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Abstract
The goal of this paper is to study the moderate deviation principle for a system of
stochastic reaction–diffusion equations with a time-scale separation in slow and fast
components and small noise in the slow component. Based on weak convergence
methods in infinite dimensions and related stochastic control arguments, we obtain an
exact form for the moderate deviations rate function in different regimes as the small
noise and time-scale separation parameters vanish. Many issues that appear due to the
infinite dimensionality of the problem are completely absent in their finite-dimensional
counterpart. In comparison to corresponding large deviation principles, the moderate
deviation scaling necessitates a more delicate approach to establishing tightness and
properly identifying the limiting behavior of the underlying controlled problem. The
latter involves regularity properties of a solution of an associated elliptic Kolmogorov
equation on Hilbert space along with a finite-dimensional approximation argument.
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1 Introduction

In this paper we study the asymptotic tail behavior of the following system of stochas-
tic reaction–diffusion equations (SRDEs) with slow–fast dynamics on the interval
(0, L) ⊂ R :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t X
ε(t, ξ) = A1X

ε(t, ξ) + f
(
ξ, X ε(t, ξ),Y ε(t, ξ)

)

+ √
εσ

(
ξ, X ε(t, ξ),Y ε(t, ξ)

)
∂tw1(t, ξ)

∂t Y
ε(t, ξ) = 1

δ

[A2Y
ε(t, ξ) + g

(
ξ, X ε(t, ξ),Y ε(t, ξ)

)] + 1√
δ
∂tw2(t, ξ)

X ε(0, ξ) = x0(ξ) , Y
ε(0, ξ) = y0(ξ) , ξ ∈ (0, L)

N1X
ε(t, ξ) = N2Y

ε(t, ξ) = 0 , t ≥ 0, ξ ∈ {0, L}.

(1)

Here, ε is considered a small parameter, δ = δ(ε) → 0 as ε → 0 and L > 0.
The operatorsA1,A2 are second-order uniformly elliptic differential operators which
encode the diffusive behavior of the dynamics, while the reaction terms are given by
the (nonlinear) measurable functions f , g : [0, L] × R

2 → R. The operatorsN1,N2
correspond to either Dirichlet or Robin boundary conditions and the initial values
x0, y0 are assumed to be in L2(0, L).

The system is driven by two independent space-time white noises ∂tw1, ∂tw2,

defined on a complete filtered probability space (�,F , {Ft }t≥0,P). These are inter-
preted as the distributional time-derivatives of two independent cylindrical Wiener
processes w1, w2. The coefficient σ : [0, L] × R

2 → R is a measurable function
multiplied by the noise ∂tw1.

Since 1/δ is large as ε → 0, we see that the first equation is perturbed by a small
multiplicative noise of intensity

√
ε while the second contains large parameters and, at

least formally, runs on a time-scale of order 1/δ. Thus, one can think of the solution X ε

of the former as the "slow" process (or slow motion) and the solution Y ε of the latter
as the "fast" process (or fast motion). Note that, since δ has a functional dependence
on ε, the δ-dependence is suppressed from the notation.

As ε (and hence δ) are taken to 0 one expects, on the one hand, that the small
noise will vanish. On the other hand, assuming that the fast dynamics exhibit ergodic
behavior, Y ε will converge in distribution to an equilibrium and its contribution to the
limiting dynamics of X ε will be averaged out with respect to the invariant measure. In
[10], Cerrai demonstrated the validity of such an averaging principle for a system of
reaction–diffusion equations in spatial dimension d ≥ 1, perturbed by multiplicative
(colored) noise in both components. The setting of the present paper is closer to that of
[12], where Cerrai and Freidlin proved an averaging principle in spatial dimension d =
1 and with (additive) noise only in the fast equation. In particular, letting x ∈ L2(0, L)
and assuming that the coefficients are sufficiently regular, the fast process Y ε,x with
"frozen" slow component x admits a unique strongly mixing invariant measureμx and
the slowprocess {X ε}ε converges in probability, as ε → 0, to the unique (deterministic)
solution X̄ of the averaged PDE
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⎧
⎪⎨

⎪⎩

∂t X̄(t, ξ) = A1 X̄(t, ξ) + F̄(X̄(t))(ξ)

X̄(0, ξ) = x0(ξ) , ξ ∈ (0, L)

N1 X̄(t, ξ) = 0 , t ≥ 0, ξ ∈ {0, L}.
(2)

The nonlinearity F̄ is given by the averaged reaction term

F̄(x)(ξ) =
( ∫

H
f (·, x(·), y(·)) dμx (y)

)

(ξ). (3)

The averaging principle describes the typical dynamics of the slow process and thus
can be viewed as a "Law of Large Numbers" for X ε . One may then study the problem
of characterizing large deviations from the averaging limit. In the Large Deviation
theory of multiscale stochastic dynamics, the relative rate at which the intensity of
the small noise and the scale separation parameter vanish plays a significant role. In
particular, we distinguish the following asymptotic regimes:

lim
ε→0

√
δ√
ε

=

⎧
⎪⎨

⎪⎩

0 Regime 1

γ ∈ (0,∞) Regime 2

∞ Regime 3.

(4)

The problem of Large Deviations for slow–fast systems of stochastic reaction–
diffusion equations has been considered in [36] in dimension one, with additive noise
in the fast motion and no noise component in the slow motion. In [25], the authors
proved a Large Deviation Principle (LDP) in Regime 1, for a system with spatial
dimension d ≥ 1 and multiplicative noise, using the weak convergence approach
developed in [7].

Moderate deviations characterize the decay rates of rare event probabilities that lie
on an asymptotic regime between the Central Limit Theorem (CLT) and the corre-
spondingLDP. The goal of the present paper is to prove aModerateDeviation Principle
(MDP) for system (1) in Regimes 1 and 2. The latter is equivalent to deriving an LDP
for the process

ηε(t, ξ) = X ε(t, ξ) − X̄(t, ξ)√
εh(ε)

with speed h2(ε). The scaling factor h(ε) is such that

h(ε) −→ ∞ ,
√
εh(ε) −→ 0 as ε → 0. (5)

Note that if we set h ≡ 1 and let ε → 0 we would observe the behavior of normal
deviations (CLT) around X̄ while if we naively set h(ε) = 1/

√
ε we would observe

the Large Deviations behavior. Hence, the MDP fills an asymptotic gap between the
CLT and the LDP and, as such, it inherits characteristics of both.
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One of the most effective methods in proving statements about the behavior of rare
events (such as LDPs and MDPs) is the weak convergence method (see [4,7], as well
as the books [6] and [17]) which is the method we are using in this paper. The core of
this approach lies in the use of a variational representation of exponential functionals
of Wiener processes (see [4] for SDEs and [7] for SPDEs). Roughly speaking, one can
represent the exponential functional of the moderate deviation process ηε that appears
in the Laplace Principle (LP) (which is equivalent to anMDP) as a variational infimum
of a family of controlled moderate deviation processes ηε,u , plus a quadratic cost, over
a suitable family of stochastic controls u. In particular, for any bounded continuous
function 
 : C([0, T ]; L2(0, L)) → R:

− 1

h2(ε)
log E

[
e−h2(ε)
(ηε)

] = inf
u∈PT (L2(0,L)2)

E

[
1

2

∫ T

0

(‖u1(t)‖2L2(0,L) + ‖u2(t)‖2L2(0,L)

)
dt + 


(
ηε,u

)
]

, (6)

whereu = (u1, u2) andPT (L2(0, L)2) is the family of L2(0, L)2-valuedprogressively-
measurable control processes, where ui is measurable with respect to the filtra-
tion Fw

T generated by {(w1(t), w2(t)) , t ∈ [0, T ]} (i = 1, 2) and has finite
L2([0, T ]; L2(0, L))-norm.

The process ηε,u that appears on the right hand side of (6) is defined by

ηε,u(t, ξ) = X ε,u(t, ξ) − X̄(t, ξ)√
εh(ε)

. (7)

Here, X ε,u corresponds to a controlled slow–fast system (X ε,u,Y ε,u) (see (25) below)
which results from (1) by perturbing the paths of the noise by an appropriately re-scaled
control. It is due to the latter that this representation is called variational.

In light of (6), we see that in order to obtain a limit as ε → 0 of the Laplace
functional (i.e. to prove an MDP), one needs to analyze the limiting behavior of ηε,u

and, before doing so, obtain a priori estimates for the underlying controlled slow–fast
system given in (25). The latter is the first technical part of the current work (Sect. 4).
As in the LDP case, the difficulty in these estimates is in that the stochastic controls
are only known to be square integrable.

Compared to the corresponding LDP, the essential source of additional complexity
in Moderate Deviations lies in the proof of tightness of the family {ηε,u; ε, u}. What
complicates the analysis is the singular moderate deviation scaling 1/

√
εh(ε). We

overcome this difficulty by following, in spirit, the general method developed by
Papanicolaou et al. in [29]. This involves the study of fluctuations with the aid of
an elliptic Kolmogorov equation, associated to the fast dynamics and posed on the
infinite-dimensional space L2(0, L). After projecting the controlled fast process Y ε,u

to an n-dimensional eigenspace of the elliptic operator A2, we are able to apply Itô’s
formula to the solution �ε of the Kolmogorov equation and derive an expression for
ηε,u that is free from asymptotically singular coefficients. Using the a priori estimates
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from Sect. 4 along with regularity results for�ε from [12] and [8] we are then able to
show tightness (Sect. 6).

Regarding the characterization of the limit in distribution of the process ηε,u , note
that the presence of stochastic controls u leads to a limiting invariant measure of the
controlled fast process Y ε,u which a priori depends on u. In order to deal with this in a
unifiedmanner across regimeswe use the so-called “viable pair” construction (see [25]
and [19,32] for the finite and infinite-dimensional settings respectively) to characterize
the limit. The latter is a pair of a trajectory and measure (ψ, P) that captures both the
limit averaging dynamics of ηε,u and the invariant measure of the controlled fast
process Y ε,u . In particular, the function ψ is the solution of the limiting averaged
equation for ηε,u and the probability measure P characterizes both the structure of the
invariant measure of Y ε,u and the control u. Although, in general, these two objects
are intertwined and coupled together into the measure P , Regimes 1 and 2 lead to
a decoupling of the form P(dudydt) = νt (du|y)μX̄(t)(dy)dt , where νt (du|y) is a
stochastic kernel characterizing the control and μX̄(t) is the local invariant measure.

The measure P is obtained as the limit of a family of occupation measures Pε,�,
that live on the product space of fast motion and control, with � = �(ε) → 0 to
be specified later on. The result on the weak convergence of the pair (ηε,u, Pε,�) in
Regimes 1 and 2 is the content of Theorem 3.2.

With the analysis of the limit and the construction of a viable pair, we then prove
the Laplace Principle (equivalently LDP) for the moderate deviation process ηε in
Regimes 1 and 2 (Sect. 7). The main result of the paper is stated in Theorem 3.3.
Proving the Laplace principle amounts to finding an appropriate functional S such
that for any bounded and continuous function 
 : C([0, T ]; L2(0, L)) → R

lim
ε→0

1

h2(ε)
log E

[
e−h2(ε)
(ηε)

] = − inf
φ∈C([0,T ];L2(0,L))

[
S(φ) + 
(φ)

]
.

As is common in the relevant literature, the Laplace principle upper bound can be
proven using the weak convergence of the pair (ηε,u, Pε,�) per Theorem 3.2. The
situation is more complicated for the Laplace principle lower bound for which we
need to construct nearly optimal controls in feedback form (i.e. they are functions of
both time and the fast motion) that achieve the bound.

In finite dimensions, the Large Deviation theory for multiscale diffusions with
periodic coefficients has been established in all three interaction Regimes and with the
use of the weak convergence approach (see [19,32] and the references therein). The
problem ofModerate Deviations in finite dimensions has been treated in [13,18,23,24,
28] under different settings and assumptions. Specifically, the finite-dimensional work
of [28] makes use of solutions to associated elliptic equations to treat Regimes 1 and 2.
While the well-posedness and regularity theory of such equations are well-studied in
finite dimensions (see e.g. [30]), their analysis on infinite-dimensional spaces becomes
quitemore involved and the relevant literature ismore limited. The absence of available
regularity results for a general class of such equations is the main reason why we only
consider the fast equation with additive noise.
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To the best of our knowledge, the problem of moderate deviations for systems of
slow–fast stochastic reaction–diffusion is being considered for the first time in this
paper. Its contribution is twofold:

On a theoretical level, it provides a way to study rare events for the infinite-
dimensional dynamics in both Regimes 1 and 2. In the LDP setting, Regime 2 remains
open as it does not lead to a decoupling of the limiting invariantmeasure ofY ε,u and the
control u. The regularity of the optimal controls has been studied in finite dimensions
using their characterization through solutions to Hamilton-Jacobi-Bellman equations
(see [32]). Such techniques have not been established on an infinite-dimensional set-
ting. However, as shown in this paper, Regime 2 can be studied in the context of
Moderate Deviations. In this regime the control of the fast equation survives in the
limit. This reflects the fact that we are studying fluctuations very close to the CLT and
a certain derivative of the Kolmogorov equation (see the term �0

2u2 in Theorem 3.2)
captures the contribution of these fluctuations. It is worth noting that normal devia-
tions from the averaging limit for slow–fast stochastic reaction–diffusion equations
have been studied in [11]. This was done with different techniques and no explicit
connection was drawn between the covariance of the limiting Gaussian process and
the solution of the Kolmogorov equation. More recently, the authors of [31] general-
ized the results of [11] and studied normal deviations from the averaging limit using
the Kolmogorov equation approach.

On a computational level, the solution to the stochastic control problem gives vital
information for the design of efficient Monte Carlo methods for the approximation
of rare event probabilities on the moderate deviation range. In particular, the fact that
the limiting equation is affine in ηε,u is expected to make moderate deviation-based
importance sampling for stochastic PDE easier to implement than its large deviation-
based counterpart, see [33] for the related situation in finite dimensions. We plan to
explore this in a future work.

The outline of this paper is as follows: in Sect. 2 we give background definitions,
set-up as well as our assumptions. In Sect. 3 we review basic facts about the weak
convergence method in infinite dimensions and we define viable pairs and occupation
measures as well as state our main results on averaging for the controlled moderate
deviation process ηε,u and the MDP. In Sect. 4 we prove a priori bounds for the
solution of the controlled system (X ε,u,Y ε,u). In Sect. 5 we prove a priori bounds
for the process ηε,u with the aid of the elliptic Kolmogorov equation while Sect. 6 is
devoted to the analysis of the limit of the pairs (ηε,u, Pε,�). In Sect. 7 we prove the
MDP. Finally, “Appendix A” contains some classical regularity results for stochastic
convolutions adapted to our multiscale setting while “Appendix B” contains the proof
of Lemma 5.4.

2 Notation and assumptions

We denote by H the Hilbert space L2(0, L) endowed with the usual inner product
〈·, ·〉H. The norm induced by the inner product is denoted by ‖ · ‖H. Throughout this
paper, ⊕ denotes the Hilbert space direct sum. The closed unit ball of any Banach
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spaceX , i.e. the set {x ∈ X : ‖x‖X ≤ 1}, will be denoted by BX . The lattice notation
∧,∨ is used to indicate minimum and maximum respectively.

For θ > 0, we denote by H θ (0, L) the fractional Sobolev space of x ∈ H such
that

[x]H θ :=
∫

[0,L]2
|x(ξ2) − x(ξ1)|2
|ξ2 − ξ1|2θ+1 dλ2(ξ1, ξ2) < ∞ ,

where λ2 denotes Lebesgue measure on [0, L]2. H θ (0, L) is a Banach space when
endowed with the norm ‖ · ‖H θ := ‖ · ‖H + [·]H θ .

Moreover, for T > 0 and β ∈ [0, 1), we denote by Cβ([0, T ];H) the space of
β-Hölder continuousH-valued paths defined on the interval [0, T ]. Cβ([0, T ];H) is
a Banach space when endowed with the norm

‖X‖Cβ ([0,T ];H) := ‖X‖C([0,T ];H) + [X ]Cβ ([0,T ];H)

:= sup
t∈[0,T ]

‖X(t)‖H + sup
s,t∈[0,T ]
t �=s

‖X(t) − X(s)‖H
|t − s|β .

For any two Banach spaces X ,Y and k ∈ N we denote the space of k-linear bounded
operators Q : X k → Y by L k(X ;Y). The latter is a Banach space when endowed
with the norm

‖Q‖L k (X ;Y) := sup
x∈Bk

X

‖Qx‖Y .

When the domain coincides with the co-domain, we use the simpler notationL k(X )

while for k = 1 we often omit the superscript and writeL (X ;Y) ≡ L 1(X ;Y).
The spaces of trace-class and Hilbert–Schmidt linear operators B : H → H are

denoted by L1(H) and L2(H) respectively. The former is a Banach space when
endowed with the norm

‖B‖L1(H) := tr(
√
B∗B)

while the latter is a Hilbert space when endowed with the inner product

〈B1, B2〉L2(H) := tr(B∗
2 B1).

The class of (globally) Lipschitz real-valued functions onH is denoted by Lip(H)

and the space of k-times Fréchet differentiable real-valued functions on H with
bounded and uniformly continuous derivatives up to the k-th order (k ∈ N) is denoted
by Ck

b (H). The latter is a Banach space when endowed with the norm

‖X‖Ck
b (H) := sup

x∈H
|X(x)| + sup

x∈H
‖DX(x)‖H +

k∑

i=2

sup
x∈H

‖Di X(x)‖L i−1(H) .
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For k = 0 we often omit the superscript and write Cb(H) ≡ C0
b (H) for the space of

bounded uniformly continuous functions onH.
The operators A1,A2, appearing in (1), are uniformly elliptic second-order dif-

ferential operators with continuous coefficients on [0, L]. The operators N1 and N2
act on the boundary {0, L} and can be either the identity operator (corresponding to
Dirichlet boundary conditions) or first-order differential operators of the type

Nu(ξ) = b(ξ)u′(ξ) + c(ξ)u(ξ) , ξ ∈ {0, L}

for some b, c ∈ C1[0, L] such that b �= 0 on {0, L} (corresponding to Neumann or
Robin boundary conditions).

For i = 1, 2, Ai denotes the realizationof the differential operatorAi inH, endowed
with the boundary condition Ni . It is defined on the dense subspace

Dom(Ai ) = {x ∈ H2(0, L) : Ni x(0) = Ni x(L) = 0}

and generates a C0, analytic semigroup of operators Si = {Si (t)}t≥0 ⊂ L (H).
Regarding the spectral properties of Ai , we make the following assumptions:

Hypothesis 1(a)For i = 1, 2 the operator−Ai is self-adjoint. As a result (seeTheorem
8.8.37 in [20]), there exists a countable complete orthonormal basis {ei,n}n∈N ⊂ H
of eigenvectors of −Ai . The corresponding sequence of nonnegative eigenvalues is
denoted by {ai,n}n∈N.
As a consequence, for each x ∈ H, t ≥ 0, i = 1, 2, we have

‖Si (t)x‖2H =
∞∑

n=1

e−2ai,n t 〈x, ei,n〉2H ≤ e
−2t inf

n∈Nai,n‖x‖H ≤ ‖x‖H . (8)

Hypothesis 1(b) For i = 1, 2 we assume that

sup
n∈N

‖ei,n‖L∞(0,L) < ∞. (9)

Hypothesis 1(c) A2 is self-adjoint and satisfies the strict dissipativity condition

λ := inf
n∈N a2,n > 0. (10)

Under this assumption it is straightforward to verify that

‖S2(t)‖L (H) ≤ e−λt , t ≥ 0. (11)

Remark 1 Without loss of generality, we can replace the operator A1 by Ã1 =
A1 − cI for some c > 0 and the reaction term f in (1), by f̃ (ξ, x(ξ), y(ξ)) :=
f (ξ, x(ξ), y(ξ)) + cx(ξ). The slow equation is invariant under this transformation
and, in light of Hypothesis 1(a), it follows that ‖S̃1(t)‖L (H) ≤ e−ct . Throughout the
rest of this work we will be using Ã1, S̃1 and f̃ with no further distinction in notation.
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Let i = 1, 2 and θ ≥ 0. In view of Hypotheses 1(a) and 1(c), along with the previous
remark, it follows that 0 is in the resolvent set of Ai . Hence the operator−Ai , restricted
to its image, has a densely defined bounded inverse (−Ai )

−1 which can then be
uniquely extended to all of H. One can then define (−Ai )

−θ via interpolation and
show that it is also injective.

Letting (−Ai )
θ
2 := ((−Ai )

− θ
2 )−1 we define Hθ

i := Dom(−Ai )
θ
2 = Range

(−Ai )
− θ

2 ⊂ H. The latter is a Banach space when endowed with the norm

‖x‖Hθ
i

:= ∥
∥(−Ai )

θ
2 x

∥
∥H .

This norm is equivalent, due to injectivity, to the graph norm (see [27], Chapter 2.2).

Remark 2 For θ ∈ (0, 1
2 ) the spaces H

θ (0, L) andHθ
i coincide, in light of the identity

H θ (0, L) = Hθ
i = {

x ∈ H : ‖x‖θ,∞ := sup
t∈(0,1]

t−θ/2‖Si (t)x − x‖H < ∞}
,

which holds with equivalence of norms. The latter implies that for each t ≥ 0, the
linear operator Si (t) − I ∈ L (H θ ;H) and there exists a constant C > 0 such that

∥
∥Si (t) − I

∥
∥
L (H θ ;H)

≤ Ctθ/2. (12)

The analytic semigroups Si possess the following regularizing properties (see e.g.
section 4.1.1 in [8]) :

(i) For 0 ≤ s ≤ r ≤ 1
2 and t > 0, Si maps Hs(0, L) to Hr (0, L) and

‖Si (t)x‖Hr ≤ Cr ,s(t ∧ 1)−
r−s
2 ecr ,s t‖x‖Hs , x ∈ Hs(0, L), (13)

for some positive constants cr ,s,Cr ,s .
(ii) Si is ultracontractive, i.e. for t > 0, Si (t) maps H to L∞(0, L) and furthermore,

for any 1 ≤ p ≤ r ≤ ∞,

‖Si (t)x‖Lr (0,L) ≤ C(t ∧ 1)−
r−p
2pr ‖x‖L p(0,L) , x ∈ L p(0, L). (14)

Remark 3 The assumption that A1 is self-adjoint is made to simplify the exposition
and is not necessary for the results of this paper to hold. Indeed, assuming that A1 has
C1 coefficients and in view of section 2.1 of [9], we can write A1 = C1 + L1, where
C1 is a non-positive uniformly elliptic self-adjoint operator and L1 a densely defined

first-order operator. Moreover, we have Dom(L1) = Dom(L∗
1) = Dom((−C1)

1
2 ).

The fractional powers of−A1 can then be substituted throughout by fractional powers
of −C1. Finally, the mild formulations for X ε,u and ηε,u can be re-expressed in terms
of the analytic semigroup SC1 , generated by C1, with the addition of a linear term
corresponding to the operator L1 (see Definition 3.1 and Proposition 3.1 in [9]).
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The next set of assumptions concerns the regularity of the nonlinear reaction terms
in (1). In particular, we assume that f , g : [0, L]×R

2 → R are measurable functions
and:

Hypothesis 2(a) For almost all ξ ∈ (0, L), the map (x, y) �→ f (ξ, x, y) is in C2(R2)

and its derivatives are uniformly bounded with respect to ξ, x, y.

Hypothesis 2(b) (i) For almost all ξ ∈ (0, L) and all y ∈ R, the map x �→ g(ξ, x, y)
is in C2(R) and its derivatives are uniformly bounded with respect to ξ, x, y .
(ii) For almost all ξ ∈ (0, L) and all x ∈ R, the map y �→ g(ξ, x, y) is in C3(R) with
uniformly bounded derivatives with respect to ξ, x, y and

sup
ξ,x,y

∣
∣∂yg(ξ, x, y)

∣
∣ =: Lg < λ, (15)

with λ as in (10).

Hypothesis 2(c) With λ, Lg as in Hypothesis 2(b) we assume that

ω := λ − 3Lg

2
> 0. (16)

Hypothesis 2(c) is used to prove that a partial Fréchet derivative of the solution of
the Kolmogorov equation associated to the fast process converges, as ε → 0, to an
operator-valued map that is Lipschitz continuous with respect to its arguments (see
Lemma 6.10 and Corollary 6.1).

The last set of assumptions concerns the behavior of the diffusion coefficient σ . In
particular, we assume that σ : [0, L] × R

2 → R is measurable and satisfies either :

Hypothesis 3(a)There exists c > 0 and ν ∈ [0, 1/2) such that for almost all ξ ∈ [0, L]
and all (x, y) ∈ R

2

|σ(ξ, x, y)| ≤ c(1 + |x| + |y|ν). (17)

or:

Hypothesis 3(a’) There exist c1, c2 > 0 such that for almost all ξ ∈ [0, L] and all
(x, y) ∈ R

2

c1 ≤ σ(ξ, x, y) ≤ c2. (18)

Remark 4 The diffusion coefficient σ is allowed to grow at most like |y|1/2 in the third
argument. This is due to the fact that the stochastic controls are only known to be
square integrable. As a result we can obtain estimates for Y ε,u in L p([0, T ];H), for
p ≤ 2 (see (48) and (58) in Sect. 4 below).

Hypothesis 3(b) There exists Lσ > 0 such that for almost all ξ ∈ [0, L], the map
(x, y) �→ σ(ξ, x, y) is Lσ -Lipschitz continuous.
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Remark 5 The a priori estimates in Sects. 4–5 hold by assuming only Hypothesis 3(a).
For the analysis of the limit (Sect. 6) we assume 3(a) along with 3(b). Finally, we
strengthen the assumptions on σ and use the strictly stronger Hypothesis 3(a’) along
with 3(b) to prove the Laplace Principle upper and lower bounds (Sects. 7.1 and 7.2
respectively).

The reaction terms f , g induce nonlinear superposition (or Nemytskii) operators
denoted, respectively, by F,G : H × H → H and defined by

F(x, y)(ξ) = f (ξ, x(ξ), y(ξ)), G(x, y)(ξ) = g(ξ, x(ξ), y(ξ)) , ξ ∈ [0, L].
(19)

In view of Hypotheses 2(a) and 2(b), F and G are (globally) Lipschitz continuous.
Moreover, F andG are Gâteaux differentiable with respect to both variables and along
the direction of any χ ∈ H. Their Gâteaux derivatives are given by

Dx F(x, y)(χ)(ξ) = ∂x f (ξ, x(ξ), y(ξ))χ(ξ) ,

DyF(x, y)(χ)(ξ) = ∂y f (ξ, x(ξ), y(ξ))χ(ξ) (20)

and

DxG(x, y)(χ)(ξ) = ∂xg(ξ, x(ξ), y(ξ))χ(ξ) ,

DyG(x, y)(χ)(ξ) = ∂yg(ξ, x(ξ), y(ξ))χ(ξ)

for ξ ∈ [0, L]. Furthermore, for each fixed y ∈ H and χ1 ∈ H, the map

H � x �−→ Dx F(x, y)(χ1) ∈ L1(0, L)

is Gâteaux differentiable along the direction of any χ2 ∈ H. Equivalently, the non-
linear operator F , when considered as a map from H to L1(0, L), is twice Gâteaux
differentiable with respect to x , along any direction in H × H. Its second partial
Gâteaux derivative is given by

D2
x F(x, y)(χ1, χ2)(ξ) = ∂2xx f (ξ, x(ξ), y(ξ))χ1(ξ)χ2(ξ) , ξ ∈ [0, L]. (21)

Remark 6 Note that, for fixed x, y, all the first-order partial Gâteaux derivatives above
are inL (H) and D2

x F(x, y) ∈ L 2(H; L1(0, L)). Nevertheless, F andG, considered
as maps from H × H to H, are not Fréchet differentiable with respect to any of their
variables. In fact, it can be shown that a Nemytskii operator from H to H is Fréchet
differentiable if and only if it is an affine map (see Proposition 2.8 in [1]).

The diffusion coefficient σ is considered as a function multiplied by the noise and
hence induces, for each x, y ∈ H, a multiplication operator

[
�(x, y)χ

]
(ξ) := σ(ξ, x(ξ), y(ξ))χ(ξ), χ ∈ H, ξ ∈ (0, L).
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In viewofHypothesis 3(a) it follows that�(x, y) ∈ L (L∞(0, L);H)∩L (H; L1(0, L)).
Moreover, under Hypothesis 3(a’), we have �(x, y) ∈ L (H).

For the purposes of this paper we consider a Polish space to be a completely
metrizable, separable topological space. For a given topological space E we denote
the Borel σ -algebra by B(E) and the space of Borel probability measures on E by
P(E). If E is Polish thenP(E), endowed with the topology of weak convergence of
measures, is also a Polish space.

3 Weak convergencemethod andmoderate deviations

In this section we review the weak convergence approach to large and moderate devi-
ations (see [17] as well as the more recent [6]) and then we state our main results of
the paper on the averaging principle for the controlled process ηε,u (see (7)) and on
the moderate deviations for {X ε}.

Let j = 1, 2 and consider the cylindrical Wiener process w j : [0,∞) × H →
L2(�) appearing in (1). For each fixed t , {w j (t, χ)}χ∈H is a Gaussian family of
random variables and for each t1, t2 ≥ 0, χ1, χ2 ∈ H

E[w j (t1, χ1)w j (t2, χ2)] = t1 ∧ t2〈χ1, χ2〉H.

The first step of the weak convergence method relies on a variational representation
for functionals of the driving noise. For the infinite-dimensional setting of this paper,
we will use the variational representation for Q-Wiener processes that was proved
in [7], Theorem 3. In order to apply this result in the context of space-time white
noise, we introduce a separable Hilbert space (H1, 〈. , .〉H1) such that H is a linear

subspace ofH1 and the inclusion mapH i→ H1 is Hilbert–Schmidt (for more details
on this construction we refer the reader to [21,22]). Given a complete orthonormal
basis {e j,n}n∈N ⊂ H, the process

w̃ j (t) =
∞∑

n=1

w j (t, e j,n) i(e j,n), t ≥ 0

is an H1-valued Q-Wiener process with trace-class covariance operator Q = i i∗ ∈
L1(H1). In particular, for each t, s ≥ 0 and χ1, χ2 ∈ H1 we have

E[〈χ1, w̃ j (t)〉H1〈χ2, w̃ j (s)〉H1] = t ∧ s〈χ1, Qχ2〉H1 = t ∧ s〈i∗(χ1), i∗(χ2)〉H.

This construction allows us to use the following representation.

Theorem 3.1 ([7], Theorem 3) Let T < ∞, Λ : C([0, T ];H1) → R be a bounded,
Borel measurable map and W be an H1-valued Q-Wiener process. Moreover, let
PT (H) denote the family ofH-valued, progressively-measurable stochastic processes
for which
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P

[ ∫ T

0
‖u(s)‖2H ds < ∞

]

= 1.

Then:

− log E[exp(−Λ(W ))] = inf
u∈PT (H)

E

[
1

2

∫ T

0
‖u(s)‖2H ds + Λ

(

W +
∫ ·

0
u(s) ds

)]

.

Since the processes w̃1, w̃2 are independent, it follows that w̃ = (w̃1, w̃2) is an
H1 ⊕ H1-valued Wiener process with covariance operator (Q, Q). Hence, we can
replace W , H1 and H by w̃,H1 ⊕ H1 and H ⊕ H respectively to obtain

− log E[exp(−Λ(w̃))] = inf
u∈PT (H⊕H)

E

[
1

2

∫ T

0

(‖u1(s)‖2H + ‖u2(s)‖2H
)
ds

+Λ

(

w̃ +
∫ ·

0
u(s) ds

)]

,

where u = (u1, u2) and Λ : C([0, T ];H1 ⊕ H1) → R is measurable and bounded.
In order to obtain a representation in the moderate deviation scaling, we replace u and
Λ by h(ε)u and h2(ε)Λ respectively and then divide throughout by h2(ε) to deduce
that

− 1

h2(ε)
log E

[
e−h2(ε)Λ(w̃)

] = inf
u∈PT (H⊕H)

E

[
1

2

∫ T

0

(‖u1(s)‖2H + ‖u2(s)‖2H
)
ds

+Λ

(

w̃ + h(ε)
∫ ·

0
u(s) ds

)]

. (22)

Now, the system (1) can be re-expressed in the mild formulation as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X ε(t) = S1(t)x0 +
∫ t

0
S1(t − s)F(X ε(s),Y ε(s))ds

+ √
ε

∫ t

0
S1(t − s)�

(
X ε(s),Y ε(s)

)
dw1(s)

Y ε(t) = S2

(
t

δ

)

y0 + 1

δ

∫ t

0
S2

(
t − s

δ

)

G(X ε(s),Y ε(s))ds

+ 1√
δ

∫ t

0
S2

(
t − s

δ

)

dw2(s),
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where we recall that A1, A2 are the realizations of A1,A2 on H with the boundary
conditions N1,N2, {S1(t)}t≥0 is generated by A1 and {S2(t/δ)}t≥0 is generated by
A2/δ.

For each fixed ε, T and initial conditions x0, y0 ∈ H, the existence and uniqueness
of a mild solution (X ε,x0,y0(t),Y ε,x0,y0(t)) that takes values on C([0, T ];H)2 implies
the existence of a measurable solution map

Iε,x0,y0 : C([0, T ];H1 ⊕ H1) −→ C([0, T ];H)

such that

ηε(t) ≡ ηε,x0,y0(t) := 1√
εh(ε)

(
X ε,x0,y0(t) − X̄ x0(t)

) = Iε,x0,y0(w̃).

Here, X̄ x0 is the solution of the averaged equation (2). Returning to (22), we replace
Λ by
◦Iε,x0,y0 , where
 : C([0, T ];H) → R is continuous and bounded, to obtain
the representation

− 1

h2(ε)
log E

[
e−h2(ε)
(ηε)

]

= inf
u∈PT (H⊕H)

E

[
1

2

∫ T

0

(‖u1(t)‖2H + ‖u2(t)‖2H
)
dt + 


(
ηε,u

)
]

. (23)

The process ηε,u on the right-hand side is defined by

ηε,u(t) = X ε,u(t) − X̄(t)√
εh(ε)

(24)

and X ε,u corresponds to the controlled system of stochastic reaction–diffusion equa-
tions

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX ε,u(t) = [
A1X

ε,u(t) + F
(
X ε,u(t), Y ε,u(t)

) + √
εh(ε)�

(
X ε,u(t), Y ε,u(t)

)
u1(t)

]
dt

+ √
ε�

(
X ε,u(t), Y ε,u(t)

)
dw1(t)

dY ε,u(t) = 1

δ

[
A2Y

ε,u(t) + G
(
X ε,u(t), Y ε,u(t)

) + √
δh(ε)u2(t)

]
dt + 1√

δ
dw2(t)

X ε,u(0) = x0 ∈ H , Y ε,u(0) = y0 ∈ H.

(25)
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The mild solution of the latter is given by a pair of controlled stochastic processes that
satisfy

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X ε,u(t) = S1(t)x0 +
∫ t

0
S1(t − s)F(X ε,u(s),Y ε,u(s))ds

+ √
εh(ε)

∫ t

0
S1(t − s)�

(
X ε,u(s),Y ε,u(s)

)
u1(s)ds

+ √
ε

∫ t

0
S1(t − s)�

(
X ε,u(s),Y ε,u(s)

)
dw1(s)

Y ε,u(t) = S2

(
t

δ

)

y0 + 1

δ

∫ t

0
S2

(
t − s

δ

)

G(X ε,u(s),Y ε,u(s))ds

+ h(ε)√
δ

∫ t

0
S2

(
t − s

δ

)

u2(s)ds + 1√
δ

∫ t

0
S2

(
t − s

δ

)

dw2(s).

(26)

Next, let N > 0 and define

PT
N =

{

u = (u1, u2) ∈ PT (H ⊕ H) :
∫ T

0

(‖u1(s)‖2H + ‖u2(s)‖2H
)
ds ≤ N , P − a.s.

}

.

(27)

As in Theorem 10 of [7] and for each u ∈ PT
N and ε > 0, there is a unique pair

(X ε,u,Y ε,u) in L p(�;C([0, T ];H) × C([0, T ];H)) that satisfies (26).
Now, proving a Laplace Principle for ηε amounts to finding the limit as ε → 0 of the

left hand side in (23). This is equivalent to proving an LDP for the family {ηε, ε > 0}
with speed h2(ε), which in turn is equivalent to an MDP for {X ε, ε > 0}. This is the
path that we follow in this paper for proving the MDP for the family {X ε, ε > 0}
in C([0, T ];H). Also, as it is shown in [4], the representation implies that we can
consider, without loss of generality, u = uε ∈ PT

N for a sufficiently large but fixed
N > 0 (see also [5], p.22).

As discussed in the introduction, the analysis of the limiting behavior of ηε,u ismore
complicated, compared to that of X ε,u , due to the singular coefficient 1/

√
εh(ε). In

view of (24) and (26) we can write

ηε,u(t) = 1√
εh(ε)

∫ t

0
S1(t − s)

[
F

(
X̄(s)

+ √
εh(ε)ηε,u(s),Y ε,u(s)

) − F
(
X̄(s),Y ε,u(s)

)]
ds

+
∫ t

0
S1(t − s)�

(
X ε,u(s),Y ε,u(s)

)
u1(s)ds

+ 1

h(ε)

∫ t

0
S1(t − s)�

(
X ε,u(s),Y ε,u(s)

)
dw1(s)

+ 1√
εh(ε)

∫ t

0
S1(t − s)

[
F

(
X̄(s),Y ε,u(s)

) − F̄
(
X̄(s)

)]
ds,

(28)
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where h(ε) → ∞,
√
εh(ε) → 0 as ε → 0 and F̄ denotes the averaged Nemytskii

operator (3).
The asymptotic analysis of the first term above, as ε → 0, is straightforward.

Indeed, its limiting behavior is captured by

∫ t

0
S1(t − s)Dx F

(
X̄(s),Y ε,u(s)

)
ηε,u(s)ds,

(see (20) and Proposition 6.1). Moreover, the second term is of order 1 while the
third is expected to vanish in the limit. In contrast, the last term requires a more deli-
cate approach. This is connected to the solution of the following elliptic Kolmogorov
equation on H:

c(ε)�ε
χ (x, y) − Lx�ε

χ(x, y) = 〈
F(x, y) − F̄(x), χ

〉

H , (29)

where χ, x ∈ H, y ∈ Dom(A2) and c(ε) vanishes as ε → 0. The exact dependence
of c on ε will be specified later (see Sect. 5.2). For ψ : H × H → R such that for
each fixed x, y ∈ H, ψ(x, ·) ∈ C2(H) and D2

yψ(x, y) ∈ L2(H), the Kolmogorov
operator Lx is a second-order differential operator defined by

Lxψ(x, y) = 1

2
tr
[
D2

yψ(x, y)
] + 〈

Dyψ(x, y), A2y + G(x, y)
〉

H , y ∈ Dom(A2).

(30)

Formally,Lx is called the infinitesimal generator of the (uncontrolled) fast process Y x

with "frozen" slow component x . The latter satisfies the stochastic evolution equation

{
dY x,y(t) = A2Y

x,y(t)dt + G
(
x,Y x,y(t)

)
dt + dw2(t)

Y x,y(0) = y.
(31)

Remark 7 If A2 ∈ L (H), and hence Dom(A2) = H, then Lx coincides with the
infinitesimal generator of the transition semigroup Px of the Markov process Y x

defined by

Px
t [φ](y) = E[φ(Y x,y(t))] , t ≥ 0, φ ∈ Lip(H). (32)

The latter is not rigorous in the present setting. Indeed, since A2 is a differential
operator, the paths of Y x,y do not take values in Dom(A2) and Itô’s formula cannot
be directly applied to smooth functionals of Y x,y .

As we have already mentioned in the introduction, our assumptions guarantee that for
each x ∈ H, the process Y x admits a unique, strongly mixing local invariant measure
μx defined on (H,B(H)) (see e.g. Chapters 8, 11 of [15] as well as [12]). We state
here an important result regarding the continuity properties of the averaged Nemytskii
operator F̄ .
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Lemma 3.1 Assume that F : H × H → H is Lipschitz continuous. Then the map

H � x �−→ F̄(x) =
∫

H
F(x, y)dμx (y) ∈ H

is Lipschitz continuous. In particular, under Hypothesis 2(a), the operator F̄ in (28)
is Lipschitz.

The proof relies on the ergodicity of the invariant measure μx and can be found e.g.
in Lemma 3.1 of [10].
Now, as shown in [12], (29) has a strict solution which is explicitly given by the
probabilistic representation

�ε
χ(x, y) =

∫ ∞

0
e−c(ε)t Px

t [〈F(x, ·) − F̄(x), χ〉](y)dt , x ∈ H, y ∈ Dom(A2),

(33)

with � := (λ− Lg)/2 (see (10), (15)) and for some some C > 0 independent of ε, the
following estimates hold:

|�ε
χ(x, y)| ≤ C

�

(
1 + ‖x‖H + ‖y‖H

)‖χ‖H ,

‖Dy�
ε
χ(x, y)‖H ≤ C

�
‖χ‖H ,

‖Dx�
ε
χ(x, y)‖H ≤ C

c(ε)
‖χ‖H ,

∣
∣tr

[
D2
2�

ε
χ(x, y)

]∣
∣ ≤ C

c(ε)

(
1 + ‖x‖H + ‖y‖H

)‖χ‖H

(34)

(see 5.12-5.15 in [12]). In light of (33) and these estimates, we see that the maps

H � χ1 �−→ �ε
χ1
(x, y) ∈ R,

H × H � (χ1, χ2) �−→ 〈
Dx�

ε
χ1

(
x, y), χ2

〉

H ∈ R,

H × H � (χ1, χ2) �−→ 〈
Dy�

ε
χ1

(
x, y), χ2

〉

H ∈ R

are in L (H; R),L 2(H; R) and L 2(H; R) respectively. From the Riesz representa-
tion theorem, there exist�ε : H×H → H and�ε

1 , �
ε
2 : H×H → L (H) such that

for all χ1, χ2, x ∈ H, ε > 0 and y ∈ Dom(A2)

�ε
χ (x, y) = 〈

�ε(x, y), χ
〉

H ,
〈
Dx�

ε
χ1

(
x, y), χ2

〉

H = 〈
�ε

1 (x, y)χ2, χ1
〉

H ,
〈
Dy�

ε
χ1

(
x, y), χ2

〉

H = 〈
�ε

2 (x, y)χ2, χ1
〉

H .

(35)
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As a consequence of (34) we have

∥
∥�ε(x, y)

∥
∥H ≤ C

�

(
1 + ‖x‖H + ‖y‖H

)
,

∥
∥�ε

1 (x, y)
∥
∥
L (H)

≤ C

c(ε)
,

∥
∥�ε

2 (x, y)
∥
∥
L (H)

≤ C

�
.

(36)

Additionally, as shown in Lemma 6.9 below, there exists a map�0
2 : H×H → L (H)

such that

sup
x,y∈H

∥
∥�ε

2 (x, y) − �0
2

(
x, y

)∥
∥
L (H)

−→ 0 , as ε → 0. (37)

Next, let Y ε,u
n denote a projection of the Y ε,u to an n-dimensional eigenspace of A2.

For each n, the paths of Y ε,u
n take values in Dom(A2). This allows us to apply Itô’s

formula to the real-valued process

{〈
�ε(X̄(s),Y ε,u

n (s)), S1(t − s)χ
〉

H
}

s∈[0,t] , t ∈ [0, T ]

to show that the asymptotic behavior of the last term in (28), as ε → 0, is captured by

√
δ√
ε

∫ t

0
S1(t − s)�0

2

(
X̄(s),Y ε,u(s)

)
u2(s)ds

(see Lemma 5.4, Proposition 6.3 and (132) below).
We need to understand not just the limit of the process ηε,u but also the measure

with respect to which the averaging is being done. As in [25,28,32], the dependence
of the dynamics on the unknown control process u = uε complicates the situation.
Following the recipe of these works we introduce the family of random occupation
measures

Pε,�(B1 × B2 × B3 × B4)

= 1

�

∫

B4

∫ t+�

t
1B1

(
u1(s)

)
1B2

(
u2(s)

)
1B3

(
Y ε,u(s)

)
dsdt, (38)

defined on B
(H × H × H × [0, T ]). Here, the first two copies of H are endowed

with the weak topology, the third with the norm topology and [0, T ] with the standard
topology. For the sake of shortness wewill call the resulting product topologyWWNS.
The parameter � = �(ε) is such that

�(ε) −→ 0 ,

√
δh(ε)√
�

−→ 0 , as ε → 0. (39)
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These occupation measures encode the behavior of the control and the fast process.
It is the correct way to study the problem because the fast motion’s behavior will not
converge pathwise to anything, but its occupation measure will converge to a limiting
measure. We adopt the convention that the control u(t) = uε(t) = 0 for t > T . Then,
we consider the joint limit in distribution of the pair (ηε,u, Pε,�) as ε → 0.

In order to state our main results, we introduce the following definition of a viable
pair corresponding to [19], but appropriately modified for the moderate deviation
setting.

Definition 3.1 Let T < ∞, � : H5 → H and X̄ ∈ C
([0, T ];H)

solve (2). For
each x ∈ H, let μx denote the unique invariant measure of (31). A pair (ψ, P) ∈
C

([0, T ];H) × P(H × H × H × [0, T ]), where H × H × H × [0, T ] is endowed
with the WWNS topology, will be called viable with respect to (�,μX̄ ) if

(i) The measure P has finite second moments in the sense that there exists θ > 0
such that

∫

H×H×H×[0,T ]
(‖u1‖2H + ‖u2‖2H + ‖y‖2H θ

)
dP(u1, u2, y, t) < ∞. (40)

(ii) For all B1 × B2 × B3 × B4 ∈ B(H × H × H × [0, T ]),

P(B1 × B2 × B3 × B4) =
∫

B4

∫

B3
ν(B1 × B2|y, t)dμX̄(t)(y)dt, (41)

where ν : B(H × H) × H × [0, T ] → [0, 1] is a stochastic kernel on H given
H×[0, T ] (see Appendix A.5 in [17] for stochastic kernels). This implies that the
last marginal of P is Lebesgue measure on [0, T ] and in particular

P(H × H × H × [0, t]) = t , for all t ∈ [0, T ]. (42)

(iii) For all t ∈ [0, T ],

ψ(t)=
∫

H×H×H×[0,t]
S1(t−s)�

(
ψ(s), X̄(s), y, u1, u2

)
dP(u1, u2, y, s).

(43)

The family of viable pairs with respect to (�,μX̄ ) will be denoted by V
(�,μX̄ )

.

In view of (4), we also define

γi =
{
0, i = 1

γ ∈ (0,∞), i = 2.
(44)

Using the viable pair definition, we can then state the main results of our paper.
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Theorem 3.2 (Averaging forηε,u )Let i = 1, 2,T < ∞, a > 0andu ∈ PT
N .Moreover

let (X ε,u,Y ε,u) be the mild solution of (25) with initial conditions x0, y0 ∈ Ha(0, L)
and ηε,u as in (28). Let �i : H5 → H be defined by

�i (ψ, x, y, u1, u2) := Dx F(x, y)ψ + �(x, y)u1 + γi�
0
2 (x, y)u2 , i = 1, 2 ,

(45)

with γi and�0
2 as in (44) and (37) respectively. Assuming Hypotheses 1(a)–1(c), 2(a)–

2(c), 3(a), 3(b) andRegime i , the family of processes {ηε,u : ε ∈ (0, 1), u ∈ PT
N } is tight

in C([0, T ];H) and the family of occupation measures {Pε,� : ε ∈ (0, 1), u ∈ PT
N }

is tight inP(H×H×H× [0, T ]), whereH×H×H× [0, T ] is endowed with the
WWNS topology.
Then for any sequence in {(ηε,u, Pε,�) , ε,� > 0, u ∈ PT

N } there exists a subsequence
that converges in distribution with limit (ηi , Pi ). With probability 1,

(ηi , Pi ) ∈ V
(�i ,μ

X̄ )
.

Theorem 3.3 (Moderate Deviation Principle) Let i = 1, 2, T < ∞, a > 0 arbitrarily
small and (X ε,x0,y0 ,Y ε,x0,y0), X̄ x be the mild solutions to (1) and (2) with initial
conditions x0, y0 ∈ Ha . Define Si : C([0, T ];H) → [0,∞],

Si (φ) := inf
(φ,P)∈V

(�i ,μ
X̄ )

[
1

2

∫

H×H×H×[0,T ]
(‖u1‖2H + ‖u2‖2H

)
dP(u1, u2, y, t)

]

,

with the convention that inf ∅ = ∞. Assuming Hypotheses 1(a)-1(c), 2(a)-2(c),
3(a’),3(b) and Regime i we have that for every bounded and continuous function

 : C([0, T ];H) → R:

lim
ε→0

1

h2(ε)
logE

[
e−h2(ε)
(ηε)

] = − inf
φ∈C([0,T ];H)

[Si (φ) + 
(φ)
]
,

where

ηε = X ε,x0,y0 − X̄ x0
√
εh(ε)

.

In particular, {X ε} satisfies aModerate Deviation Principle in C([0, T ];H) in Regime
i with rate function Si .

The proof of Theorem 3.2 can be found in Sect. 6.3 while Theorem 3.3 is proved in
Sect. 7. In fact, by letting Qi : H → L (H),

Qi (x) =
∫

H

(

�(x, y)�∗(x, y) + γ 2
i �

0
2 (x, y)�

0∗
2 (x, y)

)

dμx (y) (46)
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with γi and�0
2 as in (44) and (37) respectively, we prove that our rate function Si has

an explicit non-variational form given by

Si (ψ) = 1

2

∫ T

0

∥
∥
∥
∥Qi

(
X̄(t)

)− 1
2
[
∂tψ(t) − A1ψ(t) − Dx F

(
X̄(t)

)
ψ(t)

]
∥
∥
∥
∥

2

H
dt (47)

for ψ ∈ H1
0 ([0, T ];H)∩ L2([0, T ]; Dom(A1)) and Si = ∞ otherwise (see Proposi-

tion 7.1).

4 A priori bounds for the solution of the controlled system

As discussed in Sect. 3, the variational representation (23) gives rise to a slow–fast
pair of controlled stochastic reaction–diffusion equations. In this section we prove a
priori estimates for the mild solution pair (X ε,u,Y ε,u) (see (26)) that are uniform over
compact time intervals, u ∈ PT

N and ε sufficiently small. These preliminary estimates
hold in both Regimes 1 and 2 and we will use them to prove a priori bounds and
tightness for the family {ηε,u; ε, u} in Sects. 5 and 6.

We start with two auxiliary estimates for the moments of the space-time L2 norm
and the C([0, T ];H) norm of the controlled fast process Y ε,u . Due to the multiple
scales, the latter is singular at δ = 0. The proofs rely on the dissipativity assumption
(16). As is customary, we use the same notation for different but unimportant constants
that may change from line to line.

Lemma 4.1 Let T < ∞, p ≥ 1, ε ∈ (0, 1) and u ∈ PT
N . In both Regimes 1 and 2,

there exists a constant C > 0, independent of ε, such that

E‖Y ε,u‖2p
L2([0,T ];H)

≤ C

(

1 + ‖y0‖2pH +
∫ T

0
E‖X ε,u(t)‖2pH dt

)

. (48)

Moreover, for any ρ ∈ (1/2, 1) and ε sufficiently small we have

E sup
t∈[0,T ]

‖Y ε,u(t)‖2H ≤ C

(

1 + ‖y0‖2H + E sup
t∈[0,T ]

‖X ε,u(t)‖2H + h2(ε) + δρ−1
)

.

(49)

Proof Let Y ε,u be the mild solution of the controlled fast equation (see (26)),

wδ
A2
(t) = 1√

δ

∫ t

0
S2

(
t − z

δ

)

dw2(z)

be the stochastic convolution term and

�ε,u(t) := Y ε,u(t) − wδ
A2
(t) , t ∈ [0, T ]. (50)
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With probability 1, the process �ε,u has weakly differentiable paths and satisfies

∂t�
ε,u(t) = 1

δ

[
A2�

ε,u(t) + G
(
X ε,u(t), �ε,u(t) + wδ

A2
(t)

)] + h(ε)√
δ
u2(t)

in a weak sense. Hence,

1

2
∂t‖�ε,u(t)‖2H = 〈

∂t�
ε,u(t), �ε,u(t)

〉

H = 1

δ

〈
A2�

ε,u(t), �ε,u(t)
〉

H

+ 1

δ

〈
G

(
X ε,u(t), �ε,u(t) + wδ

A2
(t)

)
, �ε,u(t)

〉

H

+ h(ε)√
δ

〈
u2(t), �

ε,u(t)
〉

H.

(51)

For the first term above we invoke Hypothesis 1(c) to obtain

〈A2�
ε,u(t), �ε,u(t)〉H =

∞∑

n=1

(−a2,n)〈�ε,u(t), e2,n〉2H ≤ −λ‖�ε,u(t)‖2H . (52)

For the second term in (51)we invokeHypothesis 2(b)which implies thatG : H×H →
H is Lg-Lipschitz and with Cg = (‖G(0H, 0H)‖H ∨ Lg) we have

∣
∣
∣
〈
G

(
X ε,u(t), �ε,u(t) + wδ

A2
(t)

)
, �ε,u(t)

〉

H
∣
∣
∣ ≤

∣
∣
∣
〈
G

(
X ε,u(t), wδ

A2
(t)

)
, �ε,u(t)

〉

H
∣
∣
∣

+
∣
∣
∣
〈
G

(
X ε,u(t), �ε,u(t) + wδ

A2
(t)

) − G
(
X ε,u(t), wδ

A2
(t)

)
, �ε,u(t)

〉

H
∣
∣
∣

≤ Cg‖�ε,u(t)‖H
(

1 + ‖wδ
A2
(t)‖H + ‖X ε,u(t)‖H

)

+ Lg‖�ε,u(t)‖2H.

(53)

Combining (51), (52) and (53) we obtain

1

2
∂t‖�ε,u(t)‖2H ≤ Cg

δ
‖�ε,u(t)‖H

(

1 + ‖wδ
A2
(t)‖H + ‖X ε,u(t)‖H

)

+ Lg − λ

δ
‖�ε,u(t)‖2H + h(ε)√

δ
‖�ε,u(t)‖H‖u2(t)‖H .

Next, let β1, β2 > 0. From an application of Young’s inequality for products on the
first and third terms,

1

2
∂t‖�ε,u(t)‖2H ≤ Cgβ

2
1

4δ
‖�ε,u(t)‖2H + 2Cg

2δβ2
1

(

1 + ‖wδ
A2
(t)‖2H + ‖X ε,u(t)‖2H

)

+ Lg − λ

δ
‖�ε,u(t)‖2H + h(ε)

4
√
δ
β2
2‖�ε,u(t)‖2H + 2h(ε)

2
√
δβ2

2

‖u2(t)‖2H .
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FromHypothesis 2(b) we have λ−Lg > 0 and thus we can choose β2
1 = (λ−Lg)/Cg

and β2
2 = (λ − Lg)/(h(ε)

√
δ) to obtain

1

2
∂t‖�ε,u(t)‖2H ≤ λ − Lg

4δ
‖�ε,u(t)‖2H + C2

g

(λ − Lg)δ

(

1 + ‖wδ
A2
(t)‖2H + ‖Xε,u(t)‖2H

)

+ Lg − λ

δ
‖�ε,u(t)‖2H + λ − Lg

4δ
‖�ε,u(t)‖2H + h2(ε)

λ − Lg
‖u2(t)‖2H

= −1

δ

(
λ − Lg

2

)

‖�ε,u(t)‖2H

+ C2
g

(λ − Lg)δ

(

1 + ‖wδ
A2
(t)‖2H + ‖Xε,u(t)‖2H

)

+ h2(ε)

λ − Lg
‖u2(t)‖2H .

(54)

Integrating this inequality yields

1

2
‖�ε,u(t)‖2H − 1

2
‖y0‖2H ≤ −1

δ

(
λ − Lg

2

) ∫ t

0
‖�ε,u(s)‖2Hds

+ C2
g

(λ − Lg)δ

∫ t

0

(

1 + ‖wδ
A2
(s)‖2H + ‖X ε,u(s)‖2H

)

ds

+ h2(ε)N 2

λ − Lg
,

(55)

where the last term follows from the fact that u2 ∈ PT
N . Letting � = (λ − Lg)/2,

multiplying throughout by δ/� and dropping the nonnegative term (δ/2�) supt∈[0,T ]
‖�ε,u(t)‖2H we see that

∫ T

0
‖�ε,u(s)‖2Hds ≤ δ

2�
sup

t∈[0,T ]
‖�ε,u(t)‖2H +

∫ T

0
‖�ε,u(s)‖2Hds

≤ δ

2�
‖y0‖2H + C2

g

(λ − Lg)�

∫ T

0

(

1 + ‖wδ
A2
(s)‖2H + ‖Xε,u(s)‖2H

)

ds

+ N2δh2(ε)

(λ − Lg)�
.

Regarding the last term on the right-hand side, note that, in both Regimes 1 and 2 (see
(4), (5)),

δh2(ε) =
(
δ

ε

)

εh2(ε) −→ 0 ,
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as ε → 0. Hence, for all sufficiently small ε,

∫ T

0
‖�ε,u(s)‖2Hds ≤ 1 + ‖y0‖2H + C

∫ T

0

(

1 + ‖wδ
A2
(s)‖2H + ‖X ε,u(s)‖2H

)

ds,

and in view of (50) we have

∫ T

0
‖Y ε,u(s)‖2Hds ≤ C1

∫ T

0
‖�ε,u(s)‖2Hds + C2

∫ T

0
‖wδ

A2
(s)‖2Hds

≤ C1(1 + ‖y0‖2H) + C2

∫ T

0

(

1 + ‖wδ
A2
(s)‖2H + ‖Xε,u(s)‖2H

)

ds.

After taking expectation we deduce that

E

( ∫ T

0
‖Y ε,u(s)‖2Hds

)p

≤ Cp(1 + ‖y0‖2pH )

+ C ′
p

∫ T

0

(

1 + E‖wδ
A2
(s)‖2pH + E‖X ε,u(s)‖2pH

)

ds

and (48) follows upon invoking Lemma A.2(i).
It remains to prove (49). Returning to (54), we multiply throughout by e2�t/δ to

obtain

∂t
(
e2�t/δ‖�ε,u(t)‖2H

) = e2�t/δ∂t‖�ε,u(t)‖2H + 2λ

δ
e2�t/δ‖�ε,u(t)‖2H

≤ 2C2
g

(λ − Lg)δ
e2�t/δ

(

1 + ‖wδ
A2
(t)‖2H + ‖X ε,u(t)‖2H

)

+ 2h2(ε)

λ − Lg
e2�t/δ‖u2(t)‖2H .

(56)

Integrating the latter on [0, t] then yields

‖�ε,u(t)‖2H ≤ ‖y0‖2H + 2C2
g

(λ − Lg)δ

∫ t

0
e−2�(t−s)/δ

(

1 + ‖wδ
A2
(s)‖2H + ‖Xε,u(s)‖2H

)

ds

+ 2h2(ε)

λ − Lg

∫ t

0
e−2�(t−s)/δ‖u2(s)‖2Hds

≤ ‖y0‖2H + C

(

1 + sup
s∈[0,t]

‖wδ
A2
(s)‖2H + sup

s∈[0,t]
‖Xε,u(s)‖2H

)

+ Ch2(ε)
∫ t

0
‖u2(s)‖2Hds.

Taking expectation and applying Lemma A.2(i) we deduce that

E sup
t∈[0,T ]

‖�ε,u(t)‖2H ≤ ‖y0‖2H + C

(

1 + δρ−1 + E sup
s∈[0,T ]

‖X ε,u(s)‖2H
)

+ CNh
2(ε)
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Hence, we can use Lemma A.2 (ii) to show that

E sup
t∈[0,T ]

‖Y ε,u(t)‖2H ≤ CE sup
t∈[0,T ]

‖�ε,u(t)‖2H + C ′
E sup

t∈[0,T ]
‖wδ

A2
(t)‖2H

≤ C

(

1 + ‖y0‖2H + E sup
t∈[0,T ]

‖X ε,u(t)‖2H + h2(ε) + δρ−1
)

and the proof is complete. ��
Remark 8 Due to the presence of the stochastic controls u, we can only prove uniform
estimates for the fast process Y ε,u in L p([0, T ];H) for p ≤ 2. This limitation is also
reflected in the choice of the growth exponent ν < 1/2 in Hypothesis 3(a).

Using Lemma 4.1, we can prove the following a priori bounds for (X ε,u,Y ε,u) by
means of the Grönwall inequality.

Proposition 4.1 Let T < ∞ and ν ∈ (0, 1/2) be as in Hypothesis 3(a). In both
Regimes 1 and 2, there exists ε0 > 0 and a constant C > 0, independent of ε, such
that

sup
0<ε<ε0,u∈PT

N

E sup
t∈[0,T ]

‖X ε,u(t)‖
2
ν

H ≤ C

(

1 + ‖x0‖
2
ν

H + ‖y0‖
2
ν

H

)

(57)

and

sup
0<ε<ε0,u∈PT

N

E‖Y ε,u‖
2
ν

L2([0,T ];H)
≤ C

(

1 + ‖x0‖
2
ν

H + ‖y0‖
2
ν

H

)

. (58)

Moreover, for any ρ ∈ (1/2, 1) and ε sufficiently small, there exists a positive constant
C, independent of ε, such that

sup
u∈PT

N

E sup
t∈[0,T ]

‖Y ε,u(t)‖2H ≤ C

(

1 + ‖x0‖2H + ‖y0‖2H + h2(ε) + δρ−1
)

. (59)

Estimates (57) and (58) are standard and their proofs will be omitted. Similar results
can be found e.g. in [10,25] among other places. The main difference here is in the
moderate deviation scaling which does not change the proof in an essential way.
Finally, (59) follows from the combination of (49) and (57).

Next, we provide an estimate for the Hölder seminorm of the controlled fast process
Y ε,u which depends on the regularity of the initial conditions. The estimate is singular
at δ = 0. As seen in the proof below, there is a trade-off between the Hölder exponent
and the rate of divergence of the right-hand side as ε → 0.
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Proposition 4.2 Let T < ∞, a ∈ (0, 2], x0 ∈ H and y0 ∈ Ha(0, L). For all u ∈ PT
N

and ε sufficiently small there exists β < 1
4 ∧ a

2 and a constant C > 0 independent of
ε such that

E
[
Y ε,u]

Cβ ([0,T ];H)
≤ Ch(ε)δ− 1

2∨ a
2

(

1 + ‖x0‖H + ‖y0‖Ha

)

. (60)

Proof Letting 0 ≤ s < t ≤ T we can write

Y ε,u(t) − Y ε,u(s) =
[

S2

(
t

δ

)

− S2

(
s

δ

)]

y0 + 1

δ

∫ t

s
S2

(
t − z

δ

)

G
(
Xε,u(z),Y ε,u(z)

)
dz

+ 1

δ

[

S2

(
t − s

δ

)

− I

] ∫ s

0
S2

(
s − z

δ

)

G
(
Xε,u(z),Y ε,u(z)

)
dz

+ h(ε)√
δ

∫ t

s
S2

(
t − z

δ

)

u2(z)dz

+ h(ε)√
δ

[

S2

(
t − s

δ

)

− I

] ∫ s

0
S2

(
s − z

δ

)

u2(z)dz

+ wδ
A2
(t) − wδ

A2
(s) =:

6∑

k=1

J ε,uk (s, t).

We shall estimate each term of this decomposition separately. For J ε,u1 , we use the
semigroup property and invoke (11), (12) to obtain

∥
∥J ε,u1 (s, t)

∥
∥H =

∥
∥
∥
∥S2

(
s

δ

)[

S2

(
t − s

δ

)

− I

]

y0

∥
∥
∥
∥H

≤
∥
∥
∥
∥S2

(
s

δ

)∥
∥
∥
∥
L (H)

∥
∥
∥
∥

[

S2

(
t − s

δ

)

− I

]

y0

∥
∥
∥
∥H

≤ e−λs/δ
∥
∥
∥
∥S2

(
t − s

δ

)

− I

∥
∥
∥
∥
L (Ha;H)

‖y0‖Ha

≤ CT δ
−a/2(t − s)a/2‖y0‖Ha .

(61)

Next, we use the Lipschitz continuity ofG along with Hölder’s inequality for q ≥ 1
to obtain

∥
∥J ε,u2 (s, t)

∥
∥H ≤ Cg

δ

∫ t

s
e− λ(t−z)

δ
(
1 + ∥

∥X ε,u(z)
∥
∥H + ∥

∥Y ε,u(z)
∥
∥H

)
dz

≤
(

1 + sup
t∈[0,T ]

∥
∥X ε,u(t)

∥
∥H + sup

t∈[0,T ]
∥
∥Y ε,u(t)

∥
∥H

)

Cg

δ

( ∫ t

s
e− pλ(t−z)

δ dz

)1/p

(t − s)1/q
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≤ Cδ−1/q(t − s)1/q
(

1 + sup
t∈[0,T ]

∥
∥X ε,u(t)

∥
∥H + sup

t∈[0,T ]
∥
∥Y ε,u(t)

∥
∥H

)

×
(∫ ∞

0
e−pλζ dζ

)1/p

.

Letting ε be sufficiently small, taking expectation and applying (57) and (59) we get

E sup
t,s∈[0,T ],t �=s

∥
∥J ε,u2 (s, t)

∥
∥H

|t − s|1/q ≤ Cpδ
− 1

q

(

1 + ‖x0‖H + ‖y0‖H + h(ε) + δ
ρ−1
2

)

.

Choosing ρ = 3/4 ∈ (1/2, 1) and q = 9 yields

1

q
+ 1 − ρ

2
= 1

9
+ 1

8
<

1

4
.

Hence, for β ≤ 1/9

E sup
t,s∈[0,T ],t �=s

∥
∥J ε,u2 (s, t)

∥
∥H

|t − s|β ≤ Ch(ε)δ−1/4
(

1 + ‖x0‖H + ‖y0‖H
)

. (62)

Next, for J ε,u3 , we shall invoke (12) and then apply Lemma A.1(i) to obtain

∥
∥J ε,u3 (s, t)

∥
∥H ≤ 1

δ

∥
∥
∥
∥S2

(
t − s

δ

)

− I

∥
∥
∥
∥
L (H θ ;H)

∫ s

0

∥
∥
∥
∥S2

(
s − z

δ

)

G
(
X ε,u(z), Y ε,u(z)

)
∥
∥
∥
∥
H θ

dz

≤
(
C

δ

)

δ−θ/2(t − s)θ/2
∫ s

0

∥
∥
∥
∥(−A2)

θ/2S2

(
s − z

δ

)

G
(
X ε,u(z), Y ε,u(z)

)
∥
∥
∥
∥H

dz

≤ Cgδ
−1−θ/2(t − s)θ/2

∫ s

0

(
s − z

δ

)−(ρ+θ)/2

e− λ(s−z)
4δ

(

1 + ∥
∥X ε,u(z)

∥
∥H + ∥

∥Y ε,u(z)
∥
∥H

)

dz,

which holds for θ ∈ (0, 1/2), ρ ∈ (1/2, 1) and we used the Lipschitz continuity of G
to obtain the last line. Performing the substitution ζ = (s − z)/δ then yields

∥
∥J ε,u3 (s, t)

∥
∥H ≤ Cδ−θ/2(t − s)θ/2

(

1 + sup
t∈[0,T ]

∥
∥X ε,u(t)

∥
∥H + sup

t∈[0,T ]
∥
∥Y ε,u(t)

∥
∥H

)

×
∫ s/δ

0
ζ−(ρ+θ)/2e− λζ

4 dζ

≤ Cλ,θ δ
−θ/2(t − s)θ/2

(

1 + sup
t∈[0,T ]

∥
∥X ε,u(t)

∥
∥H + sup

t∈[0,T ]
∥
∥Y ε,u(t)

∥
∥H

)

×
∫ ∞

0
(λζ/4)−(ρ+θ)/2e−λζ/4dζ
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where ρ + θ < 3/2. The integral on the right-hand side is finite and, in fact, can be
explicitly computed in terms of �(1 − ρ+θ

2 ) , where � denotes the Gamma function.
Letting ε be sufficiently small, taking expectation and using (57) and (59) we deduce
that

E sup
t,s∈[0,T ],t �=s

∥
∥J ε,u3 (s, t)

∥
∥H

|t − s|θ/2 ≤ Ch(ε)δ
ρ−1
2 − θ

2

(

1 + ‖x0‖H + ‖y0‖H
)

.

Choosing θ = 2/9 and ρ = 3/4 we obtain, as we did for J ε,u2 , that for all β < 1/9

E sup
t,s∈[0,T ],t �=s

∥
∥J ε,u3 (s, t)

∥
∥H

|t − s|β ≤ Ch(ε)δ−1/4
(

1 + ‖x0‖H + ‖y0‖H
)

. (63)

As for J4,

∥
∥J ε,u4 (s, t)

∥
∥H ≤ h(ε)√

δ

( ∫ t

s

∥
∥
∥
∥S2

(
t − z

δ

)∥
∥
∥
∥

2

H
dz

) 1
2 ‖u‖L2([0,T ];H)

≤ N
h(ε)√

δ

( ∫ t

s
e− 2λ(t−z)

δ dz

) 1
2

= Nh(ε)

(∫ t−s
δ

0
e−2λzdz

) 1
2

≤ CN ,λh(ε)δ
− 1

2 (t − s)
1
2

with probability 1. Thus, for β ≤ 1/2,

E sup
t,s∈[0,T ],t �=s

∥
∥J ε,u4 (s, t)

∥
∥H

|t − s|β ≤ Ch(ε)δ−1/2. (64)

The analysis for J ε,u5 is similar to J ε,u3 . In particular,

∥
∥J ε,u5 (s, t)

∥
∥H ≤

(
Ch(ε)√

δ

)

δ−θ/2(t − s)θ/2
∫ s

0

∥
∥
∥
∥(−A2)

θ/2S2

(
s − z

δ

)

u2(z)

∥
∥
∥
∥H

dz

≤ Ch(ε)δ−θ/2(t − s)θ/2
(

1√
δ

)

×
( ∫ s

0

(
s − z

δ

)−(ρ+θ)

e− λ(s−z)
2δ dz

) 1
2 ‖u2‖L2([0,T ];H)

≤ CNh(ε)δ
−θ/2(t − s)θ/2

( ∫ ∞

0
ζ−ρ+θe−λζ/2dζ

) 1
2

≤ Cλh(ε)δ
−θ/2(t − s)θ/2(�(1 − ρ − θ))

1
2 ,
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where we have chosen ρ ∈ (1/2, 1) and θ ∈ (0, 1/2) to satisfy ρ + θ < 1. Thus, for
β < θ/2 < 1/4

E sup
t,s∈[0,T ],t �=s

∥
∥J ε,u5 (s, t)

∥
∥H

|t − s|β ≤ Ch(ε)δ−1/2. (65)

Finally, from (182) (see “Appendix A”), there exists β < 1/4 such that

E sup
t,s∈[0,T ],t �=s

∥
∥J ε,u6 (s, t)

∥
∥H

|t − s|β = E
[
wδ

A2

]

Cβ([0,T ];H)
≤ Cδ

ρ−1
2 ≤ Cδ−1/4 (66)

and the latter holds since ρ ∈ (1/2, 1/2 + 2β). The argument is complete upon
combining (61)–(66). ��
Before we conclude this section, let us gather some auxiliary estimates regarding the
spatio-temporal regularity of the solution X̄ of the averaged slow equation (2). These
will be needed in the subsequent analysis of the controlledmoderate deviations process
ηε,u .

Lemma 4.2 (i) For T < ∞, there exists a constant C > 0 such that

sup
t∈[0,T ]

‖X̄(t)‖2H ≤ C(1 + ‖x0‖2H). (67)

(ii) Let T < ∞, a > 0 and x0 ∈ Ha(0, L). For all θ < 1
4 ∧ a

2 , there exists a constant
C > 0 such that

‖X̄‖Cθ ([0,T ];H) ≤ C
(
1 + ‖x0‖Ha

)
. (68)

(iii) Let T < ∞, a ∈ (0, 2] and x0 ∈ Ha(0, L). Then, for all t > 0 we have
X̄(t) ∈ Dom(A1). Moreover, there exists C > 0 independent of t such that for
all t ∈ (0, T ]

∥
∥A1 X̄(t)

∥
∥H ≤ C

(
t
a
2−1‖x0‖Ha + 1 + ∥

∥x0‖Ha
)
. (69)

To prove these estimates, one has to use the Lipschitz continuity of F̄ (see Lemma 3.1)
along with the smoothing property (13) of the analytic semigroup S1. These results
are well-known and we will only present the proof of (69) in “Appendix A”.

5 A priori bounds for ��,u and the Kolmogorov equation

In this section we aim to prove regularity estimates for the controlled moderate devia-
tion process ηε,u , in Regimes 1 and 2, that are uniform over controls u ∈ PT

N and small
values of ε. These will be used to show that the family {ηε,u, ε ∈ (0, 1), u ∈ PT

N } is
tight in C([0, T ];H) (see Lemma 6.1 in Sect. 6). To be precise, we are interested in
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studying the spatial Sobolev and temporal Hölder regularity of the process ηε,u . The
main result of this section is given below:

Proposition 5.1 Let T < ∞, a > 0 and x0, y0 ∈ Ha(0, L). With ν as in Hypotheses
3(a) and in both Regimes 1 and 2, there exist θ < ( 12 − ν) ∧ a, β < ( 14 − ν

2 ) ∧ a
2 ,

ε0 > 0 and C > 0 independent of ε such that

(i)

sup
0<ε<ε0,u∈PT

N

E sup
t∈[0,T ]

‖ηε,u(t)‖2H θ ≤ C
(
1 + ‖x0‖2Ha + ‖y0‖2Ha

)
(70)

(ii)

sup
0<ε<ε0,u∈PT

N

E
[
ηε,u

]

Cβ ([0,T ];H)
≤ C

(
1 + ‖x0‖Ha + ‖y0‖Ha

)
. (71)

To prove these estimates, we use a generalized version of decomposition (28). In

particular, we fix θ ∈ [0, 1/2), 0 ≤ s < t ≤ T , χ ∈ Dom((−A1)
1+ θ

2 ) and write

〈
ηε,u(t) − ηε,u(s) − (

S1(t − s) − I
)
ηε,u(s), (−A1)

θ
2 χ

〉

H

= 1√
εh(ε)

∫ t

s

〈
F

(
X ε,u(z),Y ε,u(z)

)

−F
(
X̄(z),Y ε,u(z)

)
, S1(t − z)(−A1)

θ
2 χ〉Hdz

+
∫ t

s

〈
S1(t − z)�

(
X ε,u(z),Y ε,u(z)

)
u1(z), (−A1)

θ
2 χ〉Hdz

+ 1

h(ε)

∫ t

s
〈S1(t − z)�

(
X ε,u(z),Y ε,u(z)

)
dw1(z), (−A1)

θ
2 χ〉H

+ 1√
εh(ε)

∫ t

s

〈
F

(
X̄(z),Y ε,u(z)

) − F̄
(
X̄(z)

)
, S1(t − z)(−A1)

θ
2 χ〉Hdz

=: I ε,u(s, t, θ, χ) + I I ε,u(s, t, θ, χ) + I I I ε,u(s, t, θ, χ) + I V ε,u(s, t, θ, χ).

(72)

This decomposition allows us to study spatio-temporal regularity in a unified manner.
In Sect. 5.1 we provide the necessary estimates for the terms I ε,u , I I ε,u , I I I ε,u . As
we mentioned in Sect. 3, the term I V ε,u requires a more careful analysis, which is
done with the aid of the Kolmogorov equation (29). This is the subject of Sect. 5.2.
Finally, we prove Proposition 5.1 in Sect. 5.3.

Remark 9 The reason for choosing our test functions χ ∈ Dom((−A1)
1+ θ

2 ) is related
to the treatment of term I V ε,u and will become clear in Sect. 5.2 (see Lemma 5.4).
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5.1 Estimates for I�,u, II�,u, III�,u

The proofs of the three lemmas in this section have the following structure: First, we
prove a preliminary space-time estimate which depends linearly and continuously on
the test function χ in the topology of H. Since χ is smooth, we can extend the latter
by density to arbitrary test functions in H. Finally, we set s = 0 to prove a spatial
Sobolev-type estimate, or θ = 0 to prove a temporal equicontinuity-type estimate,
uniformly over χ ∈ BH. These estimates hold in both Regimes 1 and 2 (see (4)).

Lemma 5.1 Let T < ∞, t ∈ [0, T ], θ ∈ [0, 1/2) and I ε,u as in (72). For all ε >

0, u ∈ PT
N , there exists a constant C > 0, independent of ε, such that

sup
χ∈BH

∣
∣I ε,u(0, t, θ, χ)

∣
∣2 ≤ C

∫ t

0
(t − z)−θ sup

r∈[0,z]
∥
∥ηε,u(r)

∥
∥2Hdz, P − a.s. (73)

and

E

(

sup
s,t∈[0,T ]
t �=s

sup
χ∈BH

∣
∣I ε,u(s, t, 0, χ)

∣
∣

|t − s|
)

≤ CE sup
t∈[0,T ]

∥
∥ηε,u(t)

∥
∥H . (74)

Proof Let χ ∈ Dom((−A1)
1+θ/2). Using the analyticity of the semigroup S1 and the

Lipschitz continuity of F ,

∣
∣I ε,u(s, t, θ, χ)

∣
∣ ≤ 1√

εh(ε)

∫ t

s

∥
∥(−A1)

θ
2 S1(t − z)

[
F

(
X ε,u(z),Y ε,u(z)

) − F
(
X̄(z),Y ε,u(z)

)]∥
∥H‖χ‖H dz

≤ C f√
εh(ε)

‖χ‖H
∫ t

s
(t − z)−θ/2

∥
∥X ε,u(z) − X̄(z)

∥
∥H dz

≤ C‖χ‖H
∫ t

s
(t − z)−θ/2 sup

r∈[s,z]
∥
∥ηε,u(r)

∥
∥H dz.

Since Dom((−A1)
1+ θ

2 ) is dense as a subspace ofH, we can approximate any element

of H by a sequence {χm}m∈N ⊂ Dom((−A1)
1+ θ

2 ) in the topology of H. Hence the
last estimate holds, with probability 1, for each χ ∈ H. Choosing χ ∈ BH, we set
s = 0 and take expectation to obtain (73). Setting θ = 0 yields

∣
∣I ε,u(s, t, 0, χ)

∣
∣ ≤ C(t − s) sup

t∈[0,T ]
∥
∥ηε,u(t)

∥
∥H

and (74) follows by taking expectation. The proof is complete. ��
Lemma 5.2 Let T < ∞, x0, y0 ∈ H, ν < 1/2 as in Hypothesis 3(a) and I I ε,u as in
(72). There exist θ < 1/2 − ν, β < 1/4 − ν/2 and a constant C > 0, independent of
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ε, such that

sup
ε>0,u∈PT

N

E

(

sup
t∈[0,T ]

sup
χ∈BH

∣
∣I I ε,u(0, t, θ, χ)

∣
∣
2
ν

)

≤ C
(
1 + ‖x0‖

2
ν

H + ‖y0‖
2
ν

H
)

(75)

and

sup
ε>0,u∈PT

N

E

(

sup
s,t∈[0,T ]
t �=s

sup
χ∈BH

∣
∣I I ε,u(s, t, 0, χ)

∣
∣

|t − s|β
)

≤ C
(
1 + ‖x0‖H + ‖y0‖H

)
. (76)

Proof Let χ ∈ Dom((−A1)
1+ θ

2 ). An application of Lemma A.1(i) yields

|I I ε,u(s, t, θ, χ)∣∣ ≤
∫ t

s
‖(−A1)

θ
2 S1(t − z)�

(
X ε,u(z),Y ε,u(z)

)
u1(z)‖H‖χ‖Hdz

≤ C‖χ‖H
∫ t

s
(t − z)−(ρ+θ)/2

∥
∥�∗(X ε,u(z),Y ε,u(z)

)∥
∥
L (L∞(0,L);H)

‖u1(z)‖Hdz

≤ C‖χ‖H
∫ t

s
(t − z)−(ρ+θ)/2

(

1 + ∥
∥X ε,u(z)

∥
∥H + ∥

∥Y ε,u(z)
∥
∥νH

)

‖u1(z)‖Hdz,

where ρ ∈ (1/2, 1) and we used Hypothesis 3(a) to obtain the third line. Using a
density argument as in the proof of Lemma 5.1 it follows that the estimate holds for
each χ ∈ H. Choosing χ ∈ BH, we apply the Cauchy–Schwarz inequality to deduce
that

|I I ε,u(s, t, θ, χ)∣∣ ≤ C

( ∫ T

0
‖u1(z)‖2Hdz

)1/2

[ ∫ t

s
(t − z)−ρ−θ

(

1 + ∥
∥X ε,u(z)

∥
∥2H + ∥

∥Y ε,u(z)
∥
∥2νH

)

dz

] 1
2

,

with probability 1. Applying Hölder’s inequality with p = 1/ν, q = 1/(1 − ν)

|I I ε,u(s, t, θ, χ)∣∣ ≤ CN

[ ∫ t−s

0
z−q(ρ+θ)dz

] 1
2q

[ ∫ T

0

(

1 + ∥
∥X ε,u(z)

∥
∥2/νH + ∥

∥Y ε,u(z)
∥
∥2H

)

dz

] ν
2

.

(77)

Since ν < 1/2 we can choose ρ ∈ (1/2, 1 − ν) and θ < 1 − ν − ρ = −ρ + 1/q so
that

∫ t−s
0 z−q(ρ+θ)dz ≤ CT 1−q(ρ+θ). Setting s = 0 in (77) we obtain

|I I ε,u(0, t, θ, χ)∣∣ ≤ CN T (1−ν−ρ−θ)/2
[

1 + sup
t∈[0,T ]

∥
∥Xε,u(z)

∥
∥2/νH +

∫ T

0

∥
∥Y ε,u(z)

∥
∥2Hdz

] ν
2
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and (75) follows by taking expectation and applying (57) and (58). As for (76), we set
θ = 0 in (77) to deduce that

|I I ε,u(s, t, θ, χ)∣∣
(t − s)β

≤ C

[

1 + sup
t∈[0,T ]

∥
∥X ε,u(z)

∥
∥2/νH +

∫ T

0

∥
∥Y ε,u(z)

∥
∥2Hdz

] ν
2

,

for β ≤ (1− ν − ρ)/2 < (1− ν)/2. In view of the a priori bounds (57) and (58), the
proof is complete. ��

Lemma 5.3 Let T < ∞, ν < 1/2 as in Hypothesis 3(a) and I I I ε,u as in (72) . There
exist ε0 > 0, θ < 1

2 − ν, β < 1
4 − ν

2 and a constant C > 0, independent of ε, such
that

sup
ε<ε0,u∈PT

N

E

(

sup
t∈[0,T ]

sup
χ∈BH

∣
∣I I I ε,u(0, t, θ, χ)

∣
∣
2
ν

)

≤ C
(
1 + ‖x0‖

2
ν

H + ‖y0‖
2
ν

H
)
(78)

and

sup
ε<ε0,u∈PT

N

E

(

sup
s,t∈[0,T ]
t �=s

sup
χ∈BH

∣
∣I I I ε,u(s, t, 0, χ)

∣
∣

|t − s|β
)

≤ C
(
1 + ‖x0‖H + ‖y0‖H

)
. (79)

Proof Let θ ∈ [0, 1/2), χ ∈ Dom((−A1)
1+ θ

2 ) and a ∈ (0, 1/2). From the stochastic
factorization formula (176) we can write

I I I ε,u(s, t, θ, χ) = sin(aπ)

h(ε)π

〈 ∫ t

s
(t − z)a−1(−A1)

θ
2 S1(t − z)Mε,u

a (s, z, z; 1)dz , χ
〉

H
,

where, for t1 ≤ t2 ≤ t3,

Mε,u
a (t1, t2, t3; 1) :=

∫ t2

t1
(t3 − ζ )−a S1(t3 − ζ )�

(
X ε,u(ζ ),Y ε,u(ζ )

)
dw1(ζ ).

Thus,

∣
∣I I I ε,u(s, t, θ, χ)

∣
∣ ≤ Ca

h(ε)
‖χ‖H

∫ t

s
(t − z)a−1

∥
∥(−A1)

θ
2 Mε,u

a (s, z, z; 1)∥∥Hdz.

(80)

From a density argument (see proof of Lemma 5.1), the last estimate holds with
probability 1 for all χ ∈ BH.
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We start by proving (79). To this end, set θ = 0 in (80) and apply Hölder’s inequality
for q > 1/a > 2 to deduce that

∣
∣I I I ε,u(s, t, 0, χ)

∣
∣ ≤ Ca

h(ε)
‖χ‖H

∫ t

s
(t − z)a−1

∥
∥Mε,u

a (s, z, z; 1)∥∥Hdz

≤ C

h(ε)
‖χ‖H

( ∫ t

s
(t − z)p(a−1)dz

) 1
p

( ∫ t

s

∥
∥Mε,u

a (s, z, z; 1)∥∥qHdz

) 1
q

.

Since Mε,u
a (s, z, z) = Mε,u

a (0, z, z; 1) − Mε,u
a (0, s, z; 1),

h(ε) sup
χ∈BH

∣
∣I I I ε,u(s, t, 0, χ)

∣
∣

(t − s)a−1/q ≤ Cq

( ∫ T

0
sup

s∈[0,z]
∥
∥Mε,u

a (0, s, z; 1)∥∥qHdz

) 1
q

.

Taking expectation, we apply Jensen’s inequality followed by the Burkholder-Davis-
Gundy inequality to obtain

E sup
s,t∈[0,T ]
t �=s

sup
χ∈BH

∣
∣I I I ε,u(s, t, 0, χ)

∣
∣

|t − s|a−1/q ≤ C

h(ε)

( ∫ T

0
E sup

s∈[0,z]
∥
∥Mε,u

a (0, s, z; 1)∥∥qHdz

) 1
q

≤ C

h(ε)

( ∫ T

0

( ∫ z

0
(t − ζ )−2a

E‖S1(t − ζ )�
(
X ε,u(ζ ), Y ε,u(ζ )

)‖2L 2(H)dw1(ζ )

) q
2

dz

) 1
q

.

From Lemma A.1(ii) (with B = �(X ε,u(·),Y ε,u(·)), Pn = I ) and Hypothesis 3(a)

E sup
s,t∈[0,T ]
t �=s

sup
χ∈BH

∣
∣I I I ε,u(s, t, 0, χ)

∣
∣

|t − s|a−1/q

≤ C

h(ε)

( ∫ T

0

(∫ z

0
(z − ζ )−2a−ρ

(

1 + E
∥
∥Xε,u(ζ )

∥
∥2H + E

∥
∥Y ε,u(ζ )

∥
∥2νH

)

dζ

) q
2
dz

) 1
q
.

(81)

Next, choose a < 1
4 − ν

2 ∈ (0, 1/4) and ρ < 1−ν−2a ∈ (1/2, 1). Applying Hölder’s
inequality with exponents 1/ν and 1/(1 − ν), followed by Jensen’s inequality, we
obtain

E

∫ z

0
(z − ζ )−2a−ρ

(

1 + ∥
∥X ε,u(ζ )

∥
∥2H + ∥

∥Y ε,u(ζ )
∥
∥2νH

)

dζ

≤ CT 1−ν−2a−ρ

[ ∫ T

0

(

1 + E
∥
∥X ε,u(ζ )

∥
∥

2
ν

H + E
∥
∥Y ε,u(ζ )

∥
∥2H

)

dζ

]ν

.
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Letting q = 2/ν > 2, it follows that

[ ∫ T

0

(

E

∫ z

0
(z − ζ )−2a−ρ

(

1 + ∥
∥X ε,u(ζ )

∥
∥2H + ∥

∥Y ε,u(ζ )
∥
∥2νH

)

dζ

) q
2

dz

] 1
q

≤ CT ν/2
(∫ T

0

(

1 + E
∥
∥X ε,u(ζ )

∥
∥2/νH + E

∥
∥Y ε,u(ζ )

∥
∥2H

)

dζ

) ν
2

.

Combining the latter with (81) yields

E sup
s,t∈[0,T ]
t �=s

sup
χ∈BH

∣
∣I I I ε,u(s, t, 0, χ)

∣
∣

|t − s|a−1/q

≤ CT ,ν

h(ε)

( ∫ T

0

(

1 + E
∥
∥X ε,u(ζ )

∥
∥2/νH + E

∥
∥Y ε,u(ζ )

∥
∥2H

)

dζ

) ν
2

.

Using estimates (57) and (58) and noting that h(ε) → ∞ as ε → 0, (79) follows.
Similarly, (78) can be proved by setting s = 0 in (80). This yields

E

(

sup
t∈[0,T ]

sup
χ∈BH

∣
∣I I I ε,u(0, t, θ, χ)

∣
∣
2
ν

)

≤ Ca

h(ε)
E

∥
∥
∥
∥

∫ T

0
(t − z)a−1S1(t − z)Mε,u

a (0, z, z; 1)dz
∥
∥
∥
∥

2
ν

H θ

≤ CaT a−1/q

h(ε)

( ∫ T

0
E

∥
∥(−A1)

θ
2 Mε,u

a (0, z, z; 1)∥∥qHdz

) 2
νq

≤ CT ,a

h(ε)

(∫ T

0

( ∫ z

0
(z − ζ )−2a

E
∥
∥(−A1)

θ
2 S1(z − ζ )

�
(
X ε,u(ζ ), Y ε,u(ζ )

)∥
∥2
L2(H)

dζ

) q
2

dz

) 2
qν

,

for θ ∈ (0, 1/2). In view of (179), we can choose θ < 1
2 −ν ∈ (0, 1

2 ), a < 1
4 − ν

2 − θ
2 ∈

(0, 1/4) and ρ < 1 − ν − 2a ∈ (θ + 1/2, 1) and then apply Hölder’s inequality with
exponents 1/ν and 1/(1 − ν) to obtain

E

(

sup
t∈[0,T ]

sup
χ∈BH

∣
∣I I I ε,u(0, t, θ, χ)

∣
∣
2
ν

)

≤ C

h(ε)

( ∫ T

0

(∫ z

0
(z − ζ )−2a−ρ

E
∥
∥�

(
Xε,u(ζ ),Y ε,u(ζ )

)∥
∥2
L (L∞(0,L);H)

dζ

) q
2
dz

) 2
qν

≤ C
∫ T

0

(

1 + E
∥
∥Xε,u(ζ )

∥
∥2/νH + E

∥
∥Y ε,u(ζ )

∥
∥2H

)

dζ.

Noting that a < 1/2 can be arbitrarily small, we apply (57) and (58) and the result
follows. ��
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Remark 10 The estimates derived in this section do not require any regularity for the
initial conditions of the controlled system (25). Such considerations have to be taken
into account in the next section.

5.2 The term IV�,u

This section is devoted to the analysis of the last term in the decomposition (72). As
we mentioned above, this term requires additional work due to the singular coefficient
1/

√
εh(ε). Throughout the rest of this paper we choose the small parameter c(ε) in

the Kolmogorov equation (29) to be

c(ε) := √
ε. (82)

Now, let Pn : H → span{e2,1, . . . , e2,n} be an orthogonal projection onto the
n-dimensional subspace spanned by the eigenvectors e2,1, . . . , e2,n of A2 (seeHypoth-
esis 1(a)), u2,n := Pnu2 be the projection of the control u2 and

w2,n(t) =
n∑

k=1

e2,kw2(t, e2,k)

be the projection of the cylindrical Wiener process w2. Consider the family of n-
dimensional processes

Y ε,u
n := PnY

ε,u , n ∈ N.

These processes satisfy the controlled stochastic evolution equations

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dY ε,u
n (t) = 1

δ

[
A2Y

ε,u
n (t) + PnG

(
X ε,u(t),Y ε,u(t)

)]

+ h(ε)√
δ
u2,n(t)dt + 1√

δ
dw2,n(t)

t > 0,Y ε,u
n (0) = Pn y0 ∈ H.

(83)

Next, recall that

I V ε,u(s, t, θ, χ) = 1√
εh(ε)

∫ t

s

〈
F

(
X̄(z),Y ε,u(z)

) − F̄
(
X̄(z)

)
,

S1(t − z)(−A1)
θ
2 χ〉Hdz.
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For χ ∈ Dom((−A1)
1+ θ

2 ) we can further decompose this into

1√
εh(ε)

∫ t

s

〈
F

(
X̄(z),Y ε,u

n (z)
) − F̄

(
X̄(z)

)
, S1(t − z)(−A1)

θ
2 χ

〉

Hdz

+ 1√
εh(ε)

∫ t

s

〈
F

(
X̄(z),Y ε,u(z)

)

− F
(
X̄(z),Y ε,u

n (z)
)
, S1(t − z)(−A1)

θ
2 χ

〉

Hdz

=: T ε,u
1 (s, t, n, θ, χ) + T ε,u

2 (s, t, n, θ, χ)

(84)

and then rewrite T ε,u
1 , with the aid of Itô’s formula, in order to deal with the asymp-

totically singular scaling. In particular, consider the real-valued map

[s, t] × H × Dom(A2) � (z, x, y) �−→ �(z, x, y) := �ε

S1(t−z)(−A1)
θ
2 χ

(x, y) ∈ R,

where �ε· denotes the strict solution of the Kolmogorov equation given by (33). In
view of (35),

�(z, x, y) = 〈�ε(x, y), S1(t − z)(−A1)
θ
2 χ〉H (85)

and

∂z�(z, x, y) = 〈�ε(x, y), (−A1)
1+ θ

2 S1(t − z)χ〉H ,

Dv
x�(z, x, y) = Dv

x�
ε

S1(t−z)(−A1)
θ
2 χ

(x, y)

= 〈�ε
1 (x, y)v, S1(t − z)(−A1)

θ
2 χ〉H ,

Dv
y�(z, x, y) = Dv

y�
ε

S1(t−z)(−A1)
θ
2 χ

(x, y)

= 〈�ε
2 (x, y)v, S1(t − z)(−A1)

θ
2 χ〉H ,

(86)

where Dv· denotes partial Fréchet differentiation in the direction of v ∈ H. More-
over, from the last estimate in (34) and the Riesz representation theorem, there exists
�

ε,n
3 (x, y) ∈ H such that

tr
[
(Pn − I )D2

y�
ε
χ(x, y)

] = 〈
�

ε,n
3 (x, y), χ

〉

H and

‖�ε,n
3 (x, y)‖H ≤ c

c(ε)

(
1 + ‖x‖H + ‖y‖H

)
.

(87)

The latter implies that

tr
[
(Pn − I )D2

y�(z, x, y)
] = 〈�ε,n

3 (x, y), S1(t − z)(−A1)
θ
2 χ〉H. (88)

Noting that, for each t ≥ 0, Y ε,u
n (t) ∈ Dom(A2) almost surely, we can apply Itô’s

formula to �(t, X̄(t),Y ε,u
n (t)) to obtain the following:
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Lemma 5.4 Let n ∈ N, T < ∞, ε > 0, θ ≥ 0, 0 ≤ s ≤ t ≤ T , χ ∈
Dom((−A1)

1+θ/2) and define

T ε,u
3 (s, t, n, θ, χ) := 1

2
√
εh(ε)

∫ t

s

〈
�

ε,n
3

(
X̄(z),Y ε,u

n (z)
)
, S1(t − z)(−A1)

θ
2 χ

〉

Hdz

+ 1√
εh(ε)

∫ t

s

〈
�ε

2

(
X̄(z),Y ε,u

n (z)
)[
PnG

(
X̄(z),Y ε,u(z)

)

− G
(
X̄(z),Y ε,u

n (z)
)]
, S1(t − z)(−A1)

θ
2 χ

〉

Hdz.

(89)

With �ε,�ε
1 , �

ε
2 , �

ε,n
3 , T ε,u

1 , T ε,u
2 as in (35), (87) and (84), we have

I V ε,u(s, t, θ, χ)

= − δ√
εh(ε)

〈
�ε

(
X̄(t), Y ε,u

n (t)
) − �ε

(
X̄(s), Y ε,u

n (s)
)
, S1(t − s)(−A1)

θ
2 χ

〉

H

+ δ√
εh(ε)

∫ t

s

〈
�ε

(
X̄(z), Y ε,u

n (z)
) − �ε

(
X̄(t), Y ε,u

n (t)
)
, S1(t − z)(−A1)

1+ θ
2 χ

〉

Hdz

+ δ√
εh(ε)

∫ t

s

〈
�ε

1

(
X̄(z), Y ε,u

n (z)
)[
A1 X̄(z) + F̄

(
X̄(z)

)]
, S1(t − z)(−A1)

θ
2 χ

〉

Hdz

+ c(ε)√
εh(ε)

∫ t

s

〈
�ε

(
X̄(z), Y ε,u

n (z)
)
, S1(t − z)(−A1)

θ
2 χ

〉

Hdz

+
√
δ√
ε

∫ t

s

〈
�ε

2

(
X̄(z), Y ε,u

n (z)
)
u2,n(z), S1(t − z)(−A1)

θ
2 χ

〉

Hdz

+
√
δ√

εh(ε)

∫ t

s

〈
(−A1)

θ
2 S1(t − z)�ε

2

(
X̄(z), Y ε,u

n (z)
)
dw2,n(z), χ

〉

H

+ Rε,u(s, t, n, θ, χ)

=:
6∑

k=1

I V ε,u
k (s, t, n, θ, χ) + Rε,u(s, t, n, θ, χ),

(90)

where

Rε,u(s, t, n, θ, χ) := T ε,u
2 (s, t, n, θ, χ) + T ε,u

3 (s, t, n, θ, χ). (91)

The proof of Lemma 5.4 is deferred to “Appendix B”.

Remark 11 Note that the terms I V ε,u
k , k = 1, . . . , 6 are free from asymptotically

singular coefficients. This comes at the cost of introducing the unbounded operator
(−A1) in the term I V ε,u

2 .

We can now proceed to estimate each term in (90) in both Regimes 1 and 2. The terms
I V ε,u

1 , I V ε,u
2 are the most challenging and will be handled similarly. In particular,

we apply the mean value inequality for Fréchet differentials along with the Schauder
estimates (60) and (68) to obtain temporal equicontinuity and spatial Sobolev regularity
estimates. This is done in the following two lemmas. Note that extra care is required in
the choice ofHölder exponents, due to the fact that (60) introduces singular coefficients
in ε (see the comment preceding the proof of Proposition 4.2).
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Lemma 5.5 Let T < ∞ a > 0, x0, y0 ∈ Ha(0, L) and I V ε,u
1 as in (90). There exist

ε0 > 0, θ < 1
2 ∧ a, β < 1

4 ∧ a
2 and a constant C > 0, independent of ε, such that

sup
ε<ε0,u∈PT

N

sup
n∈N

E

(

sup
t∈[0,T ]

sup
χ∈BH

∣
∣I V ε,u

1 (0, t, n, θ, χ)
∣
∣2

)

≤ C
(
1 + ‖x0‖2Ha + ‖y0‖2Ha

)
(92)

and

sup
ε<ε0,u∈PT

N

sup
n∈N

E

(

sup
s,t∈[0,T ]
t �=s

sup
χ∈BH

∣
∣I V ε,u

1 (s, t, n, 0, χ)
∣
∣

|t − s|β
)

≤C
(
1+‖x0‖Ha + ‖y0‖Ha

)
. (93)

Proof Let χ ∈ Dom((−A1)
1+ θ

2 ), x1, x2, ψ ∈ H and y1, y2 ∈ Dom(A2). Recall from
(35) that

〈�ε(x1, y1) − �ε(x2, y2), ψ〉H = �ε
ψ(x1, y1) − �ε

ψ(x2, y2).

An application of the mean value inequality for Fréchet derivatives then yields

∣
∣〈�ε(x1, y1) − �ε(x2, y2), ψ〉H

∣
∣ ≤ sup

x,y∈H
‖Dx�

ε
ψ(x, y)‖H‖x1 − x2‖H‖ψ‖H

+ sup
x,y∈H

‖Dy�
ε
ψ(x, y)‖H‖y1 − y2‖H‖ψ‖H .

In view of estimates (34),

∣
∣〈�ε(x1, y1) − �ε(x2, y2), ψ〉H

∣
∣ ≤ C

(
1

c(ε)
‖x1 − x2‖H + ‖y1 − y2‖H

)

‖ψ‖H .

(94)

Using the latter, along with the self-adjointness of A1 and the analyticity of S1

δ√
εh(ε)

∣
∣〈�ε

(
X̄(t),Y ε,u

n (t)
) − �ε

(
X̄(s),Y ε,u

n (s)
)
, S1(t − s)(−A1)

θ
2 χ〉H

∣
∣

≤ Cδ√
εh(ε)

∥
∥(−A1)

θ
2 S1(t − s)

[
�ε

(
X̄(t),Y ε,u

n (t)
) − �ε

(
X̄(s),Y ε,u

n (s)
)]∥

∥H‖χ‖H

≤ Cδ√
εh(ε)

‖χ‖H(t − s)−θ/2
∥
∥�ε

(
X̄(t),Y ε,u

n (t)
) − �ε

(
X̄(s),Y ε,u

n (s)
)∥
∥H

≤ C‖χ‖H(t − s)−θ/2
(

δ

c(ε)
√
εh(ε)

∥
∥X̄(t) − X̄(s)

∥
∥H

+ δ√
εh(ε)

∥
∥Y ε,u

n (t) − Y ε,u
n (s)

∥
∥H

)

.
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In view of the Schauder estimates (68) and (60), X̄ and Y ε,u have finite Hölder semi-
norms with probability 1 and

δ√
εh(ε)

∣
∣〈�ε

(
X̄(t),Y ε,u

n (t)
) − �ε

(
X̄(s),Y ε,u

n (s)
)
, S1(t − s)(−A1)

θ
2 χ〉H

∣
∣

≤ C‖χ‖H(t − s)−θ/2
(

δ

c(ε)
√
εh(ε)

[
X̄

]

Cθ1 ([0,T ];H)
(t − s)θ1

+ δ√
εh(ε)

[
Y ε,u]

Cθ2 ([0,T ];H)
(t − s)θ2

)

,

where θ1, θ2 < 1
4 ∧ a

2 . By the density argument used in the proof of Lemma 5.1, this
estimate holds for any χ ∈ H. Letting θ ′ = θ1 ∧ θ2 and χ ∈ BH

δ√
εh(ε)

∣
∣〈�ε

(
X̄(t),Y ε,u

n (t)
) − �ε

(
X̄(s),Y ε,u

n (s)
)
, S1(t − s)Aθ

1χ〉H
∣
∣

≤ CT (t − s)θ
′−θ/2

(
δ

c(ε)
√
εh(ε)

[
X̄

]

Cθ1 ([0,T ];H)

+ δ√
εh(ε)

[
Y ε,u]

Cθ2 ([0,T ];H)

)

.

(95)

Setting s = 0 and taking θ < 2θ ′ < (1/2) ∧ a we get

E

(

sup
t∈[0,T ]

sup
χ∈BH

∣
∣I V ε,u

1 (0, t, n, θ, χ)
∣
∣2

)

≤ CT

(
δ2

c2(ε)εh2(ε)

[
X̄

]2
Cθ1 ([0,T ];H)

+ δ2

εh2(ε)
E

[
Y ε,u]2

Cθ2 ([0,T ];H)

)

.

Next, note that the Schauder estimates (68) and (60) can be easily seen to hold in
L2(�). In view of this we obtain

E

(

sup
t∈[0,T ]

sup
χ∈BH

∣
∣I V ε,u

1 (0, t, n, θ, χ)
∣
∣2

)

≤ Cδ2

c2(ε)εh2(ε)
(1 + ‖x0‖2Ha )

+ Cδ2

εh2(ε)
h2(ε)δ−1∨a(1 + ‖x0‖2H + ‖y0‖2Ha

)
.

Since c(ε) = √
ε and the inclusion Ha(0, L) ⊂ H is continuous, we can choose

a < 1 to obtain

E

(

sup
t∈[0,T ]

sup
χ∈BH

∣
∣I V ε,u

1 (0, t, n, θ, χ)
∣
∣2

)

≤ Cδ2

ε2h2(ε)

(
1 + ‖x0‖2Ha

) + Cδ

ε

(
1 + ‖x0‖2Ha + ‖y0‖2Ha

)
.
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In view of (4), the coefficients

δ2

ε2h2(ε)
,
δ

ε

are bounded in both Regimes 1 and 2, for ε sufficiently small and (92) follows.
It remains to prove (93). Setting θ = 0 in (95) we deduce that for any β ≤ θ ′

E

(

sup
s,t∈[0,T ]
t �=s

sup
χ∈BH

∣
∣I V ε,u

1 (s, t, n, 0, χ)
∣
∣

|t − s|β
)

≤ Cδ

c(ε)
√
εh(ε)

[
X̄

]

Cθ1 ([0,T ];H)
+ Cδ√

εh(ε)
E

[
Y ε,u]

Cθ2 ([0,T ];H)

and the estimate follows from the same argument. ��
Lemma 5.6 Let T < ∞, a > 0, x0, y0 ∈ Ha(0, L) and I V ε,u

2 as in (90). There exist
ε0 > 0, θ < 1

2 ∧ a, β < 1
4 ∧ a

2 and a constant C > 0, independent of ε, such that

sup
ε<ε0,u∈PT

N

sup
n∈N

E

(

sup
t∈[0,T ]

sup
χ∈BH

∣
∣I V ε,u

2 (0, t, n, θ, χ)
∣
∣2

)

≤ C
(
1 + ‖x0‖2Ha + ‖y0‖2Ha

)

(96)

and

sup
ε<ε0,u∈PT

N

sup
n∈N

E

(

sup
s,t∈[0,T ]
t �=s

sup
χ∈BH

∣
∣I V ε,u

2 (s, t, n, 0, χ)
∣
∣

|t − s|β
)

≤ C
(
1 + ‖x0‖Ha + ‖y0‖Ha

)
.

(97)

Proof Let χ ∈ Dom((−A1)
1+ θ

2 ). From the analyticity of S1 along with (94)

∣
∣I V ε,u

2 (s, t, n, θ, χ)
∣
∣

≤ δ√
εh(ε)

‖χ‖H
∫ t

s

∥
∥(−A1)

1+ θ
2 S1(t − z)

[
�ε

(
X̄(z),Y ε,u

n (z)
)

− �ε
(
X̄(t),Y ε,u

n (t)
)]∥

∥Hdz

≤ Cδ√
εh(ε)

‖χ‖H
∫ t

s
(t − z)−1−θ/2

∥
∥�ε

(
X̄(z),Y ε,u

n (z)
) − �ε

(
X̄(t),Y ε,u

n (t)
)∥
∥Hdz

≤ C‖χ‖H
∫ t

s
(t − z)−1−θ/2

(
δ

c(ε)
√
εh(ε)

[
X̄

]

Cθ1 ([0,T ];H)
(t − z)θ1

+ δ√
εh(ε)

[
Y ε,u]

Cθ2 ([0,T ];H)
(t − z)θ2

)

dz.
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As in the proof of Lemma 5.5, this estimate can be shown to hold for all χ ∈ BH and,
letting θ ′ = θ1 ∧ θ2,

∣
∣I V ε,u

2 (s, t, n, θ, χ)
∣
∣ ≤ C

(
δ

c(ε)
√
εh(ε)

[
X̄

]

Cθ1 ([0,T ];H)

+ δ√
εh(ε)

[
Y ε,u]

Cθ2 ([0,T ];H)

) ∫ t

s
(t − z)−1+θ ′−θ/2dz.

(98)

Thus, for s = 0 and θ < 2θ ′

∣
∣I V ε,u

2 (0, t, n, θ, χ)
∣
∣ ≤ CT θ ′−θ/2

(
δ

c(ε)
√
εh(ε)

[
X̄

]

Cθ1 ([0,T ];H)

+ δ√
εh(ε)

[
Y ε,u]

Cθ2 ([0,T ];H)

)

and (96) follows using the same argument as in the proof of (92). Finally, letting θ = 0
in (98) and taking β < θ ′, we obtain (97). ��
Next, we estimate the term I V ε,u

3 in (90). The main ingredients of the proof are the
spatial regularity estimate (69) along with the continuity of the averaged operator F̄
(see Lemma 3.1).

Lemma 5.7 Let T < ∞, a > 0, x0 ∈ Ha(0, L) and I V ε,u
3 as in (90). There exist

ε0 > 0, θ < a, β ≤ a
2 and a constant C > 0, independent of ε, such that

sup
ε<ε0,u∈PT

N

sup
n∈N

E

(

sup
t∈[0,T ]

sup
χ∈BH

∣
∣I V ε,u

3 (0, t, n, θ, χ)
∣
∣2

)

≤ C
(
1 + ‖x0‖2Ha

)
(99)

and

sup
ε<ε0,u∈PT

N

sup
n∈N

E

(

sup
s,t∈[0,T ]
t �=s

sup
χ∈BH

∣
∣I V ε,u

3 (s, t, n, 0, χ)
∣
∣

|t − s|β
)

≤ C
(
1 + ‖x0‖Ha

)
. (100)

Proof Let χ ∈ Dom((−A1)
1+ θ

2 ). Using the analyticity of S1 along with the first
estimate in (36)

∣
∣I V ε,u

3 (s, t, n, θ, χ)
∣
∣

≤ δ√
εh(ε)

‖χ‖H
∫ t

s

∥
∥S1(t − z)(−A1)

θ
2�ε

1

(
X̄(z),Y ε,u

n (z)
)

[
A1 X̄(z) + F̄

(
X̄(z)

)]∥
∥Hdz

≤ Cδ

c(ε)
√
εh(ε)

‖χ‖H
∫ t

s
(t − z)−θ/2

(
∥
∥A1 X̄(z)

∥
∥H + ∥

∥F̄
(
X̄(z)

)∥
∥H

)

dz,
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with probability 1. As in the proof of Lemma 5.5, a density argument allows us to
choose χ ∈ BH and apply (69) to deduce that

∣
∣I V ε,u

3 (s, t, n, θ, χ)
∣
∣ ≤ Cδ

c(ε)
√
εh(ε)

∫ t

s
(t − z)−θ/2[(z−1+a/2 + 1)‖x0‖Ha

+ ∥
∥F̄

(
X̄(z)

)∥
∥H

]
dz.

(101)

Setting s = 0 and choosing p large enough to satisfy θ < 2/p < a, we apply Hölder’s
inequality to obtain

∣
∣I V ε,u

3 (0, t, n, θ, χ)
∣
∣ ≤ CT 1/p−θ/2δ

c(ε)
√
εh(ε)

{

‖x0‖Ha

[ ∫ T

0
(z

a
2−1 + 1)qdz

] 1
q

+ T
1
q sup
z∈[0,T ]

∥
∥F̄

(
X̄(z)

)∥
∥H

}

.

From the Lipschitz continuity of F̄ and the fact that c(ε) = √
ε (see (82)) we have

∣
∣I V ε,u

3 (0, t, n, θ, χ)
∣
∣ ≤ CT ,θ,pδ

εh(ε)

(
1 + ‖x0‖Ha

)
.

This proves (99) since δ/(εh(ε)) is bounded for ε small enough. As for (100), let
θ = 0 and c(ε) = √

ε in (101) to obtain

∣
∣I V ε,u

3 (s, t, n, 0, χ)
∣
∣ ≤ Cδ

εh(ε)

∫ t

s

[
(z−1+a/2 + 1)‖x0‖Ha + ∥

∥F̄
(
X̄(z)

)∥
∥H

]
dz.

In view of the Lipschitz continuity of F̄ , the proof is complete. ��
The following two lemmas provide estimates for the terms I V ε,u

k , k = 4, 5 in (90).
These estimates do not require regularity of initial conditions and in fact are straight-
forward consequences of the analyticity of S1 and the a priori bounds (67) and (58)
from Sect. 4.

Lemma 5.8 Let T < ∞, x0, y0 ∈ H and I V ε,u
4 as in (90). There exist ε0 > 0 and a

constant C > 0, independent of ε, such that for all θ < 1/2 and β ≤ 1/2

sup
ε<ε0,u∈PT

N

sup
n∈N

E

(

sup
t∈[0,T ]

sup
χ∈BH

∣
∣I V ε,u

4 (0, t, n, θ, χ)
∣
∣2

)

≤ C
(
1 + ‖x0‖2H + ‖y0‖2H

)
(102)

and

sup
ε<ε0,u∈PT

N

sup
n∈N

E

(

sup
s,t∈[0,T ]
t �=s

sup
χ∈BH

∣
∣I V ε,u

4 (s, t, n, 0, χ)
∣
∣

|t − s|β
)

≤ C
(
1 + ‖x0‖H + ‖y0‖H

)
.

(103)
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Proof Let χ ∈ Dom((−A1)
1+ θ

2 ) . Using the analyticity of S1 along with (36) we
obtain

∣
∣I V ε,u

4 (s, t, n, θ, χ)
∣
∣ ≤ c(ε)√

εh(ε)

∫ t

s

∥
∥S1(t − z)(−A1)

θ
2 �ε

(
X̄(z), Y ε,u

n (z)
)∥
∥
H‖χ‖Hdz

≤ Cc(ε)√
εh(ε)

‖χ‖H
∫ t

s
(t − z)−θ/2

(

1 + ∥
∥X̄(z)

∥
∥
H + ∥

∥Y ε,u
n (z)

∥
∥
H

)

dz.

Since θ < 1/2, the Cauchy–Schwarz inequality yields

∣
∣I V ε,u

4 (s, t, n, θ, χ)
∣
∣

≤ Cc(ε)√
εh(ε)

‖χ‖H(t − s)1/2−θ/2
(∫ T

0

[
1 + ∥

∥X̄(z)
∥
∥2H + ∥

∥Y ε,u
n (z)

∥
∥2H

]
dz

)1/2

.

(104)

As in the proof of Lemma 5.5 we can use a density argument to show that the last
estimate holds for all χ ∈ H. Setting s = 0 and taking expectation, we apply Jensen’s
inequality along with (67) and (58) to obtain

E sup
t∈[0,T ]

sup
χ∈BH

∣
∣I V ε,u

4 (0, t, n, θ, χ)
∣
∣2 ≤ Cc2(ε)

εh2(ε)

∫ T

0

[
1 + ∥

∥X̄(z)
∥
∥2H + E

∥
∥Y ε,u

n (z)
∥
∥2H

]
dz

≤ Cc2(ε)

εh2(ε)
(1 + ‖x0‖2H + ‖y0‖2H).

This completes the proof of (102) since

c2(ε)

εh2(ε)
= 1

h2(ε)
−→ 0 as ε → 0.

As for (103), we set θ = 0 in (104) to conclude that

E sup
s �=t∈[0,T ]

sup
χ∈BH

∣
∣I V ε,u

4 (s, t, n, 0, χ)
∣
∣

|t − s| 12
≤ C

h(ε)

(∫ T

0

[
1 + ∥

∥X̄(z)
∥
∥2H + E

∥
∥Y ε,u

n (z)
∥
∥2H

]
dz

)1/2

≤ C

h(ε)
(1 + ‖x0‖2H + ‖y0‖2H)1/2,

for ε sufficiently small. ��

Lemma 5.9 Let T < ∞, x0, y0 ∈ H and I V ε,u
5 as in (90). There exist ε0 > 0 and a

constant C > 0, independent of ε, such that for all θ < 1/2 and β ≤ 1/2

sup
ε<ε0,u∈PT

N

sup
n∈N

E

(

sup
t∈[0,T ]

sup
χ∈BH

∣
∣I V ε,u

5 (0, t, n, θ, χ)
∣
∣2

)

≤ C (105)
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and

sup
ε<ε0,u∈PT

N

sup
n∈N

E

(

sup
s,t∈[0,T ]
t �=s

sup
χ∈BH

∣
∣I V ε,u

5 (s, t, n, 0, χ)
∣
∣

|t − s|β
)

≤ C . (106)

Proof Let χ ∈ Dom((−A1)
1+ θ

2 ) . Using the analyticity of S1 along with the second
estimate in (36) we have that, with probability 1,

∣
∣I V ε,u

5 (s, t, n, θ, χ)
∣
∣ ≤ C

√
δ√
ε

‖χ‖H
∫ t

s
(t − z)−θ/2

∥
∥�ε

2

(
X̄(z),Y ε,u

n (z)
)∥
∥
L (H)

‖u2,n(z)‖Hdz

≤ C
√
δ√
ε

‖χ‖H(t − s)1/2−θ/2‖u2‖L2([0,T ];H)

≤ CN
√
δ√

ε
‖χ‖H(t − s)1/2−θ/2,

(107)

where we applied the Cauchy–Schwarz inequality and the fact that u2 ∈ PT
N to obtain

the last line. From a density argument (see proof of Lemma 5.5), the last estimate
holds for all χ ∈ H. In view of (4),

√
δ/

√
ε is bounded in both Regimes 1, 2, for ε

sufficiently small. Thus we set s = 0 in (107) to obtain (105) and θ = 0 to obtain
(106). ��
Next, we bound the stochastic convolution term I V ε,u

6 . The estimates rely on the
stochastic factorization formula and, to avoid repetition, many of the arguments will
be omitted.

Lemma 5.10 Let T < ∞ and I V ε,u
6 as in (90). There exist ε0 > 0 and a constant

C > 0, independent of ε, such that for all θ < 1
2 and β < 1

4

sup
ε<ε0,u∈PT

N

sup
n∈N

E

(

sup
t∈[0,T ]

sup
χ∈BH

∣
∣I V ε,u

6 (0, t, n, θ, χ)
∣
∣2

)

≤ C (108)

and

sup
ε<ε0,u∈PT

N

sup
n∈N

E

(

sup
s,t∈[0,T ]
t �=s

sup
χ∈BH

∣
∣I V ε,u

6 (s, t, n, 0, χ)
∣
∣

|t − s|β
)

≤ C . (109)

Proof Let χ ∈ Dom((−A1)
1+ θ

2 ) and apply the stochastic factorization formula (see
(176)) to obtain

I V ε,u
6 (s, t, n, θ, χ)

=
√
δ sin(aπ)√
εh(ε)π

〈 ∫ t

s
(t − z)a−1(−A1)

θ
2 S1(t − z)Mn,ε,u

a (s, z, z)dz , χ

〉

H
,(110)

123



Stoch PDE: Anal Comp

where,

Mn,ε,u
a (t1, t2, t3; 1) =

∫ t2

t1
(t3 − ζ )−a S1(t3 − ζ )�ε

2

(
X̄(ζ ),Y ε,u

n (ζ )
)
Pndw2(ζ )

(111)

and Pn is an orthogonal projection on an n-dimensional eigenspace of A2. It follows
that

∣
∣I V ε,u

6 (s, t, n, θ, χ)
∣
∣ ≤ C

√
δ√

εh(ε)
‖χ‖H

∫ t

s
(t − z)a−1∥∥(−A1)

θ
2 Mn,ε,u

a (s, z, z; 1)∥∥Hdz.

(112)

From a density argument (see proof of Lemma 5.1), the last estimate holds with
probability 1 for all χ ∈ BH.

Due to the similarity of the estimates with those in Lemma 5.3, we will only prove
(109). To this end, set θ = 0 in (112) and let q > 1/a > 2. Repeating the arguments
of Lemma 5.3 we see that

E sup
s,t∈[0,T ]
t �=s

sup
χ∈BH

∣
∣I V ε,u

6 (s, t, n, 0, χ)
∣
∣

|t − s|a−1/q

≤ C
√
δ√

εh(ε)

( ∫ T

0

( ∫ z

0
(z − ζ )−2a

E
∥
∥S1(z − ζ )�ε

2
(
X̄(ζ ), Y ε,u

n (ζ )
)
Pn

∥
∥2
L2(H)

dζ

) q
2
dz

) 1
q
.

Invoking Lemma A.1(ii) (with B(ζ ) = �ε
2 (X̄(ζ ), Y

ε,u
n (ζ )) ) along with the first esti-

mate in (36), we can choose a < 1
4 and 1

2 < ρ < 1 − 2a so that

E sup
s,t∈[0,T ]
t �=s

sup
χ∈BH

∣
∣I V ε,u

6 (s, t, n, 0, χ)
∣
∣

|t − s|a−1/q ≤ C
√
δ√

εh(ε)

( ∫ T

0

(∫ z

0
(z − ζ )−2a−ρdζ

) q
2

dz

) 1
q

≤ C
√
δ√

εh(ε)

( ∫ T

0
z
q
2 (1−2a−ρ)dz

) 1
q

< ∞.

Since
√
δ/

√
ε is bounded for ε sufficiently small and h(ε) → ∞ as ε → 0, (109)

follows.
Taking (110), (111) and (36) into account, we see that the proof of (108) is nearly

identical to that of estimate (78) and thus will be omitted. ��
The last remaining step before estimating I V ε,u involves bounding the finite-
dimensional approximation error Rε,u in (90), given by (91). This term has singular
prefactors of order 1/

√
εh(ε). However, if we fix ε and let n → ∞, Rε,u vanishes.

Thus, for each ε > 0, we can choose an integer n(ε) that makes Rε,u small. This is
done in the following lemma.
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Lemma 5.11 Let T < ∞, θ < 1/2 and Rε,u as in (91). For all ε > 0 there exists
n(ε) ∈ N such that

sup
u∈PT

N

E sup
t∈[0,T ]

sup
χ∈BH

∣
∣Rε,u(0, t, n(ε), θ, χ)

∣
∣2 ≤ ε (113)

and

sup
u∈PT

N

E sup
s,t∈[0,T ]
t �=s

sup
χ∈BH

∣
∣Rε,u(s, t, n(ε), 0, χ)

∣
∣

|t − s|1/2 ≤ ε. (114)

Proof Let χ ∈ Dom((−A1)
θ
2 ), n ∈ N and recall that

Rε,u(s, t, n, θ, χ) = 1√
εh(ε)

∫ t

s

〈
F

(
X̄(z),Y ε,u(z)

)

− F
(
X̄(z),Y ε,u

n (z)
)
, S1(t − z)(−A1)

θ
2 χ

〉

H dz

+ 1√
εh(ε)

∫ t

s

〈
�ε

2

(
X̄(z),Y ε,u

n (z)
)[
PnG

(
X̄(z),Y ε,u(z)

)

− G
(
X̄(z),Y ε,u

n (z)
)]
, S1(t − z)(−A1)

θ
2 χ

〉

Hdz

+ 1

2
√
εh(ε)

∫ t

s

〈
�

ε,n
3

(
X̄(z),Y ε,u

n (z)
)
, S1(t − z)(−A1)

θ
2 χ

〉

Hdz.

(115)

We start by estimating the first term in the last display. Using the analyticity of S1
along with the Lipschitz continuity of F

∣
∣
∣
∣

1√
εh(ε)

∫ t

s

〈
F

(
X̄(z),Y ε,u(z)

) − F
(
X̄(z),Y ε,u

n (z)
)
, S1(t − z)(−A1)

θ
2 χ

〉

H dz

∣
∣
∣
∣

≤ C√
εh(ε)

‖χ‖H
∫ t

s
(t − z)−θ/2

∥
∥F

(
X̄(z),Y ε,u(z)

) − F
(
X̄(z),Y ε,u

n (z)
)∥
∥H dz

≤ C f√
εh(ε)

‖χ‖H
( ∫ T

0

∥
∥Y ε,u(z) − Y ε,u

n (z)
∥
∥2H dz

)1/2

(t − s)
1−θ
2 ,

where we also applied the Cauchy–Schwarz inequality to obtain the last line. As in the
proof of Lemma 5.1, we can use a density argument to deduce that the last estimate
holds for all χ ∈ BH. Setting s = 0

E sup
χ∈BH

∣
∣
∣
∣

1√
εh(ε)

∫ t

0

〈
F

(
X̄(z),Y ε,u(z)

)

− F
(
X̄(z),Y ε,u

n (z)
)
, S1(t − z)(−A1)

θ
2 χ

〉

H dz

∣
∣
∣
∣

2

≤ C

εh2(ε)
E

∫ T

0

∥
∥Y ε,u(z) − Y ε,u

n (z)
∥
∥2H dz,

(116)
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while for θ = 0 we obtain

E sup
s,t∈[0,T ]
t �=s

sup
χ∈BH

1

|t − s|1/2
∣
∣
∣
∣

1√
εh(ε)

∫ t

s

〈
F

(
X̄(z),Y ε,u(z)

)

− F
(
X̄(z),Y ε,u

n (z)
)
, S1(t − z)χ

〉

H dz

∣
∣
∣
∣

≤ C√
εh(ε)

(

E

∫ T

0

∥
∥Y ε,u(z) − Y ε,u

n (z)
∥
∥2H dz

)1/2

.

(117)

Next, recall that Yn solves (83) and note that for fixed ε and all z ∈ [0, T ]

Y ε,u
n (z) −→ Y ε,u(z) , as n → ∞ P − a.s.

Moreover,

sup
n∈N

E

∫ T

0
‖Y ε,u

n (z) − Y ε,u(z)‖2H ≤ 2E‖Y ε,u‖2L2([0,T ];H)

and the last expression is finite due to (58). An application of the Dominated Conver-
gence theorem yields that for each fixed ε > 0

1√
εh(ε)

lim
n→∞

(

E

∫ T

0

∥
∥Y ε,u(z) − Y ε,u

n (z)
∥
∥2H dz

)1/2

= 0.

Combining the latter with (116) and (117) yields

lim
n→∞ E sup

s,t∈[0,T ]
t �=s

sup
χ∈BH

1

|t − s|1/2
∣
∣
∣
∣

1√
εh(ε)

∫ t

s

〈
F

(
X̄(z),Y ε,u(z)

)

− F
(
X̄(z),Y ε,u

n (z)
)
, S1(t − z)χ

〉

Hdz

∣
∣
∣
∣

= lim
n→∞ E sup

χ∈BH

∣
∣
∣
∣

1√
εh(ε)

∫ t

0

〈
F

(
X̄(z),Y ε,u(z)

)

− F
(
X̄(z),Y ε,u

n (z)
)
, S1(t − z)(−A1)

θ
2 χ

〉

Hdz

∣
∣
∣
∣ = 0.
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Thus, for all ε > 0 we can find n(ε) ∈ N large enough to satisfy

E sup
s,t∈[0,T ]
t �=s

sup
χ∈BH

1

|t − s|1/2
∣
∣
∣
∣

1√
εh(ε)

∫ t

s

〈
F

(
X̄(z),Y ε,u(z)

)

− F
(
X̄(z),Y ε,u

n(ε)(z)
)
, S1(t − z)(−A1)

θ
2 χ

〉

Hdz

∣
∣
∣
∣

+ E sup
χ∈BH

∣
∣
∣
∣

1√
εh(ε)

∫ t

0

〈
F

(
X̄(z),Y ε,u(z)

)

− F
(
X̄(z),Y ε,u

n(ε)(z)
)
, S1(t − z)(−A1)

θ
2 χ

〉

Hdz

∣
∣
∣
∣

≤ ε

3
.

(118)

For the second term in (115) we can use the first estimate in (36) along with similar
arguments to show that for each χ ∈ BH

∣
∣
∣
∣

1√
εh(ε)

∫ t

s

〈
�ε

2

(
X̄(z),Y ε,u

n (z)
)[
PnG

(
X̄(z),Y ε,u(z)

)

− G
(
X̄(z),Y ε,u

n (z)
)]
, S1(t − z)(−A1)

θ
2 χ

〉

Hdz

∣
∣
∣
∣

≤ C√
εh(ε)

( ∫ T

0

∥
∥PnG

(
X̄(z),Y ε,u(z)

) − G
(
X̄(z),Y ε,u

n (z)
)∥
∥2H dz

)1/2

(t − s)
1−θ
2 .

Since G is continuous in y, for each fixed ε and z ∈ [0, T ],

∥
∥PnG

(
X̄(z),Y ε,u(z)

) − G
(
X̄(z),Y ε,u

n (z)
)∥
∥2H −→ 0 , as n → ∞ P − a.s.

From the linear growth of G in both variables along with estimates and (67) and (58)
we have

sup
n∈N

E

∫ T

0

∥
∥PnG

(
X̄(z),Y ε,u(z)

) − G
(
X̄(z),Y ε,u

n (z)
)∥
∥2Hdz

≤ Cg

(

1 + sup
t∈[0,T ]

‖X̄(t)‖2H +
∫ T

0
E‖Y ε,u(z)‖2Hdz

)

< ∞.

Applying a dominated convergence argument as beforewe can show that, for all ε > 0,
there exists n(ε) ∈ N large enough to satisfy
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E sup
s,t∈[0,T ]
t �=s

sup
χ∈BH

1

|t − s|1/2
∣
∣
∣
∣

1√
εh(ε)

∫ t

s

〈
�ε

2

(
X̄(z),Y ε,u

n(ε)(z)
)[
Pn(ε)G

(
X̄(z),Y ε,u(z)

)

− G
(
X̄(z),Y ε,u

n(ε)(z)
)]
, S1(t − z)χ

〉

Hdz

∣
∣
∣
∣

2

+ E sup
χ∈BH

∣
∣
∣
∣

1√
εh(ε)

∫ t

0

〈
�ε

2

(
X̄(z),Y ε,u

n(ε)(z)
)[
Pn(ε)G

(
X̄(z),Y ε,u(z)

)

− G
(
X̄(z),Y ε,u

n(ε)(z)
)]
, S1(t − z)(−A1)

θ
2 χ

〉

Hdz

∣
∣
∣
∣

2

≤ ε

3
.

(119)

It remains to estimate the last term in (115). Since the arguments are very similar to
the ones above we will only sketch the proof.
In view of (88) and the continuity of D2

y�
ε
χ(x, y) in y

〈
�

ε,n
3

(
X̄(z),Y ε,u

n (z)
)
, χ

〉

H = tr
[
(Pn − I )D2

y�
ε
χ

(
X̄(z),Y ε,u

n (z)
)] −→ 0 as n → ∞

and this convergence is uniform over χ ∈ BH. In view of the estimate in (87), which
is uniform in n,

sup
n∈N

E

∫ T

0

∥
∥�

ε,n
3

(
ε, X̄(z),Y ε,u

n (z)
)∥
∥2Hdz

≤ c

c(ε)

(

1 + sup
z∈[0,T ]

‖X̄(z)‖2H + E‖Y ε,u‖2L2([0,T ];H)

)

and for each fixed ε the right-hand is finite due to estimates (67) and (58). Using the
analyticity of S1 along with the Dominated Convergence theorem as before we deduce
that for each θ < 1/2 and ε > 0, there exists n(ε) ∈ N large enough to satisfy

E sup
s,t∈[0,T ]
t �=s

sup
χ∈BH

1

|t − s|1/2
∣
∣
∣
∣

1

2
√
εh(ε)

∫ t

s

〈
�

ε,n(ε)
3

(
ε, X̄(z), Y ε,u

n(ε)(z)
)
, S1(t − z)χ

〉

Hdz

∣
∣
∣
∣

+ E sup
χ∈BH

∣
∣
∣
∣

1

2
√
εh(ε)

∫ t

0

〈
�

ε,n(ε)
3

(
ε, X̄(z), Y ε,u

n(ε)(z)
)
, S1(t − z)(−A1)

θ
2 χ

〉

Hdz

∣
∣
∣
∣

2

≤ ε

3
.

(120)

The proof is complete upon combining (118), (119), (120). ��

Collecting the estimates we proved for I V ε,u
k , k = 1, . . . , 6 and Rε,u we can finally

prove the following:
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Lemma 5.12 Let T < ∞, a > 0, x0, y0 ∈ Ha(0, L) and I V ε,u as in (90). There exist
ε0 > 0, θ < 1

2 ∧ a, β < 1
4 ∧ a

2 and a constant C > 0 independent of ε such that

sup
ε<ε0,u∈PT

N

E

(

sup
t∈[0,T ]

sup
χ∈BH

∣
∣I V ε,u(0, t, θ, χ)

∣
∣2

)

≤ C
(
1 + ‖x0‖2Ha + ‖y0‖2Ha

)

(121)

and

sup
ε<ε0,u∈PT

N

E

(

sup
s,t∈[0,T ]
t �=s

sup
χ∈BH

∣
∣I V ε,u(s, t, 0, χ)

∣
∣

|t − s|β
)

≤ C
(
1 + ‖x0‖Ha + ‖y0‖Ha

)
.

(122)

Proof In view of (92), (96), (99), (102), (105), (108) and (113) there exist ε0 > 0,
θ < 1

2 ∧ a and, for each ε > 0, a n(ε) ∈ N such that

sup
ε<ε0

E

(

sup
t∈[0,T ]

sup
χ∈BH

∣
∣I V ε,u(0, t, θ, χ)

∣
∣2

)

≤ C
6∑

k=1

sup
ε<ε0

E

(

sup
t∈[0,T ]

sup
χ∈BH

∣
∣I V ε,u

k (0, t, n(ε), θ, χ)
∣
∣2

)

+ C sup
ε<ε0

E

(

sup
t∈[0,T ]

sup
χ∈BH

∣
∣Rε,u(0, t, n(ε), θ, χ)

∣
∣2

)

≤ C
(
1 + ‖x0‖2Ha + ‖y0‖2Ha

)
,

(123)

which proves (121). Finally, in view of (93), (97), (100), (103), (106), (109) and (114)
there exist ε0 > 0, β < 1

4 ∧ a
2 and, for each ε > 0, a n(ε) ∈ N such that

sup
ε<ε0

E

(

sup
s,t∈[0,T ]
t �=s

sup
χ∈BH

∣
∣I V ε,u(s, t, 0, χ)

∣
∣

|t − s|β
)

≤
6∑

k=1

sup
ε<ε0

E

(

sup
s,t∈[0,T ]
t �=s

sup
χ∈BH

∣
∣I V ε,u

k (s, t, n(ε), 0, χ)
∣
∣

|t − s|β
)

+ sup
ε<ε0

E

(

sup
s,t∈[0,T ]
t �=s

sup
χ∈BH

∣
∣Rε,u(s, t, n(ε), 0, χ)

∣
∣

|t − s|β
)

≤ C
(
1 + ‖x0‖Ha + ‖y0‖Ha

)
,

which proves (122) and completes the argument. ��
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5.3 Proof of Proposition 5.1

We can now combine the estimates of this section and prove the desired a priori
estimates for ηε,u .

(i) Setting s = 0 in the decomposition (72) (recall that ηε,u(0) = 0H)

‖ηε,u(t)‖2H θ = sup
χ∈BH

∣
∣
〈
ηε,u(t), (−A1)

θ
2 χ

〉

H
∣
∣2

≤ sup
χ∈BH

∣
∣I ε,u(0, t, θ, χ)

∣
∣2

+ sup
χ∈BH

∣
∣I I ε,u(0, t, θ, χ)

∣
∣2

+ sup
χ∈BH

∣
∣I I I ε,u(0, t, θ, χ)

∣
∣2

+ sup
χ∈BH

∣
∣I V ε,u(0, t, θ, χ)

∣
∣2.

In view of (73),

‖ηε,u(t)‖2H θ ≤ C
∫ t

0
(t − z)−θ

∥
∥ηε,u(z)

∥
∥2
H θ dz + sup

t∈[0,T ]
sup

χ∈BH

∣
∣I I ε,u(0, t, θ, χ)

∣
∣2

+ sup
t∈[0,T ]

sup
χ∈BH

∣
∣I I I ε,u(0, t, θ, χ)

∣
∣2 + sup

t∈[0,T ]
sup

χ∈BH

∣
∣I V ε,u(0, t, θ, χ)

∣
∣2.

An application of Grönwall’s inequality then yields

‖ηε,u(t)‖2H θ ≤ CT ,θ

(

sup
t∈[0,T ]

sup
χ∈BH

∣
∣I I ε,u(0, t, θ, χ)

∣
∣2

+ sup
t∈[0,T ]

sup
χ∈BH

∣
∣I I I ε,u(0, t, θ, χ)

∣
∣2

+ sup
t∈[0,T ]

sup
χ∈BH

∣
∣I V ε,u(0, t, θ, χ)

∣
∣2

)

.

Taking expectation and invoking (73), (75), (78) and (121) we obtain

E sup
t∈[0,T ]

‖ηε,u(t)‖2H θ ≤ C
(
1 + ‖x0‖2Ha + ‖y0‖2Ha

)
,

which holds for ε sufficiently small, θ < ( 12 − ν) ∧ a and proves (70).
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(ii) Setting θ = 0 in the decomposition (72) we apply a reverse triangle inequality to
obtain

‖ηε,u(t) − ηε,u(s)‖H ≤ ‖(S1(t − s) − I
)
ηε,u(s)‖H + sup

χ∈BH

∣
∣I ε,u(s, t, 0, χ)

∣
∣

+ sup
χ∈BH

∣
∣I I ε,u(s, t, 0, χ)

∣
∣

+ sup
χ∈BH

∣
∣I I I ε,u(s, t, 0, χ)

∣
∣ + sup

χ∈BH

∣
∣I V ε,u(s, t, 0, χ)

∣
∣

≤ C(t − s)θ/2‖ηε,u(s)‖H θ + sup
χ∈BH

∣
∣I ε,u(s, t, 0, χ)

∣
∣

+ sup
χ∈BH

∣
∣I I ε,u(s, t, 0, χ)

∣
∣

+ sup
χ∈BH

∣
∣I I I ε,u(s, t, 0, χ)

∣
∣ + sup

χ∈BH

∣
∣I V ε,u(s, t, 0, χ)

∣
∣,

where we used (12) to obtain the last inequality. Hence for any β < θ/2 <

( 14 − ν
2 ) ∧ a

2 we take expectation and apply (74), (76), (79) and (122) along with
(70) to deduce that

E sup
s,t∈[0,T ]
t �=s

∥
∥ηε,u(t) − ηε,u(s)

∥
∥H

|t − s|β ≤ CE sup
t∈[0,T ]

∥
∥ηε,u(t)

∥
∥
H θ

+ E sup
s,t∈[0,T ]
t �=s

sup
χ∈BH

∣
∣I ε,u(s, t, 0, χ)

∣
∣

|t − s|β

+ E sup
s,t∈[0,T ]
t �=s

sup
χ∈BH

∣
∣I I ε,u(s, t, 0, χ)

∣
∣

|t − s|β

+ E sup
s,t∈[0,T ]
t �=s

sup
χ∈BH

∣
∣I I I ε,u(s, t, 0, χ)

∣
∣

|t − s|β

+ E sup
s,t∈[0,T ]
t �=s

sup
χ∈BH

∣
∣I V ε,u(s, t, 0, χ)

∣
∣

|t − s|β

≤ C
(
1 + ‖x0‖Ha + ‖y0‖Ha

)
.

The proof is complete.

6 Tightness of the pairs (��,u,P�,1) and analysis of the limit

Let ηε,u denote the controlled moderate deviation processes defined in (24) and Pε,�

the random occupation measures defined in (38). In this section, we prove the first
main result of this paper, Theorem 3.2. To do so, we first show that the family
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{(ηε,u, Pε,�), ε > 0, u ∈ PT
N } is tight in Sect. 6.1 and then identify the limiting

dynamics in Sect. 6.2. We complete the proof of Theorem 3.2 in Sect. 6.3.
Before we proceed to the main body of this section, let us recall the notion of

tightness for a family of probability measures and then state an extension of the
classical theorem of Prokhorov which will be used in the sequel.

Definition 6.1 Let E be a Hausdorff topological space and � ⊂ P(E) be a set of
Borel probability measures on E .
(i) We say that a sequence {Pn} ⊂ � converges weakly to a measure P ∈ P(E) if

for every f ∈ Cb(E)

lim
n→∞

∫

E
f d Pn =

∫

E
f d P.

(ii) We say that � is tight if for each ε > 0 there exists a compact set Kε ⊂ E such
that for all P ∈ �,

P(E \ Kε) < ε. (124)

The classical version of Prokhorov’s theorem asserts that the notions of tightness and
relative weak sequential compactness on P(E) are equivalent, provided that E is a
Polish space. The following generalization can be found e.g. in [3] (see Theorem
8.6.7).

Theorem 6.1 (Prokhorov) Let E be a completely regular Hausdorff topological space
and� ⊂ P(E) be a tight family of Borel probability measures. Then� has compact
closure in the topology of weak convergence of measures. In addition, if for each
ε > 0 the set Kε in (124) is metrizable, then every sequence in � contains a weakly
convergent subsequence.

6.1 Tightness of {(��,u, P�,1),� ∈ (0, 1), u ∈ PT
N}

Lemma 6.1 Let T < ∞, N > 0, a > 0 and (X ε,u,Y ε,u) denote the mild solution of
(25) with initial conditions x0, y0 ∈ Ha(0, L). Then the family {ηε,u, ε ∈ (0, 1), u ∈
PT
N } is tight in C([0, T ];H)

.

Proof Let M, β, θ > 0. From an infinite-dimensional version of the Arzelà-Ascoli
theorem, sets of the form

KM,β,θ =
{

X ∈ C([0, T ];H) : ‖X‖Cβ ([0,T ];H) ≤ M , sup
t∈[0,T ]

‖X(t)‖H θ ≤ M

}

are compact in C([0, T ];H). Indeed, since the inclusion H θ (0, L) ⊂ H is compact,
we see that KM,β,θ contain uniformly equicontinuous paths with values on compact
subsets of H. In view of Proposition 5.1 in Sect. 4, there exist θ0 < 1

2 − ν and
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β0 < 1
4 − ν

2 such that

lim
M→∞ sup

ε∈(0,1),u∈PT
N

P
[
ηε,u /∈ KM,β0,θ0

] = 0.

Equivalently, the probability laws of the processes ηε,u are concentrated in compact
subsets of C([0, T ];H), uniformly in ε, u. The proof is complete. ��

In order to show that the laws of the random occupation measures Pε,� form a tight
subset of P(P(H × H × H × [0, T ])) we need the following auxiliary lemma
regarding the spatial regularity of the fast process Y ε,u .

Lemma 6.2 Let T < ∞. There exists θ > 0 and a constant C > 0, independent of ε,
such that

sup
ε>0,u∈PT

N

E

∫ T

0

∥
∥Y ε,u(t)

∥
∥2
H θ dt ≤ C

(
1 + ‖x0‖2H + ‖y0‖2H

)
. (125)

Proof Recall that the mild solution of the controlled fast equation (see (25)) is given
by

Y ε,u(t) = S2

(
t

δ

)

y0 + 1

δ

∫ t

0
S2

(
t − s

δ

)

G
(
X ε,u(s),Y ε,u(s)

)
ds

+ h(ε)

δ

∫ t

0
S2

(
t − s

δ

)

u2(s)ds

+ 1√
δ

∫ t

0
S2

(
t − s

δ

)

dw2(s).

Using the analytic properties of the semigroup and the linear growth of G, we can
estimate the first two terms by

∫ T

0

∥
∥
∥
∥S2

(
t

δ

)

y0

∥
∥
∥
∥

2

H θ

dt ≤ C
∫ T

0

(
t

δ

)−θ

e− λt
δ ‖y0‖2Hdt ≤ Cλ,θ δ‖y0‖2H (126)

and

∥
∥
∥
∥

∫ t

0
S2

(
t − s

δ

)

G
(
X ε,u(s),Y ε,u(s)

)
ds

∥
∥
∥
∥
H θ

≤ C
∫ t

0

(
t − s

δ

)−θ/2

e− λ(t−s)
2δ

∥
∥G

(
X ε,u(s),Y ε,u(s)

)∥
∥Hds.
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Applying Young’s inequality for convolutions in the form ‖ f �g‖2 ≤ ‖ f ‖1‖g‖2 we
obtain

E

∫ T

0

∥
∥
∥
∥
1

δ

∫ t

0
S2

(
t − s

δ

)

G
(
X ε,u(s),Y ε,u(s)

)
ds

∥
∥
∥
∥

2

H θ

dt

≤ C

( ∫ ∞

0
t−θ/2e− λt

2 dt

)2

E

∫ T

0

(
1 + ∥

∥X ε,u(t)
∥
∥2H + ∥

∥Y ε,u(t)
∥
∥2H

)
dt

≤ C
(
1 + ‖x0‖2H + ‖y0‖2H

)
,

(127)

where the last inequality follows from the a priori bounds (57), (58) in Sect. 4. It
remains to estimate the control and stochastic convolution terms. The first can be
bounded by Young’s inequality for convolutions and the L2 bound on the controls as
follows:

∫ T

0

∥
∥
∥
∥
h(ε)√

δ

∫ t

0
S2

(
t − s

δ

)

u(s)ds

∥
∥
∥
∥

2

H θ

dt ≤ h2(ε)

δ

( ∫ T

0
(t/δ)−θ/2e− λt

2δ dt

)2

∫ T

0
‖u(t)‖2Hdt

≤ N
h2(ε)

δ
δ2

(∫ ∞

0
s−θ/2e− λs

2 ds

)2

≤ Cδh2(ε) −→ 0 , as ε → 0.

(128)

The last line above follows from the change of variables s = t/δ and the integral is
finite provided that θ < 2. Finally, for the stochastic convolution term, we can proceed
as in [25] (see Lemma 4.6, (33) and set � = I ) to show that

E

∫ T

0

∥
∥
∥
∥

1√
δ

∫ t

0
S2

(
t − s

δ

)

dw2(s)

∥
∥
∥
∥

2

H θ

dt ≤ C . (129)

The proof is complete upon combining (126)–(129). ��
We can now argue that the family of occupation measures Pε,� is tight. The difference
with the finite-dimensional case (see Proposition 3.1 in [17]) is that the controls take
values on the infinite-dimensional spaceH. Since the occupation measures are defined
onH×H×H×[0, T ]with theWWNS topology and theweak topology is not globally
metrizable, it follows thatH×H×H×[0, T ] is not a Polish space (and consequently
neither isP(H×H×H×[0, T ])with the topology ofweak convergence ofmeasures).
This is why we need Theorem 6.1.

Lemma 6.3 The family {Pε,�, ε > 0} is tight in P(H × H × H × [0, T ]) where
H × H × H × [0, T ] is endowed with the WWNS topology.
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Proof Let M > 0 and define

KM = {
(u1, u2, y) ∈ H × H × H : ‖u1‖2H + ‖u2‖2H + ‖y‖2H θ ≤ M

} × [0, T ].

Since

KM ⊂ {
(u1, u2) ∈ H × H : ‖u1‖2H + ‖u2‖2H ≤ M

}

× {y ∈ H : ‖y‖2H θ ≤ M
} × [0, T ],

we invoke the Banach–Alaoglu theorem alongwith the compact inclusion H θ (0, L) ⊂
H to deduce that KM is compact in the WWNS topology. Next define

�i, j =
⋂

L≥i

⋃

M≥ j

{

P ∈ P(H × H × H × [0, T ]) : P(Kc
M ) <

1

L

}

, i, j ∈ N.

By Definition 6.1 it follows that, for each i, j, �i, j is a tight family of measures.
Since H is a separable Hilbert space and the weak topology on BH is metrizable,
the sets KM are compact, metrizable. Thus, in light of Theorem 6.1, the sets �i, j

are relatively compact and, in fact, relatively sequentially compact in the topology of
P(H×H×H× [0, T ]). Now, an application of Chebyshev’s inequality along with
estimate (125) yields

E
[
Pε,�(Kc

M )
] = 1

�

∫ T

0

∫ t+�

t
P[(u1(s), u2(s),Y ε,u(s)) ∈ Kc

M ] dsdt

≤ 1

M�

∫ T

0
E

∫ t+�

t

(‖u1(s)‖2H + ‖u2(s)‖2H + ‖Y ε,u(s)‖2H θ

)
dsdt

≤ 1

M

∫ T+�

0

(
E‖u1(s)‖2H + E‖u2(s)‖2H + E‖Y ε,u(s)‖2H θ

)
ds

≤ CN

M
(1 + ‖x0‖2H + ‖y0‖2H).

Yet another application of Chebyshev’s inequality implies that

P

[

Pε,�(Kc
M ) ≥ 1

L

]

≤ CN L

M
(1 + ‖x0‖2H + ‖y0‖2H).

Next, let i ∈ N, ρ > 0 and take L ≥ i and

M ≥ CN L(1 + ‖x0‖2H + ‖y0‖2H)/ρ ≥ [CN i(1 + ‖x0‖2H + ‖y0‖2H)/ρ] =: j(i, ρ),

where [·] indicates the floor function. It follows that

P
[
Pε,� /∈ �i, j(i,ρ)

] = lim
M→∞ lim

L→∞ P

[

Pε,�(Kc
M ) ≥ 1

L

]

≤ ρ,
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uniformly in ε, u. Since ρ is arbitrary the proof is complete. ��
Finally, we state here, without proof, a result regarding the tail behavior of the random
measures Pε,�. The proof follows the same strategy as that of Proposition 3.1 in [19]
(see also Lemma 4.14 in [25]).

Lemma 6.4 Let M, θ > 0, T < ∞ and

UM,θ,T := {
(u1, u2, y, t) : ‖u1‖H ≥ M, ‖u2‖H ≥ M, ‖y‖H θ ≥ M, t ∈ [0, T ]}.

For all T there exists θ such that the occupation measures Pε,� are uniformly inte-
grable, in the sense that

lim
M→∞ sup

ε>0
E

∫

UM,θ,T

(‖u1‖H + ‖u2‖H + ‖y‖H θ

)
dPε,�(u1, u2, y, t) = 0.

6.2 Identification of the limit points

Let i = 1, 2. In view of Lemmas 6.1 and 6.3 along with Prokhorov’s theo-
rem, each sequence of ε > 0, u ∈ PT

N contains a subsequence εn, un such that
(ηεn ,un , Pεn ,�n ) converges in distribution to a random element (ηi , Pi ) in Regime
i . Returning to the decomposition (72), we can use very similar arguments to the
ones found in Sects. 5.1, 5.2 and Lemma 6.1 to show that each one of the terms
I ε,u(0, t, 0, χ), I I ε,u(0, t, 0, χ), I I I ε,u(0, t, 0, χ), I V ε,u(0, t, 0, χ) are tight. Invok-
ing Prokhorov’s theorem once again, each of these terms have subsequential limits in
distribution on C([0, T ];H). The goal of this section is to identify these limits.

At this point we will use the Skorokhod representation theorem which allows us
to assume that the aforementioned sequences of random elements converge almost
surely. The Skorokhod representation theorem involves the introduction of another
probability space but this distinction is ignored in the notation.

In view of Lemma 5.3 we immediately see that the third term in (72) converges to
0 in distribution. Hence, it suffices to study the limits of I ε,u , I I ε,u and I V ε,u . This is
done in Propositions 6.1, 6.2 and 6.3 below. The proofs of these Propositions are based
on a few preliminary lemmas which follow the general strategy of Lemmas 4.16, 4.17
in [25]. Thus, to avoid repetition, some intermediate steps in the proof of Proposition
6.1 as well as the proof of Proposition 6.2 will be omitted. Let us remark at this point
that the averaging of I V ε,u presents challenges that are absent from both the finite-
dimensional MDP and the infinite-dimensional LDP. These are related to continuity
properties of the operator-valued map �0

2 in (137), which are here investigated with
the aid of the first variation equation corresponding to the Markov process Y x,y (31)
(see Lemma 6.10). For this reason, we will present the proof of Proposition 6.3 in full
detail.

We start with I ε,u . Using Taylor approximation we can show that the limit of this
term is linear in ηi .
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Lemma 6.5 Let T < ∞. Under Hypothesis 2(a) we have

E sup
t∈[0,T ]

∥
∥
∥
∥

1√
εh(ε)

∫ t

0
S1(t − s)

[
F

(
X̄(s) + √

εh(ε)ηε,u
ε

(s),Y ε,uε (s)
)

− F
(
X̄(s),Y ε,uε (s)

)]
ds

−
∫ t

0
S1(t − s)Dx F

(
X̄(s),Y ε,uε (s)

)(
ηε,u

ε

(s)
)
ds

∥
∥
∥
∥H

−→ 0 , as ε → 0.

Proof Let x, y, h ∈ H. A first-order Taylor expansion for Gâteaux derivatives yields

F(x + h, y) = F(x, y) + Dx F(x, y)(h) + 2D2
x F(x + θ0h, y)(h, h),

for some θ0 ∈ (0, 1) (note that here we are considering F : H × H → L1(0, L)).
Letting x = X̄(s), y = Y ε,uε (s) and h = √

εh(ε)ηε,u
ε
(s), we integrate over [0, t] to

obtain

1√
εh(ε)

∫ t

0
S1(t − s)

[
F

(
X̄(s) + √

εh(ε)ηε,u
ε

(s),Y ε,uε (s)
) − F

(
X̄(s),Y ε,uε (s)

)]
ds

=
∫ t

0
S1(t − s)Dx F

(
X̄(s),Y ε,uε (s)

)(
ηε,u

ε

(s)
)
ds

+ 2
√
εh(ε)

∫ t

0
S1(t − s)D2

x F
(
X̄(s)

+ θ0
√
εh(ε)ηε,u

ε

(s),Y ε,uε (s)
)(
ηε,u

ε

(s), ηε,u
ε

(s)
)
ds,

where we used the homogeneity of the Gâteaux derivative to simplify the ε-dependent
coefficients. In view of the regularizing property (14) (with r = 2, p = 1), along with
(21), we obtain

√
εh(ε)

∥
∥
∥
∥

∫ t

0
S1(t − s)D2

x F
(
X̄(s) + θ0

√
εh(ε)ηε,u

ε
(s),Y ε,uε (s)

)(
ηε,u

ε
(s), ηε,u

ε
(s)

)
ds

∥
∥
∥
∥H

≤ c
√
εh(ε)

∫ t

0
(t − s)− 1

4 ‖D2
x F

(
X̄(s)

+ θ0
√
εh(ε)ηε,u

ε
(s),Y ε,uε (s)

)(
ηε,u

ε
(s), ηε,u

ε
(s)

)∥
∥
L1(0,L)ds

≤ c
√
εh(ε)

∥
∥∂2xx f

∥
∥∞

∫ t

0
(t − s)− 1

4 ‖ηε,uε (s)‖2Hds

≤ CT 3/4√εh(ε)
∥
∥∂2xx f

∥
∥∞ sup

s∈[0,T ]
‖ηε,uε (s)‖2H.
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Taking expectation, we use (70) to deduce

√
εh(ε)E sup

t∈[0,T ]

∥
∥
∥
∥

∫ t

0
S1(t − s)D2

x F
(
X̄(s)

+ θ0
√
εh(ε)ηε,u

ε

(s),Y ε,uε (s)
)(
ηε,u

ε

(s), ηε,u
ε

(s)
)
ds

∥
∥
∥
∥H

≤ C
√
εh(ε)E sup

s∈[0,T ]
‖ηε,uε (s)‖2H ≤ C

√
εh(ε)

(
1 + ‖x0‖2Ha + ‖y0‖2Ha

) −→ 0

as ε → 0. The proof is complete. ��
Lemma 6.6 Let � as in (39) and T < ∞. Under Hypothesis 2(a) we have

E sup
t∈[0,T ]

∥
∥
∥
∥
1

�

∫ t

0

∫ s+�

s
S1(t − s)Dx F

(
X̄(s),Y ε,uε (r)

)(
ηε,u

ε

(s)
)
drds

− 1

�

∫ t

0

∫ s+�

s
S1(t − s)Dx F

(
X̄(r),Y ε,uε (r)

)(
ηε,u

ε

(s)
)
drds

∥
∥
∥
∥H

−→ 0 ,

as ε → 0.

Proof In view of the regularizing property (14),

∥
∥
∥
∥
1

�

∫ t

0

∫ s+�

s
S1(t − s)

[
Dx F

(
X̄(s), Y ε,uε (r)

) − Dx F
(
X̄(r), Y ε,uε (r)

)](
ηε,u

ε

(s)
)
drds

∥
∥
∥
∥
H

≤ C

�

∫ t

0

∫ s+�

s
(t − s)−

1
4
∥
∥
[
Dx F

(
X̄(s), Y ε,uε (r)

)

− Dx F
(
X̄(r), Y ε,uε (r)

)](
ηε,u

ε

(s)
)∥
∥
L1(0,L)drds.

Next, let r ∈ [s, s + �]. An application of the Cauchy-Schwarz and mean value
inequalities yields

∥
∥
[
Dx F

(
X̄(s),Y ε,uε (r)

) − Dx F
(
X̄(r),Y ε,uε (r)

)](
ηε,u

ε

(s)
)∥
∥
L1(0,L)

≤ ∥
∥ηε,u

ε

(s)‖H
(∫ L

0

∣
∣∂x f

(
ξ, X̄(s, ξ),Y ε,uε (r , ξ)

)

− ∂x f
(
ξ, X̄(r , ξ),Y ε,uε (r , ξ)

)∣
∣2 dξ

) 1
2

≤ ∥
∥∂2xx f ‖∞ sup

t∈[0,T ]
∥
∥ηε,u

ε

(t)‖H‖X̄(s) − X̄(r)‖H .

In view of the Schauder estimate (68) we obtain

∥
∥
[
Dx F

(
X̄(s),Y ε,uε (r)

) − Dx F
(
X̄(r),Y ε,uε (r)

)](
ηε,u

ε

(s)
)∥
∥
L1(0,L)

≤ C f sup
t∈[0,T ]

∥
∥ηε,u

ε

(t)‖H�θ(1 + ‖x0‖Ha ),
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where θ < 1
4 ∧ a

2 . Thus,

∥
∥
∥
∥
1

�

∫ t

0

∫ s+�

s
S1(t − s)

[
Dx F

(
X̄(s), Y ε,uε (r)

) − Dx F
(
X̄(r), Y ε,uε (r)

)](
ηε,u

ε

(s)
)
drds

∥
∥
∥
∥
H

≤ C�θ(1 + ‖x0‖Ha ) sup
t∈[0,T ]

∥
∥ηε,u

ε

(t)‖H
∫ t

0
(t − s)−

1
4 ds

≤ CT
3
4 �θ(1 + ‖x0‖Ha ) sup

t∈[0,T ]
∥
∥ηε,u

ε

(t)‖H.

In view of (70) it follows that

E sup
t∈[0,T ]

∥
∥
∥
∥
1

�

∫ t

0

∫ s+�

s
S1(t − s)

[
Dx F

(
X̄(s),Y ε,uε (r)

)

− Dx F
(
X̄(r),Y ε,uε (r)

)](
ηε,u

ε

(s)
)
drds

∥
∥
∥
∥H

≤ CT�
θ(1 + ‖x0‖Ha )(1 + ‖x0‖Ha + ‖y0‖Ha ).

The proof is complete upon taking � → 0. ��
Lemma 6.7 Let i = 1, 2, T < ∞ and assume that the pair (ηε,u

ε
, Pε,�) converges

in distribution, in Regime i , to (ηi , Pi ) in C([0, T ];H) × P(H × H × H × [0, T ]).
Then the following limit is valid with probability 1:

sup
t∈[0,T ]

∥
∥
∥
∥
1

�

∫ t

0

∫ s+�

s
S1(t − s)Dx F

(
X̄(r),Y ε,uε (r)

)(
ηε,u

ε

(s)
)
drds

−
∫

H×H×H×[0,t]
S1(t − s)Dx F

(
X̄(s), y

)
ηi (s)dP

ε,�(u1, u2, y, s)

∥
∥
∥
∥H

−→ 0 ,

as ε → 0.

Proof Recall that for each fixed x, y ∈ H, Dx F(x, y) ∈ L (H) with

sup
x,y∈H

∥
∥Dx F(x, y)

∥
∥
L (H)

≤ ‖∂x f ‖∞ < ∞. (130)

By virtue of the Skorokhod representation theorem it follows that P-a.s.

sup
t∈[0,T ]

∥
∥
∥
∥
1

�

∫ t

0

∫ s+�

s
S1(t − s)Dx F

(
X̄(r),Y ε,uε (r)

)(
ηε,u

ε

(s) − ηi (s)
)
drds

∥
∥
∥
∥H

≤ C

�
�T sup

x,y∈H

∥
∥Dx F(x, y)

∥
∥
L (H)

sup
s∈[0,T ]

∥
∥ηε,u

ε

(s) − ηi (s)‖H −→ 0 , as ε → 0.

Hence, it suffices to study the term

1

�

∫ t

0

∫ s+�

s
S1(t − s)Dx F

(
X̄(r),Y ε,uε (r)

)(
ηi (s)

)
drds.
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The rest of the proof is omitted as the arguments are identical to the ones used in the
proof of Lemma 4.16 in [25]. ��
Lemma 6.8 Let i = 1, 2, T < ∞ and assume that the pair (ηε,u

ε
, Pε,�) converges

in distribution, in Regime i , to (ηi , Pi ) in C([0, T ];H) × P(H × H × H × [0, T ]).
Then the following limit is valid with probability 1:

sup
t∈[0,T ]

∥
∥
∥
∥

∫

H×H×H×[0,t]
S1(t − s)Dx F

(
X̄(s), y

)
ηi (s)dP

ε,�(u1, u2, y, s)

−
∫

H×H×H×[0,t]
S1(t − s)Dx F

(
X̄(s), y

)
ηi (s)dPi (u1, u2, y, s)

∥
∥
∥
∥H

−→ 0

as ε → 0.

Proof The argument is identical to the proof of Lemma 4.15 in [25]. In fact, the present
setting is even simpler since the family

{
Dx F

(
x, y

)}

x,y∈H ⊂ L (H) is uniformly
bounded in the operator norm topology (see (130)). ��
Combining Lemmas 6.5, 6.6, 6.7 and (6.8) we obtain the following:

Proposition 6.1 Let i = 1, 2, T < ∞andassume that the pair (ηε,u
ε
, Pε,�) converges

in distribution, in Regime i , to (ηi , Pi ) in C([0, T ];H) × P(H × H × H × [0, T ]).
Then the following limit is valid with probability 1:

lim
ε→0

sup
t∈[0,T ]

∥
∥
∥
∥

1√
εh(ε)

∫ t

0
S1(t − s)

[
F

(
X̄(s) + √

εh(ε)ηε,u
ε

(s),Y ε,uε (s)
)

− F
(
X̄(s),Y ε,uε (s)

)]
ds

−
∫

H×H×[0,t]
S1(t − s)Dx F

(
X̄(s), y

)
ηi (s)dPi (u1, u2, y, s)

∥
∥
∥
∥H

= 0.

Regarding the averaging of the term I I ε,u , first note that X ε,u = X̄ +√
εh(ε)ηε,u and

by the Skorokhod representation theorem ηε,u → ηi in C([0, T ];H) with probability
1. Using the latter along with the uniform integrability of the occupation measures
(see Lemma 6.4) and the fact that, for each t > 0, x, y ∈ H, the operator u �→
S1(t)�(x, y)u is compact, we can follow the proofs of lemmas 4.15, 4.16 of [25]
verbatim to show Proposition 6.2 below.

Proposition 6.2 Let i = 1, 2, T < ∞andassume that the pair (ηε,u
ε
, Pε,�) converges

in distribution, in Regime i , to (ηi , Pi ) in C([0, T ];H) × P(H × H × H × [0, T ]).
Then the following limit is valid with probability 1:

lim
ε→0

sup
t∈[0,T ]

∥
∥
∥
∥

∫ t

0
S1(t − s)�

(
X̄(s),Y ε,u(s)

)
uε1(s)ds

−
∫

H×H×H×[0,t]
S1(t − s)�

(
X̄(s), y

)
u1dPi (u1, u2, y, s)

∥
∥
∥
∥H

= 0.

(131)
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It remains to study the limiting behavior of the term I V ε,u in (72). To this end, let us
set θ = 0, s = 0 in (90). In view of this decomposition, along with Lemmas 5.5- 5.12,
we see that for all ε > 0 there exists n = n(ε) > 0 and ε0 > 0 such that for all ε < ε0

E sup
t∈[0,T ]

sup
χ∈BH

∣
∣
∣
∣I V

ε,u(0, t, 0, χ)

−
√
δ√
ε

∫ t

0
〈S1(t − z)�ε

2

(
X̄(z),Y ε,u

n(ε)(z)
)
u2,n(ε)(z), χ〉Hdz

∣
∣
∣
∣

= E sup
t∈[0,T ]

sup
χ∈BH

∣
∣I V ε,u(0, t, 0, χ) − I V ε,u

5 (0, t, n(ε), 0, χ)
∣
∣ < ε.

(132)

Thus, it suffices to study the term

√
δ√
ε

∫ t

0
S1(t − z)�ε

2

(
X̄(z),Y ε,u

n (z)
)
u2,n(z)dz.

In fact, since for all T > 0 we have ‖u2,n − u2‖L2([0,T ];H) → 0, P-a.s. and
‖�ε

2 (x, y)
∥
∥
L (H)

≤ C/� uniformly in x, y (see (36)) we can directly work with

γi

∫ t

0
S1(t − z)�ε

2

(
X̄(z),Y ε,u

n (z)
)
u2(z)dz. (133)

where γi = limε→0
√
δ/ε in Regime i . First, we need to find the limit of the operator-

valued map �ε
2 as ε → 0. In view of (35) and estimates (36) we have that, for all

x, χ, v ∈ H and y ∈ Dom(A2),

〈
�ε

2

(
x, y

)
v,χ

〉

H = 〈
Dy�

ε
χ

(
x, y

)
, v

〉

H,

where Dy�
ε
χ is the partial Fréchet derivative of the solution of the Kolmogorov equa-

tion (29). Recall that the latter is explicitly given by (33). Hence we can write

〈
�ε

2

(
x, y

)
v, χ

〉

H =
∫ ∞

0
e−c(ε)t Dy P

x
t

(〈F(
x, y

) − F̄(x), χ〉H
)
(v)dt

=
∫ ∞

0
e−c(ε)t DyE

[〈F(
x,Y x,y(t)

) − F̄(x), χ〉H
]
(v)dt,

(134)

where Px
t denotes the transition semigroup corresponding to the fast process Y x,y (see

(31), (32)). Now, for each fixed x ∈ H, the map

H � y �−→ 〈F(x, y), χ〉H ∈ R

is Fréchet differentiable with

Dy〈F(x, y), χ〉H(v) = 〈DyF(x, y)χ, v〉H,
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along the direction of any v ∈ H. Therefore, we can differentiate under the sign of
expectation and use the chain rule for Fréchet differentials to obtain

DyE
[〈
F

(
x,Y x,y(t)

) − F̄(x), χ
〉

H
]
(v) = E

〈
DyF

(
x,Y x,y(t)

)
χ, DyY

x,y(t)v
〉

H.

(135)

In view of the latter, (134) yields

〈
�ε

2

(
x, y

)
v,χ

〉

H =
∫ ∞

0
e−c(ε)t

E
〈
DyF(x,Y

x,y(t))χ, DyY
x,y(t)v

〉

Hdt . (136)

Under Hypothesis 2(a), the following lemma addresses the limiting behavior of�ε
2 in

(133) as the correction term in the Kolmogorov equation vanishes.

Lemma 6.9 Let T < ∞ and define a map

H × H � (x, y) �−→ �0
2

(
x, y

) ∈ L
(H)

by

〈
�0

2

(
x, y

)
v, χ

〉

H :=
∫ ∞

0
E

〈
DyF(x,Y

x,y(t))χ, DyY
x,y(t)v

〉

Hdt , χ, v ∈ H. (137)

The following limit is valid P-almost surely:

lim
ε→0

sup
t∈[0,T ]

∥
∥
∥
∥

∫ t

0
S1(t − z)�ε

2

(
X̄(z),Y ε,u

n (z)
)
u2(z)dz

−
∫ t

0
S1(t − z)�0

2

(
X̄(z),Y ε,u

n (z)
)
u2(z)dz

∥
∥
∥
∥H

= 0.

Proof Let χ ∈ H and v ∈ H. Under our dissipativity assumptions, the y-Fréchet
derivative of Y x,y at the point y and along the direction v satisfies

sup
x,y∈H

∥
∥DyY

x,y(t)v
∥
∥H ≤ e−�t‖v‖H , P − a.s. , (138)

where � = λ−Lg
2 (see 3.7 in [12]). Hence,

sup
ε>0

∣
∣
〈
�ε

2

(
x, y

)
v, χ

〉

H
∣
∣ ≤ sup

ε>0

∫ ∞

0
e−c(ε)t

E
∥
∥DyF(x,Y

x,y(t))χ
∥
∥H

∥
∥DyY

x,y(t)v
∥
∥Hdt

≤ ‖∂y f ‖∞‖χ‖H‖v‖H sup
ε>0

∫ ∞

0
e−c(ε)t e−�t dt

≤ C f ‖χ‖H‖v‖H
∫ ∞

0
e−�t dt < ∞. (139)
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An application of the Dominated Convergence theorem yields that for each fixed
x, y ∈ H

lim
ε→0

〈
�ε

2

(
x, y

)
v, χ

〉

H =
∫ ∞

0
lim
ε→0

e−c(ε)t
E

〈
DyF(x,Y

x,y(t))χ, DyY
x,y(t)v

〉

Hdt

=
∫ ∞

0
E

〈
DyF(x,Y

x,y(t))χ, DyY
x,y(t)v

〉

Hdt

= 〈
�0

2

(
x, y

)
v, χ

〉

H.

In fact, estimate (139) is uniform in x, y and χ, v ∈ BH hence we obtain

sup
x,y∈H

∥
∥�ε

2

(
x, y

) − �0
2

(
x, y

)∥
∥
L (H)

−→ 0 , as ε → 0.

The proof is complete. ��
To proceed in finding the averaging limit of

∫ t

0
S1(t − z)�0

2

(
X̄(z),Y ε,u

n (z)
)
u2(z)dz,

we need to establish uniform continuity properties of the map (x, y) �→ �0
2 (x, y). In

view of (136), this is related to the continuity of the map

x �−→ Dy P
x
t

[〈F(x, ·) − F̄(x), χ〉H
]
(y)(v) = DyE〈F(x,Y x,y(t)) − F̄(x), χ〉H(v),

for each fixed t > 0, y, v ∈ H. This is done in the next two lemmas. Note that, in order
to obtain continuity properties of DyY x,y with respect to x, y, we need to assume the
stronger dissipativity from Hypothesis 2(c).

Lemma 6.10 Let t > 0, v, y1, y2, x1, x2 ∈ H and ω = λ−3Lg
2 > 0 as in Hypothesis

2(c). Under Hypotheses 2(b) and 2(c) there exists C > 0 independent of t , such that

(i) sup
x,y∈H

∥
∥DyY

x,y(t)v
∥
∥
L∞(0,L) ≤ C(t ∧ 1)−

1
4 e−�t‖v‖H. (140)

Moreover, for each t ≥ 0, v ∈ H themaps x, y �→ DyY x,y(t) are Lipschitz continuous
with

(i i)
∥
∥DyY

x1,y(t)v − DyY
x2,y(t)v

∥
∥H ≤ C(1 + t)e−ωt‖v‖H‖x1 − x2‖H

(141)

and

(i i i)
∥
∥DyY

x,y1(t)v − DyY
x,y2(t)v

∥
∥H ≤ C(1 + t)e−ωt‖v‖H‖y1 − y2‖H.

(142)
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Proof (i) For x ∈ H, the first-order derivative DyY x,y(t)v at the point y ∈ H and
along the direction v ∈ H solves the first variation equation

{
∂t Z

v
x,y(t) = A2Z

v
x,y(t) + DyG(x, y

)
Zv
x,y(t) , t > 0

Zv
x,y(0) = v ∈ H.

(143)

Under our dissipativity assumptions it follows that for all p ≥ 1, Zv
x,y(t) ∈

L p(0, L), P-a.s. and for p = 2 we have

sup
x,y∈H

∥
∥Zv

x,y(t)
∥
∥H ≤ Ce−�t‖v‖H , (144)

for all t > 0, where � = λ−Lg
2 > 0 (see eg (3.7) in [12]). For a proof of (144)

we refer the reader to [8], Prop. 4.2.1. In order to prove (140) we use the mild
formulation of (143) along with (144) and the ultracontractivity of S2 (see (14))
to obtain

∥
∥Zv

x,y(t)‖L∞(0,L) ≤ ‖S2(t)v‖L∞(0,L) +
∫ t

0

∥
∥S2(t − s)DyG(x, y)Zv

x,y(s)
∥
∥
L∞(0,L)ds

≤ Ct−
1
4 ‖v‖H + C

∫ t

0
(t − s)−

1
4
∥
∥DyG(x, y)Zv

x,y(s)
∥
∥
Hds

≤ Ct−
1
4 ‖v‖H + CLg

∫ t

0
(t − s)−

1
4 e−�s‖v‖Hds.

Hence, for t ≤ 1 we have

∥
∥Zv

x,y(t)‖L∞(0,L) ≤ Ct−
1
4 ‖v‖H. (145)

As for t > 1 we use the latter along with the linearity of (143) to deduce that

∥
∥Zv

x,y(t)‖L∞(0,L) = ‖Z Zv
x,y(t−1)

x,y (1)‖L∞(0,L) ≤ C1− 1
4
∥
∥Zv

x,y(t − 1)
∥
∥H

≤ Ce−�(t−1)‖v‖H,
(146)

where we invoked (144) once more to obtain the last inequality. Combining (145)
and (146), we get that (140) holds.

(ii) From the mild formulation of (143) we have

Zv
x1,y(t) − Zv

x2,y(t) =
∫ t

0
S2(t − s)

[
DyG(x1, y)Z

v
x1,y(s) − DyG(x2, y)Z

v
x2,y(s)

]
ds

=
∫ t

0
S2(t − s)DyG(x1, y)

[
Zv
x1,y(s) − Zv

x2,y(s)
]
ds

+
∫ t

0
S2(t − s)

[
DyG(x1, y) − DyG(x2, y)

]
Zv
x2,y(s)ds.
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Using (140) on the second term we estimate

∥
∥Zv

x1,y(t) − Zv
x2,y(t)

∥
∥H ≤ Lg

∫ t

0
e−λ(t−s)

∥
∥Zv

x1,y(s) − Zv
x2,y(s)

∥
∥Hds

+
∫ t

0
e−λ(t−s)‖DyG(x1, y)

− DyG(x2, y)‖L (L∞(0,L);H)

∥
∥Zv

x,y(s)‖L∞(0,L)ds

≤ Lg

∫ t

0
e−λ(t−s)

∥
∥Zv

x1,y(s) − Zv
x2,y(s)

∥
∥Hds

+ Ce−λt‖v‖H‖DyG(x1, y)

− DyG(x2, y)‖L (L∞(0,L);H)

∫ t

0
(s ∧ 1)−

1
4 e(λ−�)sds.

An application of the mean value inequality then yields

∥
∥Zv

x1,y(t) − Zv
x2,y(t)

∥
∥H ≤ Lge

−λt
∫ t

0
eλs

∥
∥Zv

x1,y(s) − Zv
x2,y(s)

∥
∥Hds

+ Cge
−λt‖x1 − x2‖H‖v‖H

∫ t

0
(s ∧ 1)−

1
4 e(λ−�)sds

and λ − � = λ+Lg
2 > 0. Hence

eλt
∥
∥Zv

x1,y(t) − Zv
x2,y(t)

∥
∥H ≤ Lg

∫ t

0
eλs

∥
∥Zv

x1,y(s) − Zv
x2,y(s)

∥
∥Hds

+ C‖x1 − x2‖H‖v‖He(λ−�)t

[
t
3
41(0,1)(t) + (1 + t)1[1,∞)(t)

]

(147)

and the second term on the right-hand side is increasing in t . Invoking Grönwall’s
inequality we obtain

eλt
∥
∥Zv

x1,y(t) − Zv
x2,y(t)

∥
∥H ≤ C

(
1 + t

)
e(Lg+λ−�)t‖x1 − x2‖H‖v‖H

and Lg − � = Lg − λ−Lg
2 = −ω is negative in view of (16). The proof of (141)

is complete.
(iii) Similarly, we can write

Zv
x,y1(t) − Zv

x,y2 (t) =
∫ t

0
S2(t − s)

[
DyG(x, y1)Z

v
x,y1(s) − DyG(x, y2)Z

v
x,y2 (s)

]
ds

=
∫ t

0
S2(t − s)DyG(x, y1)

[
Zv
x,y1(s) − Zv

x,y2 (s)
]
ds

+
∫ t

0
S2(t − s)

[
DyG(x, y1) − DyG(x, y2)

]
Zv
x,y2 (s)ds.
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Using an identical argument as in (i), the result follows by Grönwall’s inequality.
��

Lemma 6.11 Let t > 0, χ, x1, x2, y1, y2, v ∈ H and c(t) := 1+ t+(t∧1)− 1
4 . Under

Hypotheses 2(a)-2(c) and for all x, y ∈ H we have

(i)

∣
∣E

[
Dy

〈
F

(
x1,Y

x1,y(t)
)
, χ

〉

H(v) − Dy
〈
F(x2,Y

x2,y(t)), χ
〉

H(v)
]∣
∣

≤ C‖χ‖H‖v‖H‖x1 − x2‖Hc(t)e−ωt ,

(ii)

∣
∣E

[
Dy

〈
F

(
x,Y x,y1(t)

)
, χ

〉

H(v) − Dy
〈
F(x,Y x,y2(t)), χ

〉

H(v)
]∣
∣

≤ C‖χ‖H‖v‖H‖y1 − y2‖Hc(t)e−ωt ,

with ω as in (16).

Proof (i) Let Zv
x,y(t) := DyY x,y(t)v as in the previous lemma. In view of (135),

E
[
Dy

〈
F

(
x1,Y

x1,y(t)
)
, χ

〉

H(v) − Dy
〈
F(x2,Y

x2,y(t)), χ
〉

H(v)
]

= E
〈
DyF

(
x1, Y

x1,y(t)
)
χ, Zv

x1,y(t) − Zv
x2,y(t)

〉

H
+ E

〈
DyF

(
x1,Y

x1,y(t)
)
χ − DyF

(
x2,Y

x2,y(t)
)
χ, Zv

x2,y(t)
〉

H =: I1 + I2.

From (141) we obtain

∣
∣I1

∣
∣ ≤ ∥

∥DyF
(
x,Y x1,y(t)

)
χ

∥
∥
L2(�×(0,L))‖Zv

x1,y(t) − Zv
x2,y(t)

∥
∥
L2(�×(0,L))

≤ C(1 + t)e−ωt‖∂y f
∥
∥∞‖χ‖H‖v‖H‖x1 − x2‖H.

(148)

As for I2, we apply (140) along with the mean value inequality to deduce that

∣
∣I2

∣
∣ ≤ E

[
∥
∥Zv

x2,y(t)
∥
∥
L∞(0,L)

∥
∥DyF

(
x1,Y

x1,y(t)
)
χ − DyF

(
x2,Y

x2,y(t)
)
χ‖L1(0,L)

]

≤ C(t ∧ 1)−
1
4 e−�t‖v‖H‖χ‖H

(‖∂2xy f
∥
∥∞‖x1 − x2‖H

+ ‖∂2yy f
∥
∥∞E

∥
∥Y x1,y(t) − Y x2,y(t)

∥
∥H

)

≤ C f (t ∧ 1)−
1
4 e−�t‖v‖H‖χ‖H

(‖x1 − x2‖H
+ E sup

x,y∈H

∥
∥DxY

x,y(t)
∥
∥
L (H)

‖x1 − x2‖H
)

≤ C f (t ∧ 1)−
1
4 e−�t‖v‖H‖χ‖H‖x1 − x2‖H

(
1 + e−�t),

(149)

where we invoked (3.9) in [12] to obtain the last line. Combining the latter with (148)
concludes the argument. Finally, (i i) follows from a similar argument along with
estimate (142). ��
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Corollary 6.1 Let x, x1, x2, y, y1, y2 ∈ H. There exists C > 0 such that

(i) The L (H)-valued map x �→ �0
2 (x, y) is C-Lipschitz continuous uniformly in y

i.e.

∥
∥�0

2 (x1, y) − �0
2 (x2, y)

∥
∥
L (H)

≤ C
∥
∥x1 − x2

∥
∥H .

(ii) The L (H)-valued map y �→ �0
2 (x, y) is C-Lipschitz continuous uniformly in x

i.e.

∥
∥�0

2 (x, y1) − �0
2 (x, y2)

∥
∥
L (H)

≤ C
∥
∥y1 − y2

∥
∥H . (150)

Proof (i) From (137) and Lemma 6.11(i) it follows that

sup
v,χ∈BH

∣
∣
〈
�0

2 (x1, y)v − �0
2 (x2, y)v, χ

〉

H
∣
∣

≤
∫ ∞

0
sup

v,χ∈BH

∣
∣Dy P

x1
t

[〈F(x1, y) − F̄(x1), χ〉H
]
(v)

− Dy P
x2
t

[〈F(x2, y) − F̄(x2), χ〉H
]
(v)

∣
∣dt

≤ C‖x1 − x2‖H
∫ ∞

0
c(t)e−ωt dt

= C‖x1 − x2‖H
∫ ∞

0

[
1 + t + (t ∧ 1)−

1
4
]
e−ωt dt,

and the last integral is finite.As for (i i), the estimate follows froman identical argument
along with Lemma 6.11(i i). ��

The next lemma is analogous to Lemma 6.6 that was proved for I ε,u .

Lemma 6.12 For � > 0 as in (39) and T < ∞ we have

sup
n∈N

sup
t∈[0,T ]

∥
∥
∥
∥
1

�

∫ t

0

∫ s+�

s
S1(t − s)�0

2 (X̄(s),Y
ε,u
n (r)

)
u2(r)drds

− 1

�

∫ t

0

∫ s+�

s
S1(t − s)�0

2 (X̄(r),Y
ε,u
n (r)

)
u2(r)drds

∥
∥
∥
∥H

−→ 0 , as ε → 0 ,

P − a.s.
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Proof The proof is a direct application of Corollary 6.1. In particular, we have

∥
∥
∥
∥

∫ t

0

∫ s+�

s
S1(t − s)�0

2

(
X̄(s),Y ε,u

n (r)
) − �0

2

(
X̄(r),Y ε,u

n (r)
)]
u2(r)drds

∥
∥
∥
∥H

≤ C
∫ t

0

∫ s+�

s

∥
∥�0

2

(
X̄(s),Y ε,u

n (r)
) − �0

2

(
X̄(r),Y ε,u

n (r)
)∥
∥
L (H)

∥
∥u2(r)‖Hdrds

≤ C
∫ t

0

∫ s+�

s

∥
∥X̄(s) − X̄(r)

∥
∥H

∥
∥u2(r)‖Hdrds

≤ C
[
X̄

]

Cθ ([0,T+1])
∫ t

0

∫ s+�

s
|s − r |θ∥∥u2(r)‖Hdrds

≤ C(1 + ‖x0‖Ha )�θ

∫ t

0

∫ s+�

s

∥
∥u2(r)‖Hdrds

≤ C(1 + ‖x0‖Ha )�θ+1
∫ T+�

0

∥
∥u2(s)‖Hds ≤ CT ,N (1 + ‖x0‖Ha )�θ+1,

where θ < 1
4 ∧ a

2 and we used (68) to obtain the third inequality and the Cauchy-
Schwarz inequality, along with fact that u ∈ PT

N , to obtain the last line.
Therefore,

1

�
sup

n∈N,t∈[0,T ]

∥
∥
∥
∥

∫ t

0

∫ s+�

s
S1(t − z)

[
�0

2

(
X̄(s),Y ε,u

n (r)
)
u2(r)

− �0
2

(
X̄(r),Y ε,u

n (r)
)]
u2(r)drds

∥
∥
∥
∥H

≤ C�θ(1 + ‖x0‖Ha ).

The proof is complete upon taking ε → 0. ��
For n ∈ N and � as in Definition 39, define the projected occupation measures

Pε,�
n (�1 × �2 × �3 × �4) = Pε,�(�1 × �2 × P−1

n

(
�3

) × �4)

= 1

�

∫

�4

∫ t+�

t
1�1

(
u1(s)

)
1�2

(
u2(s)

)
1�3

(
Y ε,u
n (s)

)
dsdt,

�1 × �2 × �3 × �4 ∈ B(H × H × H × [0, T ]) i.e. Pε,�
n is the push-forward of

Pε,� induced by the n-dimensional orthogonal projection Pn on the third marginal.
It is straightforward to verify that Pε,�

n inherit the tightness and uniform integrability
properties from the occupation measures Pε,� (see Lemmas 6.3 and 6.4). Moreover,
for each ε > 0 there exists n = n(ε) > 0 large enough so that, after passing to
subsequences, Pε,�

n and Pε,� share the same limit in distribution (denoted by Pi ) as
ε → 0 in the topology of weak convergence of measures onH × H × H × [0, T ].

Indeed, the class of Lipschitz-continuous functions f ∈ Cb(H×H×H× [0, T ])
characterizes weak convergence of measures (see [17], Remark A.3.5.) and for any
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such f we fix ε > 0 and apply the dominated convergence theorem to obtain

∣
∣
∣
∣

∫

H×H×H×[0,T ]
f
(
u1, u2, y, t

)
dPε,�

n (u1, u2, y, t)

−
∫

H×H×H×[0,T ]
f
(
u1, u2, y, t

)
dPε,�(u1, u2, y, t)

∣
∣
∣
∣

=
∣
∣
∣
∣
1

�

∫ T

0

∫ t+�

t
f
(
uε1(s), u

ε
2(s),Y

ε,uε
n (s), t

) − f
(
uε1(s), u

ε
2(s),Y

ε,uε (s), t
)
dsdt

∣
∣
∣
∣

≤ 1

�

∫ T

0

∫ t+�

t

∥
∥PnY

ε,uε (s) − Y ε,uε (s)
∥
∥Hdsdt −→ 0 as n → ∞.

Using the latter, alongwith Lemma 6.12, we can now prove the following asymptotics:

Lemma 6.13 Let i = 1, 2, T > 0 and assume that the pair (ηε,u
ε
, Pε,�) converges

in distribution, in Regime i , to (ηi , Pi ) in C([0, T ];H) × P(H × H × H × [0, T ]).
Then there exists n = n(ε) > 0 large enough, such that the following limits hold with
probability 1:

sup
t∈[0,T ]

∥
∥
∥
∥

∫ t

0
S1(t − s)�0

2

(
X̄(s), Y ε,u

n (s)
)
uε2(s)ds

−
∫

H×H×H×[0,t]
S1(t − s)�0

2

(
X̄(s), y

)
u2dP

ε,�
n (u1, u2, y, s)

∥
∥
∥
∥
H

−→ 0 , as ε → 0

(151)

and

sup
t∈[0,T ]

∥
∥
∥
∥

∫

H×H×H×[0,t]
S1(t − s)�0

2

(
X̄(s), y

)
u2dP

ε,�
n (u1, u2, y, s)

−
∫

H×H×H×[0,t]
S1(t − s)�0

2

(
X̄(s), y

)
u2dPi (u1, u2, y, s)

∥
∥
∥
∥H

−→ 0 ,

as ε → 0.

(152)

Proof We start with (151). Notice that

∫

H×H×H×[0,t]
S1(t − s)�0

2

(
X̄(s), y

)
u2dP

ε,�
n (u1, u2, y, s)

=
∫ t

0

∫ s+�

s
S1(t − s)�0

2

(
X̄(s),Y ε,u

n (r)
)
u2(r)drds.

In view of Lemma 6.12 it is enough to study the term

∫ t

0

∫ s+�

s
S1(t − s)�0

2

(
X̄(r),Y ε,u

n (r)
)
u2(r)drds.
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Changing the order of integration, the latter is equal to

∫ �

0

∫ r

0
S1(t − s)�0

2

(
X̄(r),Y ε,u

n (r)
)
u2(r)dsdr

+
∫ t

�

∫ r

r−�

S1(t − s)�0
2

(
X̄(r),Y ε,u

n (r)
)
u2(r)dsdr

+
∫ t+�

t

∫ t

r−�

S1(t − s)�0
2

(
X̄(r),Y ε,u

n (r)
)
u2(r)dsdr .

The first and third terms in this expression converge to zero as ε → 0, so we only
need to focus on the second term. In view of (12),

∥
∥
∥
∥

∫ t

�

∫ r−�

r
S1(t − s)�0

2

(
X̄(r),Y ε,u

n (r)
)
u2(r)drds

−
∫ t

�

S1(t − r)�0
2

(
X̄(r),Y ε,u

n (r)
)
u2(r)dr

∥
∥
∥
∥H

≤
∫ t

�

∥
∥
∥
∥
1

�

∫ �

0
S1(s)ds − I

∥
∥
∥
∥
L (H θ ;H)

∥
∥S1(t − r)�0

2

(
X̄(r),Y ε,u

n (r)
)
u2(r)‖H θ dr

≤ C

�

∫ t

�

(∫ �

0
sθ/2ds

)
∥
∥S1(t − r)�0

2

(
X̄(r),Y ε,u

n (r)
)
u2(r)‖H θ dr .

Finally, we invoke Lemma A.1(ii) to conclude that

∥
∥
∥
∥

∫ t

�

∫ r−�

r
S1(t − s)�0

2

(
X̄(r),Y ε,u

n (r)
)
u2(r)drds

−
∫ t

�

S1(t − r)�0
2

(
X̄(r),Y ε,u

n (r)
)
uε2(r)dr

∥
∥
∥
∥H

≤ Cθ�
θ/2

∫ t

�

(t − r)−ρ
∥
∥�0

2

(
X̄(r),Y ε,u

n (r)
)∥
∥
L (H)

‖uε2(r)‖Hdr

≤ Cθ�
θ/2N

∫ t

�

(t − r)−2ρdr ,

where ρ > θ + 1/2 and we used the Cauchy–Schwarz inequality to obtain the last
line. Since θ can be chosen to be arbitrarily small, (151) follows.

It remains to prove (152). To this end, let Pi
m denote orthogonal projection to an

m-dimensional eigenspace of A1. From a slight modification of Lemma A.1(ii) we
have

∥
∥(I − P1

m)S1(t)�
0
2

(
x, y

)∥
∥2
L (H)

≤ C‖�0
2 (x, y)

∥
∥
L (H)

(t − s)ρe− λt
2

∞∑

j=m+1

a−ρ
2, j

≤ C(t − s)ρe− λt
2

∞∑

j=m+1

a−ρ
2, j ,

(153)
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for some ρ > 1/2. The last term on the right-hand side is the tail of a convergent
sum. Thus, for fixed t > 0, the operator u �→ S1(t)�0

2

(
x, y

)
u is a uniform limit of

finite-dimensional operators, hence a compact operator. As such, it is continuous from
the weak topology ofH to the norm topology ofH and for each k ∈ N the real-valued
map

(s, y, u2) �−→ 〈
S1(t − s)�0

2

(
X̄(s), y

)
u2, e1,k

〉

H

is continuous in the WWNS topology on H × H × H × [0, T ]. Appealing to the
Skorokhod representation theorem once again, there exists n(ε) ∈ N such that Pε,�

n(ε)
converges weakly to Pi as ε → 0 with probability 1. Combining this with the uniform
integrability of Pε,�

n(ε) (see Lemma 6.4), we have that for each m ∈ N,

∥
∥
∥
∥

∫

H×H×H×[0,t]
P1
mS1(t − s)�0

2

(
X̄(s), y

)
u2dP

ε,�
n (u1, u2, y, s)

−
∫

H×H×H×[0,t]
P1
mS1(t − s)�0

2

(
X̄(s), y

)
u2dPi (u1, u2, y, s)

∥
∥
∥
∥

2

H

=
m∑

k=1

( ∫

H×H×H×[0,t]
〈
S1(t − s)�0

2

(
X̄(s), y

)
u2, e1,k

〉

HdPε,�
n (u1, u2, y, s)

−
∫

H×H×H×[0,t]
〈
S1(t − s)�0

2

(
X̄(s), y

)
u2, e1,k

〉

HdPi (u1, u2, y, s)

)2

−→ 0

as ε → 0. Finally, we use (153), (36) to show that the remainders

∥
∥
∥
∥

∫

H×H×H×[0,t]
(I − P1

m)S1(t − s)�0
2

(
X̄(s), y

)
u2dP

ε,�
n (u1, u2, y, s)

∥
∥
∥
∥

2

H

are uniformly bounded in ε, t, n and small as m → ∞. The proof is complete. ��

To conclude this section, we combine Lemmas 6.9, 6.12 and 6.13 to obtain the fol-
lowing, regarding the limiting behavior of the term I V ε,u in (72):

Proposition 6.3 Let i = 1, 2, γi as in (44) and T < ∞. Assume that the pair
(ηε,u

ε
, Pε,�) converges in distribution, in Regime i , to (ηi , Pi ) in C([0, T ];H) ×

P(H × H × H × [0, T ]). Then there exists n = n(ε) > 0 such that the following
limit is valid with probability 1:

lim
ε→0

sup
t∈[0,T ]

∥
∥
∥
∥

√
δ√
ε

∫ t

0
S1(t − s)�ε

2

(
X̄(s),Y ε,u

n (s)
)
uε2(s)dz

− γi

∫

H×H×H×[0,t]
S1(t − s)�0

2

(
X̄(s), y

)
u2dPi (u1, u2, y, s)

∥
∥
∥
∥H

= 0.
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6.3 Proof of Theorem 3.2

Let i = 1, 2. In this section we will show that the limiting pair (ηi , Pi ) in Regime i is,
with probability 1, a viable pair in V

(�i ,μ
X̄ )
. In particular, we shall show that (ηi , Pi )

satisfies (i), (ii) and (iii) in Definition (3.1).
First, note that Propositions 6.1, 6.2, 6.3 from Sect. 6.2, alongwith (132), imply that

any sequence in {(ηε,u, Pε,� : ε ∈ (0, 1), u ∈ PT
N } has a subsequence that converges

in distribution to a pair (ηi , Pi ). This pair satisfies the integral equation

ηi (t) =
∫

H×H×H×[0,t]
S1(t − s)

[

Dx F
(
X̄(s), y

)
ηi (t)

+ �(X̄(s), y)u1 + γi�
0
2

(
X̄(s), y

)
u2

]

dPi (u1, u2, y, s)

=
∫

H×H×H×[0,t]
S1(t − s)�i

(
ηi (s), X̄(s), y, u1, u2

)
dPi (u1, u2, y, s)

with probability 1. Hence, (ηi , Pi ) satisfies (43). As for (40), the weak convergence
of Pε,� to Pi along with the uniform integrability of Pε,� (Lemma 6.4) imply the
square integrability of the measures Pi .

Regarding (42), note that this property holds at the prelimit level. Since the map
t �→ Pi (H×H×H× [0, t]) is continuous and Pi (H×H×H× {t}) = 0 the result
follows as in the finite-dimensional case (see [19]).

Finally, we verify the decomposition (41). For this it suffices to show that the third
and fourth marginals of Pi are given by the product dμX̄(t) × dt of the local invariant
measure and Lebesgue measure. Indeed, we shall show that for any f ∈ Cb(H),

∫

H×H×H×[0,T ]
f (y)dPi (u1, u2, y, t) =

∫ T

0

∫

H
f (y)dμX̄(t)(y)dt .

To this end, let Ỹ ε
u denote the uncontrolled fast process depending on the controlled

slow process X ε,u , i.e. Ỹ ε
u solves

dỸ ε
u (t) = 1

δ

[
A2Ỹ

ε
u (t) + G

(
X ε,u(t), Ỹ ε

u (t)
)]
dt + 1√

δ
dw2(t) , Ỹ

ε
u (0) = y0.

The following lemma, whose proof is deferred to the end of this section, shows that
the process Ỹ ε

u (t) is close to the controlled fast process Y
ε,u in an appropriate ergodic

sense.

Lemma 6.14 Let T < ∞, u ∈ PT
N and � = �(ε) > 0 as in Definition 39. Then

1

�
E

∫ T

0

∥
∥Y ε,u(t) − Ỹ ε

u (t)
∥
∥2Hdt ≤ CT ,g

δh2(ε)

�
−→ 0 , as ε → 0. (154)
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Similarly, for s ≥ t , we can define the two parameter process Y ε,Xε,u(t)(s; t) solving

dY ε,Xε,u(t)(s; t) = 1

δ

[
A2Y

ε,Xε,u(t)(s; t) + G
(
X ε,u(t),Y ε,Xε,u(t)(s; t))]ds

+ 1√
δ
dw2(s) ,

Y ε,Xε,u(t)(t; t) = Y ε(t)

and show that for any t > 0 there exists ε0(t) > 0 such that for all ε < ε0 we have

1

�
E

∫ t+�

t

∥
∥Ỹ ε

u (t)dt − Y ε,Xε,u(t)(s; t)∥∥2Hds ≤ Ct,ε, (155)

with � as in (39) and for each fixed t > 0, Ct,ε → 0 as ε → 0. This shows that, in
small time intervals, we can consider the effect of X ε,u as frozen.

In view of (154) and (155) we can now apply Lemma 4.19 from [25] to show that,
for any f ∈ Cb(H),

∫

H×H×H×[0,T ]
f (y)dPi (u1, u2, y, t) =

∫ T

0

∫

H
f (y)dμX̄(t)(y)dt .

This completes the proof of the decomposition (41). Let us now conclude this section
with the proof of Lemma 6.14.

Proof of Lemma 6.14 Let �ε,u = Y ε,u − Ỹ ε
u . This process has weakly differentiable

paths and solves the equation

∂t�
ε,u(t) = 1

δ

[
A2�

ε,u(t) + G(X ε,u(t), Ỹ ε
u (t)) − G(X ε,u(t),Y ε(t))

]

+h(ε)√
δ
u2(t), �ε,u(0)

= 0H .

As in Lemma 4.1 we have

1

2
∂t‖�ε,u(t)‖2H ≤ Lg − λ

δ
‖�ε,u(t)‖2H + h(ε)√

δ
‖�ε,u(t)‖H‖u2(t)‖H

≤ Lg − λ

2δ
‖�ε,u(t)‖2H + h2(ε)

cg
‖u2(t)‖2H.

Integrating yields

1

2
sup

t∈[0,T ]
‖�ε,u(t)‖2H + λ − Lg

2δ

∫ T

0
‖�ε,u(t)‖2Hdt ≤ h2(ε)

cg

∫ T

0
‖u2(t)‖2Hdt

≤ Nh2(ε)

cg
.
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The latter completes the proof, since it implies
∫ T
0 ‖�ε,u(t)‖2Hdt ≤ Cg,N δh2(ε). ��

7 Proof of themoderate deviation principle

This section is devoted to the proof of Theorem 3.3. Recall from Sect. 3 that the MDP
for the family {X ε , ε > 0} of slow processes is equivalent to an LDP for the family
{ηε , ε > 0} with speed h2(ε).

In Sect. 7.1 we use the variational representation (23) to show that, in Regime
i = 1, 2, {ηε , ε > 0} satisfies the Laplace Principle upper bound with rate function

Si (φ) := inf
(φ,P)∈V

(�i ,μ
X̄ )

[
1

2

∫

H×H×H×[0,T ]
(‖u1‖2H + ‖u2‖2H

)
dP(u1, u2, y, t)

]

,

φ ∈ C
([0, T ];H)

,

(156)

where�i is given in (45) and the infimum runs over the family V
(�i ,μ

X̄ )
of viable pairs

(Definition 3.1). The upper bound is a straightforward consequence of Theorem 3.2
and the Portmanteau lemma.

The Laplace Principle lower bound in Regime i is proved in Sect. 7.2. The situation
for the lower bound is more complicated, as we have to construct nearly optimal
controls that achieve the bound. To do so, we take advantage of the affine structure
of the limiting dynamics, captured by �i , to express the rate function in an explicit,
non-variational form (47). This allows us to construct nearly optimal controls which,
in principle, depend on the fast process in feedback form, but have sufficient regularity
properties for the averaging principle to hold.

Finally, we verify in Sect. 7.3 that the rate function has compact sublevel sets. This
guarantees that the LDP is equivalent to the LP and completes the analysis.

Note that throughout Sect. 7.2 we switch from Hypothesis 3(a) to the stronger
Hypothesis 3(a’). The reasons for this will become clear below.

7.1 Laplace principle upper bound

Weaim toprove that for T < ∞ and anybounded, continuous
 : C([0, T ];H) → R,

lim sup
ε→0

1

h2(ε)
logE

[
e−h2(ε)
(ηε)

] ≤ − inf
φ∈C([0,T ];H)

[Si (φ) + 
(φ)
]
, i = 1, 2.(157)

It suffices to verify the above limit along any convergent subsequence in ε. Such a
subsequence exists since, for ε small enough,

∣
∣
∣
∣

1

h2(ε)
logE

[
e−h2(ε)
(ηε)

]
∣
∣
∣
∣ ≤ sup

φ∈C([0,T ];H)

∣
∣
(φ)

∣
∣.
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Next let ρ > 0. In view of the variational representation (23), it follows that for each
ε > 0 there exists a family of controls {(uε1, uε2)}ε>0 ⊂ PT (H ⊕ H) such that

1

h2(ε)
logE

[
e−h2(ε)
(ηε)

]

≤ −E

[
1

2

∫ T

0

(‖uε1(t)‖2H + ‖uε2(t)‖2H
)
dt + 


(
ηε,u

ε )
]

+ ρ. (158)

In fact, we can assume without loss of generality that {(uε1, uε2)}ε>0 ⊂ PT
N (H ⊕ H)

for N = N (ρ) large enough (see [7] and [5],p.22). Using this family of controls and
the associated controlled moderate deviations processes ηε,u

ε
we can define occupa-

tion measures Pε,� and, from Theorem 3.2, the family {(ηε,uε , Pε,�), ε,� > 0} is
tight. From the same theorem, any sequence of ε, contains a further subsequence
for which (ηε,u

ε
, Pε,�) converges in distribution, in Regime i , to a viable pair

(ηi , Pi ) ∈ V
(�i ,μ

X̄ )
. Taking limits along this subsequence in (158) yields

lim sup
ε→0

1

h2(ε)
log E

[
e−h2(ε)
(ηε)

]

≤ lim sup
ε→0

−E

[
1

2

∫ T

0

1

�

∫ t+�

t

(‖uε1(s)‖2H + ‖uε2(t)‖2H
)
dsdt + 


(
ηε,u

ε )
]

+ ρ

= − lim inf
ε→0

E

[
1

2

∫

H×H×H×[0,T ]
(‖u1‖2H + ‖u2‖2H

)
dPε,�(u1, u2, y, t)

+ 

(
ηε,u

ε )
]

+ ρ.

Since the map

P
(H × H × H × [0, T ]) � ν �−→

∫

H×H×H×[0,T ]
(‖u1‖2H + ‖u2‖2H

)
dν(u1, u2, y, t) ∈ R

is nonnegative and lower semi-continuous, we use the Portmanteau lemma to obtain

lim sup
ε→0

1

h2(ε)
logE

[
e−h2(ε)
(ηε )

]

≤ −E

[
1

2

∫

H×H×H×[0,T ]
(‖u1‖2H + ‖u2‖2H

)
dPi (u1, u2, y, t) + 
(ηi )

]

+ ρ

≤ − inf
(φ,P)∈V

(�i ,μ
X̄ )

[
1

2

∫

H×H×H×[0,T ]
(‖u1‖2H + ‖u2‖2H

)
dP(u1, u2, y, t) + 
(φ)

]

+ ρ.

Since ρ > 0 is arbitrary, the proof of (157) is complete.
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7.2 Laplace principle lower bound

AssumeHypotheses 3(a’) and 3(b).We aim to prove that for T < ∞ and any bounded,
continuous 
 : C([0, T ];H) → R

lim inf
ε→0

1

h2(ε)
logE

[
e−h2(ε)
(ηε)

] ≥ − inf
φ∈C([0,T ];H)

[Si (φ) + 
(φ)
]
, i = 1, 2.

(159)

From our definition of viable pairs and Theorem 6.3 we see that the third marginal
of the invariant measure P does not depend on the control variables u1, u2 and is in
fact given by the local invariant measure μx . This decoupling is further exploited in
the following lemma, which allows to rewrite the rate function Si (see (156)) in a
convenient ordinary control formulation.

Lemma 7.1 With i = 1, 2 and �i , μ
x as in Theorem 3.3, let

A r
i,ψ,T =

{

P : [0, T ] −→ P(H × H × H) : Pt (B1 × B2 × B3)

=
∫

B3
ν(B1 × B2|y, t)dμX̄(t)(y),

∫ T

0

∫

H×H×H
(‖u1‖2H + ‖u2‖2H + ‖y‖2H θ

)
dPs(u1, u2, y)ds < ∞

for some θ > 0,

ψ(t) =
∫ t

0

∫

H×H×H
S1(t − s)�i

(
X̄(s), ψ(s), y, u1, u2

)
dPs(u1, u2, y)ds

}

and

A o
i,ψ,T =

{

(u1, u2) : [0, T ] × H −→ H × H :
∫ T

0

∫

H
(‖u1(s, y)‖2H + ‖u2(s, y)‖2H + ‖y‖2H θ

)
dμX̄(s)(y)ds < ∞

for some θ > 0,

ψ(t) =
∫ t

0

∫

H
S1(t − s)�i

(
X̄(s), ψ(s), y, u1(s, y), u2(s, y)

)
dμX̄(s)(y)ds

}
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(the superscripts r , o refer to the relaxed and ordinary control formulations respec-
tively). For ψ ∈ C

([0, T ];H)
we have

Si (ψ) = inf
P∈A r

i,ψ,T

[
1

2

∫ T

0

∫

H×H×H
(‖u1‖2H + ‖u2‖2H

)
dPs(u1, u2, y)ds

]

= inf
(u1,u2)∈A o

i,ψ,T

[
1

2

∫ T

0

∫

H
(‖u1(s, y)‖2H + ‖u2(s, y)‖2H

)
dμX̄(s)(y)ds

]

.

(160)

This result is standard and a proof can be found e.g. in [25], Section 5.2.
Proceeding to the main proof, let ρ > 0 and ψ ∈ C

([0, T ];H)
such that

Si (ψ) + 
(ψ) ≤ inf
φ∈C([0,T ];H)

[Si (φ) + 
(φ)
] + ρ < ∞. (161)

For each (u1, u2) ∈ A o
i,ψ,T ,

ψ(t) =
∫ t

0

∫

H
S1(t − s)�i

(
X̄(s), ψ(s), y, u1(s, y), u2(s, y)

)
dμX̄(s)(y)ds

=
∫ t

0

∫

H
S1(t − s)Dx F

(
X̄(s), y

)
ψ(s)dμX̄(s)(y)ds

+
∫ t

0

∫

H
S1(t − s)�

(
X̄(s), y

)
u1(s, y)dμ

X̄(s)(y)ds

+ γi

∫ t

0

∫

H
S1(t − s)�0

2

(
X̄(s), y

)
u2(s, y)dμ

X̄(s)(y)ds.

Hence, ψ is the mild solution of the semilinear evolution equation

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tψ(t) = A1ψ(t) + Dx F
(
X̄(t)

)
ψ(t) +

∫

H
[
�

(
X̄(t), y

)
u1(t, y)

+ γi�
0
2

(
X̄(t), y

)
u2(t, y)

]
dμX̄(t)(y)

ψ(0) = 0H ,

(162)

where

Dx F
(
X̄(t)

) :=
∫

H
Dx F

(
X̄(t), y

)
dμX̄(t)(y). (163)

In view of Hypotheses 2(a) and 3(a’), the maps

t �−→
∫

H
Dx F

(
X̄(t), y

)
ψ(t)dμX̄(t)(y) ,

∫

H
[
�

(
X̄(t), y

)
u1(t, y) + γi�

0
2

(
X̄(t), y

)
u2(t, y)

]
dμX̄(t)(y)
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belong to L2([0, T ];H). From standard theory of deterministic parabolic equations
it follows that ψ is a weak solution of (162) in the sense that ψ ∈ H1

0 ([0, T ];H) ∩
L2([0, T ]; Dom(A1)).
The next step is to show that Si has a non-variational form. To this end, let x ∈ H and
define Q̃i (x) : L2(H, μx ;H) ⊕ L2(H, μx ;H) → H with

Q̃i (x)(u1, u2) :=
∫

H
[
�(x, y)u1(y) + γi�

0
2 (x, y)u2(y)

]
dμx (y) , i = 1, 2.

Note that Q̃∗
i (x) : H → L2(H, μx ;H) ⊕ L2(H, μx ;H) is given by

Q̃∗
i (x)v := (

�∗(x, y)v, γi�0∗
2 (x, y)v

)
. (164)

Next, define Qi (x) ∈ L (H) by

Qi (x) := Q̃i (x)Q̃
∗
i (x) =

∫

H
[
�(x, y)�∗(x, y) + γ 2

i �
0
2 (x, y)�

0∗
2 (x, y)

]
dμx (y).

(165)

We can now prove the following:

Proposition 7.1 Under Hypothesis 3(a’) the following hold:

(i) For i = 1, 2 and each x ∈ H, Qi (x) has a bounded inverse that satisfies

sup
x∈H

‖Q−1
i (x)‖L (H) ≤ c−2

1 . (166)

Furthermore, Q̃i (x) has a bounded right inverse given by

Q̃+
i (x) = Q̃∗

i (x)Q
−1
i (x). (167)

(ii) For i = 1, 2 and T < ∞, Si (ψ) < ∞ if and only if ψ ∈ H1
0 ([0, T ];H) ∩

L2([0, T ]; Dom(A1)). Moreover, the infimum in (160) is attained and letting

vi1(t, y) = �∗(X̄(t), y
)
Q−1

i

(
X̄(t)

)
(

∂tψ(t) − A1ψ(t) − Dx F
(
X̄(t)

)
ψ(t)

)

, (168)

vi2(t, y) = γi�
0∗
2

(
X̄(t), y

)
Q−1

i

(
X̄(t)

)
(

∂tψ(t) − A1ψ(t) − Dx F
(
X̄(t)

)
ψ(t)

)

(169)
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we have

(vi1, v
i
2) ∈ argmin(u1,u2)∈A o

i,ψ,T

{∫ T

0

∫

H

(‖u1(t, y)‖2H + ‖u2(t, y)‖2H
)
dμX̄(t)(y)dt

}

.

Hence, the rate function in Regime i takes the non-variational form

Si (ψ) = 1

2

∫ T

0

∥
∥
∥
∥Qi

(
X̄(t)

)− 1
2
[
∂tψ(t) − A1ψ(t) − Dx F

(
X̄(t)

)
ψ(t)

]
∥
∥
∥
∥

2

H
dt,

for ψ ∈ H1
0 ([0, T ];H) ∩ L2([0, T ]; Dom(A1)) and Si = ∞ otherwise.

Proof (i) Let u ∈ H. By definition, Qi (x) is self-adjoint and from Hypothesis 3(a’)
we have

〈Qi (x)u, u〉H = ‖Q̃∗
i (x)u‖2L2(H,μx ;H)⊕L2(H,μx ;H)

=
∫

H
‖�∗(x, y)u‖2Hdμx (y) + γ 2

i

∫

H
‖�0∗

2 (x, y)u‖2Hdμx (y)

≥ c21‖u‖2Hμx (H) = c21‖u‖2H .

Thus, Qi (x) is injective and

‖Q̃i (x)u‖H ≥ c21‖u‖H,

which implies that Q̃i (x) has a closed range in H. It follows that Qi (x)(H) =
Qi (x)(H) = ker(Q∗

i (x))
⊥ = ker(Qi (x))⊥ = {0H}⊥ = H. By virtue of the

inverse mapping theorem we deduce that Q−1
i (x) ∈ L (H) and (166) follows.

Lastly, it is straightforward to check that Q̃+
i (x) is a right inverse of Q̃i (x) and in

view of (164) and (166), Q̃+
i (x) ∈ L (H; L2(H, μx ;H) ⊕ L2(H, μx ;H)).

(ii) Letting ψ ∈ C([0, T ];H) such that Si (ψ) < ∞ it follows that A o
i,ψ,T �= ∅.

From our previous discussion, there exists (u1, u2) ∈ A o
i,ψ,T such that ψ is the

strong solution of (162). Hence ψ ∈ H1
0 ([0, T ];H) ∩ L2([0, T ]; Dom(A1)) and

for t ∈ [0, T ] we have

(u1(t, ·), u2(t, ·)) ∈ Q̃i (X̄(t))−1
(

∂tψ(t) − A1ψ(t) − Dx F
(
X̄(t)

)
ψ(t)

)

⊂ L2(H, μX̄(t);H) ⊕ L2(H, μX̄(t);H).

Since Q̃+
i (X̄(t))

(
∂tψ(t) − A1ψ(t) − Dx F

(
X̄(t)

)
ψ(t)

)
is an element of

Q̃i (X̄(t))
−1

(

∂tψ(t) − A1ψ(t) − Dx F
(
X̄(t)

)
ψ(t)

)
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with minimal L2(H, μX̄(t);H) ⊕ L2(H, μX̄(t);H)-norm it follows that

∫ T

0

∫

H
(‖u1(t, y)‖2H + ‖u2(t, y)‖2H

)
dμX̄(t)(y)dt

=
∫ T

0
‖(u1(t, ·), u2(t, ·))‖2L2(H,μX̄(t);H)⊕L2(H,μX̄(t);H)

dt

≥
∫ T

0

∥
∥Q̃+

i (X̄(t))
(
∂tψ(t) − A1ψ(t)

− Dx F
(
X̄(t)

)
ψ(t)

)∥
∥2
L2(H,μX ;H)⊕L2(H,μX ;H)

dt

=
∫ T

0

∥
∥Q̃∗

i (X̄(t))Q
−1
i (X̄(t))

(
∂tψ(t) − A1ψ(t)

− Dx F
(
X̄(t)

)
ψ(t)

)∥
∥2
L2(H,μX̄(t);H)⊕L2(H,μX̄(t);H)

dt

=
∫ T

0

∫

H

∥
∥�∗(X̄(t), y)Q−1

i (X̄(t))
(
∂tψ(t) − A1ψ(t)

− Dx F
(
X̄(t)

)
ψ(t)

)∥
∥2HdμX̄(t)(y)dt

+
∫ T

0

∫

H

∥
∥γi�

0∗
2 (X̄(t), y)Q−1

i (X̄(t))
(
∂tψ(t) − A1ψ(t)

− Dx F
(
X̄(t)

)
ψ(t)

)∥
∥2HdμX̄(t)(y)dt

=
∫ T

0

〈

∂tψ(t) − A1ψ(t) − Dx F
(
X̄(t)

)
ψ(t), Q−1

i

(
X̄(t)

)

[
∂tψ(t) − A1ψ(t) − Dx F

(
X̄(t)

)
ψ(t)

]
〉

H
dt .

(170)

Now, in view of (160),

Si (ψ) = 1

2
inf

(u1,u2)∈A o
i,ψ,T

∫ T

0

∫

H
(‖u1(t, y)‖2H + ‖u2(t, y)‖2H

)
dμX̄(t)(y)dt

≥ 1

2

∫ T

0

∥
∥Qi

(
X̄(t)

)− 1
2
[
∂tψ(t) − A1ψ(t) − Dx F

(
X̄(t)

)
ψ(t)

]∥
∥2Hdt .

From (167) and (164) we see that

(vi1, v
i
2) = Q̃+

i (X̄(t))
[
∂tψ(t) − A1ψ(t) − Dx F

(
X̄(t)

)
ψ(t)

]

and since theL (H)-valued maps Q−1
i , �∗, �0∗

2 are bounded uniformly in x and
y (see (166), (18) and (36) respectively) we conclude that (vi1, v

i
2) ∈ A o

i,ψ,T and
achieves the lower bound in (170). The proof is complete.

��
We are now ready to prove regularity properties for the pair (vi1, v

i
2).
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Lemma 7.2 For i = 1, 2, T < ∞ and (vi1, v
i
2) as in (168), (169) there exists κi ∈

L2[0, T ] such that :

(i) For each t ∈ [0, T ],

sup
y∈H

‖vi1(t, y)‖H + sup
y∈H

‖vi2(t, y)‖H ≤ κi (t).

(ii) For each t ∈ [0, T ] and y1, y2 ∈ H,

‖vi1(t, y1) − vi1(t, y2)‖H + ‖vi2(t, y1) − vi2(t, y2)‖H ≤ κi (t)‖y1 − y2‖H .

Proof (i) From Hypothesis 3(a’) and (36),

‖vi1(t, y)‖H + ‖vi2(t, y)‖H
≤ ∥

∥�∗(X̄(t), y
)
Q−1

i

(
X̄(t)

)(
∂tψ(t) − A1ψ(t) − Dx F

(
X̄(t)

)
ψ(t)

)∥
∥H

+ ∥
∥γi�

0∗
2

(
X̄(t), y

)
Q−1

i

(
X̄(t)

)(
∂tψ(t) − A1ψ(t) − Dx F

(
X̄(t)

)
ψ(t)

)∥
∥H

≤ Ci‖Q−1
i

(
X̄(t)

)‖L (H)‖∂tψ(t) − A1ψ(t) − Dx F
(
X̄(t)

)
ψ(t)

∥
∥H

≤ Cic
−2
2

∥
∥∂tψ(t) − A1ψ(t) − Dx F

(
X̄(t)

)
ψ(t)

∥
∥H ,

where the last line follows from (166). Since ψi ∈ H1
0 ([0, T ];H) ∩ L2([0, T ];

Dom(A1)) and, in view of Hypothesis 2(a), supt∈[0,T ] ‖Dx F
(
X̄(t)

)‖L (H) < ∞
we deduce that

∫ T

0

∥
∥∂tψ(t) − A1ψ(t) − Dx F

(
X̄(t)

)
ψ(t)

∥
∥2Hdt

≤ C
(‖ψ‖2C([0,T ];H) + ‖ψ‖L2([0,T ];Dom(A1))

+ ‖ψ‖H1
0 ([0,T ];H)

)
< ∞.

The argument is complete upon setting

κi (t) := ‖∂tψ(t) − A1ψ(t) − Dx F
(
X̄(t)

)
ψ(t)

∥
∥H . (171)

(ii) With κi as in (171),

‖vi1(t, y1) − vi1(t, y2)‖H + ‖vi2(t, y1) − vi2(t, y2)‖H
≤ ‖Q−1

i

(
X̄(t)

)‖L (H)‖κi (t)‖H‖�(
X̄(t), y1

) − �
(
X̄(t), y2

)‖L (H)

+ γi‖�0∗
2

(
X̄(t), y1

) − �0∗
2

(
X̄(t), y2

)‖L (H).

In light of Hypothesis 3(b) and (150) it follows that

‖vi1(t, y1) − vi1(t, y2)‖H + ‖vi2(t, y1) − vi2(t, y2)‖H ≤ Ci‖κi (t)‖H‖y1 − y2‖H .

The proof is complete. ��
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Appealing to a mollification argument (see e.g. [17], Section 6.5 as well as [25],
Theorem 5.6) we can also assume, without loss of generality, that vi1, v

i
2 are continuous

in time. Having established these regularity properties we can now use the optimal pair
(vi1, v

i
2) to construct a pair of stochastic controls in feedback form that approximate

the lower bound (161). To this end, let

vi,ε(t) := (
vi1([t/�]�, Ỹ ε,X̄ (t)), vi2([t/�]�, Ỹ ε,X̄ (t))) , t ∈ [0, T ] , i = 1, 2

where [·] denotes the floor function, � = �(ε) is such that �/δ → ∞ as ε → 0 and
Ỹ ε,X̄ solves the evolution equation

dỸ ε,X̄ (t) = 1

δ

[
A2Ỹ

ε,X̄ (t) + G
(
X̄([t/�]�), Ỹ ε,X̄ (t)

)]
dt

+ 1√
δ
dw2(t) , Ỹ

ε,X̄ (0)

= y0 ∈ H .

An application of Lemma 5.7 in [25] yields

lim
ε→0

1

2
E

[ ∫ T

0
‖vi,ε(t)‖2H⊕Hdt

]

= 1

2

∫ T

0

∫

H
(‖vi1(t, y)‖2H + ‖vi2(t, y)‖2H

)
dμX̄(t)

(y)dt = Si (ψ),

(172)

where the last equality follows from Proposition 7.1(ii). Next consider, in Regime i ,
the family of moderate deviations processes ηε,v

i,ε
controlled by vi,ε . Repeating the

arguments of Sect. 6 it follows that

ηε,v
i,ε −→ ψ as ε → 0 in distribution in C([0, T ];H). (173)

To verify the latter, the only additional step is to show that the control terms
I I ε,v

i,ε
, I V ε,vi,ε converge to the averaging limit. In particular, we can apply the argu-

ments of Lemma 5.8 in [25] to show that, as ε → 0,

∫ t

0
S1(t − s)�

(
X̄(s), Ỹ ε,X̄ (s)

)
vi1([s/�]�, Ỹ ε,X̄ (s))ds

→
∫ t

0

∫

H
S1(t − s)�

(
X̄(s), y

)
vi1(s, y)dμ

X̄(s)(y)ds

and

√
δ√
ε

∫ t

0
S1(t − s)�0

2

(
X̄(s), Ỹ ε,X̄ (s)

)
vi2([s/�]�, Ỹ ε,X̄ (s))ds

→ γi

∫ t

0

∫

H
S1(t − s)�0

2

(
X̄(s), y

)
vi2(s, y)dμ

X̄(s)(y)ds
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in L1(�;C([0, T ];H)).
In view of (172) and (173) along with the variational representation (23), the
Laplace Principle lower bound follows. Indeed, for any bounded, continuous 
 :
C([0, T ];H) → R

lim sup
ε→0

− 1

h2(ε)
log E

[
e−h2(ε)
(ηε)

]

= lim sup
ε→0

inf
u∈PT (H⊕H)

E

[
1

2

∫ T

0
‖u(t)‖2H⊕Hdt + 


(
ηε,u

)
]

≤ lim sup
ε→0

E

[
1

2

∫ T

0
‖vεi (t)‖2H⊕H dt + 


(
ηε,v

ε
i
)
]

= 1

2

∫ T

0

∫

H
(‖vi1(t, y)‖2H + ‖vi2(t, y)‖2H

)
dμX̄(t)(y)dt + 
(ψ)

= Si (ψ) + 
(ψ) ≤ inf
φ∈C([0,T ];H)

[Si (φ) + 
(φ)
] + ρ.

where the equality on the last line follows from the optimality of vi1, v
i
2 and the last

inequality is due to the fact that ψi was chosen to satisfy (161). Since ρ is arbitrary,
the result follows.

7.3 Compactness of the sublevel sets

In this section we show that Si , i = 1, 2 (see (156)) is a good rate function, i.e. for
each M > 0 the sublevel set

Zi (M) = {ψ ∈ C([0, T ];H) : Si (ψ) ≤ M}

is compact. To this end, consider a sequence of viable pairs {(ψn, Pn)}n∈N ⊂ V
(�i ,μ

X̄ )
such that

∫

H×H×H×[0,T ]
(‖u1‖2H + ‖u2‖2H + ‖y‖2H θ

)
dPn(u1, u2, y, t) ≤ M .

Now for each n ∈ N, ψn ∈ H1
0 ([0, T ];H) ∩ L2([0, T ]; Dom(A1)) is the strong

solution of (162). Since the last marginal of Pn is Lebesgue measure we can work
with the mild solution of (162) to prove estimates similar to those of Lemma
5.1 that are uniform in n ∈ N. By an Arzelà-Ascoli argument we conclude that
{ψn}n∈N ⊂ C([0, T ];H) is relatively compact. Moreover, we can use Prokhorov’s
theorem exactly as we did in Lemma 6.3 to show that the sequence of (determinis-
tic) measures {Pn}n∈N ⊂ P(H × H × H × [0, T ]) is weakly relatively sequentially
compact.

Next, we claim that the limit (ψ, P) of any convergent sequence of {(ψn, Pn)} is
also a viable pair. To this end, note that the Portmanteau lemma immediately implies
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that
∫

H×H×H×[0,T ]
(‖u1‖2H + ‖u2‖2H + ‖y‖2H θ

)
dP(u1, u2, y, t) < ∞ ;

hence (40) holds. For each n ∈ N we have

ψn(t) =
∫

H×H×H×[0,t]
S1(t − s)�i

(
ψn(s), X̄(s), y, u1, u2

)
dPn(u1, u2, y, s)

and we can show that Pn are uniformly integrable as in Lemma 6.4. Since�i is affine
inψ , u and (ψn, Pn) converges to (ψ, P), the latter will also satisfy (43). Proving that
(ψ, P) satisfies (41) is straightforward since, at the prelimit level, we have

dPn(u1, u2, y, t) = dνn(u1, u2|y, t)dμX̄(t)(y)dt,

where νn is a sequence of stochastic kernels. Finally, P satisfies (42) since, for each
n, the last marginal of Pn is Lebesgue measure and P(H × H × H × [0, t]) = t .
Therefore, (ψ, P) is indeed in V

(�i ,μ
X̄ )
.

At this point we have established that for i = 1, 2 and M > 0 the sublevel set
Zi (M) is relatively compact. To show compactness it remains to prove that it is
closed. This will be done by showing that Si is lower-semicontinuous. Indeed, let
{(ψn, Pn)} be a sequence of viable pairs converging to a pair (ψ, P). Assuming that
lim infn→∞ Si (ψn) = M < ∞ we can pass to a subsequence that satisfies

∫

H×H×H×[0,T ]
(‖u1‖2H + ‖u2‖2H + ‖y‖2H θ

)
dPn(u1, u2, y, t) ≤ M ′ (174)

and

Si (ψn) ≥
∫

H×H×H×[0,T ]
(‖u1‖2H + ‖u2‖2H

)
dPn(u1, u2, y, t) − 1

n
.

From (174) and our previous discussion, {(ψn, Pn)} has a subsequence that converges
to a viable pair {(ψ ′, P ′)} and by uniqueness of the limit (ψ ′, P ′) = (ψ, P). It follows
that

lim inf
n→∞ Si (ψn) ≥ lim inf

n→∞

∫

H×H×H×[0,T ]
(‖u1‖2H + ‖u2‖2H

)
dPn(u1, u2, y, t)

≥
∫

H×H×H×[0,T ]
(‖u1‖2H + ‖u2‖2H

)
dP(u1, u2, y, t)

≥ inf
(ψ,P)∈V

(�i ,μ
X̄ )

∫

H×H×H×[0,T ]
(‖u1‖2H + ‖u2‖2H

)
dP(u1, u2, y, t)

= Si (ψ);
hence Si is lower semicontinuous. The proof is complete.
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Appendix A

In this section we collect a few preliminary estimates concerning the regularity prop-
erties of stochastic convolutions that are used throughout the paper. Some of them are
well known when δ = 1. In the context of the present work, these estimates depend
on the fast scale parameter δ. The reason we present them here is to showcase this
dependence when δ is close to 0. Finally, we provide the proof of estimate (69) in
Lemma 4.2.
For i = 1, 2, δ > 0, t ≥ 0 and an operator-valued map Bi : [0,∞) → L (H) we
define the re-scaled stochastic convolution wδ

Ai
by

wδ
Ai
(t) := 1√

δ

∫ t

0
Si

(
t − z

δ

)

Bi (z)dwi (z). (175)

We consider B2 to be constant in s equal to identity. To study the space-time regularity
of wδ

Ai
, we use the stochastic factorization formula

wδ
Ai
(t) = sin(aπ)√

δπ

∫ t

0
(t − z)a−1Si

(
t − z

δ

)

Mδ
a(0, z, z; i)dz, a ∈ (0, 1/2), (176)

where, for any t1 ≤ t2 ≤ t3, we define

Mδ
a(t1, t2, t3; i) :=

∫ t2

t1
(t3 − ζ )−a Si

(
t3 − ζ

δ

)

Bi (ζ )dwi (ζ ). (177)

The stochastic convolution wδ
Ai

is a well-defined H-valued process and has a ver-
sion with continuous paths (see [16], Theorem 5.11). Before we proceed to the main
estimates we need the following auxiliary lemma:

Lemma A.1 Let i = 1, 2, 0 ≤ s < t, θ ∈ R and Bi : [0,∞) → L (H) be an
operator-valued map. Furthermore, let B∗

i (s) denote the H-adjoint of the bounded
linear operator Bi (s). Under Hypotheses 1(a) and 1(b) the following hold:

(i) For ρ ∈ (1/2, 1) and u ∈ H there exists a constant Ci > 0 such that

∥
∥Si (t − s)(−Ai )

θ
2 Bi (s)u

∥
∥H ≤ Ci (t − s)−(ρ+θ)/2

∥
∥B∗

i (s)
∥
∥
L (L∞(0,L);H)

‖u‖H .

(178)

(ii) Let Pi
n ∈ L (H) denote the orthogonal projection to the n-dimensional subspace

ofH spanned by {ei,k, k = 1, . . . , n}. For ρ > θ+ 1
2 there exists a constant Ci > 0

such that

sup
n∈N

∥
∥(−Ai )

θ
2 Si (t − s)Bi (s)P

i
n

∥
∥2
L2(H)

≤ Ci‖B∗
i (s)‖2L (L∞(0,L);H)(t − s)−ρ.

(179)
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These estimates are obtained by expanding with respect to the orthonormal basis
{ei,k, k ∈ N} and using Hypothesis 1(b), along with the fact that the eigenvalues of
the elliptic operator −Ai satisfy ai,k ∼ k2, for each k ∈ N. Such arguments can be
found e.g. in Lemma 4.2 and Lemma 4.3 of [25].
In view of the strict dissipativity of A2 (see Hypothesis 1(c)), we can prove that the
Hilbert–Schmidt norm of the fast semigroup S2 decays exponentially for large enough
t . In particular, we set θ = 0, Pi

n = I , B ≡ I in (179) and then invoke (11) to show
that, for all ρ ∈ ( 12 , 1),

∥
∥S2(t)

∥
∥
L2(H)

≤ C(t ∧ 1)−
ρ
2 e−λt , t > 0. (180)

The next lemma provides temporal continuity estimates for the stochastic convolution
wδ

A2
. As seen below, the estimate for the mean C([0, T ];H) norm is singular of order

δ− 1
2

−
as ε → 0.

Lemma A.2 Let T < ∞, δ > 0 and wδ
A2

be as in (175).

(i) Let p ≥ 1. There exists C > 0 independent of δ such that

sup
δ>0,t≥0

E
[‖wδ

A2
(t)‖2pH

] ≤ C .

(ii) For all ρ ∈ (1/2, 1) there exists CT > 0 independent of δ such that

E sup
t∈[0,T ]

‖wδ
A2
(t)‖2H ≤ CT δ

ρ−1.

Proof (i) An application of the Burkholder–Davis–Gundy inequality, along with the
substitution z �→ t − δζ , yields

E‖wδ
A2
(t)‖2pH ≤ 1

δ p
E sup

s∈[0,t]

∥
∥
∥
∥

∫ s

0
S2

(
t − z

δ

)

dw2(z)

∥
∥
∥
∥

2p

H

≤ C

δ p

(∫ t

0

∥
∥
∥
∥S2

(
t − z

δ

)∥
∥
∥
∥

2

L2(H)

dz

)p

= C

( ∫ t/δ

0

∥
∥S2(ζ )

∥
∥2
L2(H)

dζ

)p

.

In view of (180) it follows that

E‖wδ
A2
(t)‖2pH ≤ C

∫ ∞

0
(1 + ζ−ρ)e−2λζdζ = C(2λ)−1 + (2λ)ρ−1�(1 − ρ) < ∞,

where ρ < 1 and � denotes the Gamma function.
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(i i) Appealing to the stochastic factorization formula we have

‖wδ
A2
(t)‖H ≤ sin(aπ)√

δπ

∫ t

0
(t − z)a−1

∥
∥
∥
∥S2

(
t − z

δ

)

Mδ
a(0, z, z; 2)

∥
∥
∥
∥H

dz

≤ Ca√
δ

∫ t

0
(t − z)a−1e− λ(t−z)

δ

∥
∥Mδ

a(0, z, z; 2)
∥
∥Hdz.

An application of Hölder’s inequality for q > 1/a > 2 then yields

‖wδ
A2
(t)‖H ≤ C√

δ

(∫ T

0
(t − z)p(a−1)dz

) 1
p
(∫ T

0

∥
∥Mδ

a(0, z, z; 2)
∥
∥qHdz

) 1
q

≤ CTa− 1
q

√
δ

( ∫ T

0
sup

s∈[0,z]
∥
∥Mδ

a(0, s, z; 2)
∥
∥qHdz

) 1
q

.

Thus, we apply Jensen’s inequality to obtain

E sup
t∈[0,T ]

‖wδ
A2
(t)‖2H ≤ CT

δ

(∫ T

0
E sup
s∈[0,z]

∥
∥Mδ

a (0, s, z; 2)
∥
∥qHdz

) 2
q

≤ CT

δ

(∫ T

0

( ∫ z

0
(z − ζ )−2a

E

∥
∥
∥
∥S2

(
z − ζ

δ

)∥
∥
∥
∥

2

L2(H)

dζ

) q
2
dz

) 2
q

≤ Cδρ−1
(∫ T

0

( ∫ z

0
(z − ζ )−2a−ρdζ

) q
2
dz

) 2
q
,

where the second line follows from the Burkholder-Davis-Gundy inequality and
the third from (180). The last integral is finite, provided that we choose a <

(1 − ρ)/2 < 1/4. The proof is complete.
��

Next, we provide estimates of spatial Sobolev regularity and temporal Hölder regu-
larity for wδ

A2
. Both estimates are singular as ε → 0.

Lemma A.3 Let T < ∞ and δ ∈ (0, 1).

(i) For any a, θ < 1/2 and ρ ∈ (θ + 1/2, 1 − 2a) we have

E sup
t∈[0,T ]

‖wδ
A2
(t)‖H θ ≤ CT δ

ρ−1
2 . (181)

(ii) There exists β < 1/4 such that for any ρ ∈ (1/2, 1/2 + 2β)

E
[
wδ

A2

]

Cβ([0,T ];H)
≤ CT δ

ρ−1
2 . (182)
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Proof (i) Using the stochastic factorization formula and Hölder’s inequality with q >

1/a > 2, as in the proof of Lemma A.2(ii), we obtain

‖wδ
A2
(t)‖H θ ≤ CaT

a− 1
q

√
δ

( ∫ T

0
sup

s∈[0,z]
∥
∥(−A2)

θ
2 Mδ

a(0, s, z; 2)
∥
∥qHdz

) 1
q

.

Assuming momentarily that the integrand in (177) is in Dom((−A2)
θ
2 ), we can

interchange stochastic integral and unbounded operator and then apply Jensen’s
inequality followed by the Burkholder–Davis–Gundy inequality to obtain

E sup
t∈[0,T ]

‖wδ
A2
(s)‖H θ ≤ CT√

δ

( ∫ T

0

( ∫ z

0
(z − ζ )−2a

∥
∥
∥
∥(−A2)

θ
2 S2

(
z − ζ

δ

)∥
∥
∥
∥

2

L 2(H)

dζ

) q
2

dz

) 1
q

≤ CT δ
ρ−1
2

( ∫ T

0

( ∫ z

0
(z − ζ )−2a−ρdζ

) q
2

dz

) 1
q

,

where ρ > θ +1/2 and the last line follows from Lemma A.1(ii). The last integral
is finite provided that θ < 1

2 − 2a and θ + 1
2 < ρ < 1 − 2a.

(i i) Let 0 ≤ s < t ≤ T . From the stochastic factorization formula (176) it follows
that

√
δπ

sin(aπ)

(
wδ

A2
(t) − wδ

A2
(s)

) =
∫ t

s
(t − z)a−1S2

(
t − z

δ

)

Mδ
a(s, z, z; 2)dz

+
[

S2

(
t − s

δ

)

− I

]

wδ
A2
(s) =: J δ1 (s, t) + J δ2 (s, t).

For the first term we apply Hölder’s inequality with q > 1/a > 2 to obtain

∥
∥J δ1 (s, t)

∥
∥H ≤ 1√

δ

(∫ t

s
(t − z)p(a−1)dz

) 1
p
( ∫ T

0

∥
∥Mδ

a(s, z, z; 2)
∥
∥qHdz

) 1
q

≤ Ca√
δ
(t − s)a− 1

q

(∫ T

0

∥
∥Mδ

a(s, z, z; 2)
∥
∥qHdz

) 1
q

.

Recalling (177), we see that Mδ
a(s, z, z; 2) = Mδ

a(0, z, z; 2) − Mδ
a(0, s, z; 2).

Therefore,

∥
∥J δ1 (s, t)

∥
∥H ≤ Ca,q√

δ
(t − s)a− 1

q

(∫ T

0
sup

s∈[0,z]
∥
∥Mδ

a(s, z, z)
∥
∥qHdz

) 1
q

.

Proceeding as in the proof of Lemma A.2, we deduce that

E sup
s �=t∈[0,T ]

∥
∥J δ1 (s, t)

∥
∥H

|t − s|a− 1
q

≤ Cδ
ρ−1
2

( ∫ T

0

( ∫ z

0
(z − ζ )−2a−ρdζ

) q
2

dz

) 1
q

. (183)

123



Stoch PDE: Anal Comp

Note that q is arbitrarily large and the last integral is finite, provided that 2α <

1 − ρ < 1/2.
As for J δ2 , we invoke (12) to obtain

∥
∥J δ2 (s, t)

∥
∥H ≤ C

∥
∥
∥
∥S2

(
t − s

δ

)

− I

∥
∥
∥
∥
L (H θ ;H)

‖wδ
A2
(s)‖H θ

≤ Cδ−θ/2(t − s)θ/2‖wδ
A2
(s)‖H θ ,

where θ ∈ (0, 1/2). In view of (181), we have

E sup
s �=t∈[0,T ]

∥
∥J δ2 (s, t)

∥
∥
H

|t − s|θ/2 ≤ Cδ−θ/2
E sup

s∈[0,T ]
‖wδ

A2
(s)‖H θ ≤ Cδ

ρ′−1−θ
2 ,

where ρ′ ∈ (1/2 + θ, 1 − 2a′) and a′ < 1/2 can be arbitrarily small. Choosing
ρ ∈ (1/2, 1/2 + θ) and θ = ρ′ − ρ < 1/2 − 2a′ it follows that

E sup
s �=t∈[0,T ]

∥
∥J δ2 (s, t)

∥
∥H

|t − s|θ/2 ≤ Cδ−θ/2
E sup

s∈[0,T ]
‖wδ

A2
(s)‖H θ ≤ Cδ

ρ−1
2 . (184)

The proof is complete upon combining (183) and (184). ��
We conclude this appendix with the proof of estimate (69) of Lemma 4.2.

Proof of Lemma 4.2 (iii) From the mild formulation of (2) we have

X̄(t) = S1(t)x0 +
∫ t

0
S1(t − s)F̄

(
X̄(t)

)
ds +

∫ t

0
S1(t − s)

[
F̄

(
X̄(s)

) − F̄
(
X̄(t)

)]
ds.

Using this decomposition along with (12) and the Lipschitz continuity of F̄ we obtain

∥
∥A1 X̄(t)

∥
∥H ≤ ∥

∥A1S1(t)x0
∥
∥H +

∥
∥
∥
∥

∫ t

0
A1S1(t − s)F̄

(
X̄(t)

)
ds

∥
∥
∥
∥H

+
∫ t

0

∥
∥A1S1(t − s)

[
F̄

(
X̄(s)

) − F̄
(
X̄(t)

)]∥
∥Hds

≤ Ct
a
2−1‖x0‖Ha + ∥

∥
(
S1(t) − I

)
F̄

(
X̄(t)

)∥
∥H

+ C f

∫ t

0
(t − s)−1

∥
∥X̄(s) − X̄(t)

∥
∥Hds

≤ Ct
a
2−1‖x0‖Ha + cT

(

1 + L f sup
t∈[0,T ]

∥
∥X̄(t)‖H

)

+ C
[
X̄

]

Cθ ([0,T ];H)

∫ t

0
(t − s)−1+θ ds

≤ Ct
a
2−1‖x0‖Ha + C

(
1 + ∥

∥x0‖Ha
) + C f ,θ (1 + ‖x0‖Ha )T θ

≤ C

(

t
a
2−1‖x0‖Ha + 1 + ∥

∥x0‖Ha

)

,
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where we used (67) and (68) to obtain the last inequality. ��

Appendix B

Here we give the proof of Lemma 5.4.

Proof By virtue of the Itô formula and (86) we have

�
(
t, X̄(t),Y ε,u

n (t)
) − �

(
s, X̄(s),Y ε,u

n (s)
)

=
∫ t

s

〈
�ε

(
X̄(z),Y ε,u

n (z)
)
, S1(t − z)(−A1)

1+ θ
2 χ

〉

Hdz

+
∫ t

s

〈
�ε

1

(
X̄(z),Y ε,u

n (z)
)[
A1 X̄(z) + F̄

(
X̄(z)

)]
, S1(t − z)(−A1)

θ
2 χ

〉

Hdz

+ 1

δ

∫ t

s

〈
�ε

2

(
X̄(z),Y ε,u

n (z)
)[
A2Y

ε,u
n (z) + PnG

(
X̄(z),Y ε,u(z)

)]
,

S1(t − z)(−A1)
θ
2 χ

〉

Hdz

+ 1

2δ

∫ t

s
tr
[
PnD

2
y�

ε

S1(t−z)(−A1)
θ
2 χ

(
X̄(z),Y ε,u

n (z)
)]
dz

+ h(ε)√
δ

∫ t

s

〈
�ε

2

(
X̄(z),Y ε,u

n (z)
)
u2,n(z), S1(t − z)(−A1)

θ
2 χ

〉

Hdz

+ 1√
δ

∫ t

s

〈
(−A1)

θ
2 S1(t − z)�ε

2

(
X̄(z),Y ε,u

n (z)
)
dw2,n(z), χ

〉

H .

(185)

In view of (35), we can express the sum of the third and fourth terms on the right-hand
side of the last display in terms of the Kolmogorov operator Lx (see (30)) via the
identity

1

δ

∫ t

s

〈
�ε

2

(
X̄(z), Y ε,u

n (z)
)[
A2Y

ε,u
n (z) + PnG

(
X̄(z), Y ε,u(z)

)]
, S1(t − z)(−A1)

θ
2 χ

〉

Hdz

+ 1

2δ

∫ t

s
tr
[
PnD

2
y�

ε

S1(t−z)(−A1)
θ
2 χ

(
X̄(z), Y ε,u

n (z)
)]
dz

= 1

δ

∫ t

s
LX̄(z)�ε

S1(t−z)(−A1)
θ
2 χ

(
X̄(z), Y ε,u

n (z)
)
dz

+
√
εh(ε)

δ
T ε,u
3 (s, t, n, θ, χ).

(186)
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In view of (186), we return to (185), apply (85) on the left-hand side and then multiply
throughout by δ to obtain

δ
[〈�ε

(
X̄(t),Y ε,u

n (t)
)
, (−A1)

θ
2 χ〉H − 〈�ε

(
X̄(s),Y ε,u

n (s)
)
, S1(t − s)(−A1)

θ
2 χ〉H

]

= δ

∫ t

s

〈
�ε

(
X̄(z),Y ε,u

n (z)
)
, S1(t − z)(−A1)

1+ θ
2 χ

〉

Hdz

+ δ

∫ t

s

〈
�ε

1

(
X̄(z),Y ε,u

n (z)
)[
A1 X̄(z) + F̄

(
X̄(z)

)]
, S1(t − z)(−A1)

θ
2 χ

〉

Hdz

+
∫ t

s
LX̄(z)�ε

S1(t−z)(−A1)
θ
2 χ

(
X̄(z),Y ε,u

n (z)
)
dz

+ √
δh(ε)

∫ t

s

〈
�ε

2

(
X̄(z),Y ε,u

n (z)
)
u2,n(z), S1(t − z)(−A1)

θ
2 χ

〉

Hdz

+ √
δ

∫ t

s

〈
(−A1)

θ
2 S1(t − z)�ε

2

(
X̄(z),Y ε,u

n (z)
)
dw2,n(z), χ

〉

H

+ √
εh(ε)T ε,u

3 (s, t, n, θ, χ),

(187)

Since �ε· solves the Kolmogorov equation (29),

LX̄(t)�ε

S1(t−z)(−A1)
θ
2 χ

(
X̄(z),Y ε,u

n (z)
) = c(ε)�ε

S1(t−z)(−A1)
θ
2 χ

(
X̄(z),Y ε,u

n (z)
)

− 〈
F

(
X̄(z),Y ε,u

n (z)
) − F̄

(
X̄(z)

)
, S1(t − z)(−A1)

θ
2 χ

〉

H
= c(ε)

〈
�ε

(
X̄(z),Y ε,u

n (z)
)
, S1(t − z)(−A1)

θ
2 χ

〉

H
− 〈

F
(
X̄(z),Y ε,u

n (z)
) − F̄

(
X̄(z)

)
, S1(t − z)(−A1)

θ
2 χ

〉

H .

Consequently, we can rearrange (187) to obtain

∫ t

s

〈
F

(
X̄(z), Y ε,u

n (z)
) − F̄

(
X̄(z)

)
, S1(t − z)(−A1)

θ
2 χ

〉

Hdz

= −δ
[〈�ε

(
X̄(t), Y ε,u

n (t)
)
, (−A1)

θ
2 χ〉H − 〈�ε

(
X̄(s), Y ε,u

n (s)
)
, S1(t − s)(−A1)

θ
2 χ〉H

]

+ δ

∫ t

s

〈
�ε

(
X̄(z), Y ε,u

n (z)
)
, S1(t − z)(−A1)

1+ θ
2 χ

〉

Hdz

+ δ

∫ t

s

〈
�ε

1

(
X̄(z), Y ε,u

n (z)
)[
A1 X̄(z) + F̄

(
X̄(z)

)]
, S1(t − z)(−A1)

θ
2 χ

〉

Hdz

+ c(ε)
∫ t

s

〈
�ε

(
X̄(z), Y ε,u

n (z)
)
, S1(t − z)(−A1)

θ
2 χ

〉

Hdz

+ √
δh(ε)

∫ t

s

〈
�ε

2

(
X̄(z), Y ε,u

n (z)
)
u2,n(z), S1(t − z)(−A1)

θ
2 χ

〉

Hdz

+ √
δ

∫ t

s

〈
(−A1)

θ
2 S1(t − z)�ε

2

(
X̄(z), Y ε,u

n (z)
)
dw2,n(z), χ

〉

H

+ √
εh(ε)T ε,u

3 (s, t, n, θ, χ).

(188)
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Regarding the second term on the right-hand side of the last display we can write

∫ t

s

〈
�ε

(
X̄(z),Y ε,u

n (z)
)
, S1(t − z)(−A1)

1+ θ
2 χ

〉

Hdz

= 〈
�ε

(
X̄(t),Y ε,u

n (t)
)
,

∫ t

s
S1(t − z)(−A1)

1+ θ
2 χdz

〉

H

+
∫ t

s

〈
�ε

(
X̄(z),Y ε,u

n (z)
) − �ε

(
X̄(t),Y ε,u

n (t)
)
, S1(t − z)(−A1)

1+ θ
2 χ

〉

Hdz

= 〈
�ε

(
X̄(t),Y ε,u

n (t)
)
,
[
I − S1(t − s)

]
(−A1)

θ
2 χ

〉

H

+
∫ t

s

〈
�ε

(
X̄(z),Y ε,u

n (z)
) − �ε

(
X̄(t),Y ε,u

n (t)
)
, S1(t − z)(−A1)

1+ θ
2 χ

〉

Hdz,

where we used the fact that S1(t− z)(−A1)
1+ θ

2 χ = d
dz S1(t− z)(−A1)

θ
2 χ . With T ε,u

1 ,
T ε,u
3 as in (84), (89) respectively, we can further rearrange (188) and divide throughout

by
√
εh(ε) to obtain

T ε,u
1 (s, t, n, θ, χ)

= − δ√
εh(ε)

[〈�ε
(
X̄(t), Y ε,u

n (t)
) − �ε

(
X̄(s), Y ε,u

n (s)
)
, S1(t − s)(−A1)

θ
2 χ〉H

]

− δ√
εh(ε)

∫ t

s

〈
�ε

(
X̄(t), Y ε,u

n (t)
) − �ε

(
X̄(z), Y ε,u

n (z)
)
, S1(t − z)(−A1)

1+ θ
2 χ

〉

Hdz

+ δ√
εh(ε)

∫ t

s

〈
�ε

1

(
X̄(z), Y ε,u

n (z)
)[
A1 X̄(z) + F̄

(
X̄(z)

)]
, S1(t − z)(−A1)

θ
2 χ

〉

Hdz

+ c(ε)√
εh(ε)

∫ t

s

〈
�ε

(
X̄(z), Y ε,u

n (z)
)
, S1(t − z)(−A1)

θ
2 χ

〉

Hdz

+
√
δ√
ε

∫ t

s

〈
�ε

2

(
X̄(z), Y ε,u

n (z)
)
u2,n(z), S1(t − z)(−A1)

θ
2 χ

〉

Hdz

+
√
δ√

εh(ε)

∫ t

s

〈
(−A1)

θ
2 S1(t − z)�ε

2

(
X̄(z), Y ε,u

n (z)
)
dw2,n(z), χ

〉

H

+ T ε,u
3 (s, t, n, θ, χ).

(189)

In view of (84), the argument is complete upon adding T ε,u
2 (s, t, n, θ, χ) in both

sides of the last display. ��
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