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Abstract. We propose a stochastic gradient descent based optimization al-
gorithm to solve the analytic continuation problem in which we extract real

frequency spectra from imaginary time Quantum Monte Carlo data. The pro-

cedure of analytic continuation is an ill-posed inverse problem which is usually
solved by regularized optimization methods, such like the Maximum Entropy

method, or stochastic optimization methods. The main contribution of this

work is to improve the performance of stochastic optimization approaches by in-
troducing a supervised stochastic gradient descent algorithm to solve a flipped

inverse system which processes the random solutions obtained by a type of Fast
and Efficient Stochastic Optimization Method.

1. Introduction. In this work, we introduce a stochastic gradient descent algo-
rithm to solve a type of analytic continuation problems in physics. The goal of an-
alytic continuation that we are interested is to transfer theoretical Quantum Monte
Carlo simulations to spectral functions that reflect physical properties of quantum
materials. Quantum Monte Carlo (QMC) is a class of numerical methods that simu-
late exact description for interacting quantum many-particle systems such like spin
models or strongly correlated electron systems. It is generally formulated on the
imaginary time axis to treat the finite temperature dynamics. To derive real time
dynamics that can be compared with physical experiments, the process of analytic
continuation is required to obtain a real frequency spectrum. The challenge of the
analytic continuation is that the process to extract the real frequency spectrum is
an ill-posed inverse problem.

One of the most widely used approaches to address the challenge of ill-posedness
in solving data based inverse problems is to adopt the Bayesian inference frame-
work. In numerical methods for solving analytic continuation problems, the most
well developed state-of-the-art tool is the Maximum Entropy (MaxEnt) method
[5, 6, 10, 15]. The general concept of MaxEnt is to introduce a regularization term
as the prior information in the form of entropy that measures the deviation from
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a given default spectrum, and then solve the Bayesian inverse problem through
deterministic optimization procedures. Although the MaxEnt method could pro-
vide fairly good representations for the target real time frequency spectra, the main
drawback of MaxEnt as a regularized optimization method is that the entropy-like
regularization might over smooth useful features in the desired spectrum, and the
performance of MaxEnt heavily depends on the prior knowledge for the spectrum
which is usually not available in practice. Another Bayesian type method to solve
analytic continuation problems is the stochastic optimization method (SOM), which
randomly samples large amount of possible spectral functions as random solutions
[2, 8, 11]. Each of these random solutions optimizes the deviation from the QMC
data. Combining all the possible solutions together, SOM provides an implicit reg-
ularization mechanism for the analytic continuation problem. The major advantage
of SOM compared with MaxEnt is that it considers multiple possible spectra that fit
the QMC data, which would possibly lead to better estimation for the solution. In a
recent work, the authors introduced a fast and efficient version of SOM and named
it as Fast and Efficient Stochastic Optimization Method (FESOM) [1]. Instead of
complex parameterization for the spectral function applied in standard SOM, the
optimization procedure in FESOM uses usual discretization on the real frequency
axis as a parameterization, which is easy to design and more flexible to implement.

However, although FESOM could describe the deviation of different sample spec-
tra from the QMC data in a more effective way compared to SOM, it only utilizes
the Monte Carlo average to combine all the random solutions as the estimate for the
desired spectrum – just like SOM. Despite of its rigorous perform as a regularization
procedure, the Monte Carlo method averages out the deviation information among
optimized samples and it does not take sufficient consideration for the variance of
sample spectra. In this work, we introduce a stochastic gradient descent (SGD)
algorithm that focus on the exploration of sample spectra obtained in FESOM. The
main novelty of the proposed SGD algorithm is that we flip the role of QMC data
and the optimized sample spectra in stochastic optimization. Specifically, in this
approach we consider the random solutions that we obtain in the analytic continu-
ation problem as the source of data and use the original QMC data as the model to
derive a synthetic inverse problem. Then, we use SGD to solve the derived inverse
problem and the resulting solution can be applied back to the QMC data to get an
estimate for the target spectral function. Since the underline framework formulates
a synthetic problem which does not naturally follow the physical background of the
analytic continuation in this work, during the SGD procedure we enforce physical
supervisions to guide the optimization.

The rest of this paper is organized as follows. In Section 2, we give a problem
statement for analytic continuation and briefly discuss the stochastic optimization
approach. In Section 3, we introduce our SGD algorithm for analytic continuation
problem. We carry out three numerical examples to validate the performance of
the SGD algorithm in Section 4 and include concluding remarks in Section 5.

2. Analytic continuation and stochastic optimization. In the analytic con-
tinuation problem, we consider the following integral equation

G(iωn) =

∫
dωK(iωn, ω)A(ω), (1)

where K(iωn, ω) is a kernel function defined as
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K(iωn, ω) =
1

iωn − ω
. (2)

The function A(ω) with respect to the real frequency ω in (1) is the quantity of
interest in the analytic continuation problem, which represents a spectral function
in physics. The behavior of the spectrum A usually gives physical properties of
some materials. The function G(iωn) in (1) is the observational data, such like the
single-particle Green’s function calculated by the quantum Monte Carlo method
(QMC), at discrete Matsubara frequencies ωn on the imaginary axis.

For a partition on the real frequency axis, denoted by

Π = {ωl|a = ω0 ≤ ω1 ≤ ω2 ≤ · · · ≤ ωl ≤ · · · ≤ ωL = b},
we consider the following discretized form of equation (1)

Gn =
L∑
l=1

KnlAl, (3)

where Gn = G(iωn), Al = A(ωl), Knl = ∆ωl

iωn−ω , and ∆ωl is the frequency parti-

tion step-size. The major challenge of inverting equation (3) from the QMC data
G := {Gn} and calculate A := {Al} is that the kernel matrix K := {Knl} is ill-
conditioned, and small perturbations on the equivalence system would cause totally
different results for the spectral function A. In this case, there are infinitely many
possible solutions for the analytic continuation problem due to the fact that the
QMC data G is always noise perturbed.

One of the most important approaches to address the aforementioned ill-posedness
for the analytic continuation problem is the Bayesian statistical inferences. The
Bayes’ formula, given by the following

P (A|G) =
P (G|A)P (A)

C
, (4)

provides a mathematical model to combine the prior information for the target
spectrum A with the QMC data G and it describes the quantity of interest as a
conditional probability density function (pdf). In (4), the probability distribution
P (A|G), which is also called the posterior pdf, gives the conditional distribution of
the spectral function A given G; P (G|A) is the likelihood function that measures the
discrepancy between the data G and our choice of A; P (A) is the prior distribution
for A followed by the prior knowledge about the spectrum, which is very limited in
the analytic continuation problem; and C is some normalization factor. There are
several successful approaches to solve the analytic continuation problem through
the Bayesian formula (4) [1, 2, 8, 11]. In this work, we shall introduce a supervised
stochastic gradient descent method to improve the performance of the Fast and
Efficient Stochastic Optimization Method (FESOM) introduced in [1].

In what follows, we briefly discuss the framework of FESOM that solves the
analytic continuation problem (3). The central idea of FESOM is to use random
walk to construct stochastic realizations of the target spectral function, denoted by
{Ãr}Rr=1, that minimizes the χ2 errors between KÃr and the data G, i.e. χ2[Ãr] :=
(KÃr−G)2

σ2 , where σ is the standard deviation of the QMC data. Specifically, we

run a stochastic optimization procedure for each realization Ãr. To this end, we
choose some initial guess for the spectrum as D(ωl), which is typically chosen as a
Gaussian function in the absence of prior information for A, and set

Ãr0(ωl) = D(ωl), l = 0, 1, · · · , L.
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Assume that we have the sample spectrum Ãri at an iteration step i, we add a

Gaussian process λri to Ãri and get a proposed spectral function

Ãri+ 1
2

:=
1

I
(Ãri + λri ),

where I is a normalization factor such that
∑L
l=1 Ã

r
i+ 1

2

(ωl)∆ωl = 1 to meet the basic

physical property for Ãr as a spectral function. If the proposed spectrum Ãr
i+ 1

2

fits

the data better, i.e. χ2[Ãr
i+ 1

2

] < χ2[Ãri ], we accept the proposed sample and let

Ãri+1 = Ãr
i+ 1

2

; otherwise we drop the proposed sample and let Ãri+1 = Ãri . In this

way, the χ2 error decreases monotonically as the iteration number i increases and
we stop the optimization procedure when the χ2 reaches a threshold number ε at
the j-th iteration step. Then, the r-th realization of the spectral function is chosen
as Ãr := Ãrj . In this way, the spectral sample set {Ãr}Rr=1 provides a representation
for the likelihood distribution P (G|A), and the posterior, i.e.P (A|G), as desired in
the Bayes’ formula (4) can be derived by combining the likelihood with the prior
distribution, i.e. P (A), which is obtained from the knowledge of the spectrum.
However, in most practical problems, the prior knowledge is minimal. Therefore,
people typically choose P (A) to be a uniform distribution, which leads to P (A|G) ∝
P (G|A). As a result, the random samples {Ãr}Rr=1 that describe the likelihood
function P (G|A) also provide the desired conditional pdf P (A|G). It’s worthy to
mention that due to the nature of the stochastic optimization, each sample spectral
function contains lots of random features with massive fluctuations in the spectral

curve. In the FESOM approach, we use the average of Ãr, i.e. Ā := 1
R

∑R
r=1 Ã

r, to
be our estimated spectral function. This would also be considered as a regularization
procedure through Monte Carlo average.

In the stochastic gradient descent method that we shall introduce in this work,
we use optimized sample spectra obtained in FESOM as our “data” and then try
to learn from the FESOM data to find a model that could better approximate the
target spectral function A. From our previous study, we know that the FESOM
could give accurate approximations for the spectral function when the spectral curve
is smooth, just like the Maximum Entropy method (MaxEnt). At the same time,
compared to MaxEnt, the FESOM could capture some features that are not easy
to be captured by MaxEnt. In addition to the approximate spectral function, the
FESOM also produces an approximation for the conditional distribution P (A|G) by

using empirical samples {Ãr}Rr=1. This would give us a confidence band surround-
ing the estimate Ā. We want to point out that in the current version of FESOM,
the simple regularization procedure by averaging all the samples in {Ãr}Rr=1 did not
consider the covariance information hidden in the empirical distribution of sam-
ples. Therefore, the Monte Carlo type regularization procedure smoothes out many
important features and ignored the information contained in the confidence band.
At the same time, it’s necessary to mention that each sample Ãr fits the data G
well and the sample set {Ãr}Rr=1 provides a large pool of possible features for the
spectral function A.

In the following section, we introduce our stochastic gradient descent (SGD)
based algorithm that allows us to consider the covariance information contained in
the FESOM spectral samples and construct better approximations for the spectral
function A.
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3. Stochastic gradient descent for analytic continuation. We first recall the
analytic continuation problem (3) and write it in the matrix form for the convenience
of presentation

G = KA, (5)

where the spectral function A is the quantity of interest, G is the QMC data and
K is the kernel. A straight forward approach to get A is to compute the K inverse,
i.e. K−1, and multiply it to the data to get A = K−1G. However, since the kernel
K defined in (2) is ill-conditioned, it’s not feasible to compute K−1 by inverting
K. Even if we can derive very accurate approximation method to calculate K−1

from K, the terms that we truncate as approximation errors would have significant
influence to A based on the data we receive. Therefore, directly approximating K−1

and simply multiplying it with the data G could not give us good estimation for A.
The major contribution of this work is that we develop a SGD based estimation

method to calculate a data informed K−1. In addition to the original QMC data
in the analytic continuation framework, in this approach we consider the optimized
spectral samples that we obtained from the FESOM as our data source and apply
SGD as a machine learning type method to learn the K−1 from the sample spectral
functions {Ãr}Rr=1. Then, the estimated spectral function A can be calculated by the
product of the estimated K−1 learned from FESOM samples and the original QMC
data G. The motivation of this SGD based algorithm is to explore the optimized
spectral samples and learn more information contained in these samples which has
been averaged out in the Monte Carlo regularization procedure in the FESOM.

Stochastic gradient descent method. To proceed, we first give a brief de-
scription for the SGD method that solves a data driven optimization problem. Let
λ → F (λ, Z) be a random cost function, where λ is the optimization parameter
performing as the quantity of interest, and Z is a random variable with uniform
distribution representing the source of data. The goal of the optimization problem
regarding the cost function F is to find minλE[F (λ, Z)]. In practical applica-
tions, the random variable Z is represented by a set of data, denoted by Z, and
the original optimization problem becomes finding λ to satisfy the minimum of
Ẽ[F (λ, Z)] :=

∑
z∈Z F (λ, z), i.e. minλ

∑
z∈Z F (λ, z). The classic gradient descent

method solves the optimization problem by the following iteration

λi+1 = λi − α
∑
z∈Z

∇F (λi, z)

n
, i = 0, 1, 2, . . . , (6)

where ∇· is the gradient operator, λ0 is the initial guess for the parameter, n is the
size of Z, and α is the step size moving forward to the gradient descent direction,
which is also called the “learning rate” in machine learning. The above gradient
descent approach uses the entire data set to estimate the evolution direction of the
target optimization parameter. When the data set Z is large, it is very expensive

to calculate
∑
z∈Z

∇F (λi,z)
n , which typically results the “big data” problem.

In the stochastic gradient descent method, instead of approximating the expec-
tation with all the data {∇F (λi, z)}z∈Z , we use one random selection of ∇F (λi, z)
to approximate E[F (λ, Z)] and implement the gradient descent procedure. In this
way, we update the parameter λi with the following scheme [7]

λi+1 = λi − α∇F (λi, z), (7)

where z ∈ Z is a randomly selected sample in Z, which means that ∇F (λi, z)
explores the data in Z in a stochastic manner, and {λi}i≥1 forms a stochastic
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process that approaches the optimal λ randomly. Although the SGD method was
primarily developed to address the big data problem and save computational cost in

calculating
∑
z∈Z

∇F (λi,z)
n , the random walking behavior of the stochastic dynamics

(7) also provides a mechanism to get out of possible local minima in the cost function
F that might trap the deterministic gradient descent dynamics implemented in (6),
which is the main concern of the problem that we are interested in this work.

Apparently, the ill-conditioned kernel K in the analytic continuation (1) brings
many local minima in the optimization problem, which also causes the ill-posedness
in finding K−1, and eventually in finding the spectrum A. These local minima
make the deterministic gradient descent methods very difficult to explore a large
parameter space due to the traps of local minima, and it’s natural to apply the SGD
method to address the ill-posedness problem in analytic continuation. Since in the
analytic continuation, the SGD is primarily used to address the ill-posedness in the
optimization procedure, we modify the classic SGD dynamics (7) by adding extra
isotropic noises to get more flexibility to attack the local minima problem, and we
introduce the following stochastic gradient Langevin dynamics (SGLD)

λi+1 = λi − α∇F (λi, z) + βεi, (8)

where z ∈ Z is also a sample in Z, εi is the inflation random noise that gives
the opportunities to let the above optimization procedure move out of the local
minima, and β is the level of noise which is a user defined factor typically chosen
as a constant proportional to the learning rate α. In this work, we shall apply the
SGLD (8), instead of (7), to implement the SGD optimization. Extensive studies
show that the above SGLD and its extensions could solve ill-posed optimization
problem optimization problem well (see [12, 18] for example).

Implementation of SGD in analytic continuation. When solving the an-
alytic continuation problem with SGD, we consider the original QMC data G as
our model and use the optimized samples that we derive from FESOM as “data”.
Therefore, the sample spectra {Ãr}Rr=1 are the main source of information to guide
us obtain the estimate for K−1.

Specifically, we rewrite the original analytic continuation problem (5) and con-
sider the following equation

K−1G = A, (9)

where K−1 is the inverse of kernel matrix K which is the quantity of interest in our
SGD optimization framework, G is the QMC data, and A is the spectral function.
In this approach, we use the optimized sample spectra obtained in FESOM to be our
data to represent A. Although none of the FESOM samples is the real spectrum,
each sample Ãr is a reasonably good estimate for the real spectrum A since the
error between KÃr and G is very small. In this way, we let the cost function in our
optimization problem to be the square error in comparing A in (9), i.e. let

F (K−1
i , Ãr) :=

∑
n

(∑
l

(
(K−1

i )nlGn − Ãrl
)2)

(10)

in the SGD method. Since {Ãr}Rr=1 are samples in a collection of ωl functions which
contain covariance information along frequency axis ω, the potential F defined in
(10) also reflects the covariance of {Ãr}Rr=1. The SGLD equation (8) related to the
analytic continuation now is formulated as

K−1
i+1 = K−1

i − 2α
∑
n

∑
l

|(K−1
i )nlGn − Ãrl |+ βεi, i = 0, 1, 2, . . . , N − 1, (11)
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where Ãr is a random selection in {Ãr}Rr=1, and N is a user defined integer as
the stopping criteria for iteration. Then, we let the approximate inverse kernel,
denoted by K̂−1, to be K̂−1 := K−1

N . To initialize our optimization procedure, we

let the initial condition for K−1, i.e. K−1
0 , to be calculated by the single value

decomposition (SVD) inverse of K. We want to point out that although SVD is a
popular method to calculate the inverse of matrices, we don’t rely on the accuracy
of SVD in our approach due to the highly ill-posedness of the analytic continuation
problem and the noise perturbation in the QMC data. Since the goal of this SGD
approach is to get an estimate for the spectral function A, when we get K̂−1, we
calculate the estimated spectrum, denoted as Â, by Â := K̂−1G.

One important property of the optimized stochastic spectral samples is that for
some features, most samples have very similar behaviors. However, sample spectra
may have very different behaviors over certain frequency regions. As a result, the
estimated K−1 obtained in the SGD method would provide a spectral function that
recovers the features which are suggested by most optimized samples. On the other
hand, the diverse behaviors of samples in describing some features would expand
the searching domain in the SGD method and provide more variety to discover
features that could fit the model (QMC data) better. Actually, the ill-posedness
of the analytic continuation problem occurs primarily at the parts that sample
spectra provide different features, and being able to have better estimation on these
frequency regions and capture some typical fine features would be very useful in the
analytic continuation problem.

Supervision in the SGD. It’s worthy to point out that the SGD optimization
we discussed above would learn from the data and get an approximation for K−1

with perturbations of the inflation noises. However, since the ultimate quantity of
interest in the analytic continuation problem is the spectral function A, which has
specific physical meaning, we should also consider physics in the SGD optimization
so that the randomness in the SGLD (11) would not lead us to some non-physical
outcomes. To this end, we introduce a physical supervision procedure to guide the
SGD optimization and formulate a supervised SGD. Specifically, when we select
a sample Ãr and an inflation random noise εi, we apply some physical knowledge
about reasonable behaviors of spectra as supervision guidelines. If the K−1

i+1 calcu-
lated by (11) generates a spectrum that violates the known physical knowledge, we

reduce the learning rate α to reduce the influence of the random pair (Ãr, εi). The
reason that we don’t drop the corresponding sample by letting the learning rate
to be 0 is that the information contained in Ãr is still valuable and it might be a
necessary intermediate step that leads to a better local optimal estimate.

In what follows, we list a few supervision conditions we may consider as examples
to supervise the update from K−1

i to K−1
i+1.

• Since the spectrum should always be nonnegative, we reduce the learning rate
α for the candidate K−1

i+1 that will cause negative values in A and redo the
SGD step (11) with the same selection of sample.
• If we know from physics that the spectral function should have a certain peak

in a certain frequency region and the candidate K−1
i+1 that we generated from

the random pair (Ãr, εi) does not indicate this physical behavior, we reduce
the learning rate and redo the SGD step.
• All the optimal samples generated in the FESOM would build a confidence

band. It is most likely that the true spectrum lies within the high probability
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density region of the confidence band. For the optimized sample with certain
parts lie outside of the confidence band, we reduce the learning rate for this
sample and redo the SGD step.

Since the initial condition K−1
0 is calculated from SVD inversion, K−1

0 may
violate many of supervision restrictions and we may not be able to effectively update
K−1 at beginning. To improve the efficiency of the SGD algorithm, we allow several
burn in steps at first and only use the plain SGD without supervision.

Convolution for the spectrum. Since we calculate our estimated spectral
function from K̂−1, we might recover an irregular spectral curve. In order to get
a smoother estimate for the spectral curve, we implement a convolution step to
smooth the spectral function. We want to mention that the convolution step is
different from the regularization in the MaxEnt and FESOM as we have the control
to the level of smoothness we want in the spectrum.

Discussions on the algorithm. In what follows, we bring out some discussions
on the SGD approach for analytic continuation which is introduced above. For the
convenience of presentation, from here and in the following we generally call our
approach the SGD.

• Convergence
In machine learning algorithms, the convergence of SGD is an impor-

tant topic. It has been shown that the aforementioned SGLD scheme could
approach to the global minimum when the iteration step is large enough
[9, 12, 13, 14, 17]. However, it has also been proved that when the dimension
of the problem is high, the SGLD approaches to the global minimum exponen-
tially slow and the global convergence would be especially difficult to achieve
for ill-posed optimization problems [18]. Therefore, we should not expect that
we will obtain the global minimum in the analytic continuation problem. On
the other hand, it can be shown that after reasonable length of iterations, the
proposed K inverse, K−1

i , moves around the global minimum. This would
also cause the randomness of our result. It’s worthy to mention that in the
high confident region of the FESOM samples, it’s easier for SGLD to reach
the convergent feature; and in the low confident region (with wide confidence
band), it’s less likely that SGLD will reach converged true features due to the
large variance in the samples.
• Usage of FESOM samples

In the SGLD equation (8), when we approximate ∇F by ∇F (wi, z)|z∈Z , we
have considered the distribution information contained in the data Z through
the gradient set {∇F (wi, z)}z∈Z . Specifically, in the SGLD equation (11) for
the analytic continuation problem, the learning procedure actually considers
the variance of {Ãr}Rr=1 by exploring different choices of Ãr. Apparently, this

gives us more information than just taking the average of samples {Ãr}Rr=1.
Indeed, different choices of samples would influence the transition from K−1

i

to K−1
i+1 in different ways. For example, the smaller variation of {Ãr}Rr=1 in

certain region may cause smaller transition stepsize from K−1
i to K−1

i+1 in

some matrix components. On the other hand, the larger variation of {Ãr}Rr=1

in certain region may cause larger transition stepsize from K−1
i to K−1

i+1 in

some matrix components. This allows us to search wider range of K−1 values
to better solve the inverse problem. In this way, the SGLD procedure could
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explore adaptively admissible domain for K−1 that reflects the variance of
{Ãr}Rr=1 samples. As a result, this gives us more opportunities to find a K−1

that could generate a spectral function with physically meaningful features
and fit the QMC data better.
• Randomness of the SGD learned K−1.

It’s important to point out that we do not require the SGD method to
reach the global minimum and our approximated K−1 has random behavior.
Therefore different realizations and different iteration steps of the SGD will
generate different K̂−1 that result different spectra through (9). To provide
a more rigorous estimate for the spectrum A, we need a spectrum selection
step.

Spectrum selection. For a pre-chosen user defined positive integer M , we run
the above SGD algorithm M times and get M realizations of approximated inverse
kernel, i.e. {K̂−1

m }Mm=1. Then, we derive {Âm}Mm=1 from {K̂−1
m }Mm=1. Although

all the estimated spectra {Âm}Mm=1 have considered the entire FESOM spectral
samples and have similar structure, we still need a criteria to select one spectrum to
reduce the uncertainty of our estimation. Since the goal of the analytic continuation
problem is to minimize the error between KA and G, in this approach we define
Err := ‖KÂ−G‖L2 as the L2 error in fitting the data and use Err to be a criteria

and pick the Â among {Âm}Mm=1 with the smallest Err error as our estimated
spectral function.

Summary of the algorithm. We summarize the SGD method as follow-
ing.

Step 1: Input the learning rate α, β, the number of iteration N , the number of SGD
realizations M , and the initial inverse kernel K−1

0

Step 2: For each realization index m = 1, 2, · · · ,M , do the following iteration:
For i = 0 · · · , N − 1,

1 Compute K−1
i+1 from the SGLD (11).

2 Carry out the supervision procedure to decide wether need to reduce the
learning rate and redo the SGLD or not.

3 Implement the convolution step to get a smoother estimation Âm.

Step 4: Select a representative among {Âm}Mm=1 with the smallest error to be the

estimated spectral function Â.

4. Numerical experiments. In this section, we demonstrate the performance of
our SGD algorithm by using three numerical examples. In the first example, we
focus on comparing this SGD algorithm with the FESOM, in which we take av-
erage of all the optimized stochastic spectral samples to build up an estimate for
the spectrum, and show the improvement of the SGD algorithm in solving a syn-
thetically designed analytic continuation problem. In Example 2, we consider a
two-dimensional Hubbard model and compare the SGD method with both FESOM
and MaxEnt to demonstrate the effectiveness of SGD in solving a real physical prob-
lem. The MaxEnt method that we compare with in our numerical experiments is a
regularized optimization method, which is the state-of-the-art method in analytic
continuation, and the regularization term that we add to the χ2 error is in the form
of entropy[6]. Then, in Example 3 we compare our method with MaxEnt in a spe-
cially designed example. The purpose of the third example is to demonstrate that
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SGD could recognize small changes in the data and provide some finer structures
in spectral functions which are usually smoothed out in MaxEnt as a regularized
deterministic optimization method.

Example 1. In the first example, we assume that we receive QMC data G which
is corresponding to the “real” spectral function A as plotted by the black curve in
Fig. 1. Using the data G, we carry out the FESOM algorithm and obtain a samples
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Spectrum A

Figure 1. Example 1. True spectrum

set consisting stochastic optimal spectra. By saying “optimal” in FESOM, it means
that all the FESOM samples produce very low χ2 errors in fitting the data. However,
although each sample has low χ2 error, different samples have different behavior.
In Fig. 2 (a), we plot 10 realizations of FESOM samples and compare them with
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Figure 2. Example 1. (a) FESOM samples; (b) FESOM estimation

the true spectrum A(ω), where the FESOM samples are presented by dashed blue
curves and the true spectrum is the black curve. From this subplot, we can see
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that on the (−2, 0) frequency region, all the samples have similar behavior; on the
other hand, FESOM samples demonstrate different structures on the (−4,−2) and
(0, 4) frequency region which indicate that we might encounter more uncertainties
on these intervals. In Fig. 2 (b), we plot the FESOM estimate by taking the average
of all the samples – in this experiment we take the average of 300 samples. The red
curve is the mean of samples as the FESOM estimate and the black curve is the
real spectrum. We can see that the FESOM estimation captures the main trend of
the real spectrum and provides reasonable estimation at the low frequency region.
However, it ignores most fine features due to the Monte Carlo averaging of samples
and only provides a smooth curve that pass through all the features. On the other
hand, in Fig. 2 (a) we observe that FESOM samples actually could provide many
features in the true spectrum.
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(

)
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Estimated A learned from FESOM Samples

Figure 3. Example 1. Estimated spectrum learned from FESOM
samples

In Fig. 3, we plot the estimated spectrum obtained by using the SGD method,
where the black curve is the real spectrum and the blue curve is the estimated
spectrum learned from FESOM samples. From this figure, we can see that the
extra supervised learning procedure makes the SGD method capture some of the
fine features in the estimated spectral function since running SGD through FESOM
samples allows us to explore more spectral domain to better fit the data.

Example 2. In this example, we consider a two-dimensional Hubbard model on a
square lattice with nearest-neighbor hopping t and Coulomb repulsion U described
by the Hamiltonian

H = −t
∑
〈ij〉

c†iσcjσ + U
∑
i

ni↑ni↓, (12)

where c†iσ creates and ciσ destroys an electron with spin σ =↑, ↓ on site i and

niσ = c†iσciσ is the corresponding number operator. We use the dynamical mean-
field theory (DMFT) [4] together with a non-crossing approximation (NCA) [3] to
obtain the local spectral function A(ω) in the antiferromagnetic state as the true
spectral function in this example. The local spectral function A(ω) we obtain is
shown as the black line in Fig. 4. One can see that there are fine structure with
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Figure 4. Example 2. True spectrum

multiple peaks in the lower Hubbard band ( in the frequency interval (−2, 0) ) and
a major peak around the 0 frequency. These resonances reflect the bound states of
a hole propagating in an antiferromagnetic background [16].

In Fig. 5, we present the estimations obtained by using FESOM and SGD. In
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Figure 5. Example 2. (a) FESOM estimation; (b) Estimated
spectrum learned from FESOM samples.

each subplot, we use the black curve to represent the real spectrum; in Fig. 5
(a), the red curve is the FESOM estimate; and in Fig. 5 (b), the blue curve is
the estimate learned from FESOM samples. We can see that the SGD method
could present a better result compared with FESOM since SGD could explore more
feasible spectral space to better fit the data. Actually, denoting Err := ‖KÂ−G‖L2

to be the L2 error in matching the original data, we have that the error for FESOM
is Err = 0.0068 and the error for SGD is only Err = 0.0038 which is much smaller
than the FESOM error. Since analytic continuation is a highly ill-posed problem, a
better description for the target spectral function with lower error at the same time
indicates that by considering the entire FESOM sample set, SGD could provide
better estimation results.
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In addition to the comparison with FESOM, in this example we also want to
present the comparison between SGD and MaxEnt. In Fig. 6, we plot the MaxEnt
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Figure 6. Example 2. Comparison between SGD and MaxEnt

estimate and the SGD estimate in the same figure, where the black curve is the
real spectrum, the green curve is the MaxEnt estimate and the blue curve is the
estimated spectrum learned from the FESOM samples. From this figure, we can see
that both MaxEnt and SGD could capture the main peak around the 0 frequency
region. However, the MaxEnt missed the fine structure in the lower Hubbard band.
Instead, it gives a wrong peak around the −2 frequency. On the other hand, the
SGD accurately describes the main trend of the fine structure as well as a hint for
another major peak besides the main peak around the 0 frequency.

Example 3. In this example, we compare SGD with MaxEnt in a synthetic analytic
continuation problem. The main purpose of this example is to show that the SGD
algorithm could provide some fine structure that might be ignored by MaxEnt.

We first consider a spectrum given in Fig. 7. From the figure, we can see that the
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Figure 7. True spectrum
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Figure 8. Example 3. Estimations for the spectrum.

spectrum has two smooth peaks at the −2 and the 0 frequencies. Then, we apply
both MaxEnt and SGD to process the data corresponding to the spectrum in Fig.
7 and plot the performance of MaxEnt and SGD estimations in Fig. 8. The black
curve is the true spectrum, the red curve is the estimate obtained by using MaxEnt
and the blue curve is the estimate obtained by using the SGD. We can see from
Fig. 8 that indeed both MaxEnt and SGD work well in estimating the spectrum
and they could capture both the main features at the −2 and the 0 frequencies.

On the other hand, we consider another spectral function given by Fig. 9, which is
very similar to the spectrum in Fig. 7 except that there’s a fine feature in the positive
frequency region. For the clarification of presentation, we name the spectrum in

-8 -6 -4 -2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

A
(

)

Spectrum A

Figure 9. Example 3. Spectrum with fine feature in positive fre-
quency region.

Fig. 7 by A1 and the spectrum in Fig. 9 by A2. Since A2 is similar to A1, the QMC
data corresponding to A2 would be very similar to the QMC data corresponding
to A1. In this way, it’s difficult for state-of-the-art methods, such like MaxEnt, to
recognize the difference in the data due to the standard regularization procedures
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which could smooth out this difference. In Fig. 10 (a), we present the MaxEnt
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Figure 10. Example 3. (a) MaxEnt estimation for A2; (b) Com-
parison of MaxEnt in estimating A1 (red) and A2 (blue).

estimate based on the data corresponding to the spectrum A2, where the black curve
is the true spectrum and the red curve is the estimate obtained by MaxEnt. We
can see that MaxEnt could still capture both main features well. But, as expected,
it does not provide the fine feature on frequency interval (3, 4). In Fig. 10 (b), we
compare the MaxEnt estimations for the data corresponding to the spectrum A1

and the spectrum A2, where the red curve is the estimate obtained by MaxEnt for
the spectrum A1 and the dashed blue curve is the estimate obtained by MaxEnt for
the spectrum A2. We can see from this subplot that the MaxEnt estimation has
very similar behaviors although it estimates spectra corresponding to different data
sets.

Then, in Fig. 11 (a) and (b), we show SGD estimates for the data corresponding
to the spectra A1 and A2, respectively. We can see that the SGD method could
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Figure 11. Example 3. (a) SGD estimation for A1; (b) SGD
estimation for A2.



16 FENG BAO AND THOMAS MAIER

capture the main features for both spectra A1 and A2. At the same time, from
Fig. 11 (b) we can see that SGD could give a hint for the fine feature on frequency
interval (3, 4) and we can clearly tell that there’s some difference from the data
corresponding to A1 and the data corresponding to A2.

5. Conclusion. In this paper, we introduced a stochastic gradient descent algo-
rithm for stochastic optimization in solving analytic continuation problems. The
SGD algorithm could learn fine features for targeting spectral functions in the an-
alytic continuation problem based on the QMC data and the optimized stochastic
samples that we obtain in the fast and efficient stochastic optimization method (FE-
SOM). The SGD algorithm for stochastic optimization is an extension of FESOM.
Instead of taking the Monte-Carlo average of samples in FESOM, SGD considers
the information contained in the optimized spectral samples through stochastic gra-
dient descent schemes. In this way, SGD takes the advantage of FESOM, which
provides variance of spectral samples. As a result, the SGD algorithm could explore
a larger spectral space to better fit the QMC data. In the numerical experiments,
we showed that SGD out-performs FESOM, and it could capture fine features that
are typically ignored by the maximum entropy method (MaxEnt).
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