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1 Introduction

Stochastic optimal control is an important and active research topic in applied math-
ematics, and it has extensive applications in numerous areas, including engineering,
finance and economics, biology, public health, communication networks, to mention a
few [8, 18]. In the past half century, fundamental results of stochastic optimal con-
trol theory have been established: Pontryagin type maximum principle (MP, for short)
([6, 16, 15]), Bellman dynamic programming principle (DPP, for short) (]2, 3]) and
Hamilton-Jacobi-Bellman (HJB, for short) equation theory ([7]), and linear-quadratic
(LQ, for short) optimal control and Riccati equation theory ([11, 17]). These are three
well-recognized mile stones of stochastic optimal control theory.

It is known that except for some limited special cases, such as LQ problems, one-
dimensional linear state equation with convex/concave performance index (such as Mer-
ton type problem in mathematical finance), most stochastic optimal control problems
are not explicitly solvable and therefore numerical algorithms to generate approximate
solutions are needed. One of the most widely used approaches to solve the stochastic
optimal control problem is the above-mentioned DPP, mainly due to Bellman ([2, 3]).
The main idea of the DPP approach is to consider a family of optimal control problems
with different initial states and times, and establish relationships among these prob-
lems through the HJB equation, which is a fully nonlinear PDE. Taking the advantage
of well-established numerical schemes for solving PDEs, many computational methods
for stochastic optimal control are developed under the DPP approach [23, 24, 26, 30].
Although all of these methods solve the control problem successfully, due to the com-
plexity of numerical approximations for solutions of PDEs and the nonlinearity of the
HJB equation, methods that follow the DPP approach are computationally expensive,
and even infeasible when the dimension exceeds 3, although, in recent years, some efforts
have been made to pursue the relaxation of the dimensional restriction ([1]). Another
disadvantage of DPP is that the optimal control problem considered could not have any
state constraints. The presence of state constraints will lead to the discontinuity of the
value function, for which the suitable HJB equation theory is not available as of today.
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Another important approach to solve the stochastic optimal control problem is the
stochastic mazimum principle. The classic deterministic maximum principle was first
introduced by Pontryagin and his students ([6, 16]). Stochastic version was developed
by several researchers since 1960s ([12, 10, 5, 4, 15]). The central idea of maximum
principle is that any optimal control problem must satisfy an optimization condition of
a function called the Hamiltonian, and it is much easier to optimize a Hamiltonian than
solving the original optimal control problem, which is infinite-dimensional. The MP
approach for stochastic optimal control problems as three major advantages over the
DPP approach: First, there is no dimension restriction; Second, it allows to have some
state constraints, especially some finite dimensional terminal state constraints; Third,
it allows to have random coeflicients in the state equation and/or in the performance
functional (to be optimized).

The goal of this paper is to introduce a stochastic gradient descent approach to
solve stochastic optimal control problems. Let us elaborate a little more on the MP ap-
proach. When optimal control problems become stochastic, the corresponding stochas-
tic maximum principle leads to a stochastic Hamiltonian system that consists of two
forward backward stochastic differential equations (FBSDEs) ([13]). In this way, solv-
ing stochastic optimal control problems through stochastic maximum principle involves
solving FBSDEs that meet certain optimization condition, which is typically achieved
by gradient descent based approaches. It can be shown (under appropriate assump-
tions) that the gradient process of the optimization condition can also be expressed by
a FBSDE system. Therefore, numerical implementation of stochastic maximum princi-
ple requires solving FBSDESs repeatedly to reach the optimization condition. However,
since computational methods for solving FBSDEs are not as well developed as those
for solving PDEs, numerical studies for stochastic optimal control through stochastic
maximum principle are only beginning.

The numerical method for solving the stochastic optimal control problem that we
shall introduce in this paper lies in stochastic maximum principle, and we adopt gradi-
ent descent as our framework to accomplish the optimization task in the Hamiltonian.
The motivation of our approach is based on the fact that the optimization condition is
under expectation due to the stochastic nature of the problem, and obtaining solutions
of FBSDEs contained in the optimization condition involves expensive calculations. In
the deterministic gradient descent approach, one needs accurate evaluations for expec-
tations, which is computational expensive, in order to derive corresponding expected
gradients in the optimization procedure. One of the most successful ways to improve
the efficiency of deterministic gradient descent when the optimization condition is under
expectation is the stochastic gradient descent method. The methodology of stochastic
gradient descent is to represent the gradient under expectation by its single-sample sim-
ulation (or simulations from small batches of samples) to avoid complete calculation for
expectations in each gradient descent iteration step. As a result, the stochastic gradient
descent reduces the computational cost in evaluating expectations and achieves higher
computational efficiency in trade of larger number of iterations in the optimization
procedure [28, 29]. In this connection, we propose in this work to apply stochastic gra-
dient descent to improve the efficiency of gradient descent optimization procedure when
solving the stochastic optimal control problem through stochastic maximum principle.

On the other hand, in the stochastic maximum principle approach for stochastic
optimal control, solutions of FBSDEs in the Hamiltonian system are needed. In most
practical applications, obtaining general solutions for FBSDEs requires numerical ap-
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proximation schemes for FBSDEs, which typically involve extensive calculations — either
through numerical solutions for PDEs [19, 34] or numerical approximations for condi-
tional expectations [20, 21, 35, 33]. Since stochastic gradient descent is an effective
method to replace an expectation by its single-sample representation in the gradient
descent optimization procedure, in this work we utilize single-sample simulations to
approximate conditional expectations when solving FBSDEs. Although the concept
of single-sample representation for conditional expectation does not provide accurate
approximation for solutions (compared to classic numerical methods for FBSDEs), FB-
SDEs in the maximum principle are essentially used to represent the gradient of op-
timization condition. Therefore, similar justification for the effectiveness of stochastic
gradient descent would also apply to sample-wise approximation for FBSDEs when op-
timizing the Hamiltonian in the maximum principle approach. It’s worthy to mention
that FBSDEs are systems of stochastic ordinary differential equations (SDEs), hence
the computational cost of implementing single-sample simulation for FBSDEs would be
comparable to simulating sample-wise SDEs. We also want to point out that, similar to
the methodology of classic stochastic gradient descent, our proposed stochastic gradient
descent approach for stochastic optimal control would transfer the extensive computa-
tional cost of approximating expectations when solving FBSDEs to larger number of
iterations in the gradient descent optimization procedure, and we could save unnec-
essary computational cost in deriving fully calculated approximation for solutions of
FBSDEs that is not needed in the optimization task. This is even more advantageous
when the system of the control problem is in higher dimensions since it requires much
more effort to carry out complete numerical approximation for solutions of FBSDEs.

The rest of this paper is organized as following. In Section 2, we provide a brief in-
troduction to the stochastic optimal control problem and the gradient projection frame-
work, which can be considered as a generalization of gradient descent approach to solve
the optimal control problem. In Section 3, we introduce numerical optimization for
solving the control problem. We shall start our discussion from conventional methods
and then introduce our stochastic gradient descent approach that improves the effi-
ciency of the existing algorithms. In Section 4, we carry out numerical experiments to
demonstrate the effectiveness and efficiency of our method.

2 Problem Statement

2.1 Stochastic optimal control

Given a filtered probability space (Q,F,{F;}i>0,P) on which a d-dimensional standard
Brownian motion W; is defined, we consider the following dynamical system in the form
of a stochastic differential equation (SDE) over a deterministic time interval [0,7]

t t
Xt:XoJr/ b(s,XS,us)d5+/ o(8,Xs,us)dWs, 0<t<T, (2.1)
0 0

where X; is the state of some dynamical system which is usually called the controlled
process; the function b: [0, 7] x RY x U — R? describes the dynamics of some model that
is governed by a control process u; representing the controlling action of the controllers,
which is chosen in a separable metric space ¢ with values in R; W, is a standard
d-dimensional Brownian motion that drives the Ito type stochastic integral fot -dW;
the stochastic process o :[0,T] x R xU —R? is the diffusion coefficient that represents
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the size of noises added to the system X;, and Xy €R? is the initial condition for the
controlled state.
In an optimal control problem, we have a cost functional defined as

T
J(u):zE[/o F(t, X ug)dt+h(X7) (2.2)

for all w €U. The control process u; is called an admissible control, and the pair (X, u;)
is called an admissible pair if u; is a feasible control process (see [] for details), X; is a
unique solution of the SDE (2.1), and

(X u) € Lryo,1r)s hXr) € Lz 0,1R):-

The goal of the optimal control problem is to minimize the cost functional (2.2) and
find an optimal control process u*, such that
J(u )—ireng(u) (2.3)
The main efforts to solve the above stochastic optimal control problem can be sum-
marized as two types of methods: (i) dynamic programming, in which we solve a partial
differential equation system named Hamilton-Jacobi-Bellman (HJB) equation, and (ii)
mazimum principle, which aims to optimize the corresponding Hamiltonian system.
Our approach in this work lies in the general framework of maximum principle, which
provides the adjoint process of the cost functional with respect to the control process u.
To proceed, let U be a nonempty convex set and all the controls in U be square
integrable. Suppose (X;,u;) be an optimal pair for the control problem (2.1) - (2.3),
we have that for any uel,

J(u) = J(u”)

o<l ==
" (2.4)
:E[/O fx(t,Xt,ut)DXt+fu(t,Xt,ut)[utfu*(t)]dtJrhxDXT},
where .
DXt:/ (bm(&Xs,us)DXs+bu(s,XS,us)[uS—u:])ds
0 (2.5)

t
+/ (O’z(S,XS,uS)DXS +ou(s, Xs,ug)[us — ui])de
0

is the adjoint equation with initial condition DXy =0, and for a given function ¢ we let
¢, be the partial derivative with respect to the state variable x and ¢, be the partial
derivative of the control variable u.

Although (2.4) provides a formulation for the differential of J with respect to wu,
it’s typically very difficult to carry out optimization procedures for (2.4) given an SDE
system in the form of (2.5). In this approach, we introduce an alternative formulation
to cancel out the DX; term. To this end, we consider the following forward backward
stochastic differential equations (FBSDESs)

dXs=b(s,Xs,us)ds+o(s,Xs,us)dWs,
d}/s :(_baj(saXS7uS>TYS _Uw(S;stus)TZS _fI<S7XS7u5)T)d8 (26)
+Z,dW,, Yr=h],



Archibald, Bao, Yong 5

where X} is the same controlled process in the stochastic optimal control problem, f and
h are defined in the cost functional (2.2). The first equation in the FBSDE system is
usually called the forward SDE and the second equation is a backward SDE (or BSDE).
The solution of the above FBSDE system is a triple (X,Y,Z), which is adapted with
the F; filtration. The third element in the solution triple, i.e. Z, is the martingale
representation of the solution Y such that

Zt:Utvn, (27)

where VY; is the gradient of Y; with respect to X;. The existence and uniqueness of
solution in (2.6) are guaranteed under mild assumptions and it can be shown that Y
and Z are functions of X (see [14, 15]). For the convenience of presentation, in the
rest of this paper we abuse the notation and write ¢(s):=¢(s,Xs,us) for a function
$:10,T] x R xU — R4, With the equation for DX; (defined in (2.5)) and the solution
Y; for the FBSDE system (2.6), we have

hoDXr = (Yr,DX1)— (Y0,DX0)
T
:/0 <<7bT(S)TYS7UI(S)TZg7fz(S)T,DX§>

+ (Ys, b2 (8) DX+ by () [us —ul]) +(Zs,0.(s)DXs + 00u(8)[us —u*}})ds

S

+f ((2.DX) + (Voo (DX 4 () =2 ) Y,
:/OT (<—fx(s)T,DXS>—|—<bI(s)YS—&—au(s)TZs,us —u:>)ds

+f ((2DX) + (Voo (DX 4 () —u2) ).

Therefore, (2.4) becomes

0<lim ) = I (W)

e—0 €

T
=E { / (fo(O)DX ;s + fu(t)[ur —u* (t)]) dt + thDXT}
0

:E{/OT(<bZ(t)Y;+au(t)TZt+fu(t)T,ut—u?))dt},

which leads to the representation for the differential expression of J with respect to u,
i.e.

W)l =E[b] (Y +0u(t) Ze+ £u(0) ] (2.8)
for the time instant t.

Based on the above discussions and the differential J’ provided in (2.8), in what
follows we shall introduce a gradient projection method to determine w*.

2.2 Gradient projection method for Optimal control

The main theme of our approach in this work is to solve the optimal control problem
through an optimization procedure that targets on the minimization task (2.3), and the
gradient of the cost functional is derived by the maximum principle which is described
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in (2.8). There are many successful optimization methods to achieve the minimization
(2.3), such like Newton’s method, sequential quadratic programming, gradient descent
method and its variations, etc. The framework of our optimization procedure in this
work adopts the gradient projection method introduced in [22, 25], which will be dis-
cussed in the following. We want to point out that the gradient projection method
can be considered as a generalization of gradient descent methods for optimization and
therefore the stochastic gradient descent concept that we propose in this work can be
generally implemented for any gradient based methods with appropriate formulation of
the differential expression J' in (2.8).
For the stochastic optimal control problem (2.1) - (2.3), we observe that

(J'(u*),u—u*) >0, uel,

where u* is the optimal control in (2.3). Let r be any given positive constant, the above
variational inequality can be rewritten as

(' — (v —rJ'(u")),u—u*) >0, wel, (2.9)
In addition, we define a projection operator P(-) to U as

1P (w) = wl = min fju —wl], (2.10)

which leads to
(P(w)—w,u—P(w)) >0, Yuel.

If we choose w=u*—rJ'(u*), the above inequality becomes
(P(u*—rJ' (u*)) = (u* —rJ' (u")),u—P(u*—rJ'(u*))) >0, Vuel. (2.11)

By comparing (2.9) with (2.11) and due to the fact of convex optimization, we can see
that the optimal control u* satifsfies

u*=P(u*—rJ (u")),

which indicates that u* is the fixed point of the expression P(u—rJ'(u)). Therefore,
the optimal control u* can be determined through fixed point iteration. Specifically, we
choose an initial guess, denoted by u°, for the control process u. Assume that we have
an estimate u® for u* at the iteration step ¢, then the estimated optimal control u**! is
calculated by

u'tt =Put —rJ (u)). (2.12)

The convergence of the above iteration is guaranteed by the well-posedness of the control
problem and we refer to [25] for the proof. In this work, we use the differential expression
J' derived in (2.8) to carry out the fixed point iteration. However, there are two specific
challenges to implement (2.8). First of all, the expression of J' is an expectation and
effective evaluation for the expected value is needed. Secondly, the solution of BSDE; i.e.
Y and Z in (2.8), is usually not explicitly solvable, and we need approximate solutions
for BSDEs. Therefore, it is necessary to derive effective numerical methods to address
both challenges mentioned above. In what follows, we shall introduce our numerical
schemes to implement the iteration (2.12).
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3 Numerical Optimization for Stochastic Optimal
Control

From the formulation of the gradient projection method for the stochastic optimal
control problem, we can see that the primary computational challenge is the calculation
of J’, which is derived in Section 2.1. In this work, we use the expression described in
(2.8) to calculate J’, which contains solutions of the FBSDE system (2.6). Therefore,
the structure of our computational framework is composed by two steps: (i) numerical
solution for FBSDEs and (ii) numerical implementation of gradient projection iteration
(2.12). The numerical solution that we derive for the FBSDE system (2.6) will be
used to construct the gradient .J/, which will be applied to the iteration of the gradient
projection. The main contribution of this work is to introduce a stochastic gradient
descent algorithm to replace the deterministic implementation of the aforementioned
gradient projection optimization. To proceed, we first introduce a temporal partition
IIy defined by
HN:{tn,O:t0<t1 <1f2<"'<t]\[=T}7

where N is a positive integer represents the number of partition points in time and T is
the terminal time in the control problem. For convenience of presentation, we assume

that Iy is a uniform partition with At= %

The goal of our numerical approach is to obtain a discrete approximation for the
optimal control u* as a sequence in time, and we aim to find an approximation for the

piece-wise constant representation of u*. Specifically, we define u™" as

w N| —u*
t tE[tntny1) Ly

and our efforts focus on finding a sequence that approaches u**. In this way, the space
in which we explore the optimal control becomes Uy, where

N
Uy i={ueUlu=" anlj, 1,.).0n R},
n=1

and the original optimal control problem becomes its approximate version

J(u*N) :uiergN J(u). (3.13)

As a result, the projection operator that we defined in (2.10) takes projection to Uy
and we denoted this operator by Py(-). Through similar derivation, we get

utN =P —rJ (ut)),
which leads the gradient projection iteration (2.12) to its discrete counterpart
u TN = Py (N = (ub ), (3.14)
where J) is a discrete approximation for J’. The following theorem shows the first
order convergence of the above iteration procedure.

Theorem 3.1 Assume that J' is Lipschitz continuous (with Lipschitz constant C') and
uniformly monotone (with the rate of change c) around u* and u*", Jj approaches
J' as N— o0, and p is a properly selected constant such that 0<1—2cr+(1+2C)r? <
52, where 6 €(0,1). Then, the discretized approzimation u>YN obtained in the iteration
scheme (3.14) gives a first order approzimation for u*, i.e.

u* —uN || ~O(At).



Archibald, Bao, Yong 8

The proof of Theorem 3.1 can be found in [25] from Theorem 3.1 and Corollary 3.2.

With the above convergence theorem that justifies the temporal discretization of
the stochastic optimal control problem, we shall discuss our numerical approach under
the discretization Il in this section. Since in many practical problems, it’s hard to
take effective control actions to influence the size of diffusion noise, we assume that the
diffusion coefficient o does not contain the control term, i.e. o(t)=0(t,X;) in the rest
of this paper.

3.1 Numerical solution for FBSDEs

For the temporal partition IIy, we consider the FBSDE system on time interval
[tn,tnt1], n=0,1,2,...,N —1, i.e.

tnt1 tnt1
th+1 =X, +/ b(stsvus)ds""/ U(SaXS)dWS7
t t

n n

tni1
Y, =Y., —|—/ (bw(s,Xs,us)TY; +0.(5,X,) Z4 —l—fl.(s,Xs,us)T)ds (3.15)

n

tnt1
7/ ZgdWs.
t

n

In order to derive approximation schemes for solutions of the FBSDE system, we first
provide numerical integration methods to approximate the integrals in (3.15).

For the forward SDE, we use Euler scheme to approximate the deterministic integral
and the so-called Fuler-Maruyama scheme to approximate the stochastic Itd integral.
As a result, we have the following approximation equation for the solution Xj:

Xt :th—’-b(tn,th,utn)At+U(tn,th)AWn+R7)1(, (316)

n+1

where AW,, :=W;
tions such that

— W, , and R% is the approximation error of numerical integra-

n+1

tni1 tnt1
R :/ b(s,Xs,us)ds—b(tn,th,utn)At+/ 0 (5, X)W, — 0 (bn, X0, ) AW,
t t

n n

For the BSDE, due to the discrepancy between the integration direction of the It
integral (forward) and the propagation direction of the solution pair (Y, Z) (backward),
the Euler-Maruyama scheme for the It6 integral typically results the implicity of the
algorithm in solving Z, which requires additional iterations in the scheme. In our
approach, we take conditional expectation E,[-], which is defined by

En[]:=E[|F,],

on both sides of the BSDE. Then, it follows from the identity

tn+t1
t

n

that the BSDE in (3.15) becomes

tni1
Vi =Ealle ) [ Bl Xt Yook 005, X0)T 2ot s X s,
t

n
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where we have also used the fact that Y; is F; adapted, which results E,[Y;, |=Y;, . Since
the propagation direction of Y and Z is from ¢, to t,, we use the right point formula
to approximate the deterministic integral on the right hand side of the above equation.
It’s worthy to mention that both the right-point formula and left-point formula enjoy
the same level of accuracy for the deterministic integral. In this way, the above equation
can be written as the following approximation equation

Y;n :En [Y;5n+1] +En [bw (tn+1’th+1 ’utn+1)TY;n+1
(3.17)
+ 0y (tn+1 7th+1 )TZtn+1 + fm (tn+17th+1 y Uty 11 )T} At+ Rg7

where Ry is the approximation error for the numerical integration with

tnt1
R’r}l’ :/ E, |:b:v(s>stus)TY8+UI(S7XS)TZS+fx(s>stus)T:|dS
t

n

- En {bz(tn+lath+1 7utn+1 )TY;an +0m(tn+1’th+1)TZtn+1 +f1(tn+1vth+1 s Uty 11 )T] At.

In order to get a numerical scheme for Z, we reconsider the BSDE in (3.15) and
multiply AW, to both sides of the equation to get

tn+t1
Y AW, =Y, AW, + / (bals. X)) Vit (5.X) 2,
t

n

tni1
—i—fw(s,Xs,us)TAWn)ds—/ Z AW, dW,.
tn
Then, we take conditional expectation E,[-] on both sides of the above equation. Since
Y:, is independent from AW,,, we have E,,[Y;, AW, ] =0, and it follows from It6 isometry
that

tn+1
0=E,[Y;,  AW,] +/ E, [bz(S,XS,uS)TYS —|—JI(S,XS)TZS
t

n

tn41
—I—fg;(s,Xs,uS)TAWn}ds—/ E,|Z]ds.
tn
Approximating the deterministic integrals with the left point formula, the above equa-
tion becomes

0=En[Ye, ., AWy ]+ By [ba(tn, X, 01,) Ve, + 02t Xe,) 22

n41

n

(3.18)
 Foltns X, u,) T AW, | At =B, (20, 1AL+ Ry,

where R7, is the approximation error. Since X , Y:
En[Ztn] :Zt" and

Z,, are F;, adapted, we have

n?

B b (b X 10,) Ve, + 0 (s X0, ) T 21, 4+ b X0, ) T AW | A =0,

Therefore, the approximation error R7 can be written by

tnt1
Rg:/ By [t (5, X, u0) Yo+ 025, X0) T Zot Fols, Xovus) T AW, | ds
t

n

tnt1
B2 Al — / En[Z.ds,
t

n
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and we derive the approximation equation for Z from equation (3.18) as following
7y, At=E, Yy, ,, AW, + R} (3.19)

By dropping the error terms R%, R} and R7 in approximation equations (3.16),
(3.17) and (3.19) respectively, we obtain numerical schemes for the solution triple
(X,Y,Z) for a given control process u;. Specifically, for the time instant ¢, with the
inverse order n=N —1,N—2,...,1,0 and the given variables X,,, Y,4+1 and Z, 41, we
define approximate solutions (X, 41,Y,,2Z,) for (Xy,,,,Ys,,Z;,) as following

Xn+1 :Xn +b(tnaXnautn)At+a(tnaXn)AW”

Yn :En [YnJrl] +En bx (tn+17Xn+17utn+1)TYn+l

3.20
+Uz(tn+1,Xn+1)TZn+1 +fr(tn+1aXn+1autn+1)T At ( )

1

Zp=—
At

E,[Y 1 AW,].

It’s worthy to mention that the propagation direction of X is from 0 to T and the
propagation direction of Y, Z is from T to 0. Therefore, our numerical solution X, 11 is
at the time instant t¢,,41 and the numerical solutions Y,, and Z,, are at the time instant
tn,. Given the initial condition Yy =Yr and Zy=Zr, where Zr is derived through
(2.7), the above schemes solve the FBSDE system (2.6) as a recursive algorithm, and
the convergence of the schemes is well studied (see [36, 32]).

We also observe that to implement the numerical schemes (3.20), we need to obtain
X, in addition to Y;,+1 and Z, 11, which can be calculated directly from the schemes. A
straight forward option to obtain X, is to simulate random trajectories of X; from time
0 to t, and use the samples at t, to represent X, . However, since X; is a diffusion
process, it’s very expensive to calculate an accurate representation for X, through
path-wise simulations. In [35], the authors use a pre-determined grid mesh to represent
X, which successfully describes the solutions Y and Z as functions of X. On the other
hand, although the grid mesh description of X,, avoids long-term simulations for X,
it suffers the so-called “curse of dimensionality”. It is well-known that the size of grid
mesh needs to grow exponentially as the dimension increases.

We want to point out that the above numerical schemes (3.20) provide semi-
discretization in time. To derive a full-discretization scheme, we need to handle an-
other challenge in the implementation of the schemes (3.20) — the approximation of
conditional expectation. This would influence the accuracy of the algorithm since the
numerical approximations for Y and Z are essentially under the conditional expectation
FE,,. The most widely accepted method to approximate the mathematical expectation is
Monte Carlo type methods — although numerical integration methods are also successful
alternatives [33], they typically work well only in low dimensional spaces. The central
concept of Monte Carlo method is to use the mean values of empirical samples to approx-
imate expectations. In our applications, we calculate the mean value of X,, 1 samples
(given X,,) to approximate the conditional expectation E,, in the schemes for Y and Z.
Specifically, for any given initial state X,, = and a function ¢(X,+1,Yn+1,Zns1), We
approximate the conditional expectation E,[¢] by

M vML,T N M,T ML T
- P(Xni1 Yol Znd)
En[¢(Xn+17Yn+1vzn+1)]: Z et ]\2+1 ntl )

m=1
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where
X;nfl =z + b, up, )AL+ 0 (ty, ) VAL E™

is the m-th path of X, 1, ™ ~N(0,1) is a Gaussian random sample. We define

Ynﬁf =Yt (X:znﬁ) Z:Lnﬁ Zn+ (X:Ln+a£)

where Y/n-‘,-l and Zn+1 are interpolatory approximations for Y;,;1 and Z,,1 over the R?
space. Since Yj, 41 and Z, 1 are calculated on a pre-determined set of spatial points,
denoted by IIx, Yn+1(X;n+?) and Zm_l(an{) are obtained by interpolating functions
Y,+1 and Z, 11 with their values on IIx.

With the above approximation scheme for conditional expectation and appropri-
ate interpolatory approximation methods, we derive the full-discretization schemes for
solving stochastic optimal control related FBSDE system as following:

X™T =X, +b

na1 tn,xyue, )AL+ 0 (ty,2) VAL E™

—~

M <rm,x M, T 71, T
ntl | Z ba (tng1, X1 Ut ) Yot At
m=1 M m=1 M
M Um(tn+1,X::i€)TZ:;L_ﬁA M fw(tn-i-le::fi-al:vuthrJTA (321)
+ Z M t+ Z M t

m=1

g3
l

B 1 Y»:L ‘L\/i fm
Zn(x):At Z +1 9

where n=N—1,N—2,...,1,0, and z € R? is selected from a pre-determined grid mesh
denoted by ITx. With the above computable schemes (3.21), we can calculate J’ by
using the expression (2.8) and use gradient projection iteration (3.14) to determine an
optimal control u*.

3.2 Optimization through fully calculated gradient descent it-
eration

In this subsection, we discuss numerical optimization of the gradient projection approach
for stochastic optimal control problems. To proceed, we recall the gradient projection
iteration as introduced in (3.14)

ui+1,N :PN(ui,N 77”lev(ui’N)),

where N is the number of temporal partition points in partition ITy and Jj; (introduced
n (2.8)) at time instant ¢, is given by

I (We, = Eby (t0)Ye, +0u(tn) " Ze, + fu(tn) "],

where Y; and Z; are solutions of FBSDE system (2.6). Combining the above equations,
for a given initial guess for the control process u>" and a chosen projection operator
Py, the optimization procedure to determine u* is

N = Py (N = B[] ()Y, +0u(tn) T Zy + fultn)T]

uN) i=0,1,2,- (3.22)

where the expectation E[-],:~ indicates that the random variables in the expectation
are derived under the control term u»". In order to implement the above optimization
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procedure numerically, we can use Y,, Z, calculated in (3.21) as approximations for
Y:., Z, and have the approximate optimization procedure as

wtN — py (ui’N —rE[b] (ta) Vo +0u(tn) T Zn+ fultn)T]

uN) i=0,1,2,- (3.23)

Notice that there’s another expectation in (3.23), so we need to apply another Monte
Carlo approximation to simulate E[-] uin » he. for each iteration step ¢, the above
scheme becomes

Q
ui+1vN:PN( %Z (b (t2) Y +0u(tn) T Z9 4 fu(tn) )u,-,N), (3.24)

where @ is the number Monte Carlo samples to approximate E[-] wiN f’r‘j and Zﬂl are

defined by

ﬁ?:?n(f(g), ZZ:Zn(XZ>7 (3.25)

and XSL is the ¢-th realization of the path-wise simulation of the SDE with the Euler-
Maruyama scheme from time t=0 to time t=t,. It’s worthy to recall that Yq, Z;IL
are obtained by using interpolatory approximation with values of Y,, Z, on llx as
introduced in (3.21). Also, numerical approximations Y, and Z, are based on the
current estimation of the optimal control, i.e. u»"V, and at each iteration step we need
to calculate Y,, and Z,, to update the new ebtlmate for u in the schemes. Although the
Monte Carlo simulation for E[-],:~ does not require extra approximations for Y and Z
(with only interpolation cost at the time instant ¢,), there’s significant computational

effort to calculate Y and Z

Before we move forward to stochastic gradient descent, in the rest of this subsection
we shall have a brief discussion on the computational cost of the numerical implemen-
tation of the iteration scheme (3.24) for solving the stochastic optimal control problem.

We can see from the fully discretized schemes (3.21) that for each pre-selected spa-
tial point X,, =z and a given random sample {™, an important computational cost is
the interpolatory approximation for Y and Z, i.e. to obtain f’ﬁf and Z" /1. Besides
interpolation, another component of computational cost in the scheme (3.21) is to sim-
ulate {X7 m }M_, and calculate the corresponding functions, which is relatively small
compare to interpolation. If we let the number of spatial points at time level n be
L, the primary computational cost to implement the numerical schemes (3.21) can be
described by

C% 7~ (Cinterp. + Csampl.) X L x M (3.26)

where M is the number of Monte Carlo samples to approximate the conditional ex-
pectation E,, C%, is the rough computational cost for solving Y, and Z, at certain
time level n, Cinterp. denotes the computational cost of interpolatory approximation
to obtain Y +f and Zn 71, and Csgmp. denotes the computational cost for sampling
one realization of Xn ' 1 together with evaluating functions corresponding to the sample
Xn ' 1 in the schemes. Here, we have ignored marginal computational costs such like
simple summation and multiplication in (3.21).

In addition to solving the FBSDE system with the total cost of 27]:7:_01 %, (calcu-
lating from time g to tn_1), since the representation for J' with Y and Z is also under
expectation, the calculation of Jj ()|, requires another Monte Carlo sampling for the
forward SDE X; from time 0 to t,, as we described in (3.24). As a result, the total cost
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of maximum principle based gradient projection approach for stochastic optimal control
problems with the above classic numerical implementation is

N-1 N-1
total cost%K( Z Cy 5+ Z QCT},)7 (3.27)
n=0 n=0

where K is the number of iteration to determine u* in the projection gradient descent,
and C7, is the cost of generating one realization of X; sample, i.e. X4 in (3.25), together
with the cost of interpolation for ¥4 and Z¢ in (3.24). Similar to the argument in (3.26),
we have ignored marginal computational costs in (3.27).

From the above discussion for the computational cost, we can see that the pricey term

in (3.27) is the accurate approximation for solutions of FBSDEs, i.e. K(Zg;ol C{ﬁz).

At every time level ¢,,, the computational cost C5:, involves interpolation and function
evaluations and the number of calculations depends on both the number of Monte
Carlo samples, i.e. M, and the number of spatial points, i.e. L,, on which we evaluate
solutions Y and Z. Especially, when the dimension of the problem increases, the number
of spatial points typically increases exponentially, which results significant growth of
the computational cost. In what follows, we introduce our methodology of applying
stochastic gradient descent for solving the stochastic optimal control problem under the
maximum principle framework.

3.3 Stochastic gradient descent for stochastic optimal control

In this subsection, we first give a brief discussion on the classic application of stochastic
gradient descent (SGD) for optimization problems. Then, we shall discuss how we apply
SGD to solve the optimal control problem through gradient projection.

Consider the following optimization problem

X .

F(v )_%BE[F(UI)L (3.28)
where v is the optimization parameter with the optimum v* selected from the set V),
F' is the objective function governed by the parameter v and I' is a random variable
with a given distribution. The standard gradient descent method takes gradient of the
objective function as a direction to improve the estimation for the target parameter
through iteration, i.e.

v =y E[VF(0,T)], i=0,1,2,---, (3.29)

where v° is the initial guess for v* and r is the step-size (sometimes called the learning
rate). Under certain restrictions and assumptions, the above gradient descent iteration
for v* converges to the optimal parameter v*. In practice, the expectation in (3.28)
is usually approximated by Monte Carlo methods, i.e. for a given sample size M, the
iteration scheme (3.29) becomes

M
; ; VE(0,Ym .
v”l:v’—rzm:l M(v’y )7 1=0,1,2,---, (3.30)

where 7, is a sample of the random variable I'. One challenge in the above gradient
descent (3.30) is that repeating sampling the random variable " in VF requires M times
calculation of VF to get one update for the estimation of v*. When the calculation for
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VF is time comsuming, the optimization procedure (3.30) is computationally expensive.
The main theme of stochastic gradient descent is that, in stead of carrying out com-
plete evaluation for the expectation in the optimization problem (3.28), we can use one
realization of sample in I' to be a rough approximation for the expectation. Although
the expectation is not well approximated, it only requires one-time calculation for VF',
compared to M times calculation for VF in (3.30), to get an updated estimate v**!.
Specifically, in the stochastic gradient descent method, the gradient iteration is given
by

VTl =0 —rVF(v,y),  i=0,1,2,---. (3.31)

It’s worthy to mention that the low accuracy of the single-sample approximation for
expectation results more iteration steps to achieve an accurate estimate for the target
parameter v*. However, practical applications of stochastic gradient descent indicate
that it’s a more efficient approach to solve the optimization problem — especially when
the objective function F' is a complicated high dimensional model [].

From the above discussion, we can see that the main contribution of stochastic gra-
dient descent is to transfer the expensive computational cost in estimating expectation
to more iteration steps in the gradient descent optimization. Analysis for the efficiency
and effectiveness of the stochastic gradient descent are extensively studied due to its
successful applications in machine learning [27, 31].

In this work we adopt the methodology of stochastic gradient descent as presented in
(3.31) to solve the stochastic optimal control problem. By comparing the optimization
procedure (3.22) with (3.29), we can see that the expectation term in (3.22) is an alter-
native expression for J},, which plays the role of E[VF(v,T')] in (3.29), and (3.24) is an
analogue of (3.30) with Monte Carlo approximation for expectation. Then, adopting the
structure of stochastic gradient descent introduced in (3.31) in the gradient projection
optimization as described by (3.22), we obtain the following stochastic gradient descent
scheme

WY = Py (N = 0] (6] + 0u(tn) T 2L+ Fulta) "]

UN) i=0,1,2,- (3.32)

where Y/ and Z; are i-th samples of solutions Y; and Z;, , and [b] (t,)Y} +
oy (tn)TZtin + fu(tn)T] Lin can be considered as a single-sample approximation for the
expectation expression of the gradient Jj (u""V). From the above iteration scheme and
the discussion on the computational cost of gradient descent approach for solving the
stochastic optimal control problem, we can see that the primary computational cost
in (3.32) is to generate samples Y, and Z; . Apparently, obtaining accurate approx-
imations for Y;, and Z;, through (3.21) and then generating samples Y, and an
requires extensive computation with cost C§, as we discussed in (3.26). From the
semi-discretization scheme (3.20), we notice that the semi-discretization schemes for
Y:, and Z;, also involve expectations, i.e. E,[-]. Since we are using a single-sample to
represent Y; and Z; in (3.32), we pass the “single-sample approximation for expecta-
tion” concept in the stochastic gradient descent to the numerical solution for FBSDEs.
Although this would cause low-accuracy in approximating solutions of FBSDEs, since
we are using solutions of FBSDEs to represent the gradient of J' as indicated in (3.22),
the solutions Y and Z essentially play the role of gradient that is under expectation. In
this way, the single-sample approximation for expectation is applicable for representing
solutions of FBSDEs in the stochastic gradient descent method.

More specifically, we let M =1 in the full-discretized scheme (3.21) and use an, }7;1

and Zt’n to denote the single-sample approximation for X, , Y and Z; respectively.
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With initial condition X§= Xy, we first sample the entire path of X}, i.e. {X; }3_, by

Xi  =X| A0t X, )At+o(ty, X] )WALE , n=0,1,-- . N—1,  (3.33)
where {; is a sample drew from a standard Gaussian distribution. Then, we derive f/tz
and Z} with initial condition Y. =Y7(X%) and Z% = Zr(X%) as following

Yti :Yti +bm(tn+17X§n+1’utn+1)Tﬁz At,

n n+1 n+1
+ Oz (tn+la)2tin+1 )TZZ At + f;l; (tn+17XZn+1 7utn,+1 )TAt

tny1
Y 7
= Y &

(3.34)

7

tn = \/E

Recall that b, f,] are functions of ¢, X; and wu;, and o, is a function of ¢ and X;, we
now have the following computable version of scheme (3.32) to solve for the optimal
control u*

u LN = py (u’N —r[bI(tht"’n,ui’N)ﬁi +aj(tn,f(§n)2g{” —I—fJ(tm)N(f”,ui’N)]),
(3.35)
where X,f, YQ’ and th are sample-wise approximation obtained in schemes (3.33)-
(3.34).

The schemes (3.33)-(3.34) and (3.35) compose the computational framework of our
stochastic gradient descent approach for solving the stochastic optimal control problem,
and we can tell that the schemes (3.33)-(3.34) carry out the computational task of
“Numerical solution for FBSDEs” as discussed in Section 3.1 and the scheme (3.35)
carries out the computational task of “Optimization through gradient based iteration”
as discussed in Section 3.2. It’s important to point out that the numerical schemes
(3.33)-(3.34) for solving the FBSDEs is essentially different from the fully discretized
schemes (3.21) and we avoid computational cost in both Monte Carlo approximation
for the conditional expectation E,[-] and spatial dimension approximation for Y;, and
Zy, on all the spatial points, i.e. Ilx, that we use to describe X; . As a result,
the computational effort for implementing the numerical simulation for obtaining Ytln
and Ztin only cousists the cost of generating samples governed by the schemes (3.33)-
(3.34), multiplied by the total number of optimization iterations K. In this way, the
computational cost Csgp of our stochastic gradient descent approach can be simply
described by

Csap =~ KChpath, (3.36)

where K is the total number of iterations required in (3.35) and Cpqep is the cost of

generating one realization of )N(tin, f/tzn and Ztin from tg to T through schemes (3.33)-
(3.34).

4 Numerical experiments

In this section, we present three numerical experiments to demonstrate the performance
of our stochastic gradient descent approach for solving the stochastic optimal control
problem — we denote it “SGD-SOC” for convenience of presentation in this section. In
the first example, we solve a classic 1-dimensional stochastic optimal control problem
and compare effectiveness and efficiency of our approach with the gradient projection
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method as a benchmark method for deterministic gradient descent approach. Then, in
Example, 2 we solve a 3-dimensional stochastic optimal control problem, which would
challenge most existing grid-based methods due to the exponential increase of spatial
grid points. In Example 3, we are going to present the performance of our SGD-SOC
in solving a feedback control problem which we have full information on the state of
controlled process.

Example 1
In this example, we consider the following controlled process
dX; =u Xpdt+0 X dWy, Xog=1xg ER2,

where both the drift and diffusion terms are linear functions of X;, and o in the diffusion
coefficient is a constant. The cost functional is given by

T T
J(u):0.5/ E[(Xt—Xt*)Q]dt—l—O.E)/ uidt.
0 0

From [22], we know that if we let X} in the cost functional be

ot 2
—(T—t
K::M+L
; 1-Tt+ %

the control uy for the above stochastic optimal control problem has the following explicit
expression

T-t
1 t2

*_
Uy =

(4.37)

In our numerical experiments, we choose T'=1 and discretize the time interval [0,1]
with 20 time steps, i.e. N =20 and At=0.05. We also let zg=—0.8 and 0 =0.01 in the
controlled process. For the SGD-SOC, the learning rate in the gradient optimization is
set to be r=10"3 so that our stochastic optimization procedure would have more stable
performance. In figure 1, we compare the SGD-SOC estimate v} with the estimated
optimal control obtained by using the standard gradient descent under the gradient pro-
jection framework introduced in [25]. The red curve marked by crosses is the analytic
optimal control u} given by (4.37); the black curve marked by crosses is the estimated
optimal control obtained by the gradient projection method with deterministic opti-
mization procedure; and the blue curve marked by circles gives the estimated optimal
control obtained by using SGD-SOC. We can see from the figure that both gradient
projection method and SGD-SOC work well and their estimates are very close to the
true optimal control. In what follows, we give a brief discussion on the computational
cost of implementing the optimization procedure.

When solving the FBSDEs (2.6) with conventional methods (on full spatial grid
mesh), we use 50 spatial points to describe the state of controlled process X  in this
experiment, i.e. L, =50. To simulate expectations F,, and E, we take 1000 samples in
Monte Carlo approximation, i.e. M =@ =1000, and the total number of iteration we
use is K =1000. On the other hand, we use the total number of K =2 x 107 iterations
in the SGD-SOC to obtain the result as presented in the figure. From the cost estimate
(3.27), we know that the computational cost through deterministic gradient descent
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Figure 1: Example 1. Comparison

type approach is approximately

N-1 N-1
total cost %K( Z Cy,+ Z QC})
n=0 n=0
N—-1 N-1
~KM Z (Cinterp. +Csampl.) X Ln +KQ Z CT]L' (438)
n=0 n=0
N-1 N-1
=5%10"x > (Cinterp. + Coampt.) +10° Y C%,
n=0 n=0

given that K =1000, M = =1000, L,, =50 as we choose in this numerical experiment,
and the first part of the above cost analysis is the total cost of solving FBSDEs numeri-
cally. However, the total computational cost of the SGD-SOC is roughly 2 x 107 x Cpatn,
where Cpq+p, is the cost of path-wise simulation of single-sample solutions as we intro-
duced in (3.36). Since the cost of sampling and evaluating an entire stochastic process,
i.e. Cpath, is similar to summing the cost of one temporal step sampling Csgmpi. ( de-
fined in (3.26) ), i.e. Zﬁ:ol Csampl., the computational cost of SGD-SOC is close to

2x 107 x (Zg:_ol Cisampi.), which is only a portion of the computational cost of solving
FBSDEs numerically and is much lower than implementing the fully calculated deter-
ministic gradient descent approach with the total cost given by (4.38).

Example 2
In this example, we consider the following three dimensional controlled process

dXt:(Utlfrt)dt+O'th, Xoiﬁl‘o GR?” (439)

where 1=(1,1,1)7, u; is a scaler control process, r; is a given process in R® chosen
as ry= (%,%,%)T, and o is an identity matrix o:=1I3. The cost function in the control
problem is defined by

J(u):O.S[/OTclE[(Xt—Xt*)Q]dt+c2/0Tufdt}, (4.40)
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where we choose ¢; =(3,1,2) and co=1. If we let

dpy t? t? t2 7 1 T
XF=F[X —=3Tt——=,3Tt— —,3Tt— — ——,0,1
t [t]+dt ( 27 27 2) +( 273)7
one can derive that ;
*: T_f
u; =3 37

is the analytic optimal control for the above stochastic optimal control problem (4.39)-
(4.40). Since this is a 3-dimensional control problem, the number of spatial points needed
to describe X; increases exponentially, which would significant increase the computa-
tional cost of fully calculated deterministic gradient descent approach as we discussed
in (4.38). Therefore, the deterministic gradient descent type optimization is prohibitive
in this example and we only demonstrate the performance of our SGD-SOC approach.

A —A— SGD estimate with 2° iterations & —#4— SGD estimate with 2° iterations
—%— True optimal control \ —— True optimal control

0.8

0.6

Control (u|)

0.4

0.2

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Time Time

(a) Estimation with 10 iterations  (b) Estimation with 108 iterations

v —# SGD estimate with 27 iterations
P —%— True optimal control

= 06
E)

Control (i

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Time Time

(c) Estimation with 107 iterations  (d) Estimation with 10% iterations

Figure 2: Example 2. Performance of estimation for control with 2°, 26, 27 and 2%
iteration steps in the optimization procedure.

In the numerical experiments, we let T'=1 and discretize the time interval [0,1] with
20 partition points, i.e. At=0.05. In Figure 2, we demonstrate the performance of
SGD-SOC estimation for the optimal control u; with different iteration steps in the
stochastic gradient descent procedure (3.35), i.e. K =10°,105,107,108. Specifically, in
Figures 2 (a), we plot the estimation performance with 10° iterations, where the red
curve marked by crosses is the real optimal control and the black curve marked by
triangles is the estimate of SGD-SOC; in Figures 2 (b), the red curve marked by crosses
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is the real optimal control and the magenta curve marked by triangles is the estimate
of SGD-SOC with 10° iterations; in Figures 2 (c), the red curve marked by crosses
is the real optimal control and the green curve marked by triangles is the estimate of
SGD-SOC with 107 iterations; and in Figures 2 (d), the red curve marked by crosses
is the real optimal control and the blue curve marked by triangles is the estimate of
SGD-SOC with 10® iterations. From these subplots, we can see that the accuracy of
SGD-SOC estimation improves as the number of iteration increases and both the 107-
iteration estimate and 10%-iteration estimate are very close to the true optimal control

\\
12 \‘ —&— Errors for control estimation
<

~

Estimation errors (log)

5 55 6 6.5 7 7.5 8
Number of iteration (log)

Figure 3: Example 2. Convergence of errors.

To further demonstrate the convergence of accuracy with increasing iteration steps,
we calculate the approximation errors and present the overall errors with respect to the
number of iterations in Figure 3. The x-axis in the figure shows the number of iterations
(log(K)) and the y-axis is the overall logarithmic estimate error for u; under Ly norm.
From this figure, we can see a clear convergence trend with more iteration steps.

Example 3

In this example, we aim to examine the performance of SGD-SOC in solving a feedback
control problem. Consider the following controlled process

dXt:A(t)Xtdt+BUtdt+Oth, X():IL‘(),

where A(t) is a given function, B C are given constants and U; is the control process.
The cost functional J(U) is defined by

T
J(U) :E[o.s/o (<QU9)X. X > +R(s) <UL U, >? )ds +0.5M < X, Xp >,

where Q(t) is a function, and R, M are also given constants.

It is well known that the above linear-quadratic stochastic optimal control is a feed-
back control, in which the control U; depends on the state of the controlled process.
One can derive that the optimal control U; for the above stochastic optimal control

problem is
U=—R ()BT P(t) Xy, (4.41)
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where P(t) is the unique, symmetric, positive definite solution of the following Riccati
equation

dP(t)

= —P(t)A(t)— AT (t)P(t)+P(t)BR™*(t)BTP(t) - Q(t), P(T)=M.

For the 1-dimensional case, which we will solve in this example, the above equation

becomes

P%(t)B?
R(t)

Since the optimal control depends on the state of controlled process, the approxima-
tion for the control process needs to consider the spatial dimension in addition to the
temporal dimension. Therefore, in the feedback control problem that we solve in this
example, we approximate the optimal control on a time-space domain and the control
U; is described by a “control surface” — instead of a control trajectory as we presented
in the first two examples. In this way, the expectation in the stochastic maximum prin-
ciple, which requires Monte Carlo type simulations for X; from time 0 to ¢,,, is no longer
needed and the expression for J' (as defined in (2.8)) becomes

dP(t)=(—2P(t)A(t)+ —Q(t)dt, P(T)=M.

JJIV(u)|tn :bu(tmx7utn)Ytn (x)+0u<tnvx>zt7L <$)+fu(tmx’utn)’

where x € R is a given spatial point on which we estimate its corresponding control. As
a result, the simulation for X}n from time O to ¢, is not needed either in the SGD-SOC
approach since we can use a pre-selected “point of interest” x to replace )N(tin in schemes
(3.33)-(3.35). At the same time, the stochastic gradient descent approach is still nec-
essary since approximations for the conditional expectation F, when solving FBSDEs
can not be avoided and stochastic gradient descent could reduce computational effort by
using the single-sample §§n (introduced in (3.33)) to evaluate conditional expectations.

In the first case that we examine in this example, we let A(¢)=0.5, B=0.5, and
C'=0.1 in the controlled process with the initial state of the controlled process as Xy =
0.5. For the cost function, we let Q(t)=1, R=M =1. In the numerical experiment, we
let T=1 and discretize the time interval [0,1] with 10 steps, i.e. At=0.1. In Figure

Space
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0.4 15 02 04 0.6

15 0.2
0 Time 0 Time

(a) Estimate control surface (b) Real control surface

Figure 4: Example 3. Performance of estimation for control — case 1.

4 we compare our estimated optimal control (in subplot (a)) with the real optimal
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control surface Uy (in subplot (b)) over the time-space domain, where the axes represent
“time”, “space” and values of control actions. Since the feedback control framework
only requires estimation for the optimal control on pre-selected spatial points, long-
term simulations for the control process is not required. In this experiment, we choose
the number of iteration steps to be K =10°. From this figure, we can see that our
estimate control surface is very close to the real control as derived in (4.41).

In the second case that we examine in this example, we let A(t)=sin(¢), B=0.5,
and C'=0.01 in the controlled process with the initial state of the controlled process
as Xo=0.1. For the cost function, we let Q(t)=exp(—t), R=M =1. In Figure 5 we

Space 1 Space 1

08
04 15 02 04 08

0 ’ Time 0 Time

(a) Estimate control surface (b) Real control surface

Figure 5: Example 3. Performance of estimation for control — case 2.

compare our estimated optimal control (in subplot (a)) with the real control surface
U (in subplot (b)) over the time-space domain, where the axes also represent “time”,
“space” and values of control actions. In this experiment, we also choose the number of
iteration steps to be K =10°, and we can see from this figure that our estimate control
surface is very close to the real control as derived in (4.41).
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