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We propose a multi-scale modeling framework to investigate the transmission dynam-
ics of cholera. At the population level, we employ a SIR model for the between-host
transmission of the disease. At the individual host level, we describe the evolution of the
pathogen within the human body. The between-host and within-host dynamics are con-
nected through an environmental equation that characterizes the growth of the pathogen
and its interaction with the hosts outside the human body. We put a special emphasis
on the within-host dynamics by making a distinction for each individual host. We con-
duct both mathematical analysis and numerical simulation for our model in order to
explore various scenarios associated with cholera transmission and to better understand
the complex, multi-scale disease dynamics.
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1. Introduction

Cholera, an acute diarrhoeal disease caused by the bacterium Vibrio Cholerae,
continues to plague populations in developing countries with limited access to safe
water and sanitation resources, as evidenced by the on-going cholera outbreak in
Yemen where more than 770,000 cases have been reported by WHO [25] as of 1
October 2017.

In order to understand the fundamental mechanisms in cholera transmission
and to quantify effective prevention and intervention strategies, a large number
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of mathematical models have been published (see e.g. [3, 5, 8, 10-12, 15, 19-22,
26]). Almost all of these studies are concerned with the between-host transmission
and spread at the population level, and very little effort has been devoted to the
within-host dynamics of cholera, partly due to the complication of the biochemical
and genetic interactions that occur within the human body. As a consequence,
some important information in cholera dynamics is missing from such studies; for
example, how does the virulence of the pathogens (i.e. the vibrios) change inside
the human body, and how does the within-host evolution of the pathogens impact
the population-level disease transmission?

In a recent study [24], the authors proposed a within-host cholera model to
describe the evolution of vibrios and their interaction with the cholera-toxin phage
(a virus that is important in the pathogenesis of the Vibrio cholerae) within the
human body. The connection between the within-host dynamics and the between-
host disease transmission, however, was not discussed. A multi-scale cholera model
that considers the between-host and within-host interactions was proposed in [23].
In that work, the within-host dynamics take a simplistic form: a single equation
characterizing the increased toxicity of the vibrios within an “average” (or, typical)
infected individual. Distinctions among different human hosts were not considered.
We also mention that there have been several mathematical models published for
the immuno-epidemiological dynamics of other types of diseases; for example, a
recent study on malaria can be found in [4].

Our present work aims to extend the work in [23], in an effort to fill the knowl-
edge gap in linking the between-host and within-host cholera dynamics while taking
into account the heterogeneity among different individual hosts. In our modeling
framework, we distinguish two types of vibrios relevant to cholera infection: the
environmental vibrios and the human vibrios [23, 24], based on their toxicity, or
infectivity. The environmental vibrios have relatively low infectivity, whereas the
human vibrios (developed within the human body) typically have an infectivity
much higher (up to 700-fold) than their environmental counterparts [10, 13]. Typ-
ically, due to the contacts between the hosts and the contaminated water or food,
vibrios from the environment are ingested into the human body. Through a series
of biological, chemical and genetic interactions during the passage of the bacteria
through the human gastrointestinal tract, the environmental vibrios are transferred
to human vibrios with much higher infectivity /toxicity that could directly lead to
human cholera symptoms [6, 9], among which profuse diarrhea and massive fluid
loss are most common.

A challenge in the design of effective prevention and intervention strategies for
cholera (perhaps also for many other infectious diseases) is the highly heterogeneous
pattern in the host response, individual symptoms, and transmission of the disease.
These are closely related to the distinct health conditions among different human
individuals. For example, some people may not easily become infected with cholera
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due to the strong immune system inside their bodies or the cholera vaccines they
previously receive, whereas young children, old people, and those with poor health
are much more vulnerable to cholera and likely exhibit severe infections.

A comprehensive description of the within-host cholera dynamics that covers all
details of the pathogen evolution and transformation inside the human body, while
including the individual distinctions across a large host population, would lead to
highly complicated dynamical systems that are challenging to analyze or compute.
Alternatively, a popular approach in disease modeling is to utilize the agent-based
modeling and simulation technique, where multiple agents reside in networks and
interact with each other according to a set of heuristic rules, with an aim of creating
or predicting the complex overall system behavior [2, 14]. Advantages of the agent-
based modeling include high flexibility and natural incorporation of heterogeneity
(16, 18]. However, the nature of the agent-based framework makes it mathemati-
cally intractable, and the only way to implement/analyze such a model is through
numerical simulation. The overall computational efforts can become prohibitively
expensive when the number of interacting agents is large.

In this paper, we propose a novel deterministic modeling framework to connect
the between-host and within-host dynamics of cholera, while keeping the model
mathematically and computationally manageable. On the population level, we uti-
lize a Susceptible-Infected-Recovered-Bacteria (SIR-B) model to describe the dis-
ease transmission and the interaction between human hosts and environmental
pathogens. On the individual host level, we treat each individual as a separate
compartment represented by an equation that describes the evolution from envi-
ronmental vibrios to human vibrios within the human body. Within each individual
host, our modeling approach is coarse-grained as the dynamics are described by a
single equation characterizing the essential pathogen development from a lower-
infectious state to a hyper-infectious state. However, since each host is separately
modeled, distinctions among different individuals can be naturally incorporated to
reflect the heterogeneity of the within-host dynamics.

In this study, we first describe our multi-scale model, and then conduct math-
ematical analysis and numerical simulation. Our primary focus is the autonomous
system where each parameter is fixed, which enables us to conduct a thorough
mathematical analysis on the equilibria and their local and global dynamics. In the
numerical part, we use the simulation results to verify the analytical predictions
on the autonomous system. Then, we allow the key parameters associated with
the within-host dynamics to vary with time, to emphasize the feedback mechanism
that links the between-host and within-host dynamics. This scenario represents a
dynamic, or “adaptive”, multi-scale modeling approach for cholera. We conduct
careful numerical simulation to this dynamic scenario and compare the results
to those from the autonomous case. Finally, we conclude the paper with some
discussion.
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2. Model and Analysis
2.1. Equations

The between-host dynamics are described by the following Susceptible-Infected—
Recovered (SIR) model:

% = puN — BuSI — BLSB — puS,

dl

i BuST+ BLSB — (v + u)l, (2.1)
dR

E;—WI—MR

where B is the concentration of the bacteria Vibrio cholerae in the contaminated
water. We assume that the natural birth and death rates for human hosts are
the same and denoted by wu. Meanwhile, we denote the human-to-human and
environment-to-human transmission rates by By and [, respectively. In addition,
~ denotes the recovery rate from the infection. The total population, N = S+I+ R,
remains a constant in our model and, thus, we may drop the equation for R
in the analysis of the model. We further assume that N is an integer in this
study.

To emphasize the distinctions among human individuals in the within-host
dynamics, we formulate an equation for each individual host:

%:CiB—fiZi, i:1,2,...,N. (22)

Here Z; represents the concentration of human vibrios within the body of the ith
individual, ¢ = 1,2,..., N. The environmental vibrios that are ingested into the
human body are transferred, at a rate ¢; , to human vibrios which typically have
much higher infectivity /toxicity and could directly lead to human cholera symp-
toms. Meanwhile, the human vibrios are removed from the human body at a rate §;
due to natural death of the bacteria, shedding of the bacteria to the environment,
etc. We assume

¢ >0, &>0, i=1,2,...,N.

The values of ¢; and & could highlight the distinctions among different human
individuals. For example, for individuals who are especially vulnerable to cholera
(such as young children, old people, or those with poor health), the rate ¢; will
be relatively high. In contrast, for individuals who are immune to cholera (due to
vaccination, recovery from cholera, etc.) or otherwise are healthy and have a strong
immune system, the rate ¢; will be close or equal to 0.

Meanwhile, we assume that for each individual 7, a portion p; of the removed
human vibrios is shed out of the human body and transfer back to the environmental
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vibrios. The following equation thus describes the dynamics of the vibrios in the
environment:

dB
9B _ 3(1——) +Z% . 0B, (2.3)

where the intrinsic growth of the bacteria is modeled by a logistic model with the
growth rate o and carrying capacity . The shedding from each human individual
contributes to the growth of the bacterial concentration in the environment. In
addition, § denotes the natural death rate of the bacteria.

In what follows, we suppose that all model parameters are constants, indepen-
dent of time, so that Eqgs. (2.1)-(2.3) form an autonomous system which allows
us to conduct a careful mathematical analysis. We additionally make the following
assumptions:

(A1) At any time ¢, if I(¢) > 0, then there exists at least one i such that Z;(¢) > 0.
(A2) 0 — Zf\;l pic; > 0.

The condition (A1) sets a positive correlation between the disease prevalence and
the within-host dynamics. The condition (A2) implies that in the absence of the
intrinsic bacterial growth (o = 0), the environmental vibrios would die away even-
tually.

Below we will analyze the fully coupled, autonomous system that consists of
Egs. (2.1)-(2.3). Brief discussion of decoupled equations based on different time
scales is provided in Appendix A.

2.2. Basic reproduction number
It is obvious that there is a unique trivial equilibrium, or disease-free equilibrium
(DFE), at

S=N, I=B=7Z,=---=Zny=0. (2.4)

We proceed to use the next-generation matrix technique to compute the basic repro-
duction number, Ry, for this model. We re-write the equations directly related to
the infection as follows:

_ - 0 §1Zl —ClB
Z
0 ENZN —cenB
Z;V = - ’
B N
G P
I/ =1
- - _6HSI+6LSB_ i (,U""}/)I |
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where the first part on the right-hand side represents the generation of new infection,
and the second part represents the transfer among the disease compartments. The
next-generation matrices are given by

0 --- 0 0 0
O O
F=1o0 0 0 0 | =
O FE
0 0 « 0
0 -+ 0 BN Bul|
and
[ & 0 —C1 0 7
A B
V= _ = .
0 fN CN 0 C D
-p1&r -+ —pNEN O 0
L 0 0 0 p+~l

The dimensions of these (non-zero) matrix blocks A, B, C, D and E are N x N,
N x2,2x N, 2x2,and 2 x 2, respectively.

The basic reproduction number is then determined by the spectral radius
of the matrix FV~!. The inverse of V can be calculated by using the flowing
result.

Lemma 2.1 ([1]). Consider any square matriz in the form of V = [é g] where

A, B,C and D are matrixz blocks, with A and D being square. Then the matriz
V is invertible if and only if A and D — CA™'B are invertible, and V' is
given by

A Bl7" |AT'+A'B(D-CA'B)"'CA™' —AT'B(D-CA'B)!

Cc D

—(D—CA-1B)"1CA~1 (D—CA-1B)~!
(2.5)

Note, however, that E is the only non-zero block in our matrix F'. Hence, it is
clear that

Ry =p(FV~Y) = p(E(D — CA™'B)™1),
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where
1
[« 0 57N 0
E(D — CAilB)fl = - Zi:l PpiCi
BN BN 0 1
w+
«
D 0
d— Zfil piCq
B ﬂLN ﬂHN
_5_2?;1]71'01‘ BEy

Note that each component in the matrix above is positive based on the assumption
(A2). Therefore, we obtain

Ro = maX(Rh Rg), (26)

where
(0% /?HN
R —

Ri=——x— Ro= :
5—2?/:1]31'61' M+’7

Theorem 2.2. If Ry <1, the DFE is globally asymptotically stable.

Proof. Let y = (Z1,Z5,...,B,I)". One can verify that

dy
— < (F-=V)y.
i )y
Take
u=(0,...,0,21,22),
where
BN )
1= (R — R1)*+ (Ro — R —(Ry — Ry) ),
1 (2 1) (0 1)<M+W (2 1)

To = (Ro — Rl)(RQ — Rl)

It then follows from the fact Ry = p(FV ~!) = p(V~1F) and direct calculation that
u is a left eigenvector associated with the eigenvalue Ry of the matrix V1F; i.e.
uV ~'F = Ryu. Let us consider a Lyapunov function

L=uV"ly.
Differentiating £ along the solutions of (2.1)-(2.3), we have
L =uVly <uV Y F -V)y = (Ry — 1)uy. (2.7)
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Case 1: Ry < 1. The equality £’ = 0 implies that wy = 0. This leads to x1 B+x2l =
0, which yields B = 0,1 > 0 by noting that 21 > 0,29 > 0. If I > 0, then Eqgs. (2.1)
yield I = 4=(Ry — 1) < 4-(Ro — 1) < 0. The contradiction shows that I = 0, and

H
hence y = 0. Therefore, the invariant set on which £ = 0 contains only one point

which is the DFE.

Case 2: Ry = 1. The equality £’ = 0 implies that y' = (F' — V)y, which yields
B =0and S = N. Thus, y = 0 holds again.

Therefore, in either case, the largest invariant set on which £ = 0 consists of the
singleton Xy = (N, 0,...,0). By LaSalle’s Invariance Principle, the DFE is globally
asymptotically stable. O

2.3. Non-trivial equilibria
We denote a non-trivial equilibrium by
X*=(B*,S"I",Z1,7Z5,...,Zx),

where, for convenience of algebraic manipulation, we put B* as the first component.
At X, we have

uN — By S*I* — Br.S*B* — uS* = 0,

BuS*I* 4 BLS*B* — (v + p)I* =0,

B*\ &
B*(1-—— W& ZT —0B* =0,
an (1= 2) + Soneizs

i=1
CiB* - ngz* =0.

From the last two equations in (2.8) we obtain

N
{ [Zpici +a-— 5] — %B*} B* =0. (2.9)
i=1

The solution of Eq. (2.9) is given by B* = 0, or

B*:g[ipici—i—a—é] :m<1—Ri), (2.10)

i1 1
where R; is defined in (2.6). It is clear to see that B* > 0 if and only if R; > 1.
Note that this result is consistent with the findings based on the separation of scales
(see Appendix A).
When R; < 1, the only non-negative solution for B* is B* = 0. Consequently,
ZF =0for 1 <i < N.Meanwhile, the first two equations in (2.8) yield

uN — By S*I* — uS* =0,

BuS*I* — (v +u)I* = 0.

(2.11)
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In addition to the trivial solution (I*,S*) = (0, N), there is a unique non-trivial
solution given as

. awy _ oy 2t
(I,S)_<ﬂH(R2 1), 6H) (2.12)

where Ry is defined in (2.6). Obviously I* > 0 if and only if Ry > 1. In this case
we obtain a non-trivial boundary equilibrium.
When R; > 1, then B* > 0. The last equation in (2.8) yields

Zr = ﬁ,
&
Meanwhile, the second equation of (2.8) yields

(y+u)I*
Bul* + B B*

provided that I* > 0. Adding the first two equations in (2.8), we obtain

i=1,2,...,N.

S* = >0

plN = pS* + (p+ )1

which yields

Substitute this into the second equation of (2.8) to obtain

Bu (1 + %) (I*)? + [(7 + ) (1 + PLp ) — NﬂH} I* = NBB*=0. (2.13)

Clearly, when B* > 0, there is only one positive root, I*, for Eq. (2.13). In this
case we have a unique endemic equilibrium.
Summarizing the results above, we have the following theorem.

Theorem 2.3. The system has a non-trivial, non-negative equilibrium if and only
if Ry > 1. Specifically:

(1) If Ry <1 and Ry > 1, then there is a unique boundary equilibrium Xy repre-
sented by I'* = ﬁLH(Rg—l), S* = ?—Hﬂ and B* =727 =--- = Zy = 0.
(2) If Ry > 1, then there 15 a unique endemic equilibrium X3 represented by B* =

KL= ), Zf = 28 (1<i < N), I >0, and §* = .G

Note that the boundary equilibrium X means that the between-host dynamics
are totally decoupled from the environment and the within-host dynamics; that is,
the environmental pathogen concentration and the within-host pathogen load have
no impact on the disease prevalence. This is unreasonable for a water-borne disease
such as cholera. Indeed, our assumption (A1) excludes the boundary equilibrium

1850034-9



Int. J. Biomath. 2018.11. Downloaded from www.worldscientific.com

by UNIVERSITY OF PORTLAND on 04/26/22. Re-use and distribution is strictly not permitted, except for Open Access articles.

C. Yang et al.

X7. Hence, in what follows we will focus our attention on the endemic equilib-
rium X5
The Jacobian at the endemic equilibrium is then given by

_ % _
a—0— :B* 0 0 p1é1 p2é2 - DPNEN
—BLS* —(BuI* + prLB* + 1) —BuS* 0 0 0
BrS* Bul* + BLB* BuS* —(v+p) 0 0 0
J(X3) = c1 0 0 & 0 0
ca 0 0 0 —& 0
Y 0 0 0 0 - —£n]

After some algebraic manipulation, the characteristic polynomial associated with
J(X3) can be found as

det(N — J(X3)) =T1(M)T2(N), (2.14)
where

A+ Buyl*+ BB+ BuS*
—(Bul*+ BLB*)  A=PBuS*+v+u

=\ + (Bgl* + BLB* — BuS* ++2u)\

+[(Bal™ + BLB™ + p)(y + 1) — pfu S,

Fl ()\) = det

and

Ty(\) = </\ to—at %‘B*) H\) + préres ﬂz
Hi) H()
+p2§262%§)2 + - +pN§NCN)\ _'_(53\[

with
HA) = (A+&)A+&) - (A +&n).

Using the second equation in (2.8), one can easily see that 8y S* < v+ p, and thus
each coefficient of I'; (A) is positive. Consequently, the two roots of I'i (A) both have
negative real parts. Meanwhile, note that when R; > 1, we have

N N
2

0 — —B* =2 0> > 0. 2.15

a+ - g:lpkck +a k§:1pkck (2.15)

Thus, each coefficient in the polynomial I's(\) is positive.
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Theorem 2.4. The endemic equilibrium X5 is locally asymptotically stable.

Proof. We only need to show that each root of I'y(\) has a negative real part. Let
p > 0 be a positive number, to be determined, and

: 3
w={z|z=pel9,gsosg}u{zlwyi,—pgyw}, where 2 = —1,

be a simple closed contour. Denote F(A) = (A+A)H ()), where A = §—a+22B* > 0
by Eq. (2.15). Then T'o(A) = F(A) + H(\) 31, B85, Obviously, Ty(\) and F())
are both analytic inside and on . We will show that

IL2(A) — F(A)| < |F(N)]  on ~,. (2.16)
Then, by Rouché Theorem [7], we know that I'y(\) and F'(A) must have the same

number of zeros, counting multiplicities, inside 7y,, which is on the left half complex
plane.

(i) If A = yi, —p <y < p, then

a(i) = F(yi) ' Zﬁfi’ﬁ’;

Prcré

< |H(yi) Zm

k=

< |H(yi IZkak- < [H(yi)|A by (2.15)
k=1

< [H(yi)l|A +yil = [F(yi)].

(ii) If z = pe™?, T <6 < 23X, p > 0, then

; PrCrEk PrCrEk
La(pe'®) — F(pe ¢! H(p
(o) — Fipe? ‘ v z Pk | | |z‘pew+m
Notice that lim, . Zk:l Vfgg'fgkl = 0 and lim, . |pe?? + A| = 400, hence we
can choose p > max{A,&;,...,En} such that Zszl |p’;’§§f£"‘k‘ < |pe®® + A|. Thus,

(2.16) holds for some p > 0. Since all N + 1 zeros of F'(\) are inside v,, we obtain
that all N + 1 zeros of Iy () are inside ,; i.e. the real part of every zero of I's(\)
is negative. Therefore, XJ is locally stable. |

In contrast, the global asymptotic stability of an endemic equilibrium is usually
difficult to establish, when the dimension of the system is high. The proof of such
global stability, if available, normally comes with additional conditions on the model
[8, 17]. In our case, we have the following result.

Theorem 2 5. The endemic equilibrium X3 is globally asymptotically stable if

B SI*B

1850034-11
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Proof. We consider a Lyapunov function

N
L =a1Di+axDy+ azDs3 + Z A E;,
i=1

~(s-sr=sm(5)). pe=(1-r-rm(£)).
Do (B-p-mm(5)). 5= (z-2- Z*m(%))

=1,2,...,N,

where

anda; >0 (j=1,2,3,4), A4; >0 (i=1,2,...,N) are constants to be determined.

It is easy to verify that £ > 0 for all positive S,I,B,Z; (i = 1,2,...,N), and
L =0if and only if (S,I,B, Z1,...,Zy) = X;. Differentiating £ along the vector
field of the system, we obtain

N
L' =a D} +a1Dy+asDs+ Y A
=1

S* I*
<1—?> S'—|—a2<1—7> I/+a3<

N
B Z*
B’ E Al1-=) 7
B) " pt ( Zz‘)

_ =82 spefq_°" L ST
= —ait g + a8y ST |1 S + T S+
8, (B*+B SB S§B* o 1S s
Yo\ o s ) TetS (- n oty
Bs SB SB IB* o .
" (I* 51 5T T )) as (B = B)

N
N B Zi Z;B* . Z; B Z7B

+a3ZPi§iZ¢<1—B*+;— )‘FZA&Z (1_?+B*_Z-B*)

i=1 7

..(. S I SI B(B*+B SB S§B*
< _Z 4 _ 7L _ _
< afus (1 ST 5 T, ( S ST ))

I S ST & B* SB 4 5B SB E
S S*I* 1*2

+CL25HSI (1_F_§+S*I* ﬂH

N
([ B  Zi Z;B* . B Z:B
+as ) pitiZ] (1—B*+;— - ) ZA@Z (1——+B*—Z_B*)-
=1 i

1850034-12
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Take a1 =as =az3=1and 4, =p; (i=1,2,...,N). Then

s+ S al Z:B*  Z'B
/ < * Tk = = Tk _ 7 _ 7
L= puS (2 S S*) Zi:l piciZi <2 7B ZiB*>

Bx I+ S S*IB*
By our assumption, the last term is non-positive. Thus, £’ < 0. Moreover, £’ = 0
if and only if § = S*, I = I*, B = B*. Therefore, the largest invariant set for
which £ = 0 contains only X3. By LaSalle’s Invariance Principle, X is globally
asymptotically stable. O

B I s* SI'B
+5LS*B*<2—|—— ————— )

3. Numerical Results

In this section, we conduct numerical simulation to our proposed multi-scale cholera
model, both to verify our analytical results and to explore scenarios that are not
covered in our analysis. To make distinction among hosts, we label all the individuals
by integers from 1 to IV; thus, each individual is assigned a unique numeric “ID”
that belongs to the set {1,2,...,N}.

3.1. Constant parameters

We first consider the case where each parameter is fixed as a constant. Our mathe-
matical analysis is concerned with this scenario and Theorems 2.2 and 2.5 predict
the global stabilities of the DFE and the endemic equilibrium, respectively.

In our numerical tests, we use the base values of the model parameters provided
in Table 1. Meanwhile, we set the initial conditions as follows:

I(0) = J, R(0)=0, S(0)=N —1I(0)— R(0),
B(0) = 10* cells/ml,  Z;(0) =0

for 1 < i < N and some positive integer J > 1. For those individuals who are
initially infected, ¢; # 0, for 1 < i < J. Here, for simplicity, we assume that the
individuals labeled with 1 < ¢ < J are initially infected. Thus, we set ¢; > 0 for
1<i<J,andc¢;=0for J+1<i<N.

Figure 1 illustrates that when Ry < 1, the DFE is globally asymptotically sta-
ble. In contrast, Fig. 2 shows that when Ry > 1, the endemic equilibrium is globally
asymptotically stable. In these two cases, we simply set ¢; = 2 for i = 1,2,...,.J.
The results are consistent with the analytical predictions in Theorems 2.2 and 2.5.
Additionally, to examine the specific dynamical behavior of the human vibrios
within different hosts, we set ¢; = 0.04 x4 for 1 <i < J, and ¢; = 0 for ¢ > .J, with
J = 10. Other parameter values remain the same. We then plot the time evolution
of Z;(t) for a few typical (initially infected) individuals in Fig. 3. We see that each
curve starts from 0 and increases quickly during the first few hours, showing the fast
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Table 1. Model parameters and their values (p =person, d =day).
Parameter Definition Value References
N Total number of human individuals 10,000 p Assumed
I Natural human birth/death rate (15,878 d)~! [11]
B Direct transmission rate 1.57 x 1072d~1! [11]
8L Indirect transmission rate 1.1x 1078 p~td—! [11]
5 Recovery rate 0.2d~1! [10]
c; Transfer rate from environmental Varied
vibrios to human vibrios
& Removal rate of human vibrios 10d-1 Assumed
«@ Bacterial growth rate 0.1d-1 Assumed
K Bacterial carrying capacity 106 cells - m1—1 [22]
Di Portion of human vibrios back 10% Assumed
to environmental vibrios
0 Death rate of environmental vibrios  (30d)~1! [10]

Fig. 1.
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DFE is globally asymptotically stable when Rp < 1.

increase of the pathogen load within the human body upon infection. Among these
curves, Z1o(t) and Z;(t) attain the highest and lowest levels, due to that ¢jo and ¢;
have the largest and smallest values, respectively. Moreover, each curve approaches
a positive steady state over time, another evidence of the stability of the endemic

equilibrium.
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A typical phase portrait for I vs. B when Ry < 1. Each curve starts with a different
initial condition, and all these curves converge to the DFE at (B, I) = (0, 0), illustrating that the
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Fig. 2. A typical phase portrait for I vs. S when Ry > 1. Each curve starts with a different initial
condition, and all these orbits approach the endemic equilibrium at (S, I) ~ (410, 59), illustrating
that the endemic equilibrium is globally asymptotically stable when Rg > 1.
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Fig. 3. Z; vs. time for ¢ = 1,5,10. Each curve starts with Z;(0) = 0
1 <14 <10, and so Zio(t) attains

approaching a steady state. The value of ¢; increases with ¢ for
the highest level among these curves.
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3.2. Time-dependent parameters

Our mathematical analysis presented in Sec. 2 requires that each parameter remains
fixed (or, “static”), independent of time, so as to investigate the essential dynamics
concerned with equilibria and stabilities. Nevertheless, our modeling framework
allows the parameters, particularly ¢;’s, to be time-dependent. In order to better
understand the interaction between the within-host and between-host dynamics, we
utilize numerical means to explore an “adaptive” modeling approach, with a focus
on the “dynamic” changes of the parameters ¢;’s to reflect a stronger correlation
between the disease prevalence and the within-host pathogen load. Specifically, we
will assume that at any time ¢,

(H1) if the i¢th individual (1 < ¢ < N) belongs to the infected class I (i.e. already
infected), then ¢;(t) > 0;

(H2) if the ith individual (1 < i < N) belongs to the susceptible class S or recovered
class R (i.e. not infected at the time), then ¢;(t) = 0.

For simplicity, we also assume that throughout the process, each ¢; will switch
between 0 and a constant C' > 0, depending on the classification of the ith individual
(infected, susceptible, or recovered). Additionally, we neglect the natural human
birth and death; i.e. p = 0.

As before, we suppose that there are J infected hosts initially, for individuals
labeled with 1 < ¢ < J. We then set ¢1(0) = --- = ¢;(0) = C, and ¢;41(0) =

- = ¢n(0) = 0. Other parameters and initial conditions remain the same as in
the static case. In addition, for n =1,2,3,..., we let I,, and R,, denote the largest
integers not exceeding I(n) and R(n), respectively, at day n. The values of I,, and
R,, are used to group the within-host compartments: for i < R,,, the individual 4
belongs to the recovered class; for R, < i < R, + I, the individual ¢ belongs to
the infected class; and for i > R,, + I,,, the individual i belongs to the susceptible
class. For example, the recovery period is five days in our setting; i.e. v = 0.2 per
day. Then at n = 5 the individuals 1 <1 < J (who are initially infected) are moved
to the recovered class; meanwhile, other individuals may have been infected during
this period and they are labeled with ¢ = J +1,J + 2,... in an increasing order.

We then run the numerical simulation to the ODE system using a small time
step (e.g. At = 0.01day) and update I,, and R, once for each day; i.e. at n =
1,2,3,.... Meanwhile, we update the values of ¢;’s accordingly; that is, ¢;(n) = C
for R, <i<R,+ I,,and ¢;(n) =0fori <R, or R, + I, <i<N.

Figures 4-6 show the results for a small host population N = 100, where we
set J = 1; i.e. initially there is only one infected individual associated with i = 1.
In particular, we plot the human vibrio concentrations in Fig. 4 that show the
variations of Z;(t) with respect to the host ID (1 < ¢ < N) and time (¢). Since the
recovery rate is v = 0.2 per day, each infected individual stays in the infected class
(with positive Z;) for five days and then recovers. From the figure, we can clearly see
that for each host ID 1 < i < N, there is only a short period (about several days)
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Fig. 4. (Color online) Variations of Z;(t) with respect to the host ID (1 < ¢ < N) and time (¢).
Here N =100 and J = 1.
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Fig. 5. Variations of ¢;(¢) with respect to the host ID (1 < ¢ < N) and time (¢). The color
(purple) indicates ¢;(t) > 0. Here N = 100 and J = 1.

in which Z;(t) is non-zero, indicating that the human vibrios are short-lived [10].
Starting with the host ID 7 = 1, the infection sweeps the entire population, with
those host IDs associated with higher numeric values getting infected at later times.
At any single time, multiple individuals are in the infected class with non-zero Z;’s.
In addition, the level of (non-zero) Z;’s remains relatively low during the initial
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Fig. 6. Comparison between the dynamic case (solid line) and the static case (dashed line) with
N =100 and J = 1. Green: susceptible class; Red: infected class; Blue: recovered class.

period (0 < ¢ < 30days), but it keeps increasing with time. When ¢ > 60 days, the
values of all non-zero Z;’s appear to stabilize around 5,000 cells/ml.

Figure 5 shows the variations of ¢;(¢) with respect to the host ID (1 < i < N)
and time (¢), where the color (purple) indicates that ¢;(t) = C' > 0 and, otherwise,
¢i(t) = 0. We see that the pattern is consistent with that in Fig. 4.

Figure 6 shows the comparison between the dynamic case (with time-dependent
parameters) and the static case (with fixed parameters) for the evolution of
host populations, under the same initial setting. We see that while the infec-
tion curves in the two scenarios well match each other, there are slight differ-
ences in the variation of the susceptible and recovered populations under these two
settings.

Figures 7-9 show the results for a relatively large host population N = 10,000,
where we assume J = 10; i.e. initially there are 10 infected individuals associated
with 1 < ¢ < 10. We note that the epidemic in this scenario is much shorter
(around 80days) compared to that when N = 100 (greater than 300days). We
again plot the variations of Z;(t) and ¢;(t) with respect to host IDs and time, in
Figs. 7 and 8, respectively. Comparing with Fig. 4, we see that, in Fig. 7, during
the period between the 52nd and 60th days, the non-zero values of Z;(t)’s reach
a very high level (up to 6 x 10°). Meanwhile, it can be observed that at any day
during this period, there can be as many as a few thousands of infected individuals,
reflected by the long vertical bars in the figure. Our results indicate that this period
represents the peak of the disease outbreak, and that the epidemic peak coincides in
time with the peak values of the within-host vibrio concentrations, demonstrating a
strong correlation between the disease transmission at the population level and the
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Here N = 10,000 and J = 10.
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(Color online) Variations of ¢;(t) with respect to the host ID (1 <14 < N) and time (¢).

The color (purple) indicates ¢;(¢) > 0. Here N = 10,000 and J = 10.

pathogen load at the individual level. Afterwards, the values of the non-zero Z;(t)’s
decrease with time, and the number of infected individuals at a single day also
decreases, showing that the epidemic is slowed down (and eventually gone). The
plot of the variation of ¢;(¢) in Fig. 8 shows a pattern consistent with that in Fig. 7.
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Fig. 9. Comparison between the dynamic case (solid line) and the static case (dashed line) with
N = 10,000 and J = 10. Green: susceptible class; Red: infected class; Blue: recovered class.

Figure 9 again compares the dynamic and static cases for the evolution of host
populations, under the same initial setting. Unlike the result in Fig. 6, now we see
large discrepancies between these two scenarios, especially the very high epidemic
peak in the dynamic case vs. the very low peak in the static case. As the dynamic
model provides a stronger connection for the between-host and within-host dynam-
ics and is potentially more realistic, this result implies that when the population
is relatively large, using the static model (with fixed parameters) might yield very
inaccurate prediction.

4. Discussion

We have presented a new deterministic modeling framework to link the between-
host and within-host dynamics of cholera. The major innovation of our work is the
representation of each individual host in a separate manner which allows natural
incorporation of host heterogeneities into the within-host dynamics, yet keeping the
model mathematically and computationally tractable.

We have focused our attention on the case where each model parameter is a
constant independent of time. For this autonomous model, we are able to conduct a
detailed mathematical analysis. We have shown the existence and uniqueness of the
DFE and the endemic equilibrium, and established their stabilities using threshold
conditions based on the basic reproduction number. In particular, a result from
complex analysis (the Rouché Theorem) helps us to prove the local stability of the
endemic equilibrium, and the use of a Lyapunov function allows us to establish its
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global stability under some additional constraint. Our numerical simulation results
are consistent with these analytical findings.

In addition, we have numerically explored our model with time-dependent
within-host parameters, where the transfer rates from environmental vibrios to
human vibrios associated with each individual host change with time, depending
on whether or not the individual is infected. This non-autonomous model strength-
ens the link between the within-host and between-host dynamics by emphasizing a
feedback mechanism: the disease transmission at the population (or, macroscopic)
level impacts the pathogen load at the individual (or, microscopic) level, whereas
the variation of the pathogen concentrations inside the human body shapes the
classifications of hosts (susceptible, infected, and recovered) and their interactions
outside the human body. This study could be a starting point for establishing a
comprehensive, adaptive modeling framework for cholera with a strong and consis-
tent connection between the within-host and between-host dynamics.

Although our current model allows the incorporation of heterogeneities from
different host individuals, the characterization of the within-host dynamics for each
individual is still simple, represented by a single equation for each. Our future work
will seek to improve it by incorporating the interactions among the vibrios, cholera-
toxin phages, and the immune response, so as to gain deeper understanding on the
complex processes of pathogen evolution inside the human body. We will again
combine mathematical analysis and numerical simulation in such research tasks.
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Appendix A. Separation of Scales

A simplified model analysis for the system (2.1)—(2.3) can be conducted by separat-
ing the time scales, since the within-host dynamics are on a fast scale and typically
range from several hours to a few days, whereas the between-host dynamics and
the evolution of the environmental bacterial densities are on a slow scale and nor-
mally take place in months and years. Thus, we may treat the slow variable B as a
constant in the fast-scale (within-host) model (2.3) to obtain

Zi(t) = B + {Zi(O) — CiB] e St (A1)

& &

Note that & > 0 for 1 < i < N. Equation (A.1) shows that for each fixed B > 0,
Z; would exponentially converge to its equilibrium (i.e. steady state):

Zi(t) = ¢B/&, i=1,2,...,N. (A.2)
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Hence, we may approximate each fast variable Z; at its steady state in the slow-scale
environmental bacterial equation (2.3). As a result, we obtain

N
Zpici +a—4
i=1

Equation (A.3) is a Bernoulli equation and can be analytically solved to obtain

dB «
— = B — —B2. A.
dt K (A-3)

B(t) = —@+ L+d—2 e it - if dp #0 (A.4)
T4 " \BO 4 L '
and
1 -1
B = _— .f == A
=g - . wa-o (A5)
where
N «
dlza—5+;pici, dQZ—E. (A6)

From Egs. (A.4) and (A.5), it is clear to observe that

(i) if dy <0, then B(t) — 0 as t — oc;
(ii) if dy > 0, then B(t) — —dy/ds as t — oc.

For case (i), Eq. (A.2) shows that Z;(t) — 0 as t — oo for 1 < i < N. This recovers
the boundary equilibrium case (in the asymptotic sense) discussed in Egs. (2.11)
and (2.12). For case (ii), it leads to the positive endemic equilibrium represented
in Eq. (2.10). Note that the condition d; > 0 is equivalent to Ry > 1, and that

o= ) -
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