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7 Forward Backward Doubly Stochastic Differential

Equations and the Optimal Filtering of Diffusion

Processes ∗

Feng Bao † Yanzhao Cao ‡ Xiaoying Han §

Abstract

The connection between forward backward doubly stochastic differential equa-

tions and the optimal filtering problem is established without using the Zakai’s

equation. The solutions of forward backward doubly stochastic differential equa-

tions are expressed in terms of conditional law of a partially observed Markov

diffusion process. It then follows that the adjoint time-inverse forward backward

doubly stochastic differential equations governs the evolution of the unnormalized

filtering density in the optimal filtering problem.

Keywords. Forward backward doubly stochastic differential equations, optimal
filtering problem, Feynman-Kac formula, Itô’s formula, adjoint stochastic processes.

1 Introduction

The goal of this work is to study the state of a noise-perturbed dynamical system, Ut,
given noisy observation on the dynamics, Vt. This suggests the optimal filtering problem
of determining the conditional probability of Ut, given an observed path {Vs : 0≤ s≤ t}.
The pioneer work of optimal filtering problems was considered by Kallianpur and
Striebel [13] and Zakai [23]. In particular, the Kallianpur-Striebel formula provides
a continuous time framework of the optimal filtering that considers the conditional
probability density function (PDF) of the state as the solution of a nonlinear stochastic
partial differential equation (SPDE); and the approach proposed by Zakai leads to a
linear stochastic integro-differential parabolic equation, referred to as the Zakai’s equa-
tion. Under strong regularity conditions it can be shown that the solution of the Zakai’s
equation represents an unnormalized conditional density of the state process. Funda-
mental research of the optimal filtering problem was also conducted by Kalman and
Bucy [5, 15], Kushner and Pardoux [16, 18], Shiryaev [21] and Stratonovich [22], among
other extensive studies on discrete nonlinear filter solver (see [6, 7, 9, 10, 11]).

The advantage of solving the optimal filter problems with SPDEs such as the Zakai
equation is that it provides the “exact” solution for the conditional density of Ut given
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{Vs}0≤s≤t. However, it has not been considered as an efficient method by the science
and engineering community because of its slow convergence and high complexity. In-
stead of dealing with SPDEs, the unnormalized density function can also be studied
through a system of stochastic (ordinary) differential equations (SDEs). Such a system
consists of two SDEs, one standard SDE and one backward doubly stochastic differ-
ential equation (BDSDE), and is referred to as a system of forward backward doubly
stochastic differential equations (FBDSDEs). The FBDSDE system was first studied
by Pardoux and Peng in [20], where the equivalence between FBDSDEs and certain
parabolic type SPDEs was established. Our recent work [1, 2, 3, 4] indicates that solv-
ing optimal filtering problems with FBDSDE systems can be far less costly than that
with SPDEs and more accurate than both SPDEs and discrete filter methods such as
particle filter methods.

In this paper, we establish a direct link between the optimal filtering problem and
a FBDSDE system. First we provide a FBDSDE version of Feynman-Kac formula
for the optimal filter problem and obtain the adjoint of this system. To the best of
our knowledge, similar results have been obtained before. As a consequence, we show
this adjoint, which is a a time-inverse FBDSDE system, provides a solution for the
unnormalized condition density of the optimal filter problem.

The rest of this paper is organized as follows. In Section 2 we present the math-
ematical formulation of the optimal filtering problem and provide a brief introduction
of FBDSDEs. In Section 3 we establish the connection between the FBDSDEs and
the unnormalized conditional density function. Some closing remarks will be given in
Section 4.

2 Preliminaries

In this section, we present the mathematical formulation of the optimal filtering problem
and provide a brief introduction of FBDSDEs.

Let (Ω,F ,P) be a probability space, and let T > 0 be fixed throughout the paper. Let
{Wt}0≤t≤T and {Bt}0≤t≤T be two mutually independent standard Brownian motions
defined on (Ω,F ,P), with values in R

d and R
l, respectively. Denote by N the class of

P-null sets of F . For each t∈ [0,T ] and any process ηt, let

Fη
s,t :=σ{ηr−ηs : s≤ r≤ t}∨N

be the σ-field generated by {ηr−ηs}s≤r≤t and write Fη
t =Fη

0,t.

2.1 The optimal filtering problem

Consider the following stochastic differential system on the probability space (Ω,F ,P)

{
dUt=bt(Ut)dt+ρtdWt+ ρ̃tdBt,

dVt=h(Ut)dt+dBt,
(2.1)

where {Ut∈R
d : t≥ 0} is the “state process” that describes the state of a dynamical

system and {Vt∈R
l : t≥ 0} is the “measurement process” which is the noise perturbed

observations of the state Ut. Given an initial state U0 with probability distribution p0(u)
independent of Wt and Bt, the goal of the optimal filtering problem is to obtain the



Bao, Cao & Han 3

best estimate of φ(Ut) as the conditional expectation with respect to the measurement
{Vr}0≤s≤t, where φ is a given test function.

Denote by FV
t :=σ{Vr : 0≤ r≤ t} the σ-field generated by the measurement process

from time 0 to t and denote by Mt the space of all FV
t -measurable and square inte-

grable random variables at time t. The optimal filtering problem can be formulated
mathematically as to find the conditional expectation

E
[
φ(Ut)

∣
∣FV

t

]
=inf

{

E[|φ(Ut)−ψt|
2
] :ψt∈Mt

}

.

According to [12, 14], the optimal filter is given by

E
[
φ(Ut)

∣
∣FV

t

]
=

∫

Rd

φ(u)ptdu
∫

Rd

ptdu

, (2.2)

where pt is the unnormalized filtering density. (2.2) is the well known Kallianpur–
Striebel formula.

Define

Qs
t := exp

{∫ t

s

h(Ur)dUr−
1

2

∫ t

s

|h(Ur)|
2dr

}

.

When s=0 we denote Q0
t as Qt in short. Let P̃ be the probability measure induced on

the space (Ω,F) such that
dP

dP̃

∣
∣
∣
∣
FV

t

=Qt. (2.3)

Then according to the Cameron-Martin theorem the probability measures P and P̃ are
equivalent when the Novikov condition is satisfied [8]. Moreover, it is straightforward
to verify that (see [17], Lemma 8.6.2)

E
[
φ(Ut)

∣
∣FV

t

]
=

Ẽ
[
φ(Ut)Qt

∣
∣FV

t

]

Ẽ
[
Qt

∣
∣FV

t

] . (2.4)

where Ẽ denotes the expectation with respect to P̃.

2.2 Forward backward doubly stochastic differential equations

For each t∈ [0,T ], define
Ft :=FW

t ∨FB
t,T .

Then the collection {Ft : t∈ [0,T ]} is neither increasing nor decreasing, and thus does
not constitute a filtration [20]. For any positive integer n∈N, denote by M2(0,T ;Rn)
the set of Rn-valued jointly measurable random processes {ψt : t∈ [0,T ]} such that ψt is
Ft measurable for a.e. t∈ [0,T ] and satisfies

E

∫ T

0

|ψt|
2dt<∞.

Similarly, denote by S2([0,T ];Rn) the set of continuous R
n-valued random processes

{ψt : t∈ [0,T ]} such that ψt is Ft measurable for any t∈ [0,T ] and satisfies

E sup
0≤t≤T

|ψt|
2<∞.



Bao, Cao & Han 4

We next provide a brief introduction of forward backward doubly stochastic differ-
ential equations (FBDSDEs), summarized from [20].

Given τ ≥ 0, x∈R
d and ϕ∈L2(Ω,FT ,P), a system of forward backward doubly

stochastic differential equations (FBDSDEs) can be formulated as

dXt = b(Xt)dt+σ(Xt)dWt, τ ≤ t≤T,

−dYt = f(t,Xt,Yt,Zt)dt+g(t,Xt,Yt,Zt)d
←−
B t−ZtdWt, τ ≤ t≤T,

Xτ = x, YT =ϕ(XT ),

or, in the integral equation form, for any t∈ [τ,T ],

Xt = x+

∫ t

τ

b(Xs)ds+

∫ t

τ

σ(Xs)dWs, (2.5)

Yt = ϕ(XT )+

∫ T

t

f(s,Xs,Ys,Zs)ds+

∫ T

t

g(s,Xs,Ys,Zs)d
←−
B s−

∫ T

t

ZsdWs. (2.6)

Notice that equation (2.5) is a standard forward SDE with a standard forward Itô inte-
gral and equation (2.6) is a backward doubly stochastic differential equation (BDSDE)

involving the backward Itô integral
∫
·d
←−
B s (see [19] for details on the two types of

integrals).

Let the mappings f : [0,T ]×R
d×R

k×R
k×d→R

k and g : [0,T ]×R
d×R

k×R
k×d→

R
k×l be jointly measurable and for any (y,z)∈R

k×R
k×d,

f(·, ·,y,z)∈M2(0,T ;Rk), g(·, ·,y,z)∈M2(0,T ;Rk×l).

Denote by | · | the Euclidean norm of a vector and by ‖A‖ :=
√

Tr(AA∗) the norm of
a matrix A. The existence and uniqueness of solutions, moment estimates for the
solutions, and the regularity of solutions to Equation (2.6) rely on one or more of the
following assumptions.

Assumption 2.1 f and g satisfy the Lipschitz condition: there exist constants c> 0
and 0< c̄< 1 such that for any (t,x)∈ [0,T ]×R

d, y1,y2∈R
k and z1,z2∈R

k×d,

|f(t,x,y1,z1)−f(t,x,y2,z2)|
2 ≤ c(|y1−y2|

2+‖z1−z2‖
2),

‖g(t,x,y1,z1)−g(t,x,y2,z2)‖
2 ≤ c|y1−y2|

2+ c̄‖z1−z2‖
2.

Assumption 2.2 There exists c> 0 such that for all (t,x,y,z)∈ [0,T ]×R
d×R

k×R
k×d,

gg∗(t,x,y,z)≤ zz∗+c(‖g(t,x,0,0)‖2+ |y|2)I.

Assumption 2.3 For any (t,x,y,z)∈ [0,T ]×R
d×R

k×R
k×d and θ∈R

k×d

∂g

∂z
(t,x,y,z)θθ∗

(
∂g

∂z
(t,x,y,z)

)∗

≤ θθ∗.

The following results are due to Pardoux and Peng [20].

Proposition 2.4 Under Assumption 2.1, the BDSDE (2.6) admits a unique solution

(Y,Z)∈S2([0,T ];Rk)×M2(0,T ;Rk×d).
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Proposition 2.5 Let Assumptions 2.1 and 2.2 hold, then the solution of the BDSDE

(2.6) satisfies
E sup

0≤t≤T
|Yt|

2<∞.

For any positive integer k, denote by Ck
l,b the collection of Ck functions with bounded

partial derivatives of all orders less than or equal to k, and denote by Ck
p the collection of

Ck functions with partial derivatives of all orders less than or equal to k which grow at
most like a polynomial function of x as x→∞. It is well known that given b∈C3

l,b(R
d,Rd)

and σ∈C3
l,b(R

d,Rd×d), for each (τ,x)∈ [0,T ]×R
d, the SDE (2.5) has a unique strong

solution, denoted as Xτ,x
t . Consequently denote by (Y τ,x

t ,Zτ,x
t ) the unique solution to

the BDSDE

Yt=ϕ(Xτ,x
T )+

∫ T

t

f(s,Xτ,x
s ,Ys,Zs)ds+

∫ T

t

g(s,Xτ,x
s ,Ys,Zs)d

←−
B s−

∫ T

t

ZsdWs. (2.7)

Proposition 2.6 Let ϕ∈C3
p(R

d;Rk). Under Assumptions 2.1 – 2.3, the random field
{
Y τ,x
τ : τ ∈ [0,T ],x∈R

d
}

admits a continuous version such that for any τ ∈ [0,T ], x 7→
Y τ,x
τ is of class C2 a.s..

The following regularity result can be obtained by using standard techniques of
SDEs, FBSDEs and BDSDEs (see Proposition 1 in [3])

Lemma 2.7 In addition to the Assumption 2.1, assume that f,g∈C1
l,b. Then the solu-

tion (Y τ,x
t ,Zτ,x

t ) to the BDSDE (2.7) satisfies

E

[

(Y τ,x
t −Y τ,x

τ )
2
]

≤C(t−τ), E

[

(Zτ,x
t −Zτ,x

τ )
2
]

≤C(t−τ), 0≤ τ≤ t≤T,

where C is a positive constant independent of τ and t.

Note that with the convention above, the unique solution to the FBDSDE system
(2.5) – (2.6) can be written as (Xτ,x

t ,Y τ,x
t ,Zτ,x

t ). Denote

∇Xτ,x
t :=

∂Xτ,x
t

∂x
, ∇Y τ,x

t :=
∂Y τ,x

t

∂x
, ∇Zτ,x

t :=
∂Zτ,x

t

∂x
.

Then (∇Y τ,x
t ,∇Zτ,x

t ) is the unique solution to variational form of the BDSDE (2.6) (see
[20])

∇Y τ,x
t =ϕ′(Xτ,x

T )∇Xτ,x
T +

∫ T

t

(
∂f

∂x
∇Xτ,x

s +
∂f

∂Y
∇Y τ,x

s +
∂f

∂Z
∇Zτ,x

s

)

ds

+

∫ T

t

(
∂g

∂x
∇Xτ,x

s +
∂g

∂Y
∇Y τ,x

s +
∂g

∂Z
∇Zτ,x

s

)

d
←−
B s−

∫ T

t

∇Zτ,x
s dWs.

In addition, the random field
{
Zτ,x
t : t∈ [τ,T ],x∈R

d
}
has an a.s. continuous version

Zτ,x
t =∇Y τ,x

t (∇Xτ,x
t )−1σ(Xτ,x

t ), Zτ,x
τ =∇Y τ,x

τ σ(x). (2.8)

The following Lemma follows directly from Lemma 2.7 and Proposition 2.5.

Lemma 2.8 Assume that b∈C2
l,b, f ∈C2

l,b, g∈C2
l,b and ϕ∈C2

l,b. Then there exists C> 0
such that

E[(∇Y τ,x
t −∇Y τ,x

t )2]≤C(t−τ), E[(∇Zτ,x
t −∇Zτ,x

τ )2]≤C(t−τ), 0≤ τ ≤ t≤T.

Moreover,

E sup
0≤t≤T

|∇Y τ,x
t |2<∞.
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3 FBDSDEs and Optimal Filtering

In this section, we establish the connection between the optimal filtering problem and
a FBDSDE system. In particular, we will first prove a Feynman-Kac formula in the
filtering context. Then we present the adjoint relationship between standard FBDSDEs
and time-inverse FBDSDEs. In the end we will show that the solution of a time-inverse
FBDSDE is the unnormalized filtering density sought in the optimal filtering problem.
For simplicity of exposition, we only discuss the one dimensional case with d=1 and
l=1. The same method can also be applied to multi-dimensional cases with more
complicated calculations.

3.1 Feynman-Kac type formula for optimal filtering

For τ ∈ [0,T ] and x∈R
d, consider the following FBDSDE system on the probability

space (Ω,F ,P̃)






dXt= bt(Xt)dt+σtdWt, τ ≤ t≤T (SDE)

−dYt=−ZtdWt+

(

h(Xt)Yt+
ρ̃t
σt

Zt

)

d
←−
V t, τ ≤ t≤T (BDSDE)

Xτ =x, YT =φ(XT ),

(3.9)

where σ2
t =ρ2t + ρ̃2t , and b, ρ, ρ̃ , h are the functions appeared in the optimal filtering

problem (2.1). Here Wt is the same Brownian motion as in the nonlinear filtering
problem (2.1), while Vt is the measurement process which becomes a standard Brownian
motion independent of Wt under the induced probability measure P̃ defined by (2.3).
Then Xt is a FW

t adaptive stochastic process and the pair (Yt,Zt) is adaptive to FW
t ∨

FV
t,T . For any single-variable function F =F (x), denote F ′ := dF

dx and F ′′= d2F
dx2 .

Lemma 3.1 Assume that bt and σt are bounded and h∈C2
b (R;R). Then for any 0≤

s≤ t≤T , there exists a positive constant C independent of s and t such that

Ẽ[(h(Xt)−h(Xs))
2|FV

t,T ]≤C(t−s). (3.10)

Proof. The application of Itô’s formula to h(Xt) results in

h(Xt)=h(Xs)+

∫ t

s

(

br(Xr)h
′(Xr)+

σ2
r

2
h′′(Xr)

)

dr+

∫ t

s

σrh
′(Xr)dWr,

and hence

(h(Xt)−h(Xs))
2=

(∫ t

s

(

br(Xr)h
′(Xr)+

σ2
r

2
h′′(Xr)

)

dr+

∫ t

s

σrh
′(Xr)dWr

)2

. (3.11)

Taking expectation Ẽ of the above gives

Ẽ
[
(h(Xt)−h(Xs))

2
]
= Ẽ

[(∫ t

s

(
br(Xr)h

′(Xr)+
σ2
r

2
h′′(Xr)

)
dr

)2
]

+ Ẽ

[∫ t

s

(σrh
′(Xr)

)2
dr

]

.

The inequality (3.10) then follows immediately from the assumptions of the lemma. �

With Proposition 2.5, and Lemmas 2.7 and 3.1, we establish the following Feynman-
Kac formula in the optimal filtering context.
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Theorem 3.2 Assume that φ is bounded, bt,ρt, ρ̃t∈Cl,b and h∈C2
l,b(R). Then, ∀τ ∈

[0,T ] and x∈R
d the following equality holds a.s.

Y τ,x
τ =E

x
τ [φ(UT )Q

τ
T ], (3.12)

where E
x
τ [·] := Ẽ[·|FV

τ,T ,Uτ =x].

Proof. We prove the statement (3.12) for τ =0 only, the general case follows from
the τ =0 case trivially. First it is straightforward to verify that under assumptions
in Theorem 3.2, all the assumptions of Proposition 2.5, and Lemmas 2.7 and 3.1 are
fulfilled. Since Y τ,x

τ and Zτ,x
τ are functions of x, we write Y τ,x

τ =Yτ (x) and Zτ,x
τ =Zτ(x)

in the sequel.

Let 0= t0<t1<t2 · · ·<tN =T be an equidistant temporal partition with tn+1− tn=
T/N :=∆t and define

∆n=E
x
0 [Qtn+1

Ytn+1
(Utn+1

)−QtnYtn(Utn)].

It follows immediately that

E
x
0 [φ(UT )QT −Y0(x)]=

N−1∑

n=0

∆n.

Denote P̃x := P̃(·|U0=x). To prove (3.12) it suffices to verify that

N−1∑

n=0

∆n
N→∞
−→ 0 in L1(Ω,P̃x).

For each n≥ 0, let Utn be the solution of the state for (2.1) at time step tn and
consider the FBDSDEs system (3.9) on [tn,tn+1] with initial condition Utn :







dX̂t= bt(X̂t)dt+σtdWt,

−dYt=−ZtdWt+

(

h(X̂t)Yt+
ρ̃t
σt

Zt

)

d
←−
V t,

X̂tn =Utn , Ytn+1
=Ytn+1

(X̂tn+1
).

(3.13)

From the definition of the state process Ut in (2.1) and the SDE X̂t in (3.13), we have
the relation between Utn+1

and X̂tn+1
:

Utn+1
= X̂tn+1

+

∫ tn+1

tn

ρsdWs−

∫ tn+1

tn

σs(X̂s)dWs+

∫ tn+1

tn

ρ̃s (dVs−h(Us)ds)+Rn+1
X

where

Rn+1
X =

∫ tn+1

tn

bs(Us)ds−

∫ tn+1

tn

bs(X̂s)ds.

To simplify presentation, for any process ψt we write ψ̂t :=ψt(X̂t) throughout the
rest of this proof. Let ηn+1=Utn+1

−X̂tn+1
Then from the above we have that

ηn+1=

∫ tn+1

tn

ρsdWs−

∫ tn+1

tn

σsdWs+

∫ tn+1

tn

ρ̃s (dVs−h(Us)ds)+Rn+1
X (3.14)
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Applying the Taylor expansion to Ytn+1
we have that

Ytn+1
(Utn+1

)= Ŷtn+1
+ Ŷ

′

tn+1
·ηn+1+

1

2
Ŷ

′′

tn+1
·(ηn+1)

2+ξn+1, (3.15)

where ξn+1 is the Taylor remainder such that E
x
0 [(ξn+1)

2]≤C(∆t)3. Then for each
n=0,1,2, · · · ,N−1,

∆n=E
x
0

[

Qtn+1
Ytn+1

(Utn+1
)−Qtn Ŷtn+1

+Qtn Ŷtn+1
−QtnYtn(Utn)

]

=E
x
0

[(
Qtn+1

−Qtn

)
Ŷtn+1

]

︸ ︷︷ ︸

(i)

+E
x
0

[

Qtn

(

Ŷtn+1
−Ytn(Utn)

)]

︸ ︷︷ ︸

(ii)

+E
x
0

[

Qtn+1

(

Ŷ
′

tn+1
ηn+1+

1

2
Ŷ

′′

tn+1
·(ηn+1)

2+ξn+1

)]

︸ ︷︷ ︸

(iii)

.

(3.16)

We next estimate terms (i), (ii) and (iii) in (3.16) one by one.

(i) Write ht=h(Ut) and ĥt=h(X̂t), and apply Ito’s formula to Qtn we obtain

E
x
0

[

(Qtn+1
−Qtn)Ŷtn+1

]

=E
x
0

[∫ tn+1

tn

hsQsdVsŶtn+1

]

=E
x
0

[∫ tn+1

tn

ĥsQsdVsŶtn+1

]

+E
x
0

[∫ tn+1

tn

(hs− ĥs)QsdVsŶtn+1

]

.

(3.17)
Applying Itô formula to function h yields

hs− ĥs=h
′

(Utn)

(∫ s

tn

ρrdWr+

∫ s

tn

ρ̃rdVr−

∫ s

tn

σrdWr

)

+O(∆t),

and consequently with h
′

tn :=h
′

(Utn) we have

E
x
0

[∫ tn+1

tn

(hs− ĥs)QsdVsŶtn+1

]

=E
x
0

[

h
′

tnQtnYtn(Utn)

∫ tn+1

tn

dVs

(∫ s

tn

ρrdWr−

∫ s

tn

σrdWr

)]

+E
x
0

[

h
′

tn (Qs−Qtn)
(

Ŷtn+1
−Ytn(Utn)

)∫ tn+1

tn

dVs

(∫ s

tn

ρrdWr−

∫ s

tn

σrdWr

)]

+E
x
0

[

h
′

tnQtn Ŷtn+1

∫ tn+1

tn

∫ s

tn

ρ̃rdVrdVs

]

+O
(

(∆t)
3
2

)

.

(3.18)

First noting that h
′

tnQtnYtn(Utn)
∫ tn+1

tn
dVs is independent of

∫ s

tn
ρrdWr−

∫ s

tn
σrdWr,

we have

E
x
0

[

h
′

tnQtnYtn(Utn)

∫ tn+1

tn

dVs

(∫ s

tn

ρrdWr−

∫ s

tn

σrdWr

)]

=0. (3.19)

Second, it’s straightforward to verify that

E
x
0

[

h
′

tn (Qs−Qtn)
(

Ŷtn+1
−Ytn(Utn)

)∫ tn+1

tn

dVs

(∫ s

tn

ρrdWr−

∫ s

tn

σrdWr

)]

∼O
(

(∆t)
3
2

)

.

(3.20)
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Putting (3.19) and (3.20) in (3.18), it follows from the regularity condition of ρ̃r that

E
x
0

[∫ tn+1

tn

(hs− ĥs)QsdVsŶtn+1

]

=E
x
0

[

h
′

tnQtn Ŷtn+1
ρ̃tn

∫ tn+1

tn

∫ s

tn

dVrdVs

]

+O
(

(∆t)
3
2

)

.

Define

νn :=h
′

tnQtn Ŷtn+1
ρ̃tn

∫ tn+1

tn

∫ s

tn

dVrdVs. (3.21)

Then by using the facts
∫ tn+1

tn

∫ s

tn
dVrdVs=

1
2

(
(Vtn+1

−Vtn)
2−∆t

)
and h

′

tnQtn Ŷtn+1
ρ̃tn

is independent of 1
2

(
(Vtn+1

−Vtn)
2−∆t

)
we have

N−1∑

n=0

νn=

N−1∑

n=0

h
′

tnQtn Ŷtn+1
ρ̃tn ·

1

2

(
(Vtn+1

−Vtn)
2−∆t

)N→∞
−→ 0 in L1(Ω,P̃x). (3.22)

In summary (3.17) gives the estimate of the term (i) in (3.16) as

(i)=E
x
0

[∫ tn+1

tn

ĥsQsdVsŶtn+1

]

+E
x
0 [νn]+O

(

(∆)
3
2

)

, (3.23)

with
∑N−1

n=0 E
x
0 [νn]→0 in L1(Ω,P̃x) as N →∞.

(ii) It follows directly from the FBDSDEs system (3.13) that term (ii) in (3.16) satisfies

(ii)=E
x
0

[

Qtn

∫ tn+1

tn

ẐsdWs−Qtn

∫ tn+1

tn

(

ĥsŶs+
ρ̃s
σs

Ẑs

)

d
←−
V s

]

=−E
x
0

[

Qtn

∫ tn+1

tn

(

ĥsŶs+
ρ̃s
σs

Ẑs

)

d
←−
V s

]

.

(3.24)

(iii) By splitting term (iii) in (3.16) and using the definition of ηn+1 in (3.14) we obtain

(iii)=E
x
0

[

Qtn+1
Ŷ

′

tn+1
ηn+1

]

+
1

2
E
x
0

[

Qtn+1
Ŷ

′′

tn+1
·(ηn+1)

2
]

+E
x
0

[
Qtn+1

ξn+1

]

=E
x
0

[

Qtn+1
Ŷ

′

tn+1

(∫ tn+1

tn

ρsdWs−

∫ tn+1

tn

σsdWs

)]

︸ ︷︷ ︸

(iii−1)

+E
x
0

[

Qtn Ŷ
′

tn+1

∫ tn+1

tn

ρ̃sdVs

]

︸ ︷︷ ︸

(iii−2)

+E
x
0

[

(Qtn+1
−Qtn)Ŷ

′

tn+1

∫ tn+1

tn

ρ̃sdVs

]

−E
x
0

[

Qtn+1
Ŷ

′

tn+1

∫ tn+1

tn

ρ̃shsds

]

︸ ︷︷ ︸

(iii−3)

+E
x
0

[

Qtn+1
Ŷ

′

tn+1
Rn+1

X

]

︸ ︷︷ ︸

(iii−4)

+
1

2
E
x
0

[

Qtn+1
Ŷ

′′

tn+1
·(ηn+1)

2
]

︸ ︷︷ ︸

(iii−5)

+E
x
0

[
Qtn+1

ξn+1

]
.

(3.25)
We next estimate terms (iii-1) – (iii-5).

Denote

∇X̂t :=
∂X̂tn,x

t

∂x
|x=Utn

, ∇Ŷt :=
∂Y tn,x

t

∂x
|x=Utn

, ∇Ẑt :=
∂Ztn,x

t

∂x
|x=Utn

.
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Then term (iii-1) can be written as

(iii−1)=E
x
0

[

Qtn+1

(

Ŷ
′

tn+1
∇X̂tn+1

)(∫ tn+1

tn

ρsdWs−

∫ tn+1

tn

σsdWs

)(

∇X̂tn+1

)−1
]

.

(3.26)
By using the fact that |(∇X̂tn+1

)−1|=1+O(∆t) and the following variational equation
(see [20])

∇Ŷt= Ŷ
′

tn+1
∇X̂tn+1

+

∫ tn+1

t

(

ĥ
′

sŶs∇X̂s+ ĥs∇Ŷs+
ρ̃s
σs

∇Ẑs

)

d
←−
V s−

∫ tn+1

t

∇ẐsdWs,

we deduce that (3.26) becomes

(iii−1)=E
x
0

[

Qtn+1

(

Ŷ
′

tn+1
∇X̂tn+1

−∇Ŷtn

)(∫ tn+1

tn

ρsdWs−

∫ tn+1

tn

σsdWs

)]

+E
x
0

[

Qtn+1
∇Ŷtn

(∫ tn+1

tn

ρsdWs−

∫ tn+1

tn

σsdWs

)]

+O((∆t)
3
2 )

=E
x
0

[(

Qtn

∫ tn+1

tn

∇ẐsdWs+λtn

)

·

(∫ tn+1

tn

ρsdWs−

∫ tn+1

tn

σsdWs

)]

+O((∆t)
3
2 ),

where λtn =−Qtn

∫ tn+1

tn

(
ĥ

′

sȲs∇X̂s+ ĥs∇Ŷs+
ρ̃s

σs
∇Ẑs

)
d
←−
V s+Qtn+1

∇Ŷtn is independent

of
∫ tn+1

tn
ρsdWs−

∫ tn+1

tn
σsdWs and hence gives

E
x
0

[

λtn

(∫ tn+1

tn

ρsdWs−

∫ tn+1

tn

σsdWs

)]

=0.

As a consequence

(iii−1)=E
x
0

[

Qtn

∫ tn+1

tn

∇ẐsdWs ·

(∫ tn+1

tn

ρsdWs−

∫ tn+1

tn

σsdWs

)]

+O
(

(∆t)
3
2

)

=E
x
0

[

Qtn∇Ẑtn+1
·

∫ tn+1

tn

(ρs−σs)ds

]

+O
(

(∆t)
3
2

)

.

(3.27)

Let C represent a generic constant while the context is clear. By the definition of
Rn+1

X , it is straightforward to verify that

(iii−4)=E
x
0

[

Qtn+1
Ŷ

′

tn+1
Rn+1

X

]

≤C(∆t)
3
2 . (3.28)
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Applying Itô formula to Qtn in term (iii-3) we obtain

(iii−3)=E
x
0

[

(Qtn+1
−Qtn)Ŷ

′

tn+1

∫ tn+1

tn

ρ̃sdVs

]

−E
x
0

[

Qtn+1
Ŷ

′

tn+1

∫ tn+1

tn

ρ̃shsds

]

=E
x
0

[∫ tn+1

tn

hsQsdVs

∫ tn+1

tn

ρ̃sdVsŶ
′

tn+1

]

−E
x
0

[

Qtn+1
Ŷ

′

tn+1

∫ tn+1

tn

ρ̃shsds

]

≤

∣
∣
∣
∣
E
x
0

[∫ tn+1

tn

hs(Qs−Qtn+1
)dVs

∫ tn+1

tn

ρ̃sdVsŶ
′

tn+1

]∣
∣
∣
∣

+

∣
∣
∣
∣
E
x
0

[

Qtn+1
Ŷ

′

tn+1

(∫ tn+1

tn

hsdVs

∫ tn+1

tn

ρ̃sdVs−

∫ tn+1

tn

ρ̃shsds

)]∣
∣
∣
∣

≤C(∆t)
3
2 .

(3.29)

By using the definition of ηn+1 in (3.14), we deduce that

(iii−5)=
1

2
E
x
0

[

Qtn Ŷ
′′

tn+1

∫ tn+1

tn

(
ρ2s+ ρ̃2s+σ2

s −2ρsσs

)
ds

]

+O
(

(∆t)
3
2

)

=E
x
0

[

Qtn Ŷ
′′

tn+1

∫ tn+1

tn

(
σ2
s −ρsσs

)
ds

]

+O
(

(∆t)
3
2

)

.

As a simple corollary of the assertion (2.8), we have Ŷ
′′

tn+1
σtn+1

=∇Ẑtn+1
+O(∆t) and

thus

(iii−5)=E
x
0

[

Qtn∇Ẑtn+1

∫ tn+1

tn

(σs−ρs)ds

]

+O
(

(∆t)
3
2

)

. (3.30)

It then remains to estimate term (iii-2). Notice that due to equations (2.8) and
(3.1) we have Ẑs/σs=∇Ŷs(∇X̂s)

−1. Hence for any s∈ [tn,tn+1] it holds

Ŷ
′

tn+1
−

Ẑs

σs
= Ŷ

′

tn+1
−∇Ŷs(∇X̂s)

−1

=−

∫ tn+1

s

(

ĥ
′

rŶr∇X̂r+ ĥr∇Ŷr+
ρ̃r
σr

∇Ẑr

)

d
←−
V r−

∫ tn+1

s

∇ẐrdWr+O(∆t),

and therefore

−Qtn

∫ tn+1

tn

ρ̃s
σs

Ẑsd
←−
V s=−Qtn Ŷ

′

tn+1

∫ tn+1

tn

ρ̃sd
←−
V s

−Qtn

∫ tn+1

tn

ρ̃s

∫ tn+1

s

(

ĥ
′

rŶr∇X̂r+ ĥr∇Ŷr+
ρ̃r
σr

∇Ẑr

)

d
←−
V rd

←−
V s

−Qtn

∫ tn+1

tn

ρ̃s

∫ tn+1

s

∇ẐrdWrd
←−
V s+O

(

(∆t)
3
2

)

.

Since W and V are two independent Brownian motions,

E
x
0

[

Qtn

∫ tn+1

tn

ρ̃s

∫ tn+1

s

∇ẐrdWrd
←−
V s

]

=E
x
0

[

Qtn

∫ tn+1

tn

ρ̃s

∫ tn+1

s

(∇Ẑr−∇Ẑtn)dWrd
←−
V s

]

≤C(∆t)
3
2 .

(3.31)
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As a result,

(iii−2)=E
x
0

[

Qtn

∫ tn+1

tn

ρ̃s
σs

Ẑsd
←−
V s

]

−E
x
0

[

Qtn

∫ tn+1

tn

ρ̃s

∫ tn+1

s

(

ĥ
′

rŶr∇X̂r+ ĥr∇Ŷr+
ρ̃r
σr

∇Ẑr

)

d
←−
V rd

←−
V s

]

+O
(

(∆t)
3
2

)

=E
x
0

[

Qtn

∫ tn+1

tn

ρ̃s
σs

Ẑsd
←−
V s

]

−E
x
0

[

λ̃tn

∫ tn+1

tn

∫ tn+1

s

d
←−
V rd

←−
V s

]

+O
(

(∆t)
3
2

)

,

(3.32)

where λ̃tn =Qtn ρ̃tn+1

(

ĥ
′

tn Ŷtn+1
∇X̂tn + ĥtn∇Ŷtn+1

+
ρ̃tn+1

σtn+1

∇Ẑtn+1

)

is independent of
∫ tn+1

tn

∫ tn+1

s
d
←−
V rd

←−
V s=

1
2

(
(Vtn+1

−Vtn)
2−∆t

)
. By an argument similar to (3.22), we

obtain
N−1∑

n=0

E
x
0

[

λ̃tn

∫ tn+1

tn

∫ tn+1

s

d
←−
V rd

←−
V s

]

N→∞
−→ 0 in L1(Ω,P̃x). (3.33)

Collecting estimates (3.27), (3.28), (3.29), (3.30) and (3.32) into (3.25); then insert-
ing (3.25), (3.23) and (3.24) into (3.16) we finally obtain

∆n=E
x
0

[∫ tn+1

tn

ĥsQsdVsŶtn+1
−Qtn

∫ tn+1

tn

ĥsŶsd
←−
V s+νn

]

+O
(

(∆t)
3
2

)

=E
x
0 [αn]+E

x
0 [βn]+E

x
0 [γn]+E

x
0 [νn]+O

(

(∆t)
3
2

)

,

(3.34)

where {νn} is defined as in (3.21) satisfying (3.22), and

αn :=

∫ tn+1

tn

(

Qsĥs−Qtn ĥtn

)

Ŷtn+1
dVs,

βn :=

∫ tn+1

tn

Qtn

(

ĥtn+1
Ŷtn+1

− ĥsŶs

)

d
←−
V s,

γn := Qtn Ŷtn+1

(

ĥtn − ĥtn+1

)

·(Vtn+1
−Vtn).

The last steps are to show that
∑N−1

n=0 E
x
0 [αn]→0,

∑N−1
n=0 E

x
0 [βn]→0, and

∑N−1
n=0 E

x
0 [γn]→0 in L1(Ω,P̃x) as N →∞.

First write αn=α
(1)
n +α

(2)
n +α

(3)
n with

α(1)
n :=

∫ tn+1

tn

(Qs−Qtn)ĥsdVs · Ŷtn+1
,

α(2)
n :=

∫ tn+1

tn

Qtn(ĥs− ĥtn)dVs · Ŷtn ,

α(3)
n :=

∫ tn+1

tn

Qtn(ĥs− ĥtn)dVs ·
(

Ŷtn+1
− Ŷtn

)

.

Denote by Ẽx the expectation with respect to P̃x, where P̃x := P̃(·|U0=x) is the induced
probability measure. Notice that Ŷtn =Ytn(Utn) due to X̂tn =Utn given in (3.13), and
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that ht is a bounded function, we apply Itô’s formula to (Qs−Qtn) in α
(1)
n to get

Ẽx

[∣
∣
∣
∣
∣
E
x
0

[
N−1∑

n=0

α(1)
n

]

∣
∣
∣
∣
∣

]

= Ẽx

[∣
∣
∣
∣
∣
E
x
0

[
N−1∑

n=0

∫ tn+1

tn

∫ s

tn

ĥrQrdVr ĥsdVs · Ŷtn+1

]

∣
∣
∣
∣
∣

]

≤ Ẽx

[∣
∣
∣
∣
∣

N−1∑

n=0

∫ tn+1

tn

∫ s

tn

ĥr(Qr−Qtn)dVr ĥsdVs · Ŷtn+1

∣
∣
∣
∣
∣

]

+ Ẽx

[∣
∣
∣
∣
∣

N−1∑

n=0

∫ tn+1

tn

∫ s

tn

ĥrQtndVrĥsdVs · Ȳtn+1

∣
∣
∣
∣
∣

]

≤ C
N−1∑

n=0

(∆t)
3
2 +CẼx

[∣
∣
∣
∣
∣

N−1∑

n=0

Qtn Ȳtn+1
·
1

2

(
(Vtn+1

−Vtn)
2−∆t

)

∣
∣
∣
∣
∣

]

.

and from the fact that

N−1∑

n=0

Qtn Ȳtn+1
·
1

2

(
(Vtn+1

−Vtn)
2−∆t

)
→0 in L1(Ω,P̃x)

we have

E
x
0

[
N−1∑

n=0

α(1)
n

]
→0 in L1(Ω,P̃x). (3.35)

For α
(2)
n , we apply Itô’s formula to hs to get

E
x
0 [α

(2)
n ]=E

x
0

[
∫ tn+1

tn

Qtn ·

(∫ s

tn

[b̂r · ĥ
′
r+

(σr)
2

2
· ĥ′′

r ]dr+

∫ s

tn

σr · ĥ
′
rdWr

)

· ŶtndVs

]

=E
x
0

[
∫ tn+1

tn

Qtn Ŷtn ·

∫ s

tn

[b̂r · ĥ
′
r+

(σr)
2

2
ĥ′′
r ]drdVs

]
.

Since bt, σt, h
′ and h′′ are all bounded, we have

Ẽx[|E
x
0 [α

(2)
n ]|]≤C∆t3/2.

Moreover, it follows from Hölder’s inequality, Lemma 2.7 and Lemma 3.1 that

Ẽx[|E
x
0 [α

(3)
n ]|]=Ẽx

[∣
∣E

x
0

[
∫ tn+1

tn

Qtn(ĥs− ĥtn)dVs ·
(
Ŷtn+1

− Ŷtn

)]∣
∣

]

≤
(

Ẽx

[(
∫ tn+1

tn

Qtn(ĥs− ĥtn)dVs

)2]
) 1

2

·
(

Ẽx

[(
Ŷtn+1

− Ŷtn

)2]
) 1

2

≤C∆t3/2.

Hence,

=
N−1∑

n=0

E
x
0 [α

(2)
n ]→0 in L1(Ω,P̃x), (3.36)

and
N−1∑

n=0

E
x
0 [α

(3)
n ]→0 in L1(Ω,P̃x). (3.37)
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Then, from (3.35), (3.36) and (3.37), we get

N−1∑

n=0

E
x
0 [αn]→0 in L1(Ω,P̃x). (3.38)

For the term βn in (3.34), we have

βn=

∫ tn+1

tn

Qtn

(

(ĥtn+1
− ĥs)Ŷtn+1

+ ĥs(Ŷtn+1
− Ŷs)

)

d
←−
V s

=

∫ tn+1

tn

Qtn(ĥtn+1
− ĥs)Ŷtnd

←−
V s+

∫ tn+1

tn

Qtn ĥs(Ŷtn+1
− Ŷs)d

←−
V s

+

∫ tn+1

tn

Qtn(ĥtn+1
− ĥs)d

←−
V s ·

(
Ŷtn+1

− Ŷtn

)

=β(1)
n +β(2)

n +β(3)
n

with

β(1)
n =

∫ tn+1

tn

Qtn(ĥtn+1
− ĥs)Ŷtnd

←−
V s,

β(2)
n =

∫ tn+1

tn

Qtn ĥs(Ŷtn+1
− Ŷs)d

←−
V s

and

β(3)
n =

∫ tn+1

tn

Qtn(ĥtn+1
− ĥs)d

←−
V s ·

(
Ŷtn+1

− Ŷtn

)
.

Following the similar the approaches to α
(2)
n and α

(3)
n , we have

Ẽx[|E
x
0 [β

(1)
n ]|]≤C∆t3/2

and
Ẽx[|E

x
0 [β

(3)
n ]|]≤C∆t3/2.

Hence,
N−1∑

n=0

E
x
0 [β

(1)
n ]→0 in L1(Ω,P̃x), (3.39)

and
N−1∑

n=0

E
x
0 [β

(3)
n ]→0 in L1(Ω,P̃x). (3.40)

From the BDSDE in (3.9), Lemma 2.7, Lemma 2.5 and estimate (3.31), we get

N−1∑

n=0

E
x
0 [β

(2)
n ]=

N−1∑

n=0

E
x
0

[∫ tn+1

tn

Qtn ĥs

(∫ tn+1

s

ẐrdWr−

∫ tn+1

s

(
ĥrŶr+

ρ̃r
σr

Ẑr

)
d
←−
V r

)

d
←−
V s

]

=

N−1∑

n=0

E
x
0

[∫ tn+1

tn

Qtn ĥs

(
−

∫ tn+1

s

(
ĥrŶtn+1

+
ρ̃r
σr

Ẑtn+1

)
d
←−
V r

)
d
←−
V s

]

+O((∆t)
3
2 )

+

N−1∑

n=0

E
x
0

[∫ tn+1

tn

Qtn ĥs

(
∫ tn+1

s

ĥr(Ŷtn+1
− Ŷr)+

ρ̃r
σr

(Ẑtn+1
− Ẑr)d

←−
V r

)
d
←−
V s

]
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Next, we take conditional expectation Ẽx to the absolute value of the above equation.
Since

Ẽx

[
(Ŷtn+1

− Ŷr)
2
]
≤C(∆t)3, Ẽx

[
(Ẑtn+1

− Ẑr)
2
]
≤C(∆t)3

and

Ẽx

[∣
∣E

x
0

[
N−1∑

n=0

∫ tn+1

tn

Qtn ĥs

(
−

∫ tn+1

s

ĥrŶtn+1
d
←−
V r

)
d
←−
V s

]∣
∣

]

≤CẼx

[∣
∣

N−1∑

n=0

Qtn Ŷtn+1
·
1

2

(
(Vtn+1

−Vtn)
2−∆t

)∣
∣

]

,

it follows from the fact

N−1∑

n=0

Qtn Ŷtn+1
·
1

2

(
(Vtn+1

−Vtn)
2−∆t

)
→0 in L1(Ω,P̃x)

that

E
x
0 [

N−1∑

n=0

β(2)
n ]→0 in L1(Ω,P̃x). (3.41)

Hence,

E
x
0 [

N−1∑

n=0

βn]→0 in L1(Ω,P̃x). (3.42)

For γn, applying Itô formula to ht, it’s easy to verify that

|Ex
0 [ĥtn+1

− ĥtn ]|≤C∆t. (3.43)

Since ĥtn − ĥtn+1
is independent from Qtn Ŷtn(Vtn+1

−Vtn),

E
x
0 [γn]= E

x
0

[
Qtn Ŷtn

(
ĥtn − ĥtn+1

)
·(Vtn+1

−Vtn)
]

+E
x
0

[
Qtn

(
Ŷtn+1

− Ŷtn

)
·
(
ĥtn − ĥtn+1

)
·(Vtn+1

−Vtn)
]

= E
x
0

[
ĥtn − ĥtn+1

]
·Ex

0

[
Qtn Ŷtn ·(Vtn+1

−Vtn)
]

+E
x
0

[
Qtn

(
Ŷtn+1

− Ŷtn

)
·
(
ĥtn − ĥtn+1

)
·(Vtn+1

−Vtn)
]
.

Then, from estimate (3.43), lemma 2.7, lemma 3.1, we get

Ẽx

[
|Ex

0 [γn]|
]
≤ C∆t ·Ẽx

[∣
∣Qtn Ŷtn ·(Vtn+1

−Vtn)
∣
∣
]

+ Ẽx

[
|Qtn

(
Ŷtn+1

− Ŷtn

)
·
(
ĥtn − ĥtn+1

)
·(Vtn+1

−Vtn)|
]

≤C(∆t)
3
2

(3.44)

and therefore

E
x
0 [

N−1∑

n=0

γn]→ in L1(Ω,P̃x). (3.45)

Finally with convergence results in (3.38), (3.42) and (3.45), we have

N−1∑

n=0

∆n→0 in L1(Ω,P̃x)

as required. �
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3.2 Adjoint FBDSDEs

In this subsection, we consider the following FBDSDEs system, in which the “forward
SDE” (2.5) goes backward and the “Backward SDE” (2.6) goes forward







d
←−
X t=bt(

←−
X t)dt−σtd

←−
W t, 0≤ t≤ τ (SDE)

d
−→
Y t=−b′t(

←−
X t)

−→
Y tdt−

−→
Z T,x

t d
←−
W t+

(

h(
←−
X t)

−→
Y t−

ρ̃t
σt

−→
Z t

)

dVt, 0≤ t≤ τ (BDSDE)

←−
X τ =x,

−→
Y 0=p0(

←−
X 0),

(3.46)

where 0≤ τ ≤T ,
∫ T

t ·d
←−
W s is a backward Itô Integral and

∫ T

t ·dVs is a standard forward

Itô integral. Write the solution to (3.46) as (
←−
XT,x

t ,
−→
Y T,x

t ,
−→
Z T,x

t ). Then by inverting

the time index in the standard FBDSDEs system,
←−
XT,x

t is a FW
t,T adaptive stochastic

process and the solution
(−→
Y T,x

t ,
−→
Z T,x

t

)

of the BDSDE in (3.46) is adaptive to FW
t,T ∨FV

t .

Similar to the notation used in Section 2.1, we denote
−→
Y t(x) :=

−→
Y t,x

t and
−→
Z t(x) :=

−→
Z t,x

t .

In addition, for any non-negative integer m and function ηt(x) we write η
(m)
t := ∂mη

∂xm .
We need the following regularity properties for b and σ.

Assumption 3.3 For 0≤ s≤ t≤T , functions b and σ satisfy

|bt(x)−bs(x)|+ |b′t(x)−b′s(x)|≤C|t−s|, |σt−σs|≤C|t−s|,

where C is a given positive constant independent of b, σ, s and t.

Lemma 3.4 can be proved by using repeatedly the variational form of BDSDEs [20].

Lemma 3.4 Assume that b∈C4
l,b, φ∈C3

l,b, h∈C3
l,b and every derivative of b, φ and h

has bounded support in R. Then for each m1=0,1,2 and m2=0,1,2,3, Y
(m1)
t ,

−→
Y

(m2)
t

have bounded support and satisfy

∫

R

Ẽ

[

sup
0≤t≤T

∣
∣
∣Y

(m1)
t

∣
∣
∣

2
]

dx<∞ and

∫

R

Ẽ

[

sup
0≤t≤T

∣
∣
∣
−→
Y

(m2)
t

∣
∣
∣

2
]

dx<∞. (3.47)

Denote by 〈·, ·〉 the standard inner product in L2. The following theorem shows that
−→
Y t is the adjoint stochastic process of Yt defined in the FBDSDEs system (3.9).

Theorem 3.5 Assume that, in addition to Assumption 3.3holds, σ is uniformly

bounded, b∈C4
l,b, φ∈C3

l,b, h∈C3
l,b and each derivative of b, φ and h has bounded support

in R. Then the process Rt :=
〈

Yt,
−→
Y t

〉

, t∈ [0,T ] is a constant for almost all trajectories.

Proof. According to [20], Rt has a.s. continuous paths, it suffices to show that ∀s,t∈
[0,T ], Rs=Rt a.s..

For 0≤ s≤ t≤T let s= t0<t1< · · ·<tN = t be a temporal partition with uniform
stepsize tn+1− tn=

t−s
N =∆t. For simplification of notations, we denote

∆Vtn :=Vtn+1
−Vtn , Yn :=Ytn , Zn :=Ztn ,

−→
Y n :=

−→
Y tn ,

−→
Z n :=

−→
Z tn .
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By Corollary 2.2 in [20], we have

Yn(x)=Y tn,x
tn ,

−→
Y n(x) =

−→
Y tn,x

tn , Yn+1(X
tn,x
tn+1

)=Y tn,x
tn+1

,
−→
Y n(

←−
X

tn+1,x
tn ) =

−→
Y

tn+1,x
tn ,

Zn(x)=Ztn,x
tn ,

−→
Z n(x) =

−→
Z tn,x

tn , Zn+1(X
tn,x
tn+1

)=Ztn,x
tn+1

,
−→
Z n(

←−
X

tn+1,x
tn ) =

−→
Z

tn+1,x
tn .

Denote conditional expectations

E[·] := Ẽ[·|FV
T ], E

n
x [·] := Ẽ[·|FV

T ,Xtn =x],
←−
E

n
x [·] := Ẽ[·|FV

T ,
←−
X tn =x].

It then follows from the definitions of En
x and

←−
E

n
x that

E
n
x [Yn]=Yn(x),

←−
E

n
x [
−→
Y n]=

−→
Y n(x).

Without loss of generality suppose that ∆t<s∧(T − t) and define

YN =
1

∆t

∫ t+∆t

t

Yrdr,
−→
Y 0=

1

∆t

∫ s

s−∆t

−→
Y rdr.

For n=0,1, . . .,N−1, taking the conditional expectations E
n
x and E

←−−
n+1
x of temporal

discretized approximations of the BDSDEs in (3.9) and (3.46), respectively, we have
that (see [3])

E
n
x [Yn] = E

n
x [Yn+1]+E

n
x [hn+1Yn+1]∆Vtn +E

n
x

[
ρ̃tn+1

σtn+1

Zn+1

]

∆Vtn , (3.48)

←−
E

n+1
x [

−→
Y n+1] =

←−
E

n+1
x [

−→
Y n]+

←−
E

n
x

[

−
←−
b ′

n

−→
Y n

]

∆t

+
←−
E

n+1
x

[←−
h n

−→
Y n

]

∆Vtn −
←−
E

n+1
x

[
ρ̃tn
σtn

−→
Z n

]

∆Vtn , (3.49)

where
hn+1 :=h(Xtn+1

),
←−
b ′

n := b′tn(
←−
X tn),

←−
h n :=h(

←−
X tn).

By the definition of expectations En
x and E

←−−
n+1
x ,

E
n
x [hn+1]=E

[

h(Xtn,x
tn+1

)
]

,
←−
E

n+1
x

[←−
b ′

n

]

=E

[

b′n(
←−
X

tn+1,x
tn )

]

,
←−
E

n+1
x

[←−
h n

]

=E

[

h(
←−
X

tn+1,x
tn )

]

.

Multiplying (3.49) by E
←−n
x [

−→
Y n] and (3.49) by E

n+1
x [Yn+1], then taking integral with

respect to dx, we obtain
〈

E
n
x [Yn] ,

←−
E

n
x [
−→
Y n]

〉

=
〈

E
n
x [Yn+1] ,

←−
E

n
x [
−→
Y n]

〉

+
〈

E
n
x [hn+1Yn+1] ,

←−
E

n
x [
−→
Y n]

〉

∆Vtn

+

〈

E
n
x

[
ρ̃tn+1

σtn+1

Zn+1

]

,
←−
E

n
x [
−→
Y n]

〉

∆Vtn

(3.50)

and
〈←−
E

n+1
x [

−→
Y n+1],E

n+1
x [Yn+1]

〉

=
〈←−
E

n+1
x [

−→
Y n],E

n+1
x [Yn+1]

〉

+
〈←−
E

n+1
x

[

−
←−
b ′

n

−→
Y n

]

,En+1
x [Yn+1]

〉

∆t

+
〈←−
E

n+1
x

[←−
h n

−→
Y n

]

,En+1
x [Yn+1]

〉

∆Vtn −

〈
←−
E

n+1
x

[
ρ̃tn
σtn

−→
Z n

]

,En+1
x [Yn+1]

〉

∆Vtn .

(3.51)
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Subtraction of (3.51) from (3.50) results in

〈

E
n
x [Yn] ,

←−
E

n
x [
−→
Y n]

〉

−
〈←−
E

n+1
x [

−→
Y n+1],E

n+1
x [Yn+1]

〉

=
〈

E
n
x [Yn+1] ,

←−
E

n
x [
−→
Y n]−

←−
E

n+1
x [

−→
Y n]

〉

+
〈←−
E

n+1
x [

−→
Y n],E

n
x [Yn+1]−E

n+1
x [Yn+1]

〉

︸ ︷︷ ︸

(iv)

+
〈

E
n
x [hn+1Yn+1] ,

←−
E

n
x [
−→
Y n]

〉

∆Vtn −
〈←−
E

n+1
x

[←−
h n

−→
Y n

]

,En+1
x [Yn+1]

〉

∆Vtn
︸ ︷︷ ︸

(v)

+

〈

E
n
x

[
ρ̃tn+1

σtn+1

Zn+1

]

,
←−
E

n
x [
−→
Y n]

〉

∆Vtn +

〈
←−
E

n+1
x

[
ρ̃tn
σtn

−→
Z n

]

,En+1
x [Yn+1]

〉

∆Vtn

︸ ︷︷ ︸

(vi)

−
〈←−
E

n+1
x

[

−
←−
b ′

n

−→
Y n

]

,En+1
x [Yn+1]

〉

∆t.

(3.52)
In what follows, we prove that by taking the sum of equation (3.52) from n=0 to
n=N−1, the right hand side of the resulting equation converges to 0 as ∆t→0. To
this end we estimate terms (iv), (v) and (vi) one by one.

(iv) By the definitions E
←−n
x and E

n
x , we have

←−
E

n
x [
−→
Y n]−

←−
E

n+1
x [

−→
Y n]=E

[−→
Y n(x)−

−→
Y n(

←−
X

tn+1,x

tn )
]

,

E
n
x [Yn+1]−E

n+1
x [Yn+1]=E

[

Yn+1(X
tn,x
tn+1

)−Yn+1(x)
]

.

It follows from Itô’s formula that

−→
Y n(

←−
X

tn+1,x

tn ) =
−→
Y n(x)+

∫ tn+1

tn

(
−bs(

←−
X tn+1,x

s )
−→
Y ′

n(
←−
X tn+1,x

s )+
(σs)

2

2

−→
Y ′′

n(
←−
X tn+1,x

s )
)
ds

+

∫ tn+1

tn

σs
−→
Y ′

n(
←−
X tn+1,x

s )d
←−
W s, (3.53)

Yn+1(X
tn,x
tn+1

) = Yn+1(x)+

∫ tn+1

tn

(
bs(X

tn,x
s )Y ′

n+1(X
tn,x
s )+

(σs)
2

2
Y ′′
n+1(X

tn,x
s )

)
ds

+

∫ tn+1

tn

σsY
′
n+1(X

tn,x
s )dWs. (3.54)

Taking conditional expectation E to Equations (3.53) and (3.54), we obtain

←−
E

n
x [
−→
Y n]−

←−
E

n+1
x [

−→
Y n] = −E

[∫ tn+1

tn

(
−bs(

←−
X tn+1,x

s )
−→
Y ′

n(
←−
X tn+1,x

s )+
(σs)

2

2

−→
Y ′′

n(
←−
X tn+1,x

s )
)
ds

]

= −E

[

−bn(
←−
X

tn+1,x

tn )
−→
Y ′

n(
←−
X

tn+1,x

tn )+
(σtn)

2

2

−→
Y ′′

n(
←−
X

tn+1,x

tn )

]

·∆t+
−→
Rn,

E
n
x [Yn+1]−E

n+1
x [Yn+1] = E

[∫ tn+1

tn

(
bs(X

tn,x
s )Y ′

n+1(X
tn,x
s )+

(σs)
2

2
Y ′′
n+1(X

tn,x
s )

)
ds

]

= E

[

bn(X
tn,x
tn )Y ′

n+1(X
tn,x
tn )+

(σtn)
2

2
Y ′′
n+1(X

tn,x
tn )

]

·∆t+Rn,
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where

−→
Rn := −E

[∫ tn+1

tn

(
−bs(

←−
X tn+1,x

s )
−→
Y ′

n(
←−
X tn+1,x

s )+
(σs)

2

2

−→
Y ′′

n(
←−
X tn+1,x

s )
)
ds

]

+E

[

−bn(
←−
X

tn+1,x

tn )
−→
Y ′

n(
←−
X

tn+1,x

tn )+
(σtn)

2

2

−→
Y ′′

n(
←−
X

tn+1,x

tn )

]

·∆t,

Rn := E

[∫ tn+1

tn

(
bs(X

tn,x
s )Y ′

n+1(X
tn,x
s )+

(σs)
2

2
Y ′′
n+1(X

tn,x
s )

)
ds

]

−E
[
bn(X

tn,x
tn )Y ′

n+1(X
tn,x
tn )+

(σtn)
2

2
Y ′′
n+1(X

tn,x
tn )

]
·∆t.

As a consequence

〈

E
n
x [Yn+1] ,

←−
E

n
x [
−→
Y n]−

←−
E

n+1
x [

−→
Y n]

〉

= −

∫

R

E

[

Yn+1(X
tn,x
tn+1

)
](

E
[
−bn(

←−
X

tn+1,x

tn )
−→
Y ′

n(
←−
X

tn+1,x

tn )+
(σtn)

2

2

−→
Y ′′

n(
←−
X

tn+1,x

tn )
]
·∆t−

−→
Rn

)

dx.

(3.55)
Similarly

〈←−
E

n+1
x [

−→
Y n],E

n
x [Yn+1]−E

n+1
x [Yn+1]

〉

=

∫

R

E

[−→
Y n(

←−
X

tn+1,x

tn )
](

E
[
bn(X

tn,x
tn )Y ′

n+1(X
tn,x
tn )+

(σtn)
2

2
Y ′′
n+1(X

tn,x
tn )

]
·∆t+Rn

)

dx.

(3.56)
Adding (3.55) to (3.56) we have that

(iv)=
(

−

∫

R

E

[

Yn+1(X
tn,x
tn+1

)
]

E
[
−bn(

←−
X

tn+1,x

tn )
−→
Y ′

n(
←−
X

tn+1,x

tn )
]
dx

︸ ︷︷ ︸

(iv−1)

+

∫

R

E

[−→
Y n(

←−
X

tn+1,x

tn )
]

E
[
bn(X

tn,x
tn )Y ′

n+1(X
tn,x
tn )

]
dx

︸ ︷︷ ︸

(iv−2)

)

·∆t

+
(

−

∫

R

E

[

Yn+1(X
tn,x
tn+1

)
]

E
[ (σtn)

2

2

−→
Y ′′

n(
←−
X

tn+1,x

tn )
]
dx

︸ ︷︷ ︸

(iv−3)

+

∫

R

E

[−→
Y n(

←−
X

tn+1,x

tn )
]

E
[ (σtn)

2

2
Y ′′
n+1(X

tn,x
tn )

]
dx

︸ ︷︷ ︸

(iv−4)

)

·∆t+Rx
n,

(3.57)

where

Rx
n=

∫

R

E[Yn+1(X
tn,x
tn+1

)]
−→
Rndx+

∫

R

E[
−→
Y n(

←−
X

tn+1,x

tn )]Rndx.
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Again by using the Itô formula we obtain

−→
Y ′

n(
←−
X

tn+1,x

tn ) =
−→
Y ′

n(x)+

∫ tn+1

tn

(
−bs(

←−
X tn+1,x

s )
−→
Y ′′

n(
←−
X tn+1,x

s )+
(σs)

2

2

−→
Y (3)

n (
←−
X tn+1,x

s )
)
ds

+

∫ tn+1

tn

σs
−→
Y ′′

n(
←−
X tn+1,x

s )d
←−
W s,

−→
Y ′′

n(
←−
X

tn+1,x
tn ) =

−→
Y ′′

n(x)+

∫ tn+1

tn

(
−bs(

←−
X tn+1,x

s )
−→
Y (3)

n (
←−
X tn+1,x

s )+
(σs)

2

2

−→
Y (4)

n (
←−
X tn+1,x

s )
)
ds

+

∫ tn+1

tn

σs
−→
Y (3)

n (
←−
X tn+1,x

s )d
←−
W s,

bn(
←−
X

tn+1,x

tn ) = bn(x)+

∫ tn+1

tn

−bs(
←−
X tn+1,x

s )b′n(
←−
X tn+1,x

s )+
(σs)

2

2
b′′n(

←−
X tn+1,x

s )
)
ds

+

∫ tn+1

tn

σsb
′
n(
←−
X tn+1,x

s )d
←−
W s.

Hence, the term E
[
bn(

←−
X

tn+1,x

tn )
−→
Y ′

n(
←−
X

tn+1,x

tn )
]
on the right hand side of (3.57) can be

written as E
[
bn(

←−
X

tn+1,x

tn )
−→
Y ′

n(
←−
X

tn+1,x

tn )
]
= bn(x)

−→
Y ′

n(x)+Pn(x) with

Pn(x)=E

[

bn(x) ·

∫ tn+1

tn

(
−bs(

←−
X tn+1,x

s )
−→
Y ′′

n(
←−
X tn+1,x

s )+
(σs)

2

2

−→
Y (3)

n (
←−
X tn+1,x

s )
)
ds

+
−→
Y ′

n(x) ·

∫ tn+1

tn

(
−bs(

←−
X tn+1,x

s )b′n(
←−
X tn+1,x

s )+
(σs)

2

2
b′′n(

←−
X tn+1,x

s )
)
ds

+

∫ tn+1

tn

(
−bs(

←−
X tn+1,x

s )b′n(
←−
X tn+1,x

s )+
(σs)

2

2
b′′n(

←−
X tn+1,x

s )
)
ds

·

∫ tn+1

tn

(
−bs(

←−
X tn+1,x

s )
−→
Y ′′

n(
←−
X tn+1,x

s )+
(σs)

2

2

−→
Y (3)

n (
←−
X tn+1,x

s )
)
ds

+

∫ tn+1

tn

(σs)
2b′n(

←−
X tn+1,x

s )
−→
Y ′′

n(
←−
X tn+1,x

s )ds
]

.

As a result the terms on the right hand side of (3.57) can be rewritten as

(iv−1) =

∫

R

(
Yn+1(x) ·bn(x)

−→
Y ′

n(x)
)
dx+H1

n, (3.58)

(iv−2) =

∫

R

(−→
Y n(x)bn(x)Y

′
n+1(x)

)
dx+H2

n, (3.59)

(iv−3) = −

∫

R

(σtn)
2

2
Yn+1(x)

−→
Y ′′

n(x)dx+H3
n, (3.60)

(iv−4) =

∫

R

(σtn)
2

2

−→
Y n(x)Y

′′
n+1(x)dx+H4

n, (3.61)
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where

H1
n=

∫

R

{(

Yn+1(x)+E[

∫ tn+1

tn

(
bs(X

tn,x
s )Y ′

n+1(X
tn,x
s )+

(σs)
2

2
Y ′′
n+1(X

tn,x
s )

)
ds
)
]
)

·Pn(x)

+E[

∫ tn+1

tn

(
bs(X

tn,x
s )Y ′

n+1(X
tn,x
s )+

(σs)
2

2
Y ′′
n+1(X

tn,x
s )

)
ds
)
] ·bn(x)

−→
Y ′

n(x)
}
dx,

H2
n=

∫

R

{
E[

∫ tn+1

tn

(
−bs(

←−
X tn+1,x

s )
−→
Y ′

n(
←−
X tn+1,x

s )+
(σs)

2

2

−→
Y ′′

n(
←−
X tn+1,x

s )
)
ds] ·bn(x)Y

′
n+1(x)

}
dx,

H3
n=−

∫

R

{
Yn+1(x) ·

(σtn)
2

2
E[

∫ tn+1

tn

(
−bs(

←−
X tn+1,x

s )
−→
Y (3)

n (
←−
X tn+1,x

s )+
(σs)

2

2

−→
Y (4)

n (
←−
X tn+1,x

s )
)
ds]

+E[

∫ tn+1

tn

(
bs(X

tn,x
s )Y ′

n+1(X
tn,x
s )+

(σs)
2

2
Y ′′
n+1(X

tn,x
s )

)
ds

)
] ·
(σtn)

2

2

−→
Y ′′

n(x)

+E[

∫ tn+1

tn

(
bs(X

tn,x
s )Y ′

n+1(X
tn,x
s )+

(σs)
2

2
Y ′′
n+1(X

tn,x
s )

)
ds

)
]

·
(σtn)

2

2
E[

∫ tn+1

tn

(
−bs(

←−
X tn+1,x

s )
−→
Y (3)

n (
←−
X tn+1,x

s )+
(σs)

2

2

−→
Y (4)

n (
←−
X tn+1,x

s )
)
ds]

}
dx,

H4
n=

∫

R

{
E[

∫ tn+1

tn

(
−bs(

←−
X tn+1,x

s )
−→
Y ′

n(
←−
X tn+1,x

s )+
(σs)

2

2

−→
Y ′′

n(
←−
X tn+1,x

s )
)
]ds ·

(σtn)
2

2
Y ′′
n+1(x)

}
dx.

Integrating by parts, we obtain

∫

R

(
Yn+1(x) ·bn(x)

−→
Y ′

n(x)
)
dx = −

∫

R

Y ′
n+1(x)bn(x)

−→
Y n(x)dx

−

∫

R

Yn+1(x)b
′
n(x)

−→
Y n(x)dx, (3.62)

−

∫

R

(σtn)
2

2
Yn+1(x)

−→
Y ′′

n(x)dx =

∫

R

(σtn)
2

2
Y ′
n+1(x)

−→
Y ′

n(x)dx, (3.63)

∫

R

(σtn)
2

2

−→
Y n(x)Y

′′
n+1(x)dx = −

∫

R

(σtn)
2

2

−→
Y ′

n(x)Y
′
n+1(x)dx. (3.64)

Adding (3.58) to (3.59) and applying (3.62), the sum of the first two terms on the right
hand side of (3.57) becomes

−

∫

R

E[Yn+1(X
tn,x
tn+1

)]E
[
−bn(

←−
X

tn+1,x

tn )
−→
Y ′

n(
←−
X

tn+1,x

tn )
]
dx

+

∫

R

E[
−→
Y n(

←−
X

tn+1,x

tn )]E
[
bn(X

tn,x
tn )Y ′

n+1(X
tn,x
tn )

]
dx

=−

∫

R

Yn+1(x)b
′
n(x)

−→
Y n(x)dx+H1

n+H2
n.

(3.65)

Similarly, adding (3.60) to (3.61) and applying (3.64), (3.64) yields

−

∫

R

E[Yn+1(X̃
tn,x
tn+1

)]E
[ (σtn)

2

2

−→
Y ′′

n(
←−
X

tn+1,x

tn )
]
dx+

∫

R

E[
−→
Y n(

←−
X

tn+1,x

tn )]E
[ (σtn)

2

2
Y ′′
n+1(X̃

tn,x
tn )

]
dx

=H3
n+H4

n,
(3.66)
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which is the sum of the last two terms on the right hand side of (3.57).
For first two terms on the right hand side of equation (3.52), we insert (3.65) and

(3.66) into (3.57) to obtain the following equation

〈

E
n
x [Yn+1],

←−
E

n
x [
−→
Y n]−

←−
E

n+1
x [

−→
Y n]

〉

+
〈←−
E

n+1
x [

−→
Y n],E

n
x [Yn+1]−E

n+1
x [Yn+1]

〉

=
(
−

∫

R

Yn+1(x)b
′
n(x)

−→
Y n(x)dx

)
∆t+(H1

n+H2
n+H3

n+H4
n)∆t+Rx

n.
(3.67)

Next, we consider the term
〈

E
n
x [hn+1Yn+1],

←−
E

n
x [
−→
Y n]

〉

∆Vtn −
〈←−
E

n+1
x [

←−
h n

−→
Y n],E

n+1
x [Yn+1]

〉

∆Vtn

in (3.52). From the definition of En
x and

←−
E

n+1
x , one has

〈

E
n
x [hn+1Yn+1],

←−
E

n
x [
−→
Y n]

〉

∆Vtn −
〈←−
E

n+1
x [

←−
h n

−→
Y n],E

n+1
x [Yn+1]

〉

∆Vtn

=

∫

R

E[h(Xtn,x
tn+1

)Yn+1(X
tn,x
tn+1

)
−→
Y n(x)]−E[h(

←−
X

tn+1,x
tn )

−→
Y n(

←−
X

tn+1,x
tn )Yn+1(x)]dx∆Vtn .

(3.68)
We apply Itô formula to h on time interval [tn,tn+1] to get

h(Xtn,x
tn+1

)=h(x)+

∫ tn+1

tn

bs(X
tn,x
s )h′(Xtn,x

s )+
(σs)

2

2
h′′(Xtn,x

s )
)
ds

+

∫ tn+1

tn

σsh
′(Xtn,x

s )dWs,

and

h(
←−
X

tn+1,x

tn )=h(x)+

∫ tn+1

tn

−bs(
←−
X tn+1,x

s )h′(
←−
X tn+1,x

s )+
(σs)

2

2
h′′(

←−
X tn+1,x

s )
)
ds

+

∫ tn+1

tn

σsh
′(
←−
X tn+1,x

s )d
←−
W s.

Thus

E[h(Xtn,x
tn+1

)Yn+1(X
tn,x
tn+1

)
−→
Y n(x)]

= h(x)Yn+1(x)
−→
Y n(x)+

−→
Y n(x) ·E

[(
h(Xtn,x

tn+1
)−h(x)

)
Yn+1(x)

+h(x)
(
Yn+1(X

tn,x
tn+1

)−Yn+1(x)
)
+
(
h(Xtn,x

tn+1
)−h(x)

)(
Yn+1(X

tn,x
tn+1

)−Yn+1(x)
)]

and

E[h(
←−
X

tn+1,x
tn )

−→
Y n(

←−
X

tn+1,x
tn )Yn+1(x)]

= h(x)
−→
Y n(x)Yn+1(x)+Yn+1(x) ·E

[(
h(
←−
X

tn+1,x
tn )−h(x)

)−→
Y n(x)

+h(x)
(−→
Y n(

←−
X

tn+1,x
tn )−

−→
Y n(x)

)
+
(
h(
←−
X

tn+1,x
tn )−h(x)

)(−→
Y n(

←−
X

tn+1,x
tn )−

−→
Y n(x)

)]
.

With the above equations, (3.68) becomes

〈

E
n
x [hn+1Yn+1],

←−
E

n
x [
−→
Y n]

〉

∆Vtn −
〈←−
E

n+1
x [

←−
h n

−→
Y n],E

n+1
x [Yn+1]

〉

∆Vtn =G1
n∆Vtn ,

(3.69)
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where

G1
n=

∫

R

{−→
Y n(x) ·E

[(
h(Xtn,x

tn+1
)−h(x)

)
Yn+1(x)

+h(x)
(
Yn+1(X

tn,x
tn+1

)−Yn+1(x)
)
+
(
h(Xtn,x

tn+1
)−h(x)

)(
Yn+1(X

tn,x
tn+1

)−Yn+1(x)
)]

−Yn+1(x) ·E
[(
h(
←−
X

tn+1,x
tn )−h(x)

)−→
Y n(x)

+h(x)
(−→
Y n(

←−
X

tn+1,x
tn )−

−→
Y n(x)

)
+
(
h(
←−
X

tn+1,x
tn )−h(x)

)(−→
Y n(

←−
X

tn+1,x
tn )−

−→
Y n(x)

)]}
dx.

Finally, we consider the term

〈

E
n
x [
ρ̃tn+1

σtn+1

Zn+1],
←−
E

n
x [
−→
Y n]

〉

∆Vtn +

〈
←−
E

n+1
x [

ρ̃tn
σtn

−→
Z n],E

n+1
x [Yn+1]

〉

∆Vtn

on the right hand side of equation (3.52). From the relation between Zt and
∂Yt

∂x given
in (2.8), we know that

Zn+1(X
tn,x
tn+1

)=
∂Yn+1(X

tn,x
tn+1

)

∂x
(∇Xtn,x

tn+1
)−1σtn+1

and
−→
Z n(

←−
X

tn+1,x
tn )=

∂
−→
Y n(

←−
X

tn+1,x
tn )

∂x
(∇

←−
X

tn+1,x
tn )−1σtn .

Therefore we have
〈

E
n
x [
ρ̃tn+1

σtn+1

Zn+1],
←−
E

n
x [
−→
Y n]

〉

= E

[∫

R

ρ̃tn+1

σtn+1

Zn+1(X
tn,x
tn+1

) ·
−→
Y n(x)dx

]

= E

[∫

R

ρ̃tn+1

∂Yn+1(X
tn,x
tn+1

)

∂x
·
−→
Y n(x) ·(∇Xtn,x

tn+1
)−1dx

]

(3.70)
and
〈
←−
E

n+1
x [

ρ̃tn
σtn

−→
Z n],E

n+1
x [Yn+1]

〉

= E

[∫

R

ρ̃tn
σtn

−→
Z n(

←−
X

tn+1,x
tn ) ·Yn+1(x)dx

]

= E

[∫

R

ρ̃tn
∂
−→
Y n(

←−
X

tn+1,x
tn )

∂x
·Yn+1(x) ·(∇

←−
X

tn+1,x
tn )−1dx

]

,

(3.71)
Adding (3.70) and (3.71) together, we obtain

〈

E
n
x [
ρ̃tn+1

σtn+1

Zn+1],
←−
E

n
x [
−→
Y n]

〉

+

〈
←−
E

n+1
x [

ρ̃tn
σtn

−→
Z n],E

n+1
x [Yn+1]

〉

= E

[∫

R

ρ̃tn+1

∂Yn+1

∂x
(x) ·

−→
Y n(x)dx+

∫

R

ρ̃tn+1

∂
−→
Y n

∂x
(x) ·Yn+1(x)dx

]

+G2
n,

(3.72)

where

G2
n=E

[∫

R

ρ̃tn+1

∂Yn+1

∂x
(Xtn,x

tn+1
) ·
−→
Y n(x) ·(∇Xtn ,x

tn+1
)−1dx−

∫

R

ρ̃tn+1

∂Yn+1

∂x
(x) ·

−→
Y tn(x)dx

]

+E

[∫

R

ρ̃tn
∂
−→
Y n

∂x
(
←−
X

tn+1,x
tn )) ·Yn+1(x) ·(∇

←−
X

tn+1,x
tn )−1dx−

∫

R

ρ̃tn+1

∂
−→
Y n

∂x
(x) ·Yn+1(x)dx

]

.
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Integrating by parts gives,

∫

R

ρ̃tn+1

∂Yn+1

∂x
(x) ·

−→
Y n(x)dx=−

∫

R

ρ̃tn+1

∂
−→
Y n

∂x
(x) ·Yn+1(x)dx.

Therefore

G2
n=

〈

E
n
x [
ρ̃tn+1

σtn+1

Zn+1],E
←−n
x [

−→
Y n]

〉

∆Vtn +

〈

E
←−−
n+1
x [

ρ̃tn
σtn

−→
Z n],E

n+1
x [Yn+1]

〉

. (3.73)

From (3.67), (3.69) and (3.73), equation (3.52) becomes

〈

E
n
x [Yn],

←−
E

n
x [
−→
Y n]

〉

−
〈

E
n+1
x [Yn+1],

←−
E

n+1
x [

−→
Y n+1]

〉

=
(
−

∫

R

Yn+1(x)b
′
n(x)

−→
Y n(x)dx

)
∆t+(H1

n+H2
n+H3

n+H4
n)∆t+Rx

n

+

∫

R

E[b′n(
←−
X

tn+1,x
tn )

−→
Y n(

←−
X

tn+1,x
tn )]Yn+1(x)dx∆t+Gn∆Vtn

=Hn∆t+Rx
n+Gn∆Vtn +Fn∆t,

(3.74)

where
Hn=H1

n+H2
n+H3

n+H4
n, Gn=G1

n+G2
n

and

Fn=

∫

R

Yn+1(x)
(

E
[
b′n(

←−
X

tn+1,x
tn )

−→
Y n(

←−
X

tn+1,x
tn )

]
−b′n(x)

−→
Y n(x)

)

dx.

Next, we sum (3.74) from n=0 to n=N−1 to get

〈

E
0
x[Y0],

←−
E

0
x[
−→
Y 0]

〉

−
〈←−
E

N
x [

−→
Y N ],EN

x [YN ]
〉

=

N−1∑

n=0

(Hn∆t+Rx
n+Gn∆Vtn +Fn∆t).

(3.75)

From definitions of Hn , Rx
n, Gn and Fn, it’s easy to verify that E[(Hn)

2]≤C(∆t)2,
E[(Rx

n)
2]≤C(∆t)4,E[(Gn)

2]≤C(∆t)2 and E[(Fn)
2]≤C(∆t). Therefore,

lim
∆t→0

N−1∑

n=0

(Hn∆t+Rx
n+Gn∆Vtn +Fn∆t)=0, a.s..

Also, since lim∆t→0Y0=Ys and lim∆t→0YN =Yt, we have

〈

Ys,
−→
Y s

〉

=
〈

Yt,
−→
Y t

〉

as required. �

Now are ready to state the main result in this paper. It is a direct consequence of
Theorems 3.2 and 3.5.

Theorem 3.6 Assume that the ssumptions in Theorem 3.2 and Theorem 3.5 hold.

Then 〈−→
Y T ,φ

〉

= Ẽ
[
φ(UT )QT

∣
∣FV

T

]
, ∀φ∈L∞(Rd).
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Proof. Applying Theorem 3.5, one has
〈−→
Y T ,YT

〉

=
〈−→
Y 0,Y0

〉

.

Since YT =φ as given in (3.9),
−→
Y 0=p0 as given in (3.46) and Y0= Ẽx

[
φ(ST )QT

∣
∣FV

T

]

as proved in Theorem 3.2, we have

〈−→
Y T ,φ

〉

=

∫

R

p0(x)Ẽx[φ(UT )QT

∣
∣FV

T ]dx.

Let ϕ be any bounded FV
T measurable random variable,

Ẽx[
〈−→
Y T ,φ

〉

ϕ]=

∫

R

p0(x)Ẽx[φ(UT )QTϕ]dx.

It then follows from the fact that P̃x(·|FV
T )= P̃ (·|FV

T ), and definition of P̃

Ẽ[
〈−→
Y T ,φ

〉

ϕ]= Ẽ[φ(UT )QTϕ],

as required in the theorem. �
Remark. From (2.4), we can see that

E
[
φ(UT )

∣
∣FV

T

]
=

〈−→
Y T ,YT

〉

Ẽ
[
Qt

∣
∣FV

t

]

Thus the solution
−→
Y T of the FBDSDE (3.46) indeed provides an unnormalized solution

for the optimal filter problem.

4 Closing Remarks

In this paper, we derived a Feymann-Kac type BDSDE formula for optimal filter prob-
lems and its adjoint. Then we show that the adjoint provides a unnormalized solution
for the optimal filter problem (BSDE filter). As our preliminary work has shown, the
BSDE filter has the potential to solve the optimal filter problem with more accuracy
and less complexity than traditional filter methods.
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