activation layer, and a
dropout layer to prevent overfitting. The values X, are called hidden layers and
X y is the final output layer. The activation function is applied element-wise and is
typically smooth and non-decreasing. Two commonly used examples are hyperbolic
tangent (tanh) and the Rectified Linear Unit (ReLU) activations. For simplicity,
we only consider the ReLU activation in our model, i.e.

OReLU = max(O7X). (19)

The final output layer predicts the values using the hypothesis function h(X). For
our problem, we assume the spectral function (output of the network) satisfies
multinomial distributions so that we can use the softmax function in the output

layer,
eap(X)
exp(X)en’

h(X) =

where e,,, € R™ denotes the m—dimensional vector of all ones.

The learning problem is to estimate the parameters of the forward propagation
so that the deep ResNet can accurately approximate the training data set. This
learning process can be solved by the following optimization problem

min L(A, A) + AR(W,b), (21)

(20)
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FIGURE 4. Multistep neural network architecture

where the loss function L(A, A) = 1/2||A — A||% is the sum of squared differences
and the convex regularizer R penalizes undesirable parameters and can prevent
overfitting.

3.3. Adams-Bashforth scheme. Much recent work has motivated us to view the
ResNet as a dynamicals system [32, 18]. A significant piece of work on connect-
ing numerical ordinary differential equations (ODEs) and deep neural networks [10]
adopts the dynamical systems point-of-view and analyzes the lesioning properties
of ResNet both theoretically and experimentally. The effort [11] introduced the
ODE-net that can interpret and solve the ResNet using ODE solver, which pro-
vides memory efficiency for deep ResNet. In this article, motivated by the previous
work, we propose a new Adams-Bashforth ResNet architecture for the analytic con-
tinuation problem.

The forward propagation of (18) can be considered as the forward Euler dis-
cretization of the initial value ODE given by

X (t) = F(X(t),W(t),b(t)), X(0)= X, 0<t<T, (22)

where time ¢ corresponds to the direction from input to output, X (0) is the initial
input feature, and X (T') is the output of the network. Thus, the problem of learning
the network parameters, W and b, is equivalent to solving a parameter estimation
problem or optimal control problem involving the ODE in (22). Note that the time
step size At in the fully discretized ODE % = F(X.,), is implicitly absorbed
by the residual module in the original formulation of ResNet (18). Instead, we intend
to use a multistep Adams-Bashforth (AB) method to discretize (22). As mentioned
before, the standard ResNet can be considered as the forward Euler discretization,
whereas multistep AB method has higher accuracy in numerical methods of ODE
[3]. The fully discretized schemd is shown in Fig. 4 and

S
Xiys = Xigps1 + Atz NiF (X tys—i)s (23)

i=1
where Y7 A\; = 1. The formula can be derived from Taylor’s theorem. As an
example, we use two-step method (AB2) to illustrate, i.e.,

X o= X))+ At((1-NXt)+MX(1)
AtX (t) + O(At?)))
X (t) + AtX (1) — MAEX () + O(AL3). (24)
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Then applying Taylor expansion tos the true solution, i.e.s

X(t+1)=X(t)+AtX(t) + %Ath(t) +O(At%), (25)
we obtain the numerical schemes associated to AB2 and AB3 as following
Xin = Xot SF(X, Wi b) — sF(X 1, W1 b, (26)
X1 = Xu+ %F(Xtywhbt) - %F(Xt—la Wi1,bi-1)
+ %F(Xt_g, Wi_a,bi_2). (27)

The AB2 method has second order O(At?) accuracy. Standard ResNet is considered
a AB1 method which has first order O(At) accuracy. According to the stability
analysis of linear multistep explicit methods, the AB3 method is strongly stable
while AB2 and AB1 is conditionally stable. This stability property drives us to
apply the AB method to obtain a more robust deep network architectures that
can provide a model with better performance for noisy data. The family of linear
multistep method is large. To shorten the discussion in this work, we focus on the
AB2 and AB3 method in our numerical tests.

4. Numerical results.

4.1. Dataset. In this section, we present the numerical results from our Adams-
Bashforth ResNet model (AB-ResNet). The training data can be collected from
experimental measurements or simulated according to a theoretical model. In this
work, we choose to simulate spectral density functions that always have a quasi-
particle peak close to w = 0, as often encountered when considering correlated
metals. In the data generation, the spectral densities A(w) are defined as a sum of
uncorrelated Gaussian distributions:

R; e
Al (w) = ];ikzoexp<—(w2agk)), (28)

where the frequencies w € [—10,10], the centers of the peaks p; € [—5,5], the
number of Gaussian distributions R; € [1,...,21], and o, € [0.1,1]. Parameters
R;, g, o) are uniformly sampled over the above-mentioned ranges. The Green’s
functions are then computed by Eq. (4). The discretization of the Green’s function
is generally over O(10%). The amount of data necessary to approximate a function
grows exponential with the number of dimensions. To reduce the effect of the curse
of dimensionality, we use the orthogonal Legendre polynomials to represent the
Green’s function data which can facilitate the learning process of the model. The
compact representation is given by

’
G(r) = 3+ 1G5 ~ 1), (29)
where P, are the legendre polynomials. In the experiments, 64 basis are used to
ensure the accurate approximation of the data, with similar strategies found in
[15]. Three noise levels € = 1075,1073,1072 are added to the dataset, such that,
Gtrain — + e
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FIGURE 5. One data sample from the training set G(7) (top left),
Legendre representation G; (top right), and target spectral density
A(w) (bottom)

4.2. Numerical test. The network architecture of our model, shown in Fig. 4,
consists of an input layer connected to a residual block, followed by eight repetitions
of the residual block. For each residual block, the first layer is a batch normalization
followed by a fully collected dense layer with ReLU activation. Then it’s followed
by a dropout layer that helps to avoid the overfitting issue by randomly dropping
units. The output is computed using a softmax layer, which ensure the similarity to
a probability density function. The training is performed on a dataset of size 100,000
with validation and test sets, both of size 1000, used in our numerical experiment.
The code implementation is based on PyTorch where the Adams optimizer and the
KLD loss function were used.

We have investigated AB-ResNet approaches to improving the robustness of our
model against noisy data. As mentioned before, the AB1 (ResNet) and AB2 method
is conditionally stable whereas AB3 is strongly stable. In order to study the stability
of the network architecture numerically, we trained each model on the dataset with
different magnitude of noisy, i.e., 107°, 1073, and 10~2. Fig. 6 shows the training
performance from each network and, as expected, the AB3 network has a better
learning behavior than AB1 and AB2.

Fig. 7 provides a qualitative comparison of the results of our AB-ResNet method
and the MaxEnt method where we plot three samples from test set for illustration
purposes. In these examples, both methods predict A(w) accurately for the lowest
level of noise. However, at noise e = 1072, MaxEnt is not able to recover the
peaks in the predicted spectral function. While in the case of AB-ResNet, our
model is able to correctly identify most peaks. Hence, it clearly shows that our AB-
ResNet model generates better results compared to the classical MaxEnt. Fig. 8
shows the comparison of the prediction between each AB network model from three
different samples. The average mean absolute error on the test dataset are 6.8e —
4,3.8e —4,2.6e —4 for AB1, AB2 and AB3, respectively. This is consistent with the
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FIGURE 6. The training performance from ABI1-ResNet, AB2-
ResNet, and AB3-ResNet structure with data noise 102

numerical ODE analysis. That is, higher order methods provide higher accuracy
results. Then, we studied the computational efficiency of our model compared to
MaxEnt. AB-ResNet model allows a direct mapping between Green’s function and
the spectral densities. In contrast, the MaxEnt method is an iterative method which
requires generating trail functions until convergence is reached. For the computation
cost, the CPU time for AB-ResNet model is ©O(10) second while for MaxEnt is
O(10%) second. So, the new model is computationally more efficient compared to
the MaxEnt method.

5. Conclusions. In summary, we have developed the AB-ResNet that solves the
kernel inversion with noisy data for the analytic continuation problem. The numer-
ical experiments show that our AB-ResNet model can recover the spectral function
with an accuracy similar to that of the commonly used MaxEnt approach under
low level of noises. The new model gives much better results than MaxEnt under
high level of noises at a fraction of its computational cost. Adding more training
data and using larger step network architecture could further improve the model
performance. Other inverse problem can apply our model the same way given the
great representative capacity of deep AB-ResNet.

Some future work should consider the limitations of the proposed model. One
main drawback of the method is that the model is learned for a particular inverse
temperature, i.e., 8 = 2, whereas the MaxEnt method can provide it as a parameter.
So, the MaxEnt method has the generality with respect to different 3. To extend our
model to arbitrary values of 5, we can train a separate network for each parameter.
Another approach for this issue would be to add 8 as an input parameter to the
model and train it on a large collection of dataset. These approaches can improve the
robustness of our model with respect to the inverse temperature. Another direction
of improving the model would be using stochastic neural networks to address the
generalization issue of deterministic neural networks [8].
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