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Abstract. Particle-based stochastic reaction-diffusion (PBSRD) models are a popular approach
for studying biological systems involving both noise in the reaction process and diffusive transport. In
this work we derive coarse-grained deterministic partial integro-differential equation (PIDE) models
that provide a mean field approximation to the volume reactivity PBSRD model, a model com-
monly used for studying cellular processes. We formulate a weak measure-valued stochastic process
(MVSP) representation for the volume reactivity PBSRD model, demonstrating for a simplified but
representative system that it is consistent with the commonly used Doi Fock space representation of
the corresponding forward equation. We then prove the convergence of the general volume reactivity
model MVSP to the mean field PIDEs in the large-population (i.e., thermodynamic) limit.
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1. Introduction. The dynamics of many biological processes rely on an inter-
play between spatial transport and chemical reaction. At the scale of a single cell,
experiments have demonstrated that many such processes have stochastic dynamics.
Particle-based stochastic reaction-diffusion (PBSRD) models are a widely used ap-
proach for studying such processes, explicitly modeling the diffusion of, and reactions
between, individual molecules. PBSRD models are appropriate for studying chemical
systems in cells containing up to hundreds of thousands to millions of molecules, over
timescales of days. They are more macroscopic descriptions than millisecond-timescale
quantum mechanical or molecular dynamics models of a few molecules [S09], but
more microscopic descriptions than deterministic three-dimensional reaction-diffusion
PDEs for the average concentration of each species of molecule. One PBSRD model
that has been widely used to study biological processes is the volume reactivity (VR)
model of Doi [TS67, D76a, D76b]. In this model positions of individual molecules
are typically represented as points undergoing Brownian motion. Bimolecular reac-
tions between two reactant molecules occur with a probability per unit time based on
their current positions [D76a, D76b]. Unimolecular reactions are typically assumed to
represent internal processes and as such are modeled as occurring with exponentially
distributed times based on a specified reaction rate constant.

Due to their mathematical complexity and high dimensionality, PBSRD models
are almost entirely studied by Monte Carlo simulation approximating the underlying
stochastic process of molecules diffusing and reacting. The computational expense of
such methods can greatly limit the size of chemical systems (in each of number of
molecules, number of reactions, or physical domain size) that can be studied. One
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approach to overcoming this challenge is to use more coarse-grained mathematical
models that accurately capture the dynamics of the underlying PBSRD model in ap-
propriate physical regimes. Deterministic and stochastic partial differential equation
(PDE/SPDE) models are often postulated as coarse-grainings of PBSRD models in
certain large-population or thermodynamic limits where the population size becomes
unbounded but species concentrations are held fixed. However, for the PBSRD models
commonly used in biological modeling, e.g., the VR model and the contact reactivity
model, there is limited rigorous work identifying and proving the existence of such
deterministic coarse-grained limits (i.e., law of large numbers).

To facilitate the development of rigorous coarse-grainings of PBSRD models, our
work begins with formulating the dynamics of the diffusing and reacting molecules
as measure-valued stochastic processes (MVSPs). These processes describe the evo-
lution of the concentration fields of each chemical species as a sum of ¢ functions in
each molecule’s position. A weak formulation of the dynamics of these processes is
then derived, giving the action of the processes on an arbitrary test function. The
subsequent equations for the time evolution of the pairing between a test function and
the MVSP then involve both continuous noise processes that account for the diffusion
of individual molecules and state-dependent Poisson-random measures that encode
the timing and occurrence of chemical reactions between molecules. We establish in
a simplified, but representative, case that the MVSP is equivalent to the commonly
used Doi Fock space representation for the forward equation of the VR model.

We then investigate the large-population limit of the MVSP dynamics in which
the initial number of molecules of each chemical species becomes unbounded, but the
concentrations of each species are held fixed. The latter can be achieved by consider-
ing molar concentrations and treating Avogadro’s number and/or the domain volume
as a large “system size” parameter. As we work in free space, here we consider the
limit where Avogadro’s number can be considered a large parameter. Such limits are
typically considered one of the primary physical regimes in which PDE or SPDE mod-
els for biological systems arise as physical approximations to the underlying process
of molecules diffusing and reacting [AT80, LLN19, HCDWS19].

To rigorously determine the limit of the VR model, we will generalize the mar-
tingale problem approach for studying solutions to stochastic differential equations
developed by Stroock and Varadhan [EK86, SV06] to our weak MVSP representation.
Adaptations of this method have been successfully used to study large-population lim-
its in stochastic models for population dynamics, evolutionary dynamics, interacting
particle systems, and financial models [GSS13, GSSS15, DH96, DH09, DIRT15, IT15,
MS02, SCS88]. We first identify a macroscopic system of partial integro-differential
equations (PIDEs) whose solution corresponds to the large population limit of the
MVSP, and then rigorously prove the convergence (in a weak sense) of the MVSP to
this solution.

Our approach is unique in using a bottom-up hierarchy to rigorously derive from
spatial PBSRD models new macroscopic PIDEs that correspond to the true large-
population limit, and which correctly account for chemical interactions between par-
ticles. This is in contrast to the standard macroscopic reaction-diffusion PDE models
of chemical reaction systems used at the cellular scale [NTS08, MNKS09]. The lat-
ter are typically obtained by formally modifying reaction rate equation ODE models
for nonspatial chemical reaction systems by simply adding Laplacian terms to model
molecular diffusion.

To illustrate our main result, consider the special case of the reversible reaction
A +B = C. Let v denote a system size parameter (i.e., Avogadro’s number, or
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in bounded domains the product of Avogadro’s number and the domain volume).
We assume all molecules move by Brownian motion in R?, with species-dependent
diffusivities, DA, DB, and D€, respectively. Let K] (z,y) = Ki(x,y)/v denote the
probability per time an individual A molecule at  and B molecule at y can react,
with mq (z]z, y) giving the probability density that when the A and B molecules react
they produce a C molecule at z. We define KJ(z) = Ka(z) and ma(z,y|z) similarly
for the reverse reaction. Finally, denote by A(t) the stochastic process for the number
of species A molecules at time ¢, and label the position of the ith molecule of species
A at time ¢ by the stochastic process Q?(t) C R?. The random measure

At

)
_OA®
> i (e-al)

corresponds to the stochastic process for the molar concentration of species A at x
at time t. We can similarly define B7(z,t) and C7(z,t). In this work we study
the large population (thermodynamic) limit where v — oo and AY(z,0) converges
to a well-defined limiting molar concentration field (with similar limits for the molar
concentrations of species B and C). We prove, in a weak sense, that as v — oo,

1
AV (x,t) = —
(z,t) 5

(A7 (x,t), BY(x,t),C7 (x,t)) — (A(x,t),B(x,t),C_'(x,t)) ,

where

Az, t) = DAA(z,t) — | Ki(z,y)A(z,t)B(y,t)dy +/ Ka(z)ma(z,y|2)C(2,t) dy dz,
Rd ]R2d

OuB(z,t) = D°AB(w,t) — | Ki(w,y)Aly, ) B, ) dy + / Ka(2)ma(w, y12)C (2, 1) dy dz,
]Rd RZd

0:C(z,t) = DCAC_'(x,t) — K2(2)C(z,t) + /]R2d Ki(z,y)mi(z|z, y)A(z, t) By, t) dz dy.

Our main result, Theorem 5.5, establishes this rigorous limit for the VR PBSRD
model of general chemical reaction systems involving first and second order reactions.
To simplify the (already detailed) exposition, we impose one constraint, assuming
that the reaction network structure is such that the total concentration of molecules
in the system has a strict upper bound. Theorem 5.5 therefore does not cover reaction
systems containing reactions that can lead to unbounded population growth, ruling
out creation reactions like @ — A and A — 2A. We note, however, that we expect
our basic approach should be adaptable to such systems, but would require the intro-
duction and analysis of a stopping time for when the total population of molecules
reaches some threshold (see the discussion of Remark 5.2). This is similar to one
approach used for proving the classical large-population limit of nonspatial stochastic
chemical kinetic systems [DK15].

Upon completion of this work we became aware of the recent publication [LLN19].
In [LLN19] the authors study the rigorous large-population limit for a subset of the
reactions we allow in our VR PBSRD model, restricting to reactions of the form
A + B — C+ D. This ensures that the total number of particles is preserved for all
time in their system, allowing [LLN19] to formulate a strong-form pathwise represen-
tation for the evolution of the stochastic processes for particle positions and types.
Particle diffusion and particle-particle reactions are then represented through separate
but coupled equations. This formulation enabled the authors to use relative entropy
methods to prove propagation of chaos. In contrast, we consider general reaction
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networks as are needed to model many biological processes, in which the number of
particles in the system changes over time. We therefore work with a weak formulation,
studying the empirical distribution of particle position and type directly. As such,
while [LLN19] could leverage relative entropy methods and large deviations estimates
to establish their results and even get quantitative estimates, we will work with the
general martingale problem formulation.

The large-population limit was also studied in [O89] for PBSRD systems involving
only birth reactions (A — 2A), death reactions (A — &), and first order conversion
reactions (A — B). For such linear reaction systems the resulting mean field, large-
population limit is a system of linear, local reaction-diffusion PDEs. Our high level
formulation for the system dynamics more closely follows [O89], which also studied a
weak MVSP representation for the reaction and diffusion of particles. We stress, how-
ever, that a key difference in our work is in allowing for general second order reactions,
i.e., reactions of the form A+ B — ---, where the reaction dynamics critically depend
on spatial interactions between two individual reactant particles. Such reactions are
prevalent in most cellular signaling processes and common in many chemical network
models for biological systems. By including bimolecular reactions, formulation of the
underlying equations describing the particle dynamics is complicated by the need to
model the two-body interactions between particles and to model the placement of
reaction products in space given the positioning of reactants. The resulting large-
population limit becomes a system of nonlinear and nonlocal PIDEs. Allowing for
both changing particle numbers and bimolecular reactions results in the mathemati-
cal formulation of the problem, as presented in sections 2 and 3, being more involved
than in [O89], necessitating a number of technical estimates (given in Appendix B).

An interesting future research direction is to obtain quantitative convergence
results for general reaction networks with uneven inputs and outputs, i.e., for reaction
networks (like the ones studied in this paper) where the total number of particles are
not conserved in time. To do so, generalizations of the propagation of chaos techniques
used in [MMW15] and [LLN19] seem likely to be necessary, as such techniques largely
rely on conservation of the total number of particles in time; see also the related
discussion in [LLN19]. We leave this question for future work.

The paper is organized as follows. In section 2 we describe the problem in more
mathematical terms, introducing basic notation for specifying chemical reaction sys-
tems, for describing the system state as an MVSP for the (number) density of parti-
cles in the system, and for representing reactant (product) configuration spaces that
encode possible positions of individual reactant (product) particles involved in a re-
action. In section 3 we define reaction kernels specifying the probability per time a
reaction involving specific reactants can occur. For each reaction type we also spec-
ify a placement density. These give the probability density that product particles of
a reaction between one or more reactants are placed at specific positions. We then
introduce the stochastic equation describing the evolution of the empirical measure
(MVSP) of the chemical species in path space. In section 4 we summarize the ba-
sic assumptions we make about the form of the reaction rate functions and product
placement densities. In section 5 we present our main result, Theorem 5.5, describing
for general reaction networks the evolution equation satisfied in the large-population
limit by the empirical measures for the molar concentration of each species. We
also present a number of illustrative examples showing the derived large-population
limit for specific chemical systems. In section 6 we prove that the MVSP formula-
tion we study is equivalent to the more commonly used Fock space (i.e., Kolmogorov
forward equation) representation popularized by Doi [D76a, D76b], focusing on the
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simplified case of the reversible A + B <= C reaction. Finally, in section 7 we give the
proof of Theorem 5.5. The appendix includes proofs of a number of technical esti-
mates as well as the existence, uniqueness, and regularity statement for the forward
Kolmogorov equation of the A + B < C reaction system studied in section 6.

2. Notation and preliminary definitions. We consider a collection of parti-
cles with J possible different types. Note that in the following we will interchangeably
use particle or molecule and type or species. Let 8§ = {S7,...,5;} denote the set of
different possible particle types, with p; € 8 the value of the type of the ith particle.
In the remainder, we also assume an underlying probability triple, (Q, F,P), on which
all random variables are defined.

The goal of this paper is to study the process that molecules diffuse in space
R? freely and undergo at most L possible different types of reactions, denoted as
Ri,...,Rr. We describe the Ryth reaction, £ € {1,...,L}, by

J J
> 0S5 =D By,
j=1 j=1

where we assume the stoichiometric coefficients {ay; le and {S¢; }3]:1 are nonnegative
integers. Let a®) = (a1, oy, ..., cpy) and BE) = (Be1, Bea, ..., Bes) be multi-index

vectors collecting the coefficients of the fth reaction. We denote the reactant and
product orders of the reaction by |a(¥)| = 2;7:1 ag <2 and |BY)] = ijl Bej <2,
assuming that at most two reactants and two products participate in any reaction. We
therefore implicitly assume all reactions are at most second order. This is motivated
by the observation that the probability three reactants in a dilute system simulta-
neously have the proper configuration and energy levels to react is very small, so
that trimolecular reactions are very rare [DD03]. In biological models, such reactions
are often considered to be approximations to sequences of bimolecular reactions. For
subsequent notational purposes, we order the reactions such that the first L reactions
correspond to those that have no products, i.e., annihilation reactions of the form

J
Z Oéngj — @,
Jj=1

for¢ e{1,..., I~/} We assume the remaining L— L reactions have one or more product
particles.

Let D! label the diffusion coefficient for the ith molecule, taking values in { Dy, ...,
D}, where D; is the diffusion coefficient for species S;, j =1,...,J. We denote by
Q! € R? the position of the ith molecule, i € N, at time ¢. A particle’s state can be
represented as a vector in P =R x 8, the combined space encoding particle position
and type. This state vector is subsequently denoted by Q' def (Q%, p;).

We now formulate our representation for the (number) concentration, equivalently
number density, fields of each species. Let E be a complete metric space and M (FE)
the collection of measures on E. For f: E — R and p € M(E), define

(fs ,U>E = /eE f(x)p(dx).

We will frequently have £ = R?. In this case we omit the subscript E and simply
write (f, u). For each ¢t > 0, we define the concentration of particles in the system at
time t by the distribution
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N(#)

N(t)
(2.1) vi= 051 = Y 00i0n;
=1 i=1

where, borrowing notation from [BM15], N(t) = (1,14)p represents the stochastic
process for the total number of particles at time ¢. To investigate the behavior of
different type of particles, we denote the marginal distribution on the jth type, i.e.,
the concentration field for species j, by

vl () = (- x {5;}),

a distribution on R%. N;(t) = (1, th ) will similarly label the total number of particles
of type S; at time ¢t. For v any fixed particle distribution of the form (2.1), we will also
use an alternative representation in terms of the marginal distributions 17 € M (R?)
for particles of type j,

J

(2.2) v=> 185, € M(P).
j=1

In addition to having notations for representing particle concentration fields, we
will also often make use of state vectors for all particles in the system. With some
abuse of notation, for v; given by (2.1) denote by

(2.3) H(w) = ((Q‘t’l(l),sl) (Qfl(N‘(t)),Sl) . : (Q‘t"’(l),Sr)
(Q?J(NJ(t))7 SJ) ,0,0, .. )

a state vector of the full particle system. Here, for each type 7 = 1,...,J, the
particle index maps {c;(k) ,ivi(lt) encode a fixed ordering for particles of species 7,
Q7MW < ... < QW) arising from an (assumed) fixed underlying ordering on
R?. In H(v;), we order all particles of type 1 by the ordering on R? first, followed
by particles of type 2, then type 3, etc. As particles of the same type are assumed
indistinguishable, there is no ambiguity in the value of H(14) in the case that two
particles of the same type have the same position. H'(1;) € P will label the ith entry
of the vector H(v;). We denote by

j oj 0 (Nj

an analogous position-only state vector for type j particles, using the same ordering
on RY, with H{ (/) € R? labeling the ith entry in He(17).

With the preceding definitions, we last introduce a system of notation to encode
reactant and particle positions and configurations that are needed to later specify
reaction processes.

DEFINITION 2.1. For reaction Ry, define the reactant index space
IO = (N {0,

with the convention that if ’a(e)| =0, then 1) = & is the empty set. In describing the
dynamics of vy, we will sample vectors containing the indices of the specific reactant
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particles participating in a single -type reaction from 1), For i € 1¥) a particular
sampled set of reactant indices, we write

1 A(J (.
= (i),

where Z(j) €  labels the rth sampled index of species type j. Here we use the convention
that if ag; = 0 no indices are included in i for particles of type j (as they do not
participate in the (th reaction as a reactant). Note, as we assumed that |a®| =
Z%]=1 ap; < 2, that in practice ay; € {0,1,2} and @ correspondingly identifies zero,
one, or two reactant particles.

DEFINITION 2.2. For reaction Ry, analogous to our definition of 1), we define
the reactant position space

X = {a: = (gcgl) CL‘S)N...,xg'])7...,:rg‘2) ‘xﬁj) e R? foralll <j < J,

a2

1<r<a4j}:(Rd)

Similar to the last definition, when ay; = 0 particles of species/type j are not involved
in reaction £ and hence not included within possible reactant position vectors. For
x € X o sampled reactant position configuration for one individual Ry reaction, x(J)
then labels the sampled position for the rth reactant particle of species j involved in
the reaction. Let de = (/\;-]:1(/\w7 de”)) be the corresponding volume form on X,
which also naturally defines an associated Lebesgue measure.
DEFINITION 2.3. For reaction R, with L+1 < { < L, i.e., having at least one
product particle, define the product position space

Y(Z):{y_( (1),-..,y(51)1,...,y%‘]),... (J)> ‘ym eR? forall1 <j<J,

1< Tﬁﬁej} _ (Rd)\,f"(m.

Analogous to Definition 2.1, when B¢; = 0 species j is not a product for the Cth re-
action, and hence there will be no indices for particles of species j within the product
position space. For y € YO a sampled product position configuration for one indi-

(4)

vidual Ry reaction, y,”’ then labels the sampled posz’tion for the rth product particle of

species j involved in the reaction. Let dy = (/\] 1(/\5“ (j))) be the corresponding
volume form on YO which also naturally defines an associated Lebesque measure.

DEFINITION 2.4. Consider a fized reaction Ry, with i € I¥) and v corresponding
to a fived particle distribution given by (2.1) with representation (2.2). We define the
(th projection mapping PO : M(P) x IV — X gs

(1) i(D (D (1)
PO (v,4) = <H Wh),... . Hy" (W), ..., Hy (VJ),...,HC;”(VJ)>.

When reactants with indices © in particle distribution v are chosen to undergo a reac-
tion of type £, PY(v,4) then gives the vector of the corresponding reactant particles’
positions. For simplicity of notation, in the remainder we will sometimes evaluate
PO with inconsistent particle distributions and index vectors. In all of these cases
the inconsistency will occur in terms that are zero and hence not matter in any prac-
tical way.
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DEFINITION 2.5. Consider a fived reaction Ry with v a fixved particle distribution
given by (2.1) with representation (2.2). Using the notation of Definition 2.1, we

define the allowable reactant index sampling space Q(Z)(V) c I gs

Q(f)(l,)
2, la®] =0,
_ =i €101 < (1,09}, o] = agy =1,
(i =69, e 10 |39 < i) < (1,09)}, la®| = ay; =2,

(= 9,y €10 i < (1,09) i < (1,05}, |a®|=2, ay=am =1, j<k

Note that in the calculations that follow QW (v) will change over time due to the fact
that v = v changes over time, but this will not be explicitly denoted for notational
convenience.

DEFINITION 2.6. Consider a fized reaction Ry with v any element of M(P) hav-
ing the representation (2.2). We define the (th reactant measure mapping )\(5)[-] :

M(P) = M(X®) evaluated at x € X© via \O[v)(de) = @7_, (254,19 (dxgj))).

Jj=1 r=1

DEFINITION 2.7. For each reaction Ry, define a subspace X® c x® by removing
all particle reactant position vectors in X9 for which two particles of the same species
have the same position. That is,

X :X(g)\{wex(é)\xgj) :x,(j) for some 1< j < J 1 gk#rgagj}.

3. Generator and process level description. Let us consider the time evo-

¢
lution of the process Ve = Zf\[:l(t) 6@1- which gives the spatial distribution of all parti-

cles (i.e., number density or concentration). Here N¢(t) = (1,1°) p denotes the total
number of particles at time ¢ and { = (%,n) is a two-vector consisting of a scaling
parameter, v, and a displacement range parameter, 7. In the large population limit
we consider v plays the role of a system size and is considered to be large (e.g., Avo-
gadro’s number, or in bounded domains the product of Avogadro’s number and the
domain volume) [DK15]. On the other hand, 7 is a regularizing parameter allowing
us to be able to consider and rigorously handle delta function placement densities for
reaction products (a common choice in many PBSRD simulation methods). We will
further clarify these parameters later on, focusing on the (large-population) limit that
v — oo and 1 — 0 jointly, denoted as { — 0.

To formulate the process level model, it is necessary to specify more concretely
the reaction process between individual particles. For reaction R, denote by K (x)
the rate (i.e., probability per time) that reactant particles with positions x € X®
react. As described in the next section, we assume this rate function has a specific
scaling dependence on 7. Let m}(y | ) be the placement density when the reactants
at positions € X react and generate products at positions y € Y. We assume
this placement density depends on the displacement range parameter 1 and that for
each x and fixed n > 0, m}/(-| «) is bounded.

Stochastic particle dynamics involve both diffusive motion and chemical reactions.
In describing particle motion we will make use of {W/"},en, , a countable collection
of standard independent Brownian motions in R%. To describe a reaction R, with no
products, i.e., 1 < ¢ < L, we associate with it a Poisson point measure dNy(s,1,0)
on Ry x I¥ x R,. Here i € 1) gives the sampled reactant configuration, with i
labeling the rth sampled index of species j. The corresponding intensity measure of
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dNy is given by dN,(s,,0) = ds (/\jzl(/\a“ (Xk>0 6k( )))) df. Analogously, for
each reaction R, with products, i.e., L+1</< L, we associate with it a Poisson
point measure dNy(s, 4,4y, 01,02) on Ry x 1) x Y(® xR, xR,. Here i € I¥) gives the
sampled reactant configuration, with ’L(J ) labeling the rth sampled index of species
j. y € Y gives the sampled product configuration, with y(J ) labeling the sampled
position for the rth newly created particle of species j. The corresponding intensity

measure is given by dNy(s,,y,01,02) = ds (/\]le(/\a[J (Xk>0 5k( )))) dy df dbs.

The existence of the Poisson point measure follows as the intensity measure is
o-finite (see Chapter I, Theorem 8.1 in [NW14] or Corollary 9.7 in [KO01]). Let
ng(s i,9,01,02) = dN¢(s,4,y,01,02) — dN¢(s,4,y,01,02) be the compensated Pois-
son measure for L + 1 < ¢ < L. For any measurable set A € 1) x Y) x R x R,
Ny(-,A) is a Poisson process and Ny(-,A) is a martingale (see Proposition 9.18 in
[K01]). Similarly, we can define dNy(s,4,6) = dNy(s,,60) — dNy(s,,0) for 1 < £ < L.
In this case, given any measurable set A € I) x R, , we then have that Ny(-,A)isa
Poisson process and ]\74( -, A) is a martingale.

With the preceding definitions, we now define the dynamics of I/t( via a weak
representation. We consider test functions denoted by f € CZ( A) which we deﬁne to

mean f(-,S;) € CZ(R?) for each j. The time evolution for the process (f, v )p can
then be represented by

<f,uo +Z/ ey VD S (H 0 )aw

i>1

/ Z o (0 ))ds

S0 £ 1)

j=1r=1

¢
x I{ZEQ(E)M 7 1{9<K7(7’“)<“ ”)}dNZ 55,6) + Z / /(e) /w> /Ri <<f’ s

(=L+1

J o J By
S zza@ms)> (1), )

63
j=1r=1 HQT< =):55) j=1nr

x 1 x 1 x 1 i>)}ng(S,i,y,01,6'2).

{ie2® w§ )y * Hor<ky (PO W)} X HHoa<m] (v PO WS

Formula (3.1) captures the dynamics of our particle system. Recall that N(s) =
(1,08) p denotes the total number of molecules at time s, and D" labels the diffusion
coefficient for the ith molecule, taking values in {D;,..., D}, where Dj is the diffu-
sion coefficient for species S;, j = 1,...,J. The diffusion of each particle is modeled
by the two integrals on the first line of (3.1). The second and third lines model reac-
tions with no products, while the fourth and fifth lines model reactions with products.
The integrals involving the Poisson measures Ny, model the different components of
the reaction processes and correspond to sampling the times at which reactions oc-
cur, which reactant particles react, and where reaction products are placed When

the (th reaction happens for ¢ = L+1,...,L (and analogously for ¢ = 1,. L) with
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probability per time given by the kernel K, the system loses reactant particles and
gains product particles. Sampling of possible reaction occurrences according to K,
occurs through the corresponding indicator functions on the third and fifth lines. The
corresponding loss and gain of particles is encoded by the sums of delta functions
on the second and fourth lines of (3.1). Product positions are sampled according to
the placement density mj (y | P (v°_, 1)) through the indicator function on the fifth

line. The indicators over elements of the sets Q(¢) (l/g_) ensure that reactions can only
occur between particles that correspond to a possible set of reactants. Note that the
particle labeled by 4 in (3.1) will change dynamically as reactions occur. For this rea-
son, particle positions are accessed through the use of the state vectors, H* and H, ég,
as is also done in structured population models [BM15]. Well-posedness properties
of the model equation (3.1) are further discussed in section 5; see also Chapter 6 of
[BM15] for related results in regards to the formulation and well-posedness.

We will subsequently assume that N(t) = <1, V§> is uniformly bounded in time
in Assumption 5.1. The stochastic integral with respect to Brownian motion in (3.1)
is then a martingale (for a fixed ¢). Taking the expectation, we obtain for the mean
that

(3.2)

D' s (H' (v ))ds

+ZL:1E /t Z): )<<f, ¢ i% 1r(<7>s>>_<f’l/§_>ﬁ>

e j=lr=1 (5

x K (P(E)(Vsc_,i)) ds

9 ORIV AP S B (CESS 5 RTINS 3 SLR

7 CJ
- HY s,
(=L+1 ieQ® s ) j=tr=1 ( ws2):85) D=1

— <f, V§_>P> x K (P([)(Vf_,i)) X mj (y | P(Z)(yf_,i)) dy ds

4. Assumptions on reaction functions and placement densities. In study-
ing the large population limit that v — oo, we will constrain our choices of reaction
kernels and placement densities through the following assumptions. Special cases of
our choices include a variety of kernels and placement densities that are commonly
used in modeling and simulation [D76b, EC09, LE11, IS13, IZ18, DYK18].

Assumption 4.1. We assume that for all 1 < £ < L, the reaction rate kernel K;(x)
is uniformly bounded for all z € X(). We denote generic constants that depend on
this bound by C'(K).

Assumption 4.2. We assume that for any n > 0, L+1 < ¢ < L, y € Y,
and & € XV, the placement density m](y|z) is a bounded probability density, i.e.,

fy(e) m?(y |x)dy = 1.
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As previously mentioned, we want to allow for placement densities involving delta
functions. To do so in a mathematically rigorous way we introduced the smoothing
parameter 7, through which we can define a corresponding mollifier in a standard way,
as given by Definition (4.3). This is needed for (3.1) to be well-defined, since expres-
sions like {62 < m}(y| PO i)} are nonsensical when 1 = 0 and the placement
density is a Dirac delta function.

DEFINITION 4.3. For x € R%, let G(z) denote a standard positive mollifier and
G,(z) =n7%G(z/n). That is, G(z) is a smooth function on R satisfying the following
four requirements:

1. G(z) >0,

2. G(x) is compactly supported in B(0,1), the unit ball in R,

3. Jpa G(z)dr =1,

4. lim, 0 Gy(z) = lim,—0n~2G(z/n) = do(x), where o(x) is the Dirac delta
function and the limit is taken in the space of Schwartz distributions.

The allowable forms of the placement density for each possible reaction are given
by Assumptions 4.4-4.7.

Assumption 4.4. If R, is a first order reaction of the form S; — S;, we assume
that the placement density m;/(y|x) takes the mollified form of

my(y|z) = Gy(y — )
with the distributional limit as n — 0 given by

me(y | x) = 62(y).
This describes that the newly created S; particle is placed at the position of the
reactant .S; particle.

Assumption 4.5. If R, is a second order reaction of the form S; + S — 5;, we
assume that the binding placement density my(z | z,y) takes the mollified form of

I
my(z]z,y) = sz‘ X Gy (z = (iz + (1 — a)y))

with the distributional limit as n — 0 given by

I
me(z]@,y) =Y pi x 8 (2 = (iw + (1= a;)y)),

i=1

where I is a fixed finite integer and ) ,p; = 1. This describes that the creation
of particle S; is always on the segment connecting the reactant S; and reactant Sy
particles, but allows some random choice of position. A special case would be I = 2,
pi = %, a1 = 0, and oy = 1, which corresponds to placing the particle randomly at
the position of one of the two reactants. One common choice is taking I =1, p; =1
and choosing a1 to be the diffusion weighted center of mass [IZ18].

Assumption 4.6. If R, is a second order reaction of the form S; + S, — S; + Sy,
we assume that the placement density my(z, w|z,y) takes the mollified form of

my(z,wlz,y) =px Gy (r—2) @G, (y—w)+ (1 =p) x Gy (v —w) @G, (y — 2)
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with the distributional limit as n — 0 given by

me(z,w|2,y) = p X Ozy) ((z,w)) + (1 = p) X §(z,y) (w, 2)) .

This describes that newly created product S; and S, particles are always at the
positions of the reactant S; and Sy particles. p is typically either 0 or 1, depending
on the underlying physics of the reaction.

Assumption 4.7. If R, is a first order reaction of the form S; — S; + Sj, we
assume the unbinding displacement density is in the mollified form of

I
mi(z,y]2) = plle —y) Y pi x Gy (z = (@iz + (1 = a)y))

i=1
with the distributional limit as n — 0 given by

me(@,y|2) = pllz —y) D pi x 3 (2 = (aix + (1 — s)y))

i=1

with }°, p; = 1. Here we assume the relative separation of the product S; and Sy, parti-
cles, |z — y|, is sampled from the probability density p(|z—y|). Their (weighted) center
of mass is sampled from the density encoded by the sum of § functions. Such forms
are common for detailed balance preserving reversible bimolecular reactions [IZ18].

We further assume some regularity of the separation placement density, p(r),
introduced in Assumption 4.7.

Assumption 4.8. For Assumption 4.2 to be true, we’ll need

/Rd plJw]) duw = 1.

Since p is a probability density and nonnegative, this implies the tail estimate

/ rd_lp(r) dr <,
r>R

which we will use in subsequent calculations.

Finally, to study the large-population limit of the population density measures,
we must specify how the reaction kernels depend on the scaling parameter (i.e., system
size parameter) 7. Motivated by the classical spatially homogeneous reaction network
large-population limit [DK15], we choose as follows.

Assumption 4.9. The reaction kernel is assumed to have the explicit v dependence
that
_la®
K (@) = 11" K (a)

for anwaX(Z), 1</<L.

When interpreting the scaling parameter v as Avogadro’s number, or in bounded
domains as the product of Avogadro’s number and the domain volume [DK15], such
scalings can be derived by requiring the formal well-mixed (i.e., infinitely fast dif-
fusion) limit of the volume reactivity PBSRD model to match the corresponding
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classical spatially homogeneous stochastic chemical kinetics model. See Appendix A
for an illustrative example of how the chosen scalings arise in this case.

Recall that |a¥)| represents the number of reactant particles needed for the ¢th
reaction. As we assume |a|é < 2, we obtain three scalings for the three allowable
reaction orders:

e [a¥| = 0 corresponds to a pure birth reaction. By Assumption 4.9, the
scaling is v; i.e., a larger system size implies more births. In a well-mixed
model this would imply that as v and the initial number of molecules are
increased, we maintain a fixed rate with units of molar concentration per
time for the birth reaction to occur.

e |a®| =1 corresponds to a unimolecular reaction. By Assumption 4.9, there’s
no rescaling as it’s linear. We assume the rates of first order reactions are
internal processes to particles and as such are independent of the system size.

e |[a¥| = 2 corresponds to a bimolecular reaction. By Assumption 4.9, the
scaling of reaction kernel is y~!. As the system size increases it is harder for
two individual reactant particles to encounter each other.

5. Main result and examples. We now formulate a weak representation for
the time evolution of scaled empirical measures utc’J = %l/f’j with j =1,...,J and

uf = 1V§ = Z;-le uf’j ds;- ,uf“j physically corresponds to the molar concentration
field for species j at time t.

For a test function f € CZ(R?) and for each species j = 1,...,.J, let us define the
generator

(Ljf)(z) = DA, f(x).

We'll focus on proving the convergence as ¢ — 0 of the marginal distribution vector

1 2 J
(6t )

We make two final assumptions before stating our main result. First, to simplify the
analysis we assume the total molar concentration is bounded as ¢ — 0.

Assumption 5.1. We assume that the total (molar) population concentration sat-
isfies Zj:1<l, p$7y < C(p) for all ¢ < oo, i.e., is uniformly in time bounded by some
constant C'(). In the remainder we abuse notation and also denote generic constants
that depend on this bound by C'(u).

Remark 5.2. If we define the stopping time

J
(5.1) TC=infdt>0,) <1,u§’j> >C(p) g,

j=1

Assumption 5.1 essentially requires that P (TC = oo) = 1 for all (. We have chosen
to use the condition of Assumption 5.1 instead of introducing the stopping time 7¢
in order to simplify some of the arguments, notation, and presentation. Because of
Assumption 5.1, our main result, Theorem 5.5, does not apply to reaction networks
that include zeroth order birth reactions (i.e., reactions of the form @ — ;). Similarly,
reactions of the form S; — S; + Si would be excluded since they also allow the
possibility of unbounded population growth. In order to include such reactions, one
would need to introduce a stopping time like (5.1) for when the total molar population
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concentration first exceeds C'(u), and study its limiting behavior as n — 0. Though
we do not show it here, we conjecture that in these cases the large-population limit
of Theorem 5.5 will hold till time ¢ A Ty, where Ty is any finite time over which
the solution to the limiting mean field equations is well defined (see [IMS21al]). For
large-population limits of nonspatial stochastic chemical kinetic systems a stopping
time-based approach is carried out in [DK15], while for related structured population
models a stopping time-based approach is used in [BM15].

Note, assuming a fixed, finite number of each species at t = 0, Assumption 5.1
would, for example, always hold in systems with fully reversible reactions that do not
create particles from nothing. These include reactions of the form S; + S; <+ Sk + 51,
Si +8; < S+ Sk, Si +5; < Sk, 25; < S;, S; < 9;, etc. Reversible reactions like
I S;, S; < S + 55, or §; <+ 25; would again be excluded since they involve the
creation of new particles from nothing.

Remark 5.3. Let us now discuss the well-definiteness of the process {I/E}tzo (equi-
valently {uf}tzo) as defined via (3.1). For general reaction networks, one cannot
expect (3.1) to be well-posed for all times as, for instance, one could have finite time
blow-up (consider, for example, the standard ODE model for the reaction 25; — 35;).
On the other hand, for most biologically motivated systems one does not expect almost
sure blow-up in finite time. In fact, for systems with the pure conversion reactions
S;+Sj < S+ S, one can check that our formulation is analogous to the formulation
of [LLN19], where well-posedness of the prelimit Markov system is indeed established.
Instead of trying to prove for which combinations of reaction kernels and networks
one has well-posedness, an open problem even for deterministic reaction-diffusion PDE
models, we have made Assumption 5.1.

While we do not prove well-posedness of {I/tC }i>0 here, a basic approach one
could take to try to establish it is as follows. We first note that between the times
that two consecutive reactions take place, the number of particles in the system is
fixed, and each particle moves independently by Brownian motion. When a reaction
occurs the number of particles changes, with the positions and types of reactants and
substrates updated based on the sampling, reaction, and placements rules of (3.1) (see
also the description after (3.1)). Assumption 5.1 guarantees that the total population
concentration stays bounded. The Markov property holds because the sampling and
placement rules at the next reaction time, say, 7, depend only on the state of the
system at time 7—. Hence, Assumption 5.1, together with the boundedness and
regularity Assumptions 4.1 and 4.2, is expected to lead to a well-defined process
{v:}i>0 (equivalently {ué}i>0).

As also indicated in Chapter 6 in [BM15], instead of Assumption 5.1 it should
be sufficient to know that for every T' < oo we have the integrability condition
E[sup;co,1) Z‘j]:1<1, v$9)P] < oo for an appropriate p > 1 (together with appropriate
boundedness and regularity of reaction kernels and placement densities). A potential
method for establishing this would be to build the process step by step. An outline for
this process is indicated in the related results of Chapter 6 in [BM15] (see Theorem
6.4 there), where one builds the solution up to the time that the total population
concentration reaches a certain threshold, and then proves that the sequence of jump
times goes almost surely to infinity as the aforementioned threshold tends to infinity.
We have chosen to make the stronger Assumption 5.1 in part to simplify some of
the arguments for the a priori bounds that are needed in order to prove our main
convergence result, Theorem 5.5.

We reiterate though that it is an open question to characterize all the possible
general spatial reaction networks for which (3.1) is well-posed. In the remainder we
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assume that we have a reaction network for which this is the case, and, with that
assumed, our goal is to establish the limit of {pf}tzo as ¢ — 0.

Finally, we assume convergence of the initial molar concentrations of each type
att =0 as v — oo.

Assumption 5.4. We assume that the initial distribution ,ug’j — 58 weakly as
¢ — 0, where & is a compactly supported measure, for all 1 < j < .J.

We are now ready to state our main result. Let Mp(R?) be the space of finite
measures endowed with the weak topology and let Dy, (ra) [0, T] be the space of cadlag
paths with values in Mp(R?) endowed with Skorokhod topology.

THEOREM 5.5 (main result). Recall that ¢ = (1/7,7n) and assume that in the
prelimit v < oo and n > 0. Let T < Ty < oo be given with Ty to be specified later
on. Assume Assumptions 4.1-4.8 for the reaction kernels and placement densities,

scaling Assumption 4.9, Assumption 5.1 (hence the initial total population concen-
tration is assumed to be bounded), Assumption 5.4, and that the reaction network

is such that {(uf’l,...,uf"])}te[oﬂ € Dgs  arp(re)([0,T]) is well-defined (see Re-

mark 5.3). Then, the sequence of measure-valued processes {(/,Lf’l7 ... ,Mf’J)}te[o7T] €
D@.]_JZIMF(R(!)([O,T]) is relatively compact in D®]J:IMF(R4)([O,T]) for each j = 1,2,
. J. It converges in distribution to {(&},...,& ) e, € Cgo_ mp@ay([0,T]) as

¢ — 0, where the limit is taken such that n > 0 for each finite v. Fach 5{ s respec-
tively the unique solution to

(5.2) (r.el)y=(r.6)+ /t ((£;1)(@), € (d) ) ds
a Z/ /x(z) a“)' (aif ) ) 2O [g.)(dz) ds

Bej
IR N s (0
+e§-1/0 /s"g(m a(‘f)!Ke( ) (/y(z) (;ﬂyr )> t(yla) dy
—zmm) \O e () s,

Here Ty is the mazimal time up to which the deterministic system (5.2) has a well-
defined solution.

Remark 5.6. In the companion paper [IMS21a] we study well-posedness and reg-
ularity of the limiting system (5.2) and we present numerical studies related to the
behavior of the prelimit and limit systems. It is proven in [IMS21a] that (5.2) always
has an appropriate local in-time solution (i.e., there exists some 0 < Ty < c0) and a
global in-time solution (i.e., Ty = 00) is established for specific reaction networks. We
refer the interested reader to [IMS21a] for details.

Remark 5.7. Given that weak convergence to a constant implies convergence in
probability, we get that Theorem 5.5 actually implies convergence in probability.
Namely, for any § > 0,

Cl_ll)l’%)[@ d®j=1Mp(]Rd) ((/J/C’lv' . 7MC7J) ) (Elw . afJ)) > 6:| =0,

where d®]J:1MF(Rd) is the metric for D®JJ:1MF(]R¢1)[O,T]; see, for example, section 3.2
of [CSY20] for an exposition in an analogous situation.
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Proof of Theorem 5.5. Let ©¢ be the P-law of (u$',..., u%7), ie.,
7¢(A) =P [(uc’l, e ,MC’J) € A] ,

for all A € B(D®.JJ=IMF(RL¢)([O,T])). This means that for all ¢ € (0,1)? we have that
T € M(D®;:1MF(RJ)([07T]))~

By the relative compactness of Theorem 7.7 we get that every subsequence 7k
has a further subsequence 7¢m which converges weakly. Lemma 7.1 says that any
limit point m of 7S is such that © = d(er,....e7), where & satisfies the evolution
equation (5.2). Lemma 7.10 proves uniqueness of solutions to (5.2). Therefore,
by Prokhorov’s theorem 7¢ converges weakly to 7, where 7 is the distribution of
(€',...,¢7), the unique solution to (5.2). That is to say that (u¢?!,...,u$7) con-
verges in distribution to (€',...,¢7). Lemma 7.6 proves that for each j = 1,...,J,
{& Yeepo,r) € Crpay([0,T7]). This concludes the proof of the theorem. O

Remark 5.8. If the limiting measures (¢ (dx), .. ., &/ (dz)) have marginal densities
(i.e., molar concentrations) (p1(z,t),..., ps(x,t)), then the marginals are expected to
solve the following reaction-diffusion PIDEs in a weak sense.

(5.3)

L Qpj
Oupy(@,1) = DjAup;(,t)— (a(z),Z / GG ) (Meame o @, 0) daé)

ﬁ/;

+e§rl (a“)' Z/ex(é) K@ </y€Y(Z) 0y <]))m4(y|m) dy)
x (T2 e (30,1)) d:rc>.

Remark 5.9. We note that we have slightly abused notation in (5.3). In partic-
ular, the expressions [ d,( #Y )) di&j ) and i 6w(y7(«J ) dy(J ) are used to represent

replacing x(] ) and y£ 7 Wlth x through the formal action of the § function. That is to

say for a given function f,

6, (&) f (@) ) = f ().

Rd

Similarly, for simplicity of notation we have written

[ s mity | 2)dy.
yev®

where the integrand formally contains products of shifted ¢ functions when using the
specific choices of placement densities given by Assumptions 4.4 through 4.7. To write
the precise and rigorous version of such expressions, we use the substitution

/ 0(x —y)d(y — ) dy := 6(x — ).
Rd

In Appendix E we show how the nested integrals on the second line of (5.3)
simplify using this identity for several choices of m, that appear in the following
examples.
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To illustrate our main result, we now present a few examples to illustrate the
limiting PIDEs for basic reaction types.

Ezxample 5.10. Assume a system with birth and death reactions for one species,
A. Let Ry be the death reaction A — () with probability per time K] (x) to happen
for a particle at x. Since R, involves only one reactant and one species, ay; = 1. As
there are no products, 811 = 0. Let Ry be the birth reaction ) — A with constant
probability per time K to happen. When one birth event occurs, the position of the
new A particle is sampled from the placement density ms(x). For R there are no
reactants, so as; = 0. One product A particle is generated, so S21 = 1. There are
two types of reactions in total, L = 2, but reaction R; has no products so L=1.

Let the spatial number distribution for particle A at time ¢ be v&'' € M(R?),
with v¢ = v£185, € M(P). In this example, we would have AV [v¢](dz) = v& (dx).
By (3.1) v/¢ satisfies

(5.4)
(£.06), <f,u0 +Z/{ <y VDS O (5 S y)aw

+/0 Z DlaQQ W ))ds

, P c x1 x 1 ¢1.,dN1(s,1,0
//N\{O})/H§+< (g 1>S)> (=18 ) ) Moy gy wgetyy A1 (5:4,6)
+/ / / (f:0@.50))p % Ligy<igy X Lio,<my ()1 dN2(s, 2,01, 02).

o JrdJr, Jr,

If the limiting spatial distribution measure for species A has marginal density
p(x,t), by Remark 5.8 it must solve the following reaction-diffusion equation in a
weak sense:

(5.5) Op(z,t) = D1Ap(x,t) — K1 (2)p(z,t) + Koma(z).

Remark 5.11. Note that Theorem 5.5 does not apply to reaction networks includ-
ing zero order birth reactions. We conjecture it can be extended to allow zero order
reactions on some deterministic time interval [0,7,] by introducing and analyzing
the limiting behavior of the stopping time (5.1), assuming that the placement den-
sity for birth mJ(x) is in L!'(R?), and assuming that m{ does not depend on 7, i.e.,
ma(x) = ma(x). The latter conditions ensure the product particle is most probably
placed within a compact subset of R¢.

Example 5.12. Assume a system with three species, A, B, and C, that can un-
dergo the reversible bimolecular reaction A + B = C. Let Ry be the reaction
A+ B — C, with K{(z,y) the probability per time one A particle at position x
and one B particle at position y bind. Once reaction R; fires, we generate a new
particle C at position z following the placement density mq(z|z,y). For Ry, the re-
actants are particle A and B, so a1 = a12 = 1 and ay3 = 0. The product is particle
C, so that 511 = 512 = O, while ﬂlg =1.

Let R2 be the reaction C' — A + B, with K] (z) the probability per time one C
particle at position z unbinds. Once reaction R, fires, we generate a new A particle
at position z and B particle at position y following the placement density mo(x,y|z).
For Ro, the reactant is a C' particle, so as; = age = 0 and ass = 1. The products are
A and B particles, so that 21 = P2o = 1, while o3 = 0.
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Let the spatial number distribution for A particles at time ¢ be &t € M(R%), the
spatial number distribution for B particles at time t be V &2 ¢ M (R?), and the spatial
number distribution for C' particles at time ¢ be 1/ e M(Rd) Then yf = Vf’légl +

2659 + v 553 e M(P). We have that A\(V)[v ](d:l:) =& (da:ll))l/f’Q(dxgz)) and
)\(2) Wé)(dz) = v& (dx(13)). V¢ then satisfies

(5.6)

<f,vf> <f:V0 +;/ fi<(108.) A}ﬁgé(Hi(ka_))dWJ

+/0 Z D’gQ]; (H'(v5_))ds

—0, .. ¢, -6, .. ¢ +4 > X 1. .
//N\{o})z/m/m/m <f’ I R e (G i)

{J<<1 3 2> {91<K7(H2'Q(u< b, 15082} < 1{92§m (zlm, W), oL (04) )

Xle(S’i’j7Z791=62)+// / / / <f,5x,s +6(y,5,)—0 &3 >
o oy Jraxga Ju, Ju, N ES TS T RaG 000,85 /

X 1{k§<1,l/§;3>} X 1{91§K;(H6(V§L3))} {02<><m2(z Yl (18 ¢ )}dNQ(S,k,JZ,y,01702).

If the limiting spatial distribution measures for species A, B, and C have marginal
densities (p1(z,t), p2(x,t), p3(z,t)), respectively, by Remark 5.8 they must solve the
following reaction-diffusion equations in a weak sense:

(5.7)
Orp1(x,t) = D1Azpi(z,t) — (/]R

Ki(z,y)p2(y,t) dy) p1(z,t)

d

+ . K (z) (/]Rd mz(ﬂi,yIZ)dy) p3(z;t) dz,

Otp2(y,t) = DaAypa(y,t) — </ Ki(x,y)p1(z,t) dl‘) p2(y,t)

+ [ Kz (/ ma(z,y|z )dac) ps(z,t) dz,

RrRd
Oip3(2,t) = D3lzps(2,t) — Ka(2)pa(z,t) + / (@ y)malelz, y)oi(z, t)pa(y, t) do dy.
R2

Example 5.13. Assume a system with two species, A and B, that can undergo
the reversible dimerization reaction A + A 2 B. Let R4 be the reaction A+ A — B
with K] (z,y) the probability per time one A particle at position x and another A
particle at position y bind. Once reaction R, fires, we generate a new B particle at
position z by sampling from the placement density mq(z|z,y). For R4, the reactants
are two A particles, so ay; = 2 and a2 = 0. The product is one B particle, so that
f11 =0 and p12 = 1.

Let Ry be the reaction B — A + A, with K7 (z) the probability per time one
B particle at position z unbinds. Once reaction Ry fires, we generate two new A
particles at positions z and y by sampling from the placement density mq(x,y|z). For
R, the reactant is one B particle, so ag; = 0 and age = 1. The products are two A
particles, so that 821 = 2 and (22 = 0.

Let the spatial number distribution for A particles at time t be 1/C YeM (R%)
and the spatial number distribution for B particles at time ¢ be v, t ‘eM (R9). Then
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Ve =88, + S 552 € M(P) We have that AV [v¢)(de) = v&* (da'{)wet (dalM)
).

and A®) v} }(d:n) =& (dml V¢ then satisfies

(5.8)
(£:6) = (26) +Z/ {i<(ag.) ) V2D 55 O (1 ()

i>1

-0, i ¢n -9 ¢l +5z5> x 1 41
//N\{o}>2/md/m+/m+< (HG i, 51) P ey, s TS [ 7 Hici< (1) }

{91<K”( W, e )} {02<m (11, w8, 1Y (w8 )}le(S»%]'»Z791792)

76z +4 1) > X 1
/ Fuso Fae o 00 s =gz ), < Vusrosoy

{91 <K (Hgﬁéf))} {62§mg (z,y\Hé (Vf’_z)) }dNQ(& k, Y, 917 92)

If the spatial distribution measures for species A and B have marginal densities
(p1(z,t), p2(2,t)), respectively, then from Remark 5.8 they must solve the following
reaction-diffusion equations in a weak sense:

(5.9)
owp1(z,t) = D1lAgpi(w,1) (/ Ki(z,y)p1(y, )dy) pr(z,t)

+2 » K(z) (/Rd mg(x,y|z)dy) p2(z,t)dz

1
6tp2(zvt) = DQAZPZ(th) - KZ(Z)pQ(th) + 5/ B K1(937y)ml(Z|I,y)p1($,t)pl(y, t) dzx dy
R2

6. Equivalence between measure-valued formulation and forward Kol-
mogorov equation. In this section, we demonstrate equivalence of the measure-
valued stochastic process formulation (3.1) to the forward Kolmogorov equation rep-
resentation of the volume reactivity model popularized by Doi [D76a, D76b]. For ease
of notation, and brevity of presentation, we restrict our attention to the special case
of the reversible A + B = C reaction, i.e., Example 5.12. Though we do not show
here the general case, we note that this reversible example includes the key compli-
cating components; two-body particle interactions and changing (total) numbers of
particles. It is therefore illustrative of other reactions that may only involve particle
creation (e.g., @ — A) or that involve interactions but preserve particle numbers (e.g.,
A+B—C+Dor A— B).

Denote by K7 (x,y) the probability per time a particle of type A at = and a
particle of type B at y react and by K3 (2) the probability per time a particle of type
C at z dissociates. We let m{(z|x,y) be the corresponding placement density for the
A + B — C reaction, producing a particle of type C at z, given a particle of type A
at z and a particle of type B at y. Similarly, mJ(z,y|2) is the placement density for
the C — A 4 B reaction, producing a particle of type A at x and a particle of type
B at y given a particle of type C at z, respectively.

6.1. Weak MVSP formulation for the A + B = ¢ Reaction. The weak
MVSP representation is given by (5.6). Taking expectation we obtain for the mean
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t<1u<> .
:E[<f7u§>p}+ﬂi/o Z DZaQQ (H'(v5_))ds

1uc1><luc2

+]E/ Z Z /Rd< 08,80 O <u<2)S>+5(z53>>P

x K7 (HoWe), HY(82)) mi (2l HG (8, By (v82)) dz ds

+E / Z / <f75<w,sl>+5<yysz>*5<Hg(u§f>,sg>>

p
x KJ (HS(VSC;B)) ma (x, y|H§(V§f’)) dx dy ds

—E[<f7u§>ﬂ}+E[/t<£f,yi>ﬁds}
B[ [ 80— 0 8247 500) K7 ) el ) 87 () 2 )

B[ [ (80 + 100 52) = e 50) K () mlepl2) ddy°(2) s

n (6.1), we denote Lf(Q,S;) = D;Aqf for all j =1,2,3. As we shall demonstrate
soon, this is consistent with what we expect from the forward equation (6.2).

6.2. Doi forward Kolmogorov equation for the A 4+ B < C reaction. We
use a notation consistent with that introduced by Doi [D76a, D76b]. Suppose A(¥)
is the stochastic process for the number of species A particles in the system at time
t, with B(t) and C(t) defined similarly. Values of A(t), B(t), and C(¢) will be given
by a, b, and ¢ (i.e., A(t) = a). When A(t) = a, we will let Q¢(t) € R? label the
stochastic process for the position of the {th molecule of species A. gf* will denote a
possible value of Q¢(t). The species A position vector when A(t) = a is then given
by

Q“(t) = (Q}(1),...,Qa(1)) € R™.
Similarly, g* will denote a possible value of Q*(t),
Q(t)=q" = (qi, ... q3).

Q(1), Q4.(1), Q°(t), Q(t), ¢4, ¢, q°, and q° will all be defined analogously. The
state of the system is then a hybrid discrete-continuous state stochastic process given
by (A(1), B(1), C(1), @1®, QP Q).

With this notation, denote by p(@*°)(q®, q®, q° t) the probability density that
A(t) = a, B(t) = b, and C(t) = ¢ with Q%(t) = q%, Q°(t) = q” and Q°(t) = ¢°. We
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assume that particles of the same species are indistinguishable, that is, for 1 <[ <
I’ < a fixed

(a.,b,C) (q%a"'aqla—lﬂq?7q?+17' "aqﬁ—lvqﬁ’vqﬁ+17"' aqqubaqc7t)

a,b,c a a a a a a a a b _c
@b (gt .. g1, a0 a1 G 1, 4 G5 40 0050 E)

p
=P

with similar relations holding for permutations of the molecule orderings within q°
and ¢°. With this assumption the p(?¢) are chosen to be normalized so that

oo oo oo

1
_ (a,b,c) (40 b C ¢ g bgoal _
ZZZ[a!b!C! ]Rda/Rdb/Rdcp (q’q’q’t) dq" dq dq:| L.

a=0 b=0 ¢=0

Here the bracketed term corresponds to the probability of having a given number of
each species, i.e.,

]" a c a C c a
Pr[A(t) = a,B(t) = b,C(t) = c] = m/w /Rdb /}Rdlzf ) (q 4", q ,t) dq® dq’ dq".

Let P(t) = {p@®t(q%, q*, q°,1)}°° op.c—o denote the vector of all the probabilities.
The forward equation (see [IZlS]) is given by the coupled system of PIDEs that

(6.2) HP(t)=(L+RT+R)P(t).

Here the linear operators £, RT, and R~ correspond to diffusion, the forward as-
sociation reaction, and the reverse dissociation reaction, respectively. The diffusion
operator in the (a,b, ¢) equation is given by

(6.3) (LP())(ap,c)(@". 4", q° 1)
(Dle o + Dy ZA b +D32A ) (@) (g, q", q° 1),
m=1 n=1

where Age denotes the d-dimensional Laplacian acting on the q;' coordinate, and Age
and Age are defined similarly. (Recall Dy, Do, D3 are the diffusivity of species A, B
and C, respectively.) To define the reaction operators, RT and R~, we introduce
notations for adding or removing a particle from a given state, q®. Let

qauwz(q?v"'aqgaw)7 qa\q?: (qTa"'aqla—hqzl-i,-la"'7q:1,l)a

which correspond to adding a particle to species A at « and removing the [th particle of
species A, respectively. With these definitions, the reaction operator for the A+B — C
association reaction in the (a, b, ¢) equation is

(6.4)
(R+P(t))(a,b,c) (qa’ qb7 qct)

a b
- (Z > K (qi‘,qfn)> P (g%, ¢, ¢°, 1)

=1 m=1

C
+> [/2d ml(gS|z, y) K] (x,y) pl@t e (g U, ¢" Uy, q°\ g8, t)dedy|,
—1 /R

while the reaction operator for the dissociation reaction C — A + B in the (a,b,c)
equation is
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(6.5)

(R™P(t))(abe)(a% q" q° 1)
=—(> KS((JZ)) " (g%, q",q°,t)

n=1

b
+>3 {/d m3 (q?, qfn\Z) K3 (z)plehtmhert (Q“ \a',q"\ gp,q° U z,t) dZ} :
R L

=1 m=1
This representation is consistent with the classical second quantization representation
of Doi [D76a, D76b).
Suppose the initial condition P(0) = Py = {p @bie)yoo _o is fixed, and we have

a,b,c
(ao, bo, co) particles of A, B, and C, respectively at time zero. We consider the evolu-
tion of P(t) as a vector in an L? Fock space F' = L?(X) equipped with inner product

defined by (C.1), where
agVbo+co
X — @ Rd(a-‘rb-‘rc).

a,b,c>0
a+b+2c a0+bg+2c0

Remark 6.1. For the A + B = C reaction, the quantity A(t) + B(t) + 2C(¢t) =
ao + by + 2¢o is always conserved. For our example, X is therefore a finite sum of
Euclidean spaces over a,b,c € Ny such that a + b+ 2¢ = ag + by + 2¢p.

To simplify the calculation of regularity results for (6.2) for comparison to the
forward equation, in this section we make the following assumptions.

Assumption 6.2. We assume the reaction kernel function K (x,y) for the A+ B —
C reaction only depends on the separation of two reactant particles, |z — y|, denoted
as K(z,y) = K(Jx — y|). Furthermore, we assume K (|w|) € L?(R%), w € R9.

Assumption 6.3. We assume the function p(jw|), w € RY, defined in Assump-
tion 4.7 for the C — A + B reaction, is in L?(R?).

Under these two assumptions the following regularity theorem holds, for which
the proof is given in Appendix D.

THEOREM 6.4. Given Assumptions 6.2 and 6.3, there exists a unique global mild
solution to (6.2), P(-) € C([0,00); H%(X)). That is, P(t) satisfies

¢

P(t) =Py + / e=IE(RYP(s) + R™P(s)) ds,
0

with the initial condition P(0) = Py € HY(X). Further, ifp(()a’b’c) > 0 for each (a,b,c)

and satisfies the normalization condition

oo oo oo

(abc) b e c b ol
ZZZ[alblcl/ /Rdb/Rd (¢°.q",q°) dq° dq dq}_l

a=0b=0 c=0

then P(t) is always nonnegative for all t > 0 and the same normalization condition

holds,

oo

o0 o0 1
__ (a,b,c) a b _c c b al _
z_:bz_:z[a!b!c! /R/R/Rp (¢".q".q t) dg°dg dq} L.

=0

Note that, as a + b+ 2c¢ is conserved (see Remark 6.1), the above summation is only
over a finite set of indices.
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6.3. Equivalence of the two approaches. Now, we are in position to compare
the two approaches as described in sections 6.1 and 6.2. For this purpose we have
Propositions 6.5 and 6.6, whose proofs are deferred to Appendix C.

PROPOSITION 6.5. For any M € N, any function ¢ € C®RM), and any set
of functions {fm}M_, € Cg(ﬁ), the evolution equations satisfied by E[gp(<f1,vf>p,
(fa2, V§>I5, cos (fury Vf)p)] are the same when derived using either the formulation of
the weak measure-valued process representation or the formulation based on the for-
ward Kolmogorov equation. This implies that these two approaches produce the same
statistics.

By Proposition 6.5 we know that the measure-valued formulation and the forward
Kolmogorov equation yield the same statistics, at least when the statistics involve
smooth test functions. We next derive equations for the mean particle spatial field
density of different species at time ¢ in Proposition 6.6. Note that Proposition 6.6 can
be viewed as a special case of the equations derived in Proposition 6.5 by formally
setting M = 1, ¢ = 1, and f1 = dz,5,), f1 = (y,55), OF f1 = d(z,5,), respectively,
for representing the spatial field density for species A, B, and C. Using the weak
measure-valued process representation, we do not show here but expect that one can
make this rigorous by introducing appropriate mollifiers and taking the mollification
to zero afterward. For simplicity, we instead use the formulation via the forward
Kolmogorov equation, which for deriving the mean density fields in Proposition 6.6
does not require the introduction of mollifiers.

PROPOSITION 6.6. Let A(x,t), B(y,t), and C(z,t) denote the spatial field num-
ber density in the particle model at time t for species A at position x, B at position y,
and C' at position z, respectively. Under the assumptions of Theorem 6.4, the evolution
equations for their expectations at time t satisfy

(6.6) OE[A(m,t)] = D1AE[A(w, )] - y K| (z,y) E[A(z,t)B(y, 1)] dy

/) / ms (@, y12) K3 (2)dy | EIC(z, D]

OE[B(y,t)] = D:AyE[B / K] (z,y)E[A(z,t)B(y,t)] de

+/Rd /]R'i ma (x,y|z) K;(z)da: E[C(z,t)]dz,
OE[C(z,1)] = D3AE[C(2,1)] — KJ (2) E[C(z, )]

+ / mi (2, y) K (2, y)EA(e, )Bly, )] da dy.

7. Details of the proof of Theorem 5.5. The purpose of this section is to
prove the various lemmas and theorems cited in the proof of our main result, Theo-
rem 5.5. Without loss of generality we assume that L = 0 in this section. The case
when L > 0 follows by similar arguments as we now give in the L = 0 case.

To rigorously determine the large-population limit of the MVSP, we use the mar-
tingale problem approach for studying solutions to stochastic differential equations
developed by Stroock and Varadhan [EK86, SV06]. The proof is organized as follows.

In subsection 7.1 we provide the path level description of ,uf’j , analogous to (3.1) for
Vf , and in subsection 7.2 we derive equations for its expectation. Assuming that the

large-population limit exists, its identification is presented in subsection 7.3. Then,
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in subsection 7.4 we prove that the limit exists by proving that the sequence of mea-
sures is appropriately tight. We conclude in subsection 7.5 by proving that the limit
equation has a unique solution. Collectively, these results imply Theorem 5.5.

7.1. Path level description. Using that we can write the marginal distribution
(molar concentration) of species j as

w(l mE

p$ (da) Z Opg sy (d), G € {1, T},

we have, analogously to (3.1), the coupled system
(7.1)

<f,uf’j>
= (ru§?)+2 Z/ fien(a, <,>}\/ﬁ (H (yu$e?))d W}

z>1
1 ¢!
o
Y Jo

(1062)
2
1™ 1 & ¢
+Z/ /(ﬁ)A([>A§2 << g — ;Tzlé%r oy 7 Z y<])> (1 u>>
><1{

92 . .
D, s (H ()

ienm(wg_)}x {GngZ(P(Z)('WLE_,i))} {92<m (y|7:v(@)(w 5 ))}dNZ(S i,y,01,02)

for j e {1,...,J}. _
In this formulation, one important fact is that for fixed ¢, (1, ug’_]> is finite by
assumption, which provides exchangeability of the sum and Lebesgue integral.

7.2. Taking expectations. By taking expectation on (7.1) we obtain
(7.2)

5 ({5,667
L (1mdd)
SIS LY A o= TSV SEIEY A

EQ“)(W 2

ay Be
( if 5 (usy) +ij ¢ ) <K (PO (s, 1)) xme (PO (3, 4)) dyds

s L
=E[(f,u§7)]+E //DW X_j aan ) (ud:d) () *ZZE /tl 2

=1 =1 |70 T ica® sy

(%f 1 (s )) K7 (PO (s 1) ( [y mi (uP O s 0) dy) ds

L

Bej
+3E /t} S K (POOKSD) (/w> (Z f(y£j>)>

=70 Y ea@ s ) =

mi (1P (S, 5) dy> as| =& [(ru§")] B [ [ (€0 @2 @) as]
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L
- (J)
> E / /W) (Zf ) (@) Sy (s () ds
=1 169@(7/1C )
; 1 H "
¥ j n
+2.E / /x() >, K@) /<> ny my (y|@) dy| Sp (¢ 4 (d@) ds
=t i€Q® (yué )

==[(r CJ>]+E[/ (€30 ) as]
i / /xm 201 <Z ) >K/f (@) AO[us_)(dw) ds]
Bej
Zi: / /Xm o (/m (z_:f ) ) my (y| ) dy) A [ )(da) ds:|
=e[(fn +E[/<ﬁf )>d5}
> V fyo st (/ o (Zf ) ) () dy— Zf “))) “[uﬁ_l(dz)ds} ,

where in the third equality we use the assumption that fY(g) m}(y|x)dy = 1. For the
second to last equality we switch integrals of the form [y >, €O (vl )

O (s gy (de) to Jzw <t AO[1¢ ](de) using the definition of S (dz) and

)\(Z)H (see Definition 2.6), and removing probability zero sets where two particles
with the same type are simultaneously located at the same spatial location (see Defi-
nition 2.7). Note that by definition the allowable reactant index sampling space Q0
(see Definition 2.5) orders indices for particles of the same species. In converting from

integrals involving the positions of individual particles (i.e. » Opo (yu_ (da:)) to in-

tegrals involving product measures (A()[uS_](dz)) we need to remove the “diagonal”
indices by means of integrating on X() (see Definition 2.7) and normalizing by the
total number of index orderings, (a(9!).

7.3. Identification of the limit. Inspired by (7.2), we expect that if the weak

limit, as ¢ goes to zero, of the marginal distribution vector ¢ := (u&*, u&2, ..., )
exists and is unique, then it will satisfy the analogous equation. For this purpose,
denote & = (&}, €2,...,&]/) to be the corresponding limiting particle distribution on

R7*4 and & = ijl &lds, to be the corresponding limiting particle distribution on
P. Then for each 1 < j < J, the following must be satisfied:

(7.3) (r.e)=(r.6)+ /Ot ((£:)(@),€l(dw) ) ds
L t Bej
+;,/0 /g(e)ﬁ[(e (/(z) (;JE (]))mz (y| =) dy

oy

—Zf(a:&”)) ANO(g] (da) ds

Existence of the limit is shown in the tightness section 7.4, while uniqueness is shown
in section 7.5.
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Let S be the collection of elements ® in B(®7_, Mr(R?)) (i.e., bounded function-
als) of the form

(7.4) P(p) =@ ((f1.p) (f2, 1) - .- (far, 1)

for some M € N, some ¢ € C(R7*M) (f, . p) = ((frms 1), (fsms 7)) where
each {fjm} € C3(RY) for j=1,...,J and m = 1,..., M. Then S separates points in
®@7_; Mp(R?) (see Chapter 3.4 of [EK86] and Proposition 3.3 of [CSY20]). As long as
the limiting process exists and is unique, to identify the limit, it thus suffices to show
convergence of the martingale problem for functions of the form (7.4).

For ® € S of the form (7.4), p = (pt,p?...,u7) € ®J Mp(R?) and p =

ijl 1 s, € Mp(P) with each pf € Mp(RY), define

(7.5)
(A®)(p)
def’mz:ljz;ax(m e <f17N>7<f2,N><fM,N>) {<[4ij,m7l"' +;/X 0 a([)'

Bej ar;
(/Y(e) (Z fim( yr ) me (y|x) dy — ij (J) ) (e) }
=1

We claim that A, which is the generator of the system described by (7.3) for 1 < j < J,
will be the generator of the limiting martingale problem.

LEMMA 7.1 (weak convergence). For any ® € S and 0 <1y < rg--- < ry =
s <t <T and {¢}—) C B(®/_Mp(R?)), we have that

{o) - 2 - [ t(A‘P)(uf)dr} f{ Yo,

Proof. For each j =1,...,J, we can rewrite (7.1) as

(£ = (1) + 009 + AL,

(7.6) lim B

where

(7.7) A7 =/0t<(ﬁjf)( ), 1 ( dl‘ dS+Z/ /X(Z) a1

Bej aj

X /w> S @) | mi(ylx) dy =) (=) ANO[_)(da) ds
r=1 —1
and
(738) -
M5 [ i TS

+Z/ /(“/W)/R2 (< us_iéHéj)(v : fﬁi <a>> < u§]>)

*Lica® (us )y o<y (PO (ué_ )3 M oazmy (w1 PO (ié ))}dN"(“y’el’92)
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is a square integrable martingale (See Proposition 2.4 in [NW14]) with quadratic
variation

(7.9)
- [ 15 ()
g Bej 2
i// LQ T ( SorEg (S +Zf(yi)>
=1 {2€Q(® (v )} r=1 =t
(P

PO (yus_,4) ) x m] (yIP“)(wﬁ,,i)) dy ds

x K]
1 rt 1
- ;/0 < ’#S_>ds+z/ /w> o 2 g, may (e B

{ieQ® (vu$_)}

x K (P“) s, ) Z(yIP(Z)(7u§,7i)) dyds
)t

DI, i
—C(R) u)—&-ZHchb(Rd)(a“-i_ﬁ”) /o 72 2

{€Q® (vuS_)}
K} (PO (yué_,4)) ds

CONUITIE, a Lo

(R4) 1 —la®

< o oI e Y [ X A
=1

K {1€Q® (vuS_)}

CDHHIFIIZ, C(K)LL||f|2
ORIy Uy

5
The quadratic variation is therefore uniformly bounded and goes to 0 as ¢ — 0

(v — o0) since f and its partial derivatives are uniformly bounded.
Now define M7 = /7 + DI where

f7 J— 7 7
(7.10) e/’ Z/ (i< (1) V 2D; 6@ (H' (yu$2?))dW

7,>1
is the continuous martingale part and
(7.11)

L + 1 g 521
SN B B IR R CATEED SUNTRE D SUAT) X (A7)
i ;::1 o Jio Juo Jiz fin V; HgJ)(WH Z 1) s H

x 1 x1

{iEQ(Z)('\/ug_)} i )}de(s7i7y701792)

1on <57 (PO S 0)) * Loazm (1 PO (i)
is the martingale part coming from the stochastic integral with respect to the Poisson
point processes. Here, for simplicity of notation, we let

(7.12)

o ,31/
¢ ) ) 1 £3 J )
g (5,4, .01, 02) = <f, pus? — 5 >80 25 @) < M§f>

7'7‘
r=1 HQ (’Y

Xl{ien(“(wg_)}Xl{elgxz(w)(wg,,i))} Loa<my (w1 PO S _0))
1 g Bej _

== (1 )+ 307 ()
v r=1 r=1

*Lica® (ué 0y Lo <xy (PO (i 0)) X Lioa<m] (51 PO (i)
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which represents the jumps and is uniformly bounded by (9(%) With some abuse

of notation we shall write g“/#° for the vector (g‘]*fvi‘c’l, . 7gz’f*“(;"J). Then (7.11)
becomes

D“—Z// [ o sy 00,62)dNiss .61,
) Jy®) R2

Now we apply It’s formula (see Theorem 5.1 in [NW14]) to ®(u$). We obtain
for 6 = (91,02),

(7.13)

t
(1) — B(uf) ~ [ (AD)(uS)dr

:/t M iai«f > <f > <f c>) gelimd
5 =1 =1 1 OT(m—1)xJ+; 1 Ky 2, 18 ), uS S
FPo -~ ¢ fj,mJ
+§/S :Em(<ﬁ,u,> (F2on) o (farmf)) a(elimd)
= 1/5 /w /w> /R (1) + 9" (ryi,y,0), . (Far )

+gtlant (. zvy,G)) - <<f17ur> , <f27u$> e <fM,u$>)> dNy(r,,9,0)

+Z/g /M)/(E) /Rz ( fi, $>+9£7f1’uc(5’ivy79)»~-w<fM7H$>

=1

+gé'fﬂ4’“<(s,i,y,9)) % (<f1,li$> ) <f2,llv$>---<fM7N$>>

Mo o o
=30 S gt (i, 0) - ({6 ) (s >)) ANy (s,4,9,0)

m=1j=1 O%(m—1)J+;

M J L 4
#3035 [1 O () () ()

m=1;j=1¢=1

1 6@]
< [ ke ( L (Tzlf]m y“) (m] (y | @) = me (y|2)) dy) MO (da)ds
5
=D AS(t
K=1

We now use the Skorokhod representation theorem (Theorem 1.8 in [EKS86])
which, for the purposes of identifying the limit and proving (7.6), allows us to assume
that the aforementioned claimed convergence of ut = (/Lt , ,uf’27 ... ,uf"]) holds with
probability one in the topology of weak convergence of measures. The Skorokhod
representation theorem involves the introduction of another probability space, but we
ignore this distinction in the notation. To show (7.6), it is then sufficient to prove
that the left-hand side of (7.13) goes to zero in probability. With this goal in mind
we proceed with proving convergence in probability to zero for AS(t) for k =1,...,5.

By Lemma B.2, we immediately have that

lim sup E|A<( t)] =0.
¢—0¢el0,1]
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In addition, notice that A$(t) and Ag (t) are square integrable martingales. In fact,
by (7.9), (7.12), and the fact that the jump size is uniformly bounded by (9(%), we
have that

lim sup E[AS(t) + AS()]2 = 0.
¢—0¢¢l0,1)

For similar reasons, we also have by (7.10) that
lim sup E[AS(t)] =0
¢—=0¢ef0,1)

and by (7.12) that

lim sup E|A<( t)] =0.
¢—0¢¢l0,1]

We then have that the left-hand side of (7.13) goes to zero in probability, concluding
the proof of the lemma. O

7.4. Tightness. Recall that Mp(R?) denotes the space of finite measures en-
dowed with the weak topology, and denote by M (R9) the space of finite measures
endowed with the Vague topology. In this section, we prove tightness of the measure-
valued processes {,ut Yeeor)sd = 1,2,...,J, on Dy ray[0, T, the space of cadlag
paths with values in Mp(R?) endowed with Skorokhod topology. Toward this aim,
we first show that the processes {,uf’j Yeeqo, ), d = 1,..., J, are tight on Dary (e [0,T7.

7.4.1. Tightness in Dy (ray[0,T]. It suffices to show that the real-valued
processes {(f, uf’j>}7 j = 1,...,J, for any test function f(x) € C2Z(R?), which is
dense in Cy(R9), are tight in Dg[0,T]; see [S89]. In establishing this we use the
Rebolledo criterion [AMS86] (Lemma 7.4) and the Aldous condition [D78] (Lemma
7.3).

LEMMA 7.2. For anyT > 0 and § > 0, there exist constants C' and C’ such that
for any pair of stopping times (o,7) with0 <o <7 <046 <T, we have

B(A), - (M59),) < C
and
E[|AL7 — AJIPP] < C'8°
forj=1,...,J and AH3 | M7 follow the definitions (7.7), (7.8), respectively.
Proof. Following (7.9), we can obtain that

Bl(wr7), - () ]

w<1 ch

:% / Z (\/Tl?j%(ﬂi(vuﬁ’j))>2ds

L T 1 L Bej , 2
DIV =3 S rED) 3 1)

=1 o Jv® Y =1

= {i€Q® (vus_)} =

<K (PO (s ) x m (w1 PO (s 4)) dyds

C(WE[T — 0o 21le
. (L)E[ 7]|f|Co( L (C(Dy) + C(K)L)

< Co.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/27/22 to 71.232.22.247 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

482 S. A. ISAACSON, J. MA, AND K. SPILIOPOULOS

From (7.7), we obtain

B (1459 ~ AL
T L T
_ , ¢ 1
~E L<(ng)(x),usf(dx)>ds+;/o L. zwiki@
Bej g 2
() () (0)
/W) > ) | mi () dy = 3 o) | O (o) s
T 2 L o1 1
<2E /U<I(£jf)( I Rl DO N
Bej o 2
/ A mi i@ dy+ S0 1] | A ) ds
r=1 r=1

< C(DIf e may C(W)*ElT = o*] + C )| fl| 22 (ray L C (1) 'E[|7 — o]
< '8 0
LEMMA 7.3 (Aldous condition). For any T >0,e; >0,e3 >0, j=1,2,...,J,

there exists § > 0 and ng such that for any sequence (0, Tn), cy of pairs of stopping
times with o, < 1, <T,

sup P{| (f, 127y = (f,n27) | > €2, 7 < 0 + 6} < 1.

n>ng
Proof. This follows as for 7, < g, + 6.

sup P{|MJ7 — ML7 |+ AL — ALT| > e}

n>ngo

< sup 2— ]E[<Mf’3> <J\4f’j>‘7 +|AL7 — ALI1P] (by Markov inequality)

n>no €3
< ?(05 +C"6%) < e, (by Lemma 7.2 and when § sufficiently small). 0
2
LEMMA 7.4 (Rebolledo criterion). For each j = 1,...,J, the sequence of real-

valued processes {{f, uf’j>}46(071)2 is tight in Dg[0,T).

Proof. By assumption, we always have (1,,u§’j), j = 1,...,J, are uniformly
bounded. Since f € C2(R%), we have

wn |(15%]| <=
t€[0,T]

holds. Combined with the Aldous condition from Lemma 7.3, we obtain that, for
each j = 1,2,...,J, the sequence of real-valued processes {(f, uf’j>}46(0’1)2 is tight
in Dgr[0,T] by the Rebolledo criterion [AMS6].

sup E
i<t

7.4.2. Tightness in Dps, (ray[0, T]. By Lemma 7.5, we're able to control the
mass of measures outside of compact sets so that we can go from tightness in Dy (a)
[0, T] to tightness in Dy, (ra)[0, T
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LEMMA 7.5. There exists a sequence of CZ(R?) functions { fum (x)}m>o0, in partic-
ular, fo =1, such that
fm(x) =0 when ||z|| <m —1,
fm(z) =1 when ||z|| > m,
(7.14) 0< f(z) <1 when m —1 < ||z|| < m,

and furthermore, SumeOHfm(m)HCg(Rd) ‘= SUPy, >0 SUPgeRd, || <2 D fru ()] < oo.
For such sequence of functions { fm(z)}m>0,

Mm—=00  ¢0 te[0,T]

(7.15) lim limsupE ( sup <fm,utc’j>> =0

forallj=1,2,...,J.

Proof. Following [BMW12], consider the function (s) = 6s®> — 155 + 10s3
C?([0,1]). One can check that 1(0) = 1 —1(1) = ¢'(0) = ¥'(1) = 4" (0) = " (1) = 0.
Now we define our functions {f,(z), z € RY m > 1} as fn(z) = (0 V (||z|| —

(m —1)) A1). The derivatives of f/ s are umformly controlled by the derivatives of
1, thus this choice satisfies our conditions. For any € > 0, by Assumption 4.8, there

exists a large enough integer-valued radius R such that f7,> R P(T)T d=ldr < e. As a
consequence, for m sufficiently large

(7.16)

<fmall§’j>
= (fman§?) 210 [ () ), ) s

Qyj

=~ [t 1 A : %)
> | |z @) (/w) (;fm(yﬂ )) m (ule) dy=3_ fu(al”) | XO . Ydo)ds

. , ¢ .
< <fm7u§’3> + MfmI 4 ||fm||cg(Rd)/0 <1{m71§\|x|\<m}7Mgf(dw)>dS

L . 1 Bej
- () ©r, ¢
+ez::1/0 /s“g(z) a(f)!K[ z) (/(f) (Z fm (g’ ) my (y|x) dy) AP (ug_](dz) ds

=1

. . t .
< <fmvﬂgyj> + Mtfmd =+ Hmec?(Rd).[) <fm—1($),,U«§’_J(dI)> ds

L t 1 Bej
() n ®r,,$
+22:j/0 Loy w6 @) (/m (;fmy >> mg(ym)dy)k 1) (d) ds

Taking supremum over time and then expectation on (7.16), we get

(7.17)
Ry
sup ‘Mf’" J’

=E [<fm’ﬂgyj>] TE te[0,T]

BZJ
(J) n @y, ¢
|:teSl(11pT]£ 1/ /(e) a(e), ( (/(z) (; fm(y >me (yl2) dy) AT ks (d) ds:|

E

t .
+ ||fm||c'2(Rd)E l: S[UP ]/0 <fm1(l‘),,u§’J(dz)>ds:|
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<5 (s + 3

sup ‘Mf"”’
t€[0,T)

t
¢
+ ||fm||c2(Rd)E |: sup ]/0 <fm_1(a:),us_3(d:r:)>ds:|

€lo,T

+ sup E{ sup 0/ (fm-1-r(@),n$ (dw)) ds| + CaT(e + Cn)

1<i<J  |te[0,T]

(by Lemma B.1 studying the different cases of allowed reactions),

+E

te[0,T) te0,T)

< E[ sup <fm,#§’j>

sup ‘Mfm ]):|

T
+C’1/0 sup ]E|:sup <fm 1-r(x), usz(dx)> dt + C2T' (e + Cn),

1<i<J s€0,t]

where €' = 2LC(K)(C(p) V1), Cr = 2(C V [[fumllczme)) and C2 = 2LC(K)C(n)
[ fmllc2may-

Let Y}"’C = SUpj<j<y ]E[suptE[O,T}«fm,uf’j>)]. By construction, we always have
Y < v < v2¢. Due to the uniform boundedness of |[fmllc2(ray, we have
that E<Mfm’j>T = (’)(%)7 uniformly for each 1 < j < J and for all m based on

(7.9). Without loss of generality, let’s consider the subsequence where m is divisible
by R+ 1. Then (7.17) gives

(7.18)

T
Y << Yy" m™C 4+ sup E[ sup |Mf"‘ I+ C’1/ th_(R_‘_l)’cdtJngT(erCn)
1<i<J tel0,T) 0

<Y 42 sup (JE(MImd) +Cy / Y FAEDL a4 CoT (e + Cn)
1<5<J 0

(by Jensen’s inequality and Doob’s inequality)

T
S Yom,c +03i +CQT(€+C’I]) +01/ thm—(R+1)aCdt
val 0
1
< Y™ 4 C3— + CoT(e + Cn)
0 Vi
T _ 1 b
+O / (Yom (R+1),¢ +C5— + CQT(E + C”]) L0 / }/Zln 2(R+1)7Cdt1) dt
0 Val 0
m 1
=Y, <y 037 + C2T(e + Cn)
—(R+1),¢ T [t m—2(R41)¢
+C’1T( +Cs —+02T(e+cn ) +(cl)2/ / Y, Cdty)dt
al o Jo
m 1
<Y 40l T+ o) + T ( —mene on by cm)
f \/7
+(C1) / / ym2BEDC L 0p 4 CoT(e + On) + Cy / Y, 3RO C gty Yt dt
f
_ vm,¢ —(R+1),¢
=Y, +C3— + C2T(e + Cn) +C1T( +Cs— +CzT(6+Cn))
\/7 \/7

CT m— o
+or 12.) (Yo 2(R+1)’C+CSW+CQT(E+C7)))+(Cl)3/ // Yo T byt
: 0 0

ST ey (R41)1C
< > T (Yom +C3— \F + CoT(e + C’n)>
=0
[m/(2R+2)] !
(C17) ( m—(R+1)1,¢ 1 )
< Y 4+ C3—+C2T(e+Cn
z;zo o\ Vi e+

(clT)m/(RH) 0.¢
(m/(R+1))!
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m/(R+1)—1 1
T _ 1
+ E @1y 1' ) (Yom (RHDLC L 03— 4 CoT(e + Cﬂ)) +
I=|m/(2R+2)]+1 &l

(ClT)m/(R+1) 0.¢
(m/(R+1)) T

[m/(2R+2)] 1
m—|m/2|— 1 CiT
< (YO [m/2]—=(R+1),¢ +C3ﬁ +CQT(E+C17)> ( z : ( 1 ) )

= I

0¢ o L S (@D | (G D g
+ (YO +Cg\—ﬁ+CzT(s+Cn)) ( > I ) (m/(R+1)! T

I=|m/(2R+2)|+1

_ _ 1
< (YJ” /2= (FEDC Co—z +CaT(e + On)) e

0,¢ S = (CyT)! (O T/ (B
+ (YO +Co = T+ cn)) ( ) G

I=|m/(2R+2) | +1
From (7.18), we’re able to obtain

(7.19)

lim limsup sup E [ sup (<fm7ﬂf’j>)
m—=oo ¢ 40 1<j<J |te[0,T]

< lim limsup <Y07"7L"L/2J7(R+1>’C + C3L + CoT(e + Cn)) 1T
1 oo (ClT)l (ClT)m/(R+l) o
vy — T <
+( 0 +03\ﬁ+02 (€+C17)) 1 + (m/(R—l—l))! T

I=|m/(2R+2) | +1

rm—|m - \/ - cT !
gm-Lm/2) <R+1>eCT+(Y0°+CQTs) S (CT)

= CoTe Te+ lim
I=|m/(2R+2)|+1

(CT)m/(R+1) -

2/ V| (where we denote ?}l = lim sup v
(m/(R+1))! '
m !

¢—0

_l’_

= C’zTeclTs.
Here, in the third to last row of (7.19), inside the square brackets, the first term
vanishes as

lim Yom_tm/QJ_(RH) = lim limsup sup E {<<fm—Lm/2j—(R+1)7Mg’j>)}

= sup lim limsupE K<fmem/2J*(R+1)’“gyj>)}

1<G<T M0 (-0

— ; I\ —
(7.20) = liljlg] Jim E <fmf[m/2J7(R+1)a€0> =0.
The exchange of limits and supremum is allowed as the supremum is taken over
the finite set {1,...,J}. We can get the third line of (7.20) from the second line
because of Assumption 5.4 that the initial distribution ug’] converges weakly to &
for all 1 < j < J. Finally, we obtain the limit as zero using Assumption 5.4 on

the &’s, i.e., that they are compactly supported. For the second term, Y, the initial
~ l

concentration is bounded, whereas (Z}ﬁ[m J4)+1 %) is the remainder of exponential

function expansion, which will go to 0 as m — oo. For the last term, as Y =

limsupe_, sup; << s E[sup,ejo, ({1, 1)) is bounded by C(y), the whole third term
will vanish as m — oo.
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Note that C; and C5 do not depend on 7, R, or . This implies

lim limsupE | sup (<fm7ut<7j>>
m—00 ¢ 40 te[0,T)

is less than an arbitrary small number CyTe "¢, i.e., the limit is zero, for all 1
Jj<J.
Let (¢1,€2,...,¢&/) denote the weak limit of a subsequence of (,utc’l, uf’Q, - ,pf

in Dy msay([0,T]) as ¢ — 0, where we abuse notation and let (ust, b2 s
also denote the corresponding subsequence. Then we have the following.

<
d

J

)
)

LEMMA 7.6. {ftj}te[o,T] is continuous process from [0,T] to both My(RY) and
Mp(R?) for each j =1,2,...,J.

Proof. By construction (see, for example, the proof of Lemma 7.1 and in particular
(7.11)—(7.12)), we have that

¢

wp [ ()] < €

te[0,T] FECT(R™),||fllLoe <1
holds for some constant C' independent of . In addition, by Proposition 5.3 in
Chapter 3 of [EK86], the mapping v+ sup,¢jo 7y | (f, v¢) — (f,v4—) | is continuous on
Dy ray ([0, T7]) for each f € C2%(R%). Then, by Theorem 10.2 in Chapter 3 of [EKS86],
we obtain as we take ¢ — 0 that {fi}te[o’ﬂ is a continuous process from [0,7] to
Mp(R™). Next, we'll show that {&/ }re0,7) € Dasy(ray([0,T]) is a continuous process
from [0, 7] to Mp(R?). To this end, we need to be able to control what happens to
the total mass of the measures (see also [BMW12]).
Adapting the notations in Lemma 7.5, let’s define compactly supported functions

S = fm(1 = f). Notice that f,, , will converge monotonically to f,, as r — co.
Then

(7.21)

E| su s J =1limE| su s 6 <liminfE [ su ms 6J < 00
<t€[OPT] <f ' £t>> ¢—0 <te[ogr] <f o >> To¢=o0 (te[OPT] <f e >>

by the continuity of the mapping v — sup,c(o 1 (f, ), giving the first equality, and

monotonicity of fp, » < fi, providing the second inequality.

From (7.21), taking the limit » — oo first and using the monotone convergence
theorem, we’ll get

E| sup <fm,§f> <liminfE [ sup <fm7u§’j> < o0,
te[0,T] ¢—0 t€[0,7]

which implies

(7.22) E (t s <1,§t>> <

Using Lemma 7.5, it follows that

m—r00 t€[0,T]

(7.23) lim IE( sup <fm,gg'>> —0.
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This gives that there exists a subsequence of sup,¢o 77( fms &), m >0, such that
SUPtelo,7) (fm, &) — 0 almost surely, {& }i<7 is a tight sequence almost surely and
(& hefo,r) s in Cppr zay([0,77). Due to the latter fact and due to (7.23), {gg’}te[w]
is in Cpy,, mey ([0, T}) as Well. d

THEOREM 7.7 (tightness). The measure-valued process {Mf’j}te[o,T] is tight in
Dar, ray[0, T for each j =1,2,...,J.

Proof. Referring to Méléard and Roelly [MS93], to prove tightness in Dy, (ra)[0,
T], it suffices to prove (1, ut > converges in law to (1,&/) in Dg([0,7]), where note
that & is the limit point of u in Dpyy (rey[0, T], which also lies in Cyy,, (ra)([0,T7) by
Lemma 7.6.

Let F' be any globally Lipschitz continuous bounded function from R to R. Then

(7.24) lirél_S)gp E [F (<1»“f’j>) - F <<1,§§>)”

< lim limsup |E [F <<1,uf’j>)

M=o 0

F((1=gmni?))]
+ Jim Tmsup B [P (1= £ 7)) = F (1= fuh)) |
+ Jm [B[F((1=futt)) - ((18))]]
=0,
where on the right-hand side, the first and third terms become 0 as a result of

Lemma 7.5, while the second term vanishes due to the continuity of the mapping
v = SuPyepo,1) {1 — fm, v4) by noting that 1 — f,, is compactly supported. d

7.5. Uniqueness of limiting solution. We've established tightness of the
measure-valued processes {u$* beepo,) for all 1 < j < J (see Theorem 7.7). We
now show that the limiting measure is unique.

For a measurable complete metric space E, v € Mp(E), define the norm ||-||a7,. ()
on Mp(E) as

W[ ap () = sup v el
feEL>(E),||f|lLe<1

which is the variation norm of finite measures. Using a density argument, one can
show that this is equivalent to (see step 4 of Theorem 3.2 of [BMW12])

V| ap () = sup [ (fv)g |-
FECE(E),|Ifllpee <1

For our purpose, we’ll use test function f € CZ(E). The following two results then
imply uniqueness.

LEMMA 7.8. Let E = (RY)" be a product space of R, n > 1. Let pt,...,u" €
Mp(RY), v, .. v € Mp(RY), and @7, ut, @7 1" be product measures on E. Then

|| ®iz1 /ii - ®zn:1’/i”Mp(E) < Z (||Mi - Vi||Mp(1Rd) X H§;11 <1a/‘j> X H;'l:iJrl <1v’/j>) .
i=1

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/27/22 to 71.232.22.247 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

488 S. A. ISAACSON, J. MA, AND K. SPILIOPOULOS

Proof. For any f € L*(E), ||f||r~ < 1, we have

|<fa zl:u’i 11V>E‘

<f ®j— )@ (W —vh e (®?=¢+1Vj))>
Z| @i )®(M1—Vi)®(®?:i+1Vj))>E|

i=1

E

I A

(7.25) <37 (= gy x T2 (L) x T (1,09Y)
i=1

The last inequality is due to the assumption that || f||;(g) < 1 and using the defini-
tion of signed measure norms.
Since (7.25) is true for all f € L>®(E), ||f||L=~ < 1, Lemma 7.8 is proved. 0

COROLLARY 7.9. Let E = (R%)" be a product space of RE, m>1. Letp',...,u" €
Mp(R?Y), vt ... ;0" € Mp(R?), and @™ ut, @ % be product measures on E. If
there exists M > 0 such that | (1,p') | < M and | (1,v")| < M for all1 < i < n, then

n
| @y 1 = @V | [arp () < M1 Z " = V| arp (ra)-
=1

Proof. This is a consequence of Lemma 7.8 using the fact that <1, /ﬂ> or <17 l/i>
are uniformly bounded by M. |

LEMMA 7.10 (uniqueness). The solution to (5.2) is unique in Cpy, ra([0,T7).

Proof. Suppose we have two different sets of solutions to (5.2), {(&},&2,...,
f‘])}te[o 7] and {(&,€2,... fi])}te[o,T}» with the same initial condition (&§,&3,...,&])
= (4,€2,...,&]). Tn (5.2), if we use a test function of the form of ¥ (z) € Cp *(Ry x
R%), it becomes

(7.26)

<¢t,gt> = <¢0,§g> +/Ot (0sths + (Ljths) (), €l (da) >ds+Z/ /@) SO

Bej auy

/w Z¢ m (y @) dy = wu(2f) | A (dx) ds.

Let Pj+,t > 0, be the semigroup generated by £;, j = 1,2,...,J. Choose ¢s(x) =
Pji—sf(x), respectively, for each 1 < j < J , where f € CZ(R?), ||f||z~ < 1; then
(7.26) becomes

(7.27)
Bej

(r.6) = (Piat. ) Z/ Loz | o [ Pt ) | o wle) dy

r=1
- Z Pri-sf(x9)) | x Ko (2) \O[¢,](dx) ds
r=1

From (7.27), we obtain the following estimates for (f, &/ —&/). By (7.22) we have

that ‘ B
M=1v sup ‘<1,§§>‘\/‘<1,§§>‘<00
{te[0,T7],j=1,2,...,J}
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which then gives

(7.28)
Kﬁﬁ—ﬂﬂ
<Z / L.zl jfjwtsf D) | e (y 1) dy—iw,t_sfw&”)
< Ki (@) (W 6.)(d) ~ X V(&) (d)) | ds
sc<K> S eut / INOE,] = XOLE ] lyr, oy ds
SC(K) azi);)vﬂe]/ | ®i21 (®7£4160) — @11 (S7L1 ) gy o) dis

L
oy + Bij @ S
< C(K) Z W/O M=t Z i1€5 — Esllap (ay ds,

/=1 : i=1,...,J

where the last inequality is due to Corollary 7.9 since <1,§§> or <17€;> are uniformly
bounded by M for all 1 < ¢ < J. In the second to the last equality of (7.28), we have
used the following estimates:

(7.29)

Bej auy

(g), /Y(L’) ;PZ t—sf(y j) me (y|x) dy — ;Pe,t_sf(mgj)) Ky (x)

Bej agj
1 . )
- (7) (7)
= la®! /w> ;:1: Pei—sf ()| | me(y| ) dy+;=1 Pei—sf(@)] | Ke(x)
Qyj + BZJ
- a® C(K)

(here we use the fact that ||P;f||rec < 1 and / mye (y|x) dy =1).
O
Based on (7.28), we obtain

ZH@ &l vz

L

J
o+ By (1 ®_ S
K>ZZ;T>!J/O M e €l e

£=1j=1
ag; + Bej o a® td
=4 T EE prlatl=1, i Fi
<C(K)LJ1<£<rgi>§j<J{ aor M }/0 Eﬂllé‘s &sllvp (ra) ds

Applying Gronwall’s inequality, we get Z;Ll 1€l €| Me(rdy = 0 forallt € [0,T],
which proves the uniqueness of solution, concluding the proof of the lemma. 0
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Appendix A. v dependency of reaction kernels. In this section we demon-
strate one way in which the claimed « scaling given in Assumption 4.9 arises for
bimolecular reactions. We ignore the zeroth order case as our main result, Theo-
rem 5.5, does not allow for such reactions. In the first order case the reaction rate
kernel, K7 (x), is usually interpreted as an internal property of molecules, giving the
probability per time an individual reactant particle can undergo the reaction. As such,
it would not be expected to depend on . In contrast, the reaction rate kernel for
a bimolecular reaction is often calibrated to agree with a known well-mixed reaction
rate constant in the limit that the system is forced to be well-mixed (i.e., the limit
that particle diffusivities are taken to be infinite), which ultimately gives rise to the
~ dependence.

Consider an isolated system containing only two particles that can undergo a
bimolecular annihilation reaction of the form A +B — @&. Assume we are considering
the reaction within a bounded domain Q C RY with hypervolume |Q|. In modeling
chemical reaction systems, one is often given a spatially homogeneous, well-mixed,
macroscopic reaction rate, Ky, with units of (molar concentration)!~%(time)~! for
a reaction of order a. The corresponding reaction rate used in a spatially homogeneous
well-mixed stochastic chemical kinetics model is then K = (v|Q|)! =% Ky, with units
of (time)~!. For our second order reaction K gives the probability per time for the
pair of A and B molecules to react and annihilate in the well-mixed stochastic model.

Consider the PBSRD model’s dynamics until the two reactants annihilate. Let
p(x,y,t) denote the probability density the particle positions are x and y, respec-
tively, at time ¢, and no reaction has yet occurred. Then
dp
ot
with reflecting no-flux boundary conditions for & or y in 9. In the formal well-
mixed limit that the particle diffusivities are taken to be infinite, we expect that

p(x,y,t) = p(t). Letting P(t) = p(t) |2|* denote the probability the reaction has not
yet occurred, we then have

dP 1
—=—-|— K7 dxdy | P(t).
- (W | K@y y> (t

(z,y,t) = (D*Ap + DPAy)p(m,y,t) — K" (@, y)p(x,y,t), TEQ yeQ, t>0,

To match the well-mixed stochastic model we would then require that

1 _ K.
— K'(z,y)dedy = K = —=.
Q7 Jo (y) 719

If we assume that K7(x,y) = v?K(x,y), then we immediately obtain the scaling
given in Assumption 4.9, i.e., 8 = —1.
More concretely, consider the widely used Doi interaction K7(x,y) = Aljo
(|lz —y|) [D76a, D76b]. We find that
 Kam |9
Y |RNQ2|
where R = {(z,y) € R?¥| |z — y| < e}. As Q — R? we formally expect
me
v|B:|’

where |B| denotes the hypervolume of the ball of radius €. This demonstrates that
the scaling of Assumption 4.9 persists in freespace.

A —
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Appendix B. Mass control lemmas for different cases of reactions. The
goal of this section is to prove the following key estimate.
LEMMA B.1. Recall the definition (7.14) of the functions f,,. For the £th reaction,

1< ¢ <L, let n be sufficiently small, € > 0, and R € N as in Assumption 4.8. Then,
the following estimates hold for m large enough:

Bej

! 1 J n €
E LSE&?T] | [ st ( [ (Z Fnlo >)> m} (y|2) dy) \ )[uﬁ_](dm)dS]

r=1
t .
sup [ {1 nle). S (@) ds
te[0,T] Jo
+ QC(K)C(M)Hmecg(Rd)T (Cn+e).
To do so we first prove some intermediate results and the proof of Lemma B.1
will then follow at the end of this section.

LEMMA B.2. For any > 0 small enough, L+1 < (<L, yeY®Y, z e XO,
and f € C}(YW), there exists a constant C' such that

<20(K)(C(p) V1) sup E

- 1<4<J

/w> f@) (m(y|x) —me(y | ®)) dy| < C||fllc2 vy,

giwven Definition 4.3 on the choice of positive mollifier and Assumptions 4.4-4.8 on
the placement densities.

Proof. This is essentially a result from the definition of mollifiers. We’ll discuss
this estimate for each of the following different cases of reactions. The upper bound
is always some constant of the order of 1 times |[f||c1 (y).

Case 1. Reaction of the form S; — S;.
Plugging in the definitions of m;(y|x) and me(y |x) from Assumption 4.4,
we will get

[ 1w ity 2) = mity|2) dy\ [ Fw)Cly— ) dy — £(2)
Y©) R4

=| [ 0w - s Gty

< / F(y) — £(2)| Gy — ) dy
B(x,m)

< /B o Wl % Gty ) dy

<

< Ifllep @ayn-

Case 2. Reaction of the form S; — S; + Si.
Plugging in the definitions of m}(y|x) and m(y|x) from Assumption 4.7,
we will get

fFy) (m](y|z) — me(y|z)) dy
Y (&)

I
S v | [, Fndolinn 12 Go o = (e + (1= 1)) dy de

=1

= [y P )ollns = )8 o = (s + (1 = 02)92)) d ] | (Lot 0 = 31 = )
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I
=S [ [, £ v mdouGy (@ = i ) duw s
i=1

= [ P w3 o = 1)) dw de|

s i
- i:lei x _/Rd p(lw]) x (/Rd (flw+y2,92) — flw+ 2 — 0w,z — a;w))

x Gy (x — oyw — y2) dy2> dwil

IN

L
S b x /p<|w|)</ Fw+ y2,y2) — F(w + 3 — aw,@ — a;w)]
i=1 | /R4 B(z—o;w,n)

x Gy (x — oyw — y2) dyg) dw

I
S pi x {/ p(jwl) </ 1£1lot g2ayn X G (& — a0 — ) dy2> dw}
i=1 R B(z—a;w,n)

<N fller @zayn (by noting that / p(Jw|) dw = 1 in Assumption 4.8) .
Rd

Case 3. Reaction of the form S; + S;, — S;.
Plugging in the definitions of m}(y | ) and m,(y |z) from Assumption 4.5,
we will get

1) (ml (g ) — me(y | @) dy\

IN

‘ (@)

I
= ;Pi X |:/Rd f)Gn (y — (a1 + (1 — ag)x2)) dy — flogzr + (1 — Oli)ftz)} '

I
=1> pix / (fy) — flaiwy + (1 — ai)w2)) Gy (y — (iz1 + (1 — ai)z2)) dy
i=1 R

IN

I
Z_:lei X /B If(y) = flauzr + (1 — a)x2)|

(jz1+(1—aj)z2,m)

X Gy (y — (ciz1 + (1 — ag)z2)) dy

I
pix [

< [Ifllep rayn-
Case 4. Reaction of the form S; + S, — S; + 5.

Plugging in the definitions of m}(y | ) and m,(y |z) from Assumption 4.6,
we will get

f) (mf (y | 2) — me(y|x)) dy
v (@)

<

1113 eyt X G (0 — (csos + (1 — as)az)) dy
(jz1+(1—o)z2,m) ?

P X {/ Fi,y2)Gn(y1 — 21)Gy(y2 — x2) dy1 dy2 — f($17$2):|
R2d

+ (1 —p) x [/RM F(y1,y2)Gn(y2 — 21)Gn(y1 — @2) dy1 dy2 — f(fvwl)] ‘

p X /]RM (f(y1,y2) — f(z1,22)) Gn(y1 — 21)Gy(y2 — z2) dy1 dy2

F =) [ (Fnm) = Fe2.00) Galyz = 21)Galyr = 22) dun dy
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< |px / [f(y1,92) — f(z1,22)|Gy(y1 — 21)Gy(y2 — x2) dy1 dy2
B((w1,72),v2n)

+a-px [ F(W1,92) — F(@2,20)| G2 — 21)Gin (1 — 2) dy1 dgo
B((z2,71),v2n)

<Ip

< [ 171l gzay X V20 % Golys —21)Gry2 — 22) dy dya
B((z1,22),v2n) b

+(1—p)x / Fllor reay X V20 X G(y2 — 21)Gy(y1 — x2) dy1 dy2
B((z2,21),v2n) b
< \@Hfﬂcg(R?d)n u
LeMMA B.3. If the £th reaction is a reaction of the form S; — S, then

Bej

t
1
B [ a3 ) | el dy ) KOS ) i

t
<CE) [ (). () ds
0
Proof. By plugging in the specific form of the reaction rate and placement density

as in Assumption 4.4, we have

Bej

! 1
Ky ( - dy | A® dzx) ds
I L@ | [ 50 | me o) dy | xOpS 1)

r=1

=[x ([ i dy) 4 ) ds

_ / Ko(@) f (2) (d) ds
0 R4

< ) [ {Fnto) (0 s :

LEMMA B.4. If the th reaction is a reaction of the form S; — S; + Sy, where i
and k could be j, then for the choice of e > 0 and R € N in Assumption 4.8, we have
for m large enough,

Bej

! 1
/0 /31(2) me /Y(f) Zf (]) me (y|x) dy )\(Z)[ _J(dx)ds

< 20(K) / (Fron(e) p$2(d2) ) ds + 2C () Fnllea e C )t

Proof. Let € > 0 and R € N be such that Assumption 4.8 is satisfied. By plugging
in the specific form of the reaction rate and placement density as in Assumption 4.7,
we have

/ot /§g<2> ﬁ (/W’) (% fm(y ) mye (y|x) dy) AO[S |(de) ds
/ / Ke(@) (/2 (fm(¥) + fm () me(y, 2| 2) dydz> uS: (dz) ds

1
:/0 /R Ko@) ( /R L, Um @)+ Fn(2) plly = 2) D pid(x — (o + (1 - al-)z))dydz) uS (dr) ds

=1
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t
cw) | <</|y< (i (®)+ fn(2)) plly—21) szé(:v azy+(1—ai)z>)dydz>,us (dz>> s
t I )
o) [ <</yZ>R(fm(y)+fm(2))p(yZI)ZM(I - (aiy+<1ai>z>>dydz> :#gf(dz)> ds

=1

t I )
cu) [ << | 2fm_1_R<x>p<yz|>;pié(x<aiy+<1ai)z)>dydz> ,u§f<dx>> ds

+20(K)||fm”c‘2(Rd)/ < </ \>R/e dp(|n)6(z—am—z)dzdn) ,,ug’i(daz)> ds
[m z
t .

< QC(K)A <fm_1_R(x) </| |<ng(y,zx)dydz> ,ugf(dr)> ds

y—z|<
) I
CUE)| fmll o2 ga ; dn |, puS(dz) ) ds
+ CODfnllog ey | <le </n|>R”("') n> HS( >>

t .
< 20(K) /0 (fmr-n(e), pS" (dn) ) ds + 20(K) |l o2 ety C (1)1 0

LEMMA B.5. If the {th reaction is a reaction of the form S; + Sy — S;, then

t 1 Bej 4
/0 /fg(f) sz (/Y(f) (TE: fmly ) me (Y| ) dy) A0 [Ngf](d-'”) ds

<cw)cw [ (s 00840 )+ { Fma (). s

Proof. By plugging in the specific form of the reaction rate and placement density
as in Assumption 4.5, we have

Bej

// e @) (/ (Zf y“)me(mw) dy) OS] (da) ds

r=1

/ <<Kz(x,y) (/Rd fm(Z)mé(Z|$,y)dz) ,uﬁf(dm)> s (dy)> ds
<C(K /O75 << (/Rd Jm(2) ipi(saix_s_u_ai)y(z)dz) ,ij(dx)> Ns_ (dy)> ds
/0 <ipi(fml($) + fm1(y))»li§’i(dx)> ,ug’k(dy)> ds

RO [ ({fmse)on ) + (s 500 ) . n

LEMMA B.6. If the (th reaction is a reaction of the form S;+ Sy, — S;+5,, where
i, k,r could be j, then

t 1 Bej
/O/XWWKZ /W) > D) | me(y|2) dy | AO[ps )(dz) ds

r=1

<cw)cw [ (o0 + () ) s
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Proof. By plugging in the specific form of the reaction rate and placement density
as in Assumption 4.6, we have

t 1 Bej .
[ Juo ot Ly |2 m0) | metw1) ) 2Oy

< [{(metwn ([, nle) + bt w2, p)dz dw ) @) ) i) ) s
<ow) [ << < [y )+ ) (5 8 (21 0)
+ (1 =p) X 3y ((w,2)) )dz dw) : uf’i(dw)> pet (dy)> ds

< O [ ({Uno) + () )} S a) s
< CIC) [ ({Fnle)i? @)+ (Bl S 00)) ) s 0

Now we are in position to give the proof of Lemma B.1.
Proof of Lemma B.1. We have that

Bej
[teS%pT / /X(é) a(é)l (/(17) (2 Fm(y (J) ) ¢ (y| ) dy) A© [ _](dx) ds ]
Bej
[t:lél:’;" / /Xu) a(‘f)' (/Y(e) (Z () ) my (y|x) dy) O[S ](de) ds }

r=1

BZJ

[tes[lé%/ /xu) PG (/W) (Z Fm(y?) ) (m? (y|z)

=1

—me (y| =) ) dy) A (d) ds ]

Bej
t:‘;%/ /Xm am (/W) (Zf ”)me(ym) dy> I }(dm)d]

r=1

+20(K)C()||fmllc eayCnT  (by Lemma B.2)

t .
<20)(CG V1) sup B | sup [ (furnla), i (dn)) ds
1<i<J | tefo,7]Jo

+ 2C(K)Hfm|\cg(Rd)C(u)T€ + ZC’(K)C(M)Hfm”cg(ﬂw)CnT (by Lemma B.3-B.6)

= 20(K)(C V) sp | sy {fcron(e). i (do)) |

1<i<J |te[o,T
+ 20(K)C()| fmllczwayT (Cn +€),
concluding the proof of the lemma. 0

Appendix C. Proofs of Propositions 6.5 and 6.6. Let us recall the for-
ward equation (6.2). For proofs of both Propositions 6.5 and 6.6 we need to define
an appropriate L? space. In particular, defining an appropriate L? (Fock) space,
F, with inner product for two functions, G; = {g(“bc)(qa,qb,qc)}if’b,czo and Gy =

a,b,c
{92 ( )(q q".q° ) Yab,e—0> 8S
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(C.1)
(Gl,Gz)F=ZZZ 9" (q".q", 495" (q", 4" q°) dq" dq" dg",
a=0 b=0 c¢=0

a! b' c! JrGatvtera

we can interpret 7* = L+R* +R™ as the adjoint of the generator, T, for the process
QM (1), Q%M (1), Q°D(1), A(t), B(t), C(t)).

Formally, we find

(C.2)

(TG)a,b,c (qa7 qb7 qf‘)
= (EG)abc(q“ q’,q°)

55 ( / mi (2laf,ab ) K7 (af s ah)g ™" 0 " \ af a" \ aha” U 2)dz

=1 m=1

~ K} (q?, qfn) 9“9 (q", ¢, qc))

59 ( . m3 (2,ylah) K3 (@)g“ V(e U g’ Uy,q° \ g, t)dady
R

n=1
- K3(qn)g (“bc)(qa7qb7qc)).
Note that here £* = L.

Next we present the proofs of the two propositions.

Proof of Proposition 6.5. For simplicity of notation, without loss of generality,
we will show the equivalence for the evolution of E[p({f,v¢) p)]- The same proce-
dure follows for the more general multidimensional case E[p((f1,¢) 1 o (fo, v <) Preees
(far, vy > )]. By the definition of ¢ and adopting the notation of this section,

(C.3)

[ ((106),)

A(t) B(t) ()

~E | Zf 51+Zf Q7 52+Zf (1), 55)

oo oo o a b c

_ a b c

SO IDIFTT ) NI DOVICICIESD SHICSES SYICAN
a=0 b=0 c=0 =1 Jj=1 k=1
x p@t) (g, q°, q° t) dg* dg® dg°

= (G, P(t))p

where we define g(@5) (g, ¢, ¢°) = o(3°%_, f(q2, Sl)—f—zi’.:l f(q}, S2)+ >, flap,
S3)). For such a form of g(@*°)(q?, q°, q°), plugging into (C.2), we have

(C.4)

(TG)gp.c(a* " q%)

a b c a b c
= (Dl D Age+D2 Y Ay +Dsy Aqg) ¢ (Z F@d, S)+> f(ah, S2)+> f(q;i,Ss)>
=1 m=1 n=1 i=1 J=1 k=1
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a

+>.2 </Rd g 101t (g \ gf q\ @b, q° U 2) — 9P (", q", a%)]

=1 m=1

xmf (laf' ab ) x K7 (af' qmdz)
+ Z (/ [ (atbbtle=D (g U, q" Uy, q° \ 5, t) — g<""”c>(q“,qb,qc)]
R2d

x mJ (z,ylqs) ¥ K;(q%)d:vdy>

b

=Di) ¢’ (Zf(qf,sl) +> f(d},S2) + Zf(qziv
=1 =1

j=1

53)) [V ga f1(gf)I?

o

+Dlzso (Zf af,S1) +Zf(qj,52)+2f qk,ss)A o f1(af)
J

1

<o

a

+D2290” (Zf al, 1)+ > f(q?, S2) +Zf(qk753)> bf2 q?)|

j=1

<o

a

+ Do Z @'
Jj=1

j=1

<o

> fad, Sh) Z (45, 52) +Zf(q;i753

Vg f3(a0)I?

( flad, S0+ f(d},S2) + Zf a5, S3) ) g2 f2(a))
+D3Z<P” ( )
k=1

a

+Dgzso (Zf (gf,5 Z (q?,S2)+Zf(q;‘é7S3)> Age f3(af)

j=1 k=1

a b c
+ZZ (/ {s@(Zf(q?,SlHZf(q?,Sz)JrZf(q;";,Ss)—f(ql“,&)—f(QEW52)+f(z753)>
=1 m=1 =1 J=1 k=1
a b
—p (Zf(q?,&)Jer q},52) + Zf a5, S3) ﬂ x m] ( lai* ,qm) x K?(q?,qf’n)dz)
i=1 j=1
+> (/R?d |:<,0 (Zf(Qf751)+Zf q},S2) +Zf g, S3)+ f(z S1)+f(y752)f(qz753))
n=1 i=1 j=1

a b c
—p (Z f@d S0+ f(dh,S2) + > f(QE,Ss)ﬂ x m (x,ylq;,) x Kg(qf;)dmdy> :
i=1 =1 k=1

Rewriting E[o((f, vf)ls)] in (C.3) as an integral equation, we obtain
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8]
=k [‘p (<f’”§ p)] +/0t (G, T"P(s))p ds (by (6.2))
=E[e ((£.45) )] + /Ot (TG, P(s)) ds
=k [CP <<f’yg p)]
¢ A(s) B(s)
o {/0 #(5),) [Dl > 2 f@Q7(s).51) + D2 3 8, 1@ (5).5)
=1 =1
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C(s) A(s)

+ D3y Aqkf(QkC(S)(S),Ss)} +" ({£.05) ) x [Dl > IVa.f(@ ORI

B(s) C(s)
+ D2y Vo, F(QFW (), 52 + Ds Y [V, F(QF (s ),53)2} ds}

1 k=1
- + A(s) B(s)
T3> ( [, K@ ).@R e)mi (210] (). @57 (3))
=1 m=1
(o ((8) = 1@ 050 - 1@EVe 50+ 562, 5) = o ((105) ) ) ]
+ C(s)

ve| [/ by ( L, K@ w)mi (=417 ()

x (¢ ((£:08) L + F@.S) + £y, 82) = Q7 (5),89)) = (£, >))dwdy) ds}.

From the measure-valued formulation in (5.6), we obtain the following integral
equation for E[ (<f, ) > by applying It6’s formula on (5.6):

(C.6)
t R
o () )] =2 (o) )] 43| [ o) 3 05 (s
X ) (s ), of /. ,
+§E /Onp”(<f,1/§>p) Z: (\/ﬁ% (Hl(uf_))) ds
sm [ L L (e (<F050) 50 - SOHL0E), 52 + 12, 50)
(N\{0})# /R® JRY

*ric (e L1082 )) X Loyeny gy 080, 0201 X l{ezsm?<z\H5(u§f),Hg<u§f)>})

(<f’yé> )le S i ],Z 61792)

E / /N\m /W /R <f>(<f7 vS)p + (f(x,51)+f(y, 52)4(1{5@5;3),53))
2

X e (1082)) X Moy gl 02y X 1(92§m;!<z,y\Hg<v§f’>>})

- ¢ (<f7 Vsc 15) dNQ(svkzx’y701792):|

t <1’"-§—>p 82f
E[@(<f,u§>ﬁ)]+]}i /O‘pl(<fv”§>ﬁ) Z Dianz(H"(Vg,D ds

i=1

, (Li)p 2
R S

i=1

L81) (1062 | |
+E/ Z > [ K WS, L (52) s (), 1 (052)
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x o (1) o+ (~FHE WD), 81) = FUHL(VS2),82) + [(2,85)) ) = 0 ((£,v5) )] dzds]

<1u<3>
+E/ Z / K3 (HG(wE)) x m3 (w, y | He (v5))

[ (<f,1/ Vet ( x S1)+f(y,52)—f(Hg(1/f‘_3),53)))—4p(<f,1/§ ﬁ,)] dzdyds:| .

We observe that the integral equation for E[p (<f, Vc)t>ﬁ,] is the same when
derived from the forward equation (C.5) and from the measure-valued formulation

(C.6). O

Proof of Proposition 6.6. We use the forward Kolmogorov equation to prove the
proposition. We are interested in finding an equation for the average concentration
field for A, B, and C molecules, i.e., E[A(x,t)], E[B(y,t)], and E[C(z,t)], from the
forward equation. This is defined by

E[A(z, t)] [Z 5 ( QM )}
=>_> Z al b' a Z a —2)p'“"(q",¢",q",t) dg" dq" dg°

(a+b+c)d

el 1 bie) a— b 1 ;b
= Z Z Z (a—1)!dle! /( tbieyd p<a C)(q 'u z,q ,qc7t) dq” 1 dq’ dq°.
tole! Jrea— c

Similarly, for molecules B and C, we have

oo 0o oo

=X S Tia = 1 o / " (q",q" ' Uy, q°,t) dq" dg"~" dq",

a=0 b=0 c=0 R(at+b—1+c)d
oo o0 o'
(a,b,c) “ b o
albl (c— 1)1 q*,q",q° Uz t)dg" dg’ dg° .
;);c al b' C_l) ,/]}{(a+b+c—1)d ( )

In deriving this equation we will need to use the correlation in the A and B fields,
given by

E[A(z, t) B( llit) Bz(t: 5 ( A(t) ) 5 (Qf(t)(t) _ y)]

i=1 j=1

—2)d(q —y)p'*"(¢", 4", q",t) dg" dg" dg°

oo 0o oo 1 - - B B
ZZZW/ P ) da '

Using these definitions, and assuming the probability densities vanish at infinity, we
find that

I
NgE
NgE

‘OIMS
M
M-

S—

oo oo oo

6tE Z Z Z )bl /]R(a71+b+c)d

a=0 b=0 c= O
(L+R* + R‘)P)mb,c (@ 'Uw,q,q°t)dg* " dq’ dq°

= (I) + (1) + (T),
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where

a—1 b ¢ a—1 b c
> ail,b,c,/< venenys EPape (@ Ve, g% a1 dg™ " dg” dg
Rla1ibre

c=

oo a—1 b c
D Aga +D A D Age

0 c=0

t”ﬂg
NE

)
Il
=}
o
Il
o
<}

M
L

0

<
Il

a

PP (g U, g’ g t) + Didap " (¢" U, g, q", t)] dq*~" dq" dq°

= D1AzE[A(x, )],

where on the second to last line, the first term becomes zero due to integration by parts
and the fact that probability density vanishes at infinity (recall that by Theorem 6.4

pE

an) =

C([0, c0); H2(X))) Similarly,

co oo oo

-1 b -1 b
Z ZZ a_ 1 'b' c! _/R(afl«l»b«#c)d (R+P)a,b,c (qa Ux,q »qc,t) dq”' dq qu

=0b=0c=0
co oo o0 b
:Z Z K x (abc)( a=1 4 qb q¢ t)dqafldqbdqc
_m/ac -3 K7 (wah) o
Tz (a = Dble! Jra—itotoad L=
oo oo oo a—1 b
Y (a,b,c) ( a—1
+;;C:O a—l'b'c' R(a—14bte)d v X::IK1 (leqWL) (q U‘I’q q°, t)

0
/ ma(aSle, MK (€ m)
R2d

+
it |

plottbibe=(go=lyzug,q® Un, ¢°\ g, t)dﬁdn]} dg®~ ' dg® dq°

o0 oo
- —_— b x K7
Z Z (a—1) |bl ¢! /R(a+b+c 2)d |: /Rd [ (@)

a=0b=0c=0
x p @ U, ¢" Uy, q% 1) dy} dq® ' dq"~" dq°

1 b
(a—l)'b'c'{ /Rm 14+b+tc)d Z: 1W<ql’qm)

X p a,b,c)(qafl Uz qb q t)dqa,fldqbdqc

¢S]

D333

a=0b=0c=0

o

a b+1

K’Y
L N B D D) DEUCT R AL

I=1m=1

x p(a+l,b+1,cfl)(qa U w7qb+l7qcfl7t) dz dqa dqb+l dqcl}
~ Ja K| (=, y)E[A(x, ) B(y,t)] dy

oo 0o 00 b

b
SISy IS 9D SECH CRTEY
aObUcO m=

x pl@v) (gt Uz, q°, ¢°, t)dg* ' dg® dq°

a—1

=1

oo oo oo a b+1
Y (4@ b
+GZ:OI§)§ al ( c—l) /R(a+b+c)dlzzlmzzl Ki(q' am)

p(a+1,b+1,cfl)(qa U :l),qb#»l,qcil,t) dqa dqb+1 dqc71

=~ [, K] @9 Bl 0 By.0)dy.
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In the third equality of (IT), we exchanged the orders of integrals and sums using that

/ ZK1 (®,qh,) p*"9(¢* T Um, ¢ " t) dg’
RV

= Z » K] (w,qb,) p“" (¢ Um,(¢"\ g},) Udh,, q° t) dg}, d(q" \ @},

_ Z 3 Kl z, y) p(a,b,c)(qa—l U :B,qb_l U y,qc,t) dy dqb—l
R
(Here we replace ¢, by y and ¢°\ ¢°, by ¢"~* due to that particles of the same
type are indistinguishable)

=bx | K (=, y) p @) (q* Uz, ¢ Uy, ¢ t) dydg® .
R

Similar ideas also apply to the third term and to deriving (IIT). In the second to last
equality of (II), we used that [,, mi(z|z,y)dz =1 and the second and third terms
cancel by shifting indexes. Similarly

_ _ -1 b —1 ;b
(1 = Z Z Z (a— 1)lbl c! /]}{(a—1+b+c)d (R P)a,b,c (¢“" U=, q",q°% 1) dg" " dg” dq°
c=0

c

- - _ Y (C\(asb,c)a—1 b ¢
ZZZ (afl)'b'c' /(a 1+b+c)d{ ZKQ (an)p (@ U2.q%q% 1)

a=0b=0c=0 n=1
b
+Z |:/]Rdm2<:l: qmlz)K’Y(Z)p(u. 1,b— 1c+1)< a— 1\qa lqub\q’ﬂwq Uzt)dz]
m=1
b a—1
s [/ ma (4~ allz) K3 (2)
m=11=1 L/R?

p(a—l,b—l,c+1) (qa—l \qla—l U m?qb\qz”qc U z,t) dz:| } dqa—l dqb dqc

o0 (e o) o0
z >3 i e[ K
oo (a—1) 'b' c! Jrta+bte—2)d  Jpd

a=
X p (“ 1U:nq ¢t Uz, t)dzdq®™ Ldq® dg°!

oo oo oo

+ Z Z Z a — 1 1'bl el { /]R(a+b+c—2)d b|:/]de m2 (az,y\z) K;(z)

a=0b=0c=0

p(afl,bfl,&l»l) (qa717 qb717qc U Z,t) dydz:| dq‘Z*l dqb71 dqc+/ (a _ 1)b
R(a+btc—3)d

x {/wmz (&, mlz) K7 (z)ple- b Let D) (q“*2 Uz,q"",q°Uz, t) d¢ dn dZ} dq“ququc}

oo o0 o0
_ - - K] (=
sz;)z a—1) lbl (e—1)! /R(a+5+c—2)d /Rd 2( )

a=0 c= 0
x pl@b) (g Uw,q® ¢ U z,t)dz dg® " dg® dg° !

oo oo oo

+ ZZZ a'b'c‘ /R(a+b+c)d l:/ m2 z ylz K'Y( )

a=0b=0c

% p(a,b,c+1) <qa7qch U z,t) dydz:l dq® dqb dq°
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[ K3

oo oo o0 1
+ Z Z Z m /R(a+b+073)d

a=0b=0c=0

% p(afl,bfl,c+1) <qa72 Uw,q* 1, q° U z,t) dz:| dg®=2dg"~" dg°

» [ » mo (z,y|z) K;(z)dy} E[C(z,t)]d=.

In (IIT), we used that [;,, ma(x, y|z)dx dy = 1. In the second to last line, the first
and third terms cancel by shifting indexes.
In summary, the average concentration of species A satisfies

OElA@.0] = DiAB(A. ) - [ KS (2.0) Bl 0 B(y.0) dy

- /]R { | e (@ y]2) K3 (z)dy} E[C(z,1)]dz.

Following similar arguments, one can derive equations for the average concentra-
tion of each species, given by (6.6) as claimed. This concludes the proof of the
proposition. O

Appendix D. Proof of Theorem 6.4.

Proof of Theorem 6.4. Due to the linearity of the equation, the proof of existence
and uniqueness is standard here, so we only present a sketch of the argument for
completeness.

Notice that the operator £ defined in (6.3) generates a contractive analytic semi-
group on F, denoted by {e*“},;>9. Now, since by Lemma D.1 R*, R~ are Lipschitz
continuous, existence of a unique local mild solution to (6.2), P € C([0,); F'), follows
by the standard Picard—Lindel6f theorem for equations with values in Banach spaces
if the initial condition satisfies Py € F.

Next we establish global existence of a unique mild solution. The boundedness of
the linear operators R™, R~ by Lemma D.1, together with the contraction property
of the semigroup t — e'“, implies that

(D.1) IP@)r < |Pollr + C / |P(s)][r ds

and a subsequent Gronwall lemma yields the bound ||[P(t)|r < ||Po|re®t. This
bound allows us, by choosing t; small enough, to extend the solution from the interval
[0,t0) to the interval [0,00). Hence, a unique global mild solution P € C([0,0); F)
exists.

We actually have stronger regularity for the solution, P(t). This is a direct con-
sequence of the contraction and regularization properties of the semigroup {ew}tzo.
Indeed, since P(t) is in L?(X), Lemma D.1 gives that R*(P) and R~ (P) are both
in L?(X). If, in addition, the initial condition Py € H*(X), then the mild form of
the solution together with standard parabolic estimates (see estimates 3.1 in Chapter
L.V, section 3 of [LSU6S]), gives that P € C([0,00); H?(X)).

Note that P(¢) can be viewed as a probability density. Indeed, we have that if
Py, > 0, P(t) is, by Lemma D.3, always nonnegative for all ¢ > 0. Second, if P,
satisfies the normalization condition,

oo o0 o0

L (a,b,c) a b _c c b ol
2> > [a!b!c! /ﬂw /Rdb/ﬂwpo (44", q°) dq° dg"dq" | = 1,

a=0 b=0 c=0
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then the same normalization condition holds for P(t),t > 0,

oo oo oo

(a,b,c) a b _c c b u
Zzz[a'b'c' Rda/]Rdb/Rdcp (q’q7qat) dq dq dq

0 b=0 ¢=0
by Lemma D.2. This concludes the proof of the theorem. ]

LEMMA D.1. We have that the operators Rt and R~ are bounded linear, Lip-
schitz continuous operators on F. Namely, for G = {g*"°)(q", q*,q°)}, ._o € F,

a,b,c=
IRT(G)||r < C|GllF,
HR (G)lr < ClG|lF,
IRT(G1) = R (G2)llF < ClIG1 — Ge|lF,
(D.2) IR™(G1) = R™(Ga2)|r < CIG1 — G2l
Proof. We’ll only show that the first two estimates hold. The Lipschitz condi-
tions on R™ and R~ follow directly from R* and R~ being bounded and linear.
Assume that the initial number of particles are ag, by, and cg for species A, B, and
C, respectively. We then have that the following upper bounds hold for all times

0<a<ag+cy:=mazr, 0 < b<by+co:=bmas, and 0 < ¢ < ag Aby+ ¢y := Cnaz-
By definition of the norm on Fock space and the definition of R*, we have that

D.3)
IR (@)

2
F
oo oo oo
7222 ) (abc)2dadbdc
= Toldl R(a+b+l‘)d abeld 9,4 q-aq aq
K7 (af,a%) ) 9" (a% ¢, 9", 1)
I ! l/a ¢ < ( Z (l7 m ) ) 5
a=0 =0 o=p ! bl el Jr(atbtera =1 m=1
c

2
/M mi(qs |z, y) K (z,y) glettbrhe=b(g?u, g Uy, qc\qz,t)dmdyD dq®dq®dq®
R

o
]38
Mg

n=1
< iii ! (a b C(K) (a,b,c)( a b _c t)>2 da® da® da¢
< alblel Jatatorerd maxOmax g q.,9,9, q aq aq
a=0b=0c=0
oo o0 o0 [
1
+ m1(qé |z, y) K7 (x,
S35 i Lo (S| LGt e

2
x glattbtle=N(go Uz, q® Uy, q°\ QZ,t)dwdyD dq® dg® dg°.

Without loss of generality, let us assume 0 < a; < 1 in Assumption 4.5. Now
denote Cy = (am(mmeCC(K))2 < 00, and substitute the specific form of

mi (g |z, y) sz x 6 (g, — (i + (1 - ai)y))

into (D.3). We obtain
(D.4)

co oo oo c I
+ 2 < 2 o x K7
LSCITEETCTND 905 Sty NN 0 31 J Mp R (o

2
x 0 (qy — (i + (1 — ai)y)) X g(a+1’b+1’0_1)(qa Uz,q® Uy, q°\ qfl,t)d:ndy:|> dq® dq® dg°
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SCUGIF+D D> s al bl el /(a+b+c)d (

a=0b=0c=0 R

/szxK( (a5~ (1= aw) )

2
x glathbtle=1) (qa U a% (@5 — (1—ai)y),q" Uy, qc\qivt) dyD dq® dq" dq°
) oo oo oo I ) c 1
SClIIGHFJr;;;a,b,C, /Wm NN q/R K7 (@ - (= a0w).v)
2
glattbrte=) (q“ U— (g, —(1-)y),q" Uy, qc\q27t) dy] qu) dq® dq® dq° \ qf,
s oo oo
§01”GH%+;§);)¢1'U c—1)! /]R(a+b+v 1)dz Z/ </

Rr(a%(qz—u—a,-)y)—y

) )

_ 1
gttt (g0 L gh-(1 - a0w) @ Ut \ ait)
7

2
dy) dqS,dq” dq" dg°\ g,

(L.

calel+> Sy [ wZPI ([ o e az) 5" [

a=0b=0c=0
_ 1 )
(/ glattbrte=l) (q“uf(qi—(l—ai)y),qbUy,qC\QZ,t)
R4 (o7}
oo oo oo
< C1|G2 / / K7 ( /
<Gl HF+;)§Z ald! (¢ — 1)! Jrlatbte— 1)421}1 ( R4 “ |z Z Rd
(Lol

oo} oo (oo}
OG-+ 33 /WW » ZpL ([, k7 =)? az)
b=0

a=0 c=0

c 2
X Z o Ad (/ﬂ;d ’g(a+1,b+1,c—1) <qa Um,qb Uy,qc\q%,t)‘ dm) dydqa dqb dQC\chl
n=1
A Tabc
< (|G K7 d.
I+ 30355 o ey (L 7 06D )

a=0b=0c=0

2
(a+1,b+1,c—1) ( a+1l b+l _c—1 )’ a+1 3 b+l j c—1
x , , ot d d d
/R(HHHM (’g q“7,q" ", q q q q

< CilIGII% + C2||Gll% = (C1 + C2)|G%

2
dy> dq;, dg® dq® dg° \ qf,

0
(atl,bH,eL) (q“ U—(g5—(1—ai)y),q" Uy,q°\ qf;,t)

2
dq%) dy dq* dg"dq° \ gy,

where Cy = I X GmazbmazCmaz ([ga K} (|z])? dz) < 0o by Assumption 6.2.

Similarly, by definition of the norm on the Fock space and the definition of R,
we have that

(D.5)
IR™(G)I3

p— - a C a c
N Z ZZ ald! ¢! /]}-R(aerJrc)d <(R G)a,b,c(q 49 )> dq" dq” dq
< < c
-2 KQ(!I%)) g (g%, ¢, g% 1)
(a+b+c)d el

v
NE
8
O_\

a=0b=0c=0
a 2

+3°3 [/Rdm (qquntZ) K (z)gletbmheth) (q"\qiﬂqb\q?chuzt) dz]) dq”dqdq®
l=1m=1
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0o 00 00
1 2
< (a,b,c)(a b _c a 3.b g c
= ZZZa,blc, /R(Hbﬂ)d (CmazC(K)g (q¢",9",q ,t)) dq“ dq’ dq

a=0b=0c=0
oo oo oo
a b ¥
* Z Z Z a! b' c! /]R(a+b+c)d <Z Z |:/ " <ql ,qm\z> Kz ()
a=0b=0c=0 =1m=1

2
gla—bb—LetD) (q“ \af',q"\ a5, q Uz, t) dz]) dq® dg" dq°.

Now denote Cs = (¢mazC(K))? < 00, and substitute the specific form of

I
ms (af', @ |2) = p(lg — a5,) Zpi x 6 (z — (cuqf + (1 — ai)gl,))

=1
into (D.5). We obtain
(D.6)
0o 0o 0o a b
IR (@)l < CallGl + 32523 i1 o ( > ([, ma (atable) 30
a=0b=0c=0 I=1m=

2
x gla=bb=letD) (q“ \ai".q"\ %, q° Uz, t) dz} ) dq® dq® dq°

SACTED N STy NN (5 3 ol [ RN C XD T

I=1m=1

2
et (g9 gf q" \ ahyat Uz, t) dz] ) dq® dq" dq°

oo 00 O I
< CS||G||%+;)§;m/ (arbrerd <Z pRelts |:/Rdi_zlpi x p(lai* —an|)

l=1m=1

2
X8 (z—(aiq? +(1- oci)qﬁ’n)) x gla=bb=letl) (q“ \af',q"\ 5, q° U z,t) dz} >dq“dq” dq°

b I

oo oo o0 CK2 a
< Gl GJ3+ ggg%/w) <ZZZ 2 pllaf — gl

I=1m=1i=1

2
x ’g(‘"l”"l’c*” (q“ \a,q"\d5,, q° U (aiq? +(1 — ai)qfn),t)’ > dqf dq’,dq® \ qf dq"\ q5, dq°

CK
(@=1)H(b—1)lc! 4 sz /IR(a+b+C)d (p(|:1: —ub*

2
x )gm*l’b*l‘“) (qa*l, "1, ¢° U (auz + (1 — ai)y), t)‘ ) da dy dq~" dg"~* dq°

co 0o oo
SCSIIGII%JrZ:ZZ:

a=0b=0c=0

I

X XX CO(K)%ab
< G3llGI1% + Z Z Z m Zpl /R(HHCM <p(|w)2

a=0b=0 c:O

2
X )g“’l’b’l’c*” (q“’17 ", q° U (aw +y), t) ’ ) dw dy dq"~" dg"~" dq°

<alelr+ Y35 O "b”;l),zpl R

aObOCO

x / g
R(a+btc—1)d

(where z = a;w + y)
< C3l|G|[% + CallGll% = (Cs + C) |Gl

(a—1,b—1,c+1) <qa717qb717qc Uz,t)f) dz dg® ' dg*~" dq°
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where Cy = I x C(K)%amazbmaz (Cmaz +1) (fRd p(Jwl)? d'w) < 00 by Assumption 6.3.0

LEMMA D.2. Assume that the solution P € C([0,00); H*(X)) to (6.2) exists and
is unique. If the normalization condition holds for the initial condition Py, i.e., that

ZZZ[ 1! |/ / / s (a". 4" q°) dchqbdq“} =1,

=0 b—0 =0 a:0.cC. Jrda JRdb JRde

then we have that the normalization condition holds for P(t) for all t > 0, i.e., that
o0 o0 o0 1

D.7 P (@29 (g9, q", q°, 1) dq°dq" dgq®| = 1.

(D7) Zzz{a!b!cl /R/Rp (¢".4".q" 1) dq" dq’ dq

a=0 b=0 ¢=0 Rdea

Proof. By assumption, we have that the normalization condition holds for the
initial condition. Furthermore, we have

o & [ 1 wbe) [ a . . .
0 i [ L L (@) da i

o0 r 1 8 ,
S5 e Lo Lo L ) |

0o o0 00 1 ) ) ) )
- ZZZ alble! /Rda ./Rdb ,/]Rdc (L:P)avbvc (q ’qb’ q ’t) dq dqb dq ]
N 1 + a b c c b a
Z [alb'c' /Rda /Rdb Rde (R P)a,b,c (q 454 7t) dq dq dq :|

IS]

Il

o
12 I

c=0
- — (a,b,c a b _c c b a
+;b:0; [a!b!d - /Rdb /Rdc (R™P),,.P (¢°,q",q% 1) dq° dq’ dq ] :

Note that in the last equality the first term is zero using the divergence theorem and
that P € C([0,00); H%(X)). The second term is

o0 oo o0 1
Z Z Z |:a! blc! /Rda /Rdb /Rdc (R+P)a’b»cv (qa’ 7, qc,t) dq” dg’ dq“]

a=0b=0c=0
co oo 0o 1 a b
=SS o Lo (30 3 R (aah) ) 0 )
a=0b=0c=0 ¥ ¢ | JRI® SRV JRde =1 m=1

c

/]Rda /]Rdb /Rdc nX::l {/RM mi(qy |z, y) K (,y)

x pletbbthe=l gy ¢® Uy, q°\ g, t)dmdy]dqc dg® dqa}

+

0o 0o 0o a b
=222 4 ; a [/Rd(wm) - <Z > K] (qfﬁqfn)> p(**) (g%, q% q°, t) dg° dg" dq"

a=0b=0c=0 l=1m=1
c
w3 L L msie e | K @)
n=1 ot

x plattbtle=D(ga ya ¢® Uy, q°\ ¢5,t) dg° \ dgf dg” U dy, dg® U dﬂr}
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oo oo oo 1 a b
=> 2> Toldl [/Rd(a%ﬂ) - <Z > KT (ql“,qfn)> P9 (g%, ¢%, q°,t) dg° dq” dg”

a=0b=0c=0 I=1m=1
a+1 b+1
+/ o K”’( o+l b+1>
Rd(atbtctl) (a+ 1)(b +1) lz; mZ:l Im

p(a+1,b+1,cfl)(qu+17qb+17q¢:71’t) dqc71 dqb+1, dqa+1:|

oo [ Sle o}
ZZZ Ll blc! /Rd(a+5+c> <Z Z Ky (ql ’qm)> P (q".q", ") dq" dq’ dq"

a=0b=0c=0 =1 m=1
1 a+1 b+1
+ K”( a+17 b+1)
(a+ DO+ 1) (c—1)! Ad(a+b+c+1) 1:21 mzl

p(a+1,b+l,c—1)(qa+17qb+17qc—17t) dqc—l dqb+1, dqa+1:|
=0

by using the symmetry of p(®*b©) with respect to permutations of the ordering of
particle positions for particles of the same type. A similar calculation shows that the
third term is zero. Thus, the time derivative of the left-hand side of (D.7) is always
zero. Combining with the normalization condition for the initial condition, we have
that (D.7) is true for all ¢ > 0. o

LEMMA D.3. Assuming there exists a unique solution P € C([0,00); H*(X)) and
Py > 0, the solution components p(®t:) (q“,qb,qc,t) are always nmonnegative for all
t>0.

Proof. First, we consider g(®t:¢) (q“ q°, q°, t) satisfying the following decoupled

linear PDEs with initial condition g(®:*) (q ,q%, q°, 0) = p(“ -b) (q"7 q°, qc) >0,

0 a,b,c a c n @0, @ ¢
9“9 (g% q".q°,t) = (L + R +Ry)g“" (g, ¢".q".1),

(D.8) o

where we define

a b
R+ (abc)(q q q° t <Z Z KiY ql ’qm ) g(a,b,c)(qa’qb7qc’t)
=1 m=1
and
Ry9“") (g%, q",q" 1) (Z KJ(q ) ) | 9“9 (g%, q", g% ).

Since 0 < K] < C(K) and 0 < K) < C(K), we can then obtain via a comparison

argument for semilinear equations that the solution to (D.8), gl@b:e) (q“, q’,q°, t) > 0.
Let us further define
R;-g(a,b,c) (qa’ qb’ qc.t)

=>. [/d mi(qS|z, y) K] (z,y) g0 (g* U, ¢° Uy, q° \ 5. t)dzdy
n=1 R
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and
R—g(a,b,c)(qa qb qc.t)

—ZZ U ma (qf, ab|z) K3 (2)g" 704 (¢ \ qf',¢" \ @b, q° U 2, 1) dz

=1 m=1

We then set Rt = R} +RJ and R~ = R; +R; . Due to the positive mapping prop-
erty of the operators Ry and R, , we shall have for the function gla:0:©) (q“, q°, qc,t)
that

a > a C — a C a C
gg““b")(q ,q°.q°t) < (L+RT+R7 g™ (g% q", q°.t).

Hence, again utilizing the comparison principle for semilinear PDEs; we obtain that

0<g“") (g% q" q°t) <p'**(q" ", q" 1),
i.e., the nonnegativity of our solution, concluding the proof. 0

Appendix E. Placement density integrals in (5.3). In this appendix we
expand out the formal notation used for the inner integrand in the integrals

1= [ ow@ ([ s @) (1 .0) iz
zeX(®) yeyY®

for several choices of the placement density, m,.
For a first order reaction of the form S; — S;, by Assumption 4.4 we have

me(ylz) = 0(z —y),

so that in the equation for p;(xz,t), I becomes

1= [ k@) ( [ e =)oty - 2) dy) il 1) di

Rd

= | Ku@)d(x — &)pi(, 1) di
]Rd

= K(z)pi(z,1).

The first order reaction term that appears in (5.5) is of this form.
For a second order bimolecular reaction of the form S; + S, — S;, by Assump-
tion 4.5 we have

N
mg(z|x,y) = an X 5(’2 - (Olnl‘+ (]- - an)y))a

n=1

so that in the equation for p;(z,t), I becomes

N
I= » Ke(ila@)(/ﬂw 5($y)<2pn
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N

= Kg(.’f)l, 5?2) (Z Pn X6 (I — (Oéni’l + (1 — an)i’g))> pi(i'l,t)pk(.i'gﬂf) dZ1 dzo

R2d n—1

= K(Z1,%2) me(x|T1, T2)pi(T1,1) pr (T2, t) dT1 dTo.
R2d

The second order reaction term that appears in the equation for ps(z,t) in (5.7) is
of this form. Note that I can be further simplified to eliminate any § function terms,
giving

I= i:l O% /R K, (1(x . an)zz),@) pi <1(x (- an)@),t> pio(Fa, ) dZ.

Qn

Finally, for a two-product reaction of the form S; — S; + Si, by Assumption 4.7
we have

N
me(z,y|2) = pllz = y) D pa x 8 (2 = (anz + (1 - an)y)),

n=1
so that in the equation for S;, I becomes

N

I= » Kg(a”c)< - 5(x—y1)<p(y1 1)) > pn

n=1

X0 (% — (omyr + (1 - an)?ﬁ))) dyldy2> pi(Z,1) di

- [ m@ ( /, <p(|x — 2> pn X 6(F — (o + (1 - an>yz>>> dy2> pi(3,) d

n=1

= [ K@ ([ monlirine ) (3.0
Rd Rd
The first order reaction term that appears in the equation for p;(z,t) in (5.7) is
of this form. Note that I can be further simplified to eliminate any § function terms,
giving

I=i(1_pa)/ Kz<5c>p(f_‘jn)pi<f,t>dﬁc.
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