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We study predictive density estimation under Kullback–Leibler loss in
�0-sparse Gaussian sequence models. We propose proper Bayes predictive
density estimates and establish asymptotic minimaxity in sparse models. Fun-
damental for this is a new risk decomposition for sparse, or spike-and-slab
priors.

A surprise is the existence of a phase transition in the future-to-past vari-
ance ratio r . For r < r0 = (

√
5 − 1)/4, the natural discrete prior ceases to

be asymptotically optimal. Instead, for subcritical r , a ‘bi-grid’ prior with a
central region of reduced grid spacing recovers asymptotic minimaxity. This
phenomenon seems to have no analog in the otherwise parallel theory of point
estimation of a multivariate normal mean under quadratic loss.

For spike-and-uniform slab priors to have any prospect of minimaxity, we
show that the sparse parameter space needs also to be magnitude constrained.
Within a substantial range of magnitudes, such spike-and-slab priors can at-
tain asymptotic minimaxity.

1. Introduction and main results. Predictive density estimation is a fundamental prob-
lem in statistical prediction analysis [1, 9]. Here, it is studied in a high dimensional Gaussian
setting under sparsity assumptions on the unknown location parameters. Fuller references and
background for the problem are given after a formulation of our main results.

We consider a simple Gaussian model for high dimensional prediction:

(1) X ∼ Nn(θ , vxI ), Y ∼ Nn(θ, vyI ), X ⊥⊥ Y |θ .

Our goal is to predict the distribution of a future observation Y on the basis of the “past”
observation vector X. In this model, the past and future observations are independent, but are
linked by the common mean parameter θ which is assumed to be unknown. The variances vx

and vy may differ and are assumed to be known.
The true probability densities of X and Y are denoted by p(x|θ , vx) and p(y|θ , vy), re-

spectively. We seek estimators p̂(y|x) of the future observation density p(y|θ , vy), and study
their risk properties under sparsity assumptions on θ as dimension n increases to ∞.

To evaluate the performance of such a predictive density estimator (prde), we use
Kullback–Leibler “distance” as loss function:

L
(
θ , p̂(·|x)

)= ∫ p(y|θ, vy) log
p(y|θ , vy)

p̂(y|x)
dy.

The corresponding KL risk function follows by averaging over the distribution of the past
observation:

ρ(θ , p̂) =
∫

L
(
θ, p̂(·|x)

)
p(x|θ , vx) dx.
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Now, given a prior measure π(dθ), the average or integrated risk is

(2) B(π, p̂) =
∫

ρ(θ , p̂)π(dθ).

For any prior measure π(dθ), proper or improper, such that the posterior π(dθ |x) is well
defined, the Bayes predictive density is given by

(3) p̂π (y|x) =
∫

p(y|θ , vy)π(dθ |x).

The Bayes predictive density in (3) minimizes both the posterior expected loss, denoted by∫
L(θ , p̂(·|x))π(dθ |x), and the integrated risk B(π, p̂), when the latter is finite, among all

density estimates. The minimum is the Bayes KL risk:

B(π) := inf
p̂

B(π, p̂).(4)

We study the predictive risk ρ(θ , p̂) in a high dimensional setting under an �0-sparsity
condition on the parameter space. This “exact sparsity” condition has been widely used in
statistical estimation problems, for example, [19], Chapter 8. With ‖θ‖0 = #{i : θi �= 0}, con-
sider the parameter set:

�n[s] = {θ ∈ R
n : ‖θ‖0 ≤ s

}
.

The minimax KL risk for estimation over � is given by

(5) RN(�) = inf
p̂

sup
θ∈�

ρ(θ , p̂),

the infimum being taken over all predictive density estimators p̂(y|x). We often write prde
for predictive density estimate. The notation an ∼ bn denotes an/bn → 1 as n → ∞ and
an = O(bn) denotes |an/bn| is bounded for all large n.

1.1. Main results. Henceforth, we assume vx = 1. As the problem is scale equivariant,
results for general vx will easily follow. A key parameter is the future-to-past variance ratio

(6) r = vy/vx = vy, v = (1 + r−1)−1
.

Here, v is the “oracle variance,” which would be the variance of the UMVUE for θ , if both
X and Y were observed. The variance ratio r determines not only the magnitude of the
minimax risk but also the construction of minimax optimal prdes. In our asymptotic model,
the dimension n → ∞ and the sparsity s = sn may depend on n, but the variance ratio r

remains fixed.
In the sparse limit ηn = sn/n → 0, for any fixed r ∈ (0,∞), Mukherjee and Johnstone

[34] evaluated the minimax risk to be

(7) RN

(
�n[sn])∼ 1

1 + r
sn log(n/sn) = 1

1 + r
nηn logη−1

n ,

and a thresholding based prde was shown to attain the minimax risk.
By their nature, thresholding rules are not smooth functions of the data. This paper devel-

ops proper Bayes prdes—necessarily smooth functions—that are asymptotically minimax in
sparse regimes. Our constructions begin with sparse univariate symmetric priors

(8) π [η] = (1 − η)δ0 + 1

2
η
(
ν+ + ν−),

where δ0 is unit mass at 0, and η ∈ [0,1] is the sparsity parameter, while ν+ is a probability
measure on (0,∞) and ν− is its reflection on (−∞,0).
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FIG. 1. Schematic for the grid prior. The uniform spacing λ between the support points is shown on the x-axis.
The probabilities of the support points are shown on the y-axis using a logarithmic scale, hence the decay appears
linear.

For such sparse priors, we introduce a new risk decomposition, Theorem 2.1, that takes
the degenerate prior δ0 as starting point, instead of the more commonly used uniform prior.
This risk decomposition is fundamental for all proofs in the paper.

Priors on vector θ are built from i.i.d. draws

(9) πn(dθ) =
n∏

i=1

π [ηn](dθi),

where ηn = sn/n relates the multivariate sparsity sn to the univariate parameter ηn. The Bayes
prde based on prior πn is the product density estimate:

(10) p̂π (y|x) =
n∏

i=1

p̂π (yi |xi).

The notation often drops the data suffixes and uses p̂π for both the univariate and the multi-
variate Bayes predictive density when the context is clear.

We begin with a discrete “grid prior” ν+
G in which the support points have equal spacing

(11) λ = λ(η) =
√

2 logη−v,

and geometric mass decay at rate ηv = e−λ2/2. More precisely,

ν+
G = cG

∞∑
j=1

η(j−1)vδλj , cG = 1 − ηv.

The corresponding sparse grid prior πG[η] built via (8) has a schematic illustration in Fig-
ure 1. Such “Mallows” discrete priors are a natural starting point for our predictive setting
given their optimality properties in point estimation, recalled in the next subsection.

The choice πG can also be motivated directly with three observations. The first, stated pre-
cisely in Section 3.5, is that among symmetric univariate three point priors with ν+ = δaλ,
a > 0, only the choice a = 1 is asymptotically least favorable. Second, the convex hull of
supp(ν+) must be unbounded, lest the risk function of p̂π grow without bound for large θ .
Third, the probability decay rate ηv = exp(−λ2/2) as a function of spacing λ is similar to
the geometric decay used in [18] for minimax sparse point-estimation using discrete priors.
Among discrete univariate priors, then, the grid prior πG is perhaps the simplest choice com-
patible with these remarks.

Our first result gives a precise description of the first-order asymptotic maximum risk of the
Bayes prde p̂G based on the multivariate product prior πG,n(dθ) =∏n

i=1 πG[ηn](θi), where
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FIG. 2. Schematic for the bi-grid prior. The x-axis now shows the two spacings, and the y-axis (again on a
logarithmic scale) the two different rates of log-linear decay of the prior probabilities.

ηn = sn/n. Define

hr = (1 + 2r)(1 + r)−2(1 − 2r − 4r2)/4 ≤ 1/4,

h+
r = max(hr,0).

(12)

Let r0 = (
√

5 − 1)/4 be the positive root of the equation 4r2 + 2r − 1 = 0, and note that
h+

r > 0 iff r < r0.

THEOREM 1.1. As ηn = sn/n → 0, for any fixed r ∈ (0,∞) we have

sup
�n[sn]

ρ(θ , p̂G) = RN

(
�n[sn])(1 + h+

r + o(1)
)

as n → ∞.

Thus for all r ≥ r0, p̂G is exactly minimax optimal, while for all r < r0, it is minimax
suboptimal but still attains the minimax rate, and has maximum risk at most 1.25 times the
minimax value, whatever be the value of r .

As the future-to-past variance ratio r decreases, the difficulty of the predictive density
estimation problem increases, as we have to estimate the future observation density based
on increasingly noisy past observations. Theorem 1.1 shows that rules which are minimax
optimal for higher values of r can be suboptimal for lower values of r . This phenomenon was
seen with threshold density estimates in [34], Section S.2, Lemma S.2.1, as well as in the
recent work of [29] on nonsparse prediction.

To obtain asymptotic minimaxity for all r , we need to modify the prior. The Bi-grid πB

prior is obtained from πG by selecting an “inner zone” on which the spacing of the prior
atoms is reduced from λ to bλ, where

(13) b = min
{
4r(1 + r)(1 + 2r)−1,1

}
.

Note that b < 1 iff r < r0. The decay ratio in the inner zone is increased from ηv = e−λ2/2 to
ηvb2 = e−b2λ2/2. See Figure 2 for a schematic depiction. Section 3.3 explains why the reduced
spacing in the inner zone is needed. In brief, the narrower grid “pulls down” the maximum
risk of the Bayes rule for πB to the asymptotically minimax level.

More precisely, πB[η] is a univariate sparse symmetric prior of form (8) with

ν+
B = cB

[
K∑

k=1

η(k−1)vb2
δνk

+ η(K−1)vb2
∞∑

j=1

ηjvδμj

]
.

The normalization cB = cB(η) is at (36). The support points fall in two zones:
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(i) Inner zone: νk = λ + (k − 1)bλ for k = 1, . . . ,K ,
(ii) Outer zone: μj = νK + jλ for j = 1,2, . . .

The cardinality of the inner zone is

(14) K = 1 + ⌈2b−3/2⌉.
In fact, any integer K ∈ [1 + �2b−3/2
,∞] works; see Section 3.6. For definiteness and min-
imal departure from πG, we use (14).

How do the mass distributions of πB and πG compare? A crude continuous approximation
(see the Supplementary Material) says that the “density ratio” dπB/dπG(x) increases expo-
nentially in x in the inner zone. In the outer zone, it is a constant greater than one, that is, πB

has more mass in the tails.
A main result of the paper is that the Bayes predictive density estimate p̂B based on the

product prior πB,n(dθ) =∏n
i=1 πB[ηn](dθi) is asymptotically minimax optimal.

THEOREM 1.2. For each fixed r ∈ (0,∞), as ηn = sn/n → 0, we have

sup
�n[sn]

ρ(θ , p̂B) = RN

(
�n[sn])(1 + o(1)

)
as n → ∞.

The following theorem shows that the bi-grid prior πB,n is also asymptotically least favor-
able.

THEOREM 1.3. If sn → ∞ and sn/n → 0, then

B(πB,n) = RN

(
�n[sn]) · (1 + o(1)

)
.

Unlike Theorem 1.2, we need the assumption that sn → ∞. It ensures that πB,n actually
concentrates on �n[sn], namely that πB,n(�n[sn]) → 1 as n → ∞. For the case where sn
does not diverge to ∞ an asymptotically least favorable prior can be constructed from a
sparse prior built from “independent blocks.” The construction is discussed in Section 3.4.

1.2. Discussion. A fully Bayesian approach is a natural route to prdes with good proper-
ties [2, 15], with advantages over “plug-in” or thresholding based density estimates. Indeed,
a coordinatewise threshold rule p̂T(y|x) =∏n

i=1 p̂T(yi |xi) is typically built from univariate
prdes which combine two Bayes prdes, for example, based on uniform p̂U and cluster priors
p̂CL, as in [34], equation (14):

p̂T(yi |xi) =
{
p̂U(yi |xi) if |xi | > v−1/2λ,

p̂CL(yi |xi) if |xi | ≤ v−1/2λ.

This is manifestly discontinuous as a function of the data x.
The bi-grid Bayes rule achieves the same purposes as the hybrid p̂T. Indeed, the close

spacing bλ in the inner section of πB yields the same risk control as the (unevenly spaced)
cluster prior for small and moderate θ , while the uniform λ spacing in the outer section of πB

controls risk for large θ in the same way as the uniform prior.
Decision theoretic parallels between predictive density estimation and the point estimation

of a Gaussian mean under quadratic loss have been established by [4, 10, 11, 13, 14, 21, 23,
43] for unconstrained θ , and by [42], [7], [27] and [34] for various constraint sets �.

The phase transition seen in Theorems 1.1 and 1.2 seems however to have no paral-
lel in point estimation. Indeed, it follows from [18] that a first-order minimax rule for
quadratic loss in the sparse setting is derived from the Mallows prior [28], with ν+

Q =
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(1 − η)
∑∞

j=1 ηj−1δλej . Here, λe =
√

2 logη−1 = v−1/2λ so that the predictive setting in-
volves a reduced spacing in the prior. More significantly, there is no analog in point estimation
of the inner section with its further reduced spacing for r < r0.

Our main technical contribution lies in sharp methods for bounding the global KL risk
for general bi-grid priors; see Lemmas 3.1 and 3.2, and for spike-and-slab priors, Section 4.
The sharp predictive risk bounds established here provide new asymptotic perspectives in
the information geometric framework of [22, 24, 44] and augment new sparse prediction
techniques for general multivariate predictive density estimation theory developed in [4, 10,
23, 25, 26, 30, 32].

1.3. Minimax risk of spike and slab priors. Some of the most popular Bayesian vari-
able selection techniques are built on the “spike and slab” priors [12, 16, 31]. Such priors
and their computationally tractable extensions have found success in variable selection in
high-dimensional sparse regression models, for example, [3, 17, 37–40] and the references
therein. While this is a well-established methodological research area [36], optimality of their
respective predictive density estimates has so far not been studied.

Here, we consider simple “spike and slab” prior distributions in the flavor of the founda-
tional paper [31]. Begin with a sparse univariate prior, a special case of (8),

(15) πS[η, �] = (1 − η)δ0 + η/(2�)I
{
μ ∈ [−�, �]}dμ.

In parallel with (9), build a multivariate product prior πS,n from n i.i.d. copies of πS[ηn, �],
where as before ηn = sn/n. We might consider multivariate Bayes predictive densities p̂S[�]
based on πS,n.

It is intuitively clear that such Bayes prdes are necessarily asymptotically suboptimal: for
any fixed � ∈ [0,∞), for all sn > 0, we have

(16)
{

sup
�n[sn]

ρ
(
θ, p̂S[�])}/RN

(
�n[sn])= ∞

for each fixed n. Indeed, the support of πS is restricted to [−�, �], and the corresponding prde
has large risk away from the support. A formal proof follows Lemma 4.1.

Consider therefore bounded subsets of the sparse parameter sets �n[sn]:
�n[s, t] = {θ ∈ R

n : ‖θ‖0 ≤ s and |θi | ≤ t for all i = 1, . . . , n
}
.

We allow t = tn to increase with n, and note next that the increase must be at least as fast
as λn = λ(ηn) (cf. (11)) to have minimax risk equivalent to �n[sn].

LEMMA 1.4. For all tn, there is a simple bound

RN

(
�n[sn, tn])≤ snt

2
n/(2r).

If tn > λn =
√

2 logη−v
n , then

(17) RN

(
�n[sn, tn])∼ snλ

2
n/(2r) ∼ RN

(
�n[sn]).

The following result exhibits a substantial range of magnitude constraints tn for which
p̂S[tn] is asymptotically minimax over �n[sn, tn]. All proofs for this subsection, along with
a figure and high-level overview of the strategy, appear in Section 4.

THEOREM 1.5. As ηn = sn/n → 0, suppose that tn/(logη−1
n )1/2 → ∞ but log tn/

(logη−1
n ) → 0. Then as n → ∞,

sup
�n[sn,tn]

ρ
(
θ, p̂S[tn])∼ RN

(
�n[sn, tn]).
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Note that if tn → ∞ at a rate slower than (logη−1
n )1/2 then, by Lemma 1.4, RN(�n[sn, tn])

is no longer equivalent to RN(�n[sn]) as n → ∞. At the other extreme, we show next that if
tn grows at rate η

−β
n or higher for any β > 0, then no spike and uniform slab procedure can

be minimax optimal.

THEOREM 1.6. If ηn = sn/n → 0 and log tn = β logη−1
n for some β > 0, then

min
�>1

sup
�[sn,tn]

ρ
(
θ , p̂S[�])≥ (1 + β)RN

(
�n[sn, tn])(1 + o(1)

)
as n → ∞.

We emphasize that Theorem 1.6 shows that, even for true parameters within the support
of the uniform slab, risk can exceed the minimax bound. Informally, the proof shows that if
the slab is small, log� < βλ2

n, then the risk at θ = tn is unacceptably large, while if it is large,
log� ≥ βλ2

n, there is poor risk at θ = √
1 + βλn.

1.4. Organization of the paper. Section 2 presents the fundamental risk decomposition,
its proof and some discussion. Section 3 presents the risk properties of the grid and bi-grid
prior based prdes and proofs of the main results. Section 4 proves the spike-and-slab re-
sults. Section 5 compares the performance of the prdes through simulation experiments. The
Appendix and Sections 1, 2 of the Supplementary Material contain the proofs of the lemmas.

Notations. The standard normal density and cumulative distribution are denoted by φ and

; 
̃ = 1 − 
. For sequences an ∼ bn means limn→∞ an/bn = 1.

2. A risk decomposition for spike and slab priors. Univariate problem. We focus on
priors with i.i.d. components (9), so that the predictive density then has product form (10).
The predictive risk is then additive

(18) ρ(θ , p̂π ) =
n∑

i=1

ρ(θi, p̂π ).

[We use p̂π for both univariate and multivariate Bayes predictive densities: the context will
make clear which is used.]

For our sparse parameter sets �n[s] and �n[s, t], there is an easy reduction of the maxi-
mum multivariate risk of a product rule to a univariate risk maximum. Indeed, (18) yields

(19) sn sup
|θ |≤tn

ρ(θ, p̂) ≤ sup
�n[sn,tn]

ρ(θ , p̂) ≤ n(1 − ηn)ρ(0, p̂) + sn sup
θ∈R

ρ(θ, p̂).

Sparse priors. Now suppose that X|θ ∼ N(θ,1) and Y |θ ∼ N(θ, r) and that the past and
future observations X, Y are independent given θ . Consider a sparse proper prior of the form

(20) π(dμ) = (1 − η)δ0 + ην(dμ),

for probability measure ν on R and η ∈ [0,1]. The associated (univariate) Bayes predictive
density estimate p̂π is given by (3).

The following risk decomposition is fundamental. It will be applied to study discrete priors
in Section 3 and uniform slab priors in Section 4.

THEOREM 2.1. With the preceding definitions, let Z ∼ N (0,1) and v = (1 + r−1)−1.
For a sparse prior (20),

ρ(θ, p̂π ) = ρ(θ, p̂δ0) −E logNθ,v(Z) +E logDθ(Z)

= θ2/(2r) −E logNθ,v(Z) +E logDθ(Z),
(21)
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where Dθ(Z) = Nθ,1(Z) and

(22) Nθ,v(Z) = 1 + η

1 − η

∫
exp
{
μZ√

v
+ μθ

v
− μ2

2v

}
ν(dμ).

Decomposition (21) takes the degenerate prior δ0 as starting point for comparison of the
risk ρ(θ, p̂π ) of a Bayes prde. This is natural for sparse priors (20) and might be contrasted
with the representation George, Liang and Xu [10], Lemma 2, which takes the uniform prior
prde as point of departure.

PROOF. The decomposition (21) compares ρ(θ, p̂π ) to ρ(θ, p̂δ0) = θ2/(2r), the KL risk
of p̂δ0(y|x) = φ(y|0, r) corresponding to π = δ0 and η = 0. Accordingly, using (3), write the
Bayes predictive density as

(23) p̂π (y|x) =
∫

φ(y|μ, r)φ(x − μ)π(dμ)∫
φ(x − μ)π(dμ)

= φ(y|0, r)
N(x, y)

D(x)
,

after rewriting numerator and denominator in the first ratio respectively as

π0φ(y|0, r)φ(x)N(x, y), and π0φ(x)D(x),

where π0 = π({0}) = 1 − η. After simple algebra, we find

(24) N(x, y) =
∫

exp
{
μ

(
x + y

r

)
− μ2

2

(
1 + 1

r

)}
π(dμ)

π0

and D(x) is analogous, but without terms in y and r . Note also that

ρ(θ, p̂δ0) = Eθ log
(

φ(Y |θ, r)

φ(Y |0, r)

)
= Eθ

[
θY

r
− θ2

2r

]
= θ2

2r
.

Hence, from (23) and the definition of predictive loss

L
(
θ, p̂π (·|x)

)= Eθ log
(

φ(Y |θ, r)

p̂π (Y |x)

)
= θ2

2r
−Eθ logN(x,Y ) + logD(x).

To obtain ρ(θ, p̂π ), take expectation also over X ∼ N(θ,1). Since Y ∼ N(θ, r) indepen-
dently of X, the random variable X + Y/r ∼ N (θ/v,1/v) may be expressed in the form
θ/v + Z/

√
v. Recalling the sparse prior form π(dμ) = (1 − η)δ0 + ην, we get

N(X,Y )
D= 1 + η

1 − η

∫
exp
{
μZ√

v
+ μθ

v
− μ2

2v

}
ν(dμ) = Nθ,v(Z).

Similarly, D(X)
D= Dθ(Z) and the lemma follows from the previous two displays. �

Clearly, Nθ,v(Z),Dθ(Z) ≥ 1, and so we have the simple but useful “basic lower” and
“basic upper” risk bounds

(25)
θ2

2r
−E logNθ,v(Z) ≤ ρ(θ, p̂π ) ≤ θ2

2r
+E logDθ(Z).

From Jensen’s inequality,

(26) E logNθ,v(Z) ≤ log
(
ENθ,v(Z)

)
,

and since E exp(ζZ) = exp(ζ 2/2), by Fubini’s theorem

(27) ENθ,v(Z) = 1 + η

1 − η

∫
exp
(

μθ

v

)
ν(dμ),
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and, in particular,

ED0(Z) = EN0,1(Z) = (1 − η)−1.

Consequently, from the right-hand side of (25), then (26) (for v = 1) and the previous display,

(28) ρ(0, p̂π ) ≤ log(1 − η)−1 = η
(
1 + o(1)

)
as η → 0.

3. Risk properties for discrete priors. The bulk of this section is devoted to the proof
of Theorems 1.1 and 1.2. We first outline the approach. First, return to the univariate re-
duction (19). From (28), it is clear that nρ(0, p̂1) ≤ nηn(1 + o(1)) = sn(1 + o(1)). So for the
minimaxity results of Theorems 1.1 (for r > r0), 1.2 and 1.5, it suffices to show the univariate
bound

(29) sup
θ∈R

ρ(θ, p̂1) ≤ λ2
n/(2r) + o

(
λ2

n

)
,

for then, with �n = �n[sn] or �n[sn, tn],
sup
�n

ρ(θ , p̂πn) ≤ sn
[
λ2

n/(2r) + o
(
λ2

n

)]
.

To establish (29), we use the key risk decomposition of Proposition 2.1. For this, we in-
troduce a class of discrete sparse priors that includes both grid and bi-grid priors. We de-
velop lower and upper bounds, respectively, for E logNθ,v(Z) and E logDθ(Z) in (21). These
bounds are combined to yield an upper estimate

ρ(θ, p̂D) ≤ (2r)−1λ2σ(θ) + O(λ),

for some function σ . In Section 3.3, we first provide heuristics—Figure 3—and then a formal
proof of conditions under which σ(θ) ≤ 1 for all θ , establishing Theorems 1.1 and 1.2.

3.1. A class of discrete sparse priors. For 0 < b ≤ 1 and r > 0, let

(30) πD[η;b, r] =∑
j∈Z

πjδμj

where μ−j = −μj , π−j = πj . The support points satisfy μ0 = 0 and μj = λαj for j > 0,
where the piecewise linear spacing function

(31) αj =
{

1 + b(j − 1) 1 ≤ j ≤ K,

αK + j − K j > K

has increments α̇j = αj+1 −αj = b or 1 according as j ≤ K or j > K . Set ζ = ηv . The prior
masses are given by

(32) π0 = 1 − η, πj = c(η)ηζβj−1,

for j ≥ 1. The decay function in the prior probabilities

(33) βj =
{

1 + b2(j − 1) 1 ≤ j ≤ K,

βK + j − K j > K

has the same form as αj with b replaced by b2. This choice is crucial for Lemma 3.1 below
and its consequent risk bounds. In particular, note that βj ≤ αj and that the increments β̇j =
βj+1 − βj satisfy

(34) β̇j = α̇2
j all j ≥ 1.
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In addition, l → gl = α2
l − βl is increasing for l ≥ 1, as

(35) gl+1 − gl = α̇l(αl+1 + αl) − β̇l = 2α̇lαl > 0.

The normalizing constant c(η) = cB(η)/2, where

(36)
1

cB(η)
=

∞∑
j=1

ζ βj−1 = 1 − ηb2vK

1 − ηb2v
+ ηb2v(K−1)+v

1 − ηv
.

3.2. Risk component bounds for discrete priors. Since πD is a sparse prior, we may apply
the decomposition of predictive risk given in Proposition 2.1. Inserting the discrete measure
(30), we obtain

Nθ,v(Z) = 1 +∑
j �=0

Nj,(37)

Nj = π−1
0 πj exp

{
v−1/2μjZ + v−1

(
μjθ − 1

2
μ2

j

)}
.(38)

In the special case v = 1, it will be helpful to write Dθ(Z) = Nθ,1(Z) as

Dθ(Z) = 1 +∑
j �=0

Dj,(39)

Dj = π−1
0 πj exp

{
μjZ + μjθ − 1

2
μ2

j

}
.(40)

The probability ratio πj/π0 can also be written in exponential form. To this end, introduce
c1(η) = c(η)(1−η)−1. Recall that v−1 = 1+ r−1 and ζ = ηv = exp(−λ2/2) and then rewrite
η = ζ v−1 = exp{−1

2λ2(1 + r−1)}. Using (32), we arrive at

(41) π−1
0 πj = c1(η) exp

{
−1

2
λ2(βj + r−1)}.

We can therefore, for example, rewrite

Dj = c1(η) exp
{
μjZ − G(μj ; θ)

}
,

G(μj ; θ) = 1

2
μ2

j − μjθ + 1

2
λ2(βj + r−1).(42)

To obtain an upper bound for ρ(θ, p̂D) we use (22). It turns out to be enough to focus on
(the logs of) two consecutive terms Nj , Nj+1 in (37); ignoring all other terms trivially yields
a lower bound for Nθ,v . For the upper bound for Dθ , a single (suitably chosen) term Dj in
(39) suffices, but more care is needed to show that the neglected terms are negligible.

Bring in a coordinate system (l,ω) for θ : each θ ≥ 0 can be uniquely written in the form

θ = λ(αl + ω), l ∈ N,ω ∈ [0, α̇l).

We can therefore write l = l(θ) and ω = ω(θ).
We argue heuristically that l(θ) is an appropriate choice of index for our bounds. Indeed,

from (38) and (41),

(43) E logNj = c − 1

2

{
(μj − θ)2/v − λ2βj

}
after collecting terms not involving j into c. Hence, for θ ∈ [μl,μl+1), the choice j = l

or l + 1 will minimize or nearly minimize the quadratic, and these suffice for the lower
bound. For Dθ , we have from (42) that E logDj = log c1(η) − G(μj ; θ). We show in the
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Appendix (in the proof of Lemma 3.1) that j → G(μj ; θ) is indeed minimized at j = l for
each θ ∈ [μl,μl+1).

Focus therefore on the terms Nl(θ) and Dl(θ). When θ = λ(αl + ω),

μjθ − 1

2
μ2

j = 1

2
λ2(2αj (αl + ω) − α2

j

)
.

Combining this with (41), for j = l, l + 1, we can write

Nl = c1(η) exp
{

1

2
λ2n(l,ω) + αlλZ/

√
v

}
,

Nl+1 = c1(η) exp
{

1

2
λ2ň(l,ω) + αl+1λZ/

√
v

}
,

Dl = c1(η) exp
{

1

2
λ2d(l,ω) + αlλZ

}
(44)

in terms of three linear functions of ω:

n(l,ω) = v−1(α2
l + 2αlω

)− βl − r−1,

d(l,ω) = α2
l + 2αlω − βl − r−1

(45)

and, corresponding to Nl+1,

(46) ň(l,ω) = n(l,ω) + 2v−1α̇lω − (1 + v−1)α̇2
l .

We now state our key uniform bounds on the risk components of (21).

LEMMA 3.1. For any fixed r ∈ (0,∞) and b ∈ (0,1], with λ defined in (11), uniformly
in θ = λ(αl + ω) ≥ λ, we have the following bounds:

E logNθ,v(Z) ≥ 1

2
λ2(n ∨ ň)(l,ω) + O(1),

E logDθ(Z) ≤ 1

2
λ2d+(l,ω) + O(λ).

For 0 ≤ θ < λ, we just have E logNθ,v(Z) ≥ 0, and E logDθ(Z) ≤ O(λ).

The proof is given in the Appendix. The appearance of the positive part of d(l,ω) in the
upper bound may be understood this way: if d(l,ω) < 0, we cannot expect the term Dl to
dominate D0 = 1 in (39).

In the reverse direction, we need only a bound for θ lying in a subset of [μ1,μ2) in our
proofs of Theorems 1.1 and 1.2.

LEMMA 3.2. For any fixed r ∈ (0,∞), b ∈ (0,1], with λ defined in (11) and setting
ω1 = b(1 + v)/2, uniformly in θ ∈ λ[α1, α1 + ω1], we have

E logNθ,v(Z) ≤ 1

2
λ2n(1,ω) + O(λ).

3.3. Proof of Theorems 1.1 and 1.2. Inserting the bounds of Lemma 3.1 in risk decom-
position (21), we get

ρ(θ, p̂D) ≤ (2r)−1λ2σ(l,ω) + O(λ),

σ (l,ω) =
{
ω2 if l = 0,

(αl + ω)2 − r(n ∨ ň)(l,ω) + rd+(l,ω) if l ≥ 1.

(47)
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FIG. 3. Schematic for the risk bound (47) for θ → ρ(θ, p̂G) for the grid prior; being asymptotically minimax
when the second peak is no higher than the first.

Our task is to bound σ(l,ω); more specifically for Theorem 1.1 to show that σ(l,ω) ≤
1 + h+

r for the grid prior and for Theorem 1.2 to ensure that σ(l,ω) ≤ 1 for the bi-grid prior
with b in (13). Figure 3 shows the idea of the main part of the proof. We argue below that the
maximum of σ(θ) = σ(l,ω) falls in the interval [λ,λα2], which in the case of the uniform
grid prior is just [λ,2λ]. The function σ(θ) is argued to be piecewise quadratic with

max
λ≤θ≤2λ

σ (θ) = max
{
1,1 + γr(γr − 2r)

}
.

The second maximum is attained at θ∗ = λ + γrλ, with γr = (2r + 1)/(2r + 2). It will then
follow that the grid prior estimate p̂G is asymptotically minimax if and only if γr ≤ 2r , which
translates to r ≥ r0 = (

√
5 − 1)/4.

For r < r0, the maximum risk can be “pulled down” by reducing the spacing between λ

and the next support point λ+ bλ (we set α̇l = b). For the bi-grid prior, the second maximum
then satisfies

θ∗ = λ + γrbλ, σ (θ∗) = 1 + γrb(γrb − 2r) ≤ 1

exactly when b is no larger than the value (13).
To begin the proof, observe first that by symmetry we can reduce to θ ≥ 0. For l = 0,

control on the risk is immediate from (25), and so, from now on consider l ≥ 1. We make
some observations on σ(l,ω). When d(l,ω) ≥ 0, from (45), r(n − d) = α2

l + 2αlω, and so

(48) σ(l,ω) ≤ (αl + ω)2 − r(n − d) = ω2 ≤ 1.

Back in the general case, from (46), both n(l,ω) and ň(l,ω) are linear for ω ∈ [0, α̇l],
intersecting at ωl = α̇l(1 + v)/2 < α̇l . Now n(l,0) > ň(l,0) while ň has a larger positive
slope. Hence n ∨ ň equals n on [0,ωl] and ň on [ωl, α̇l]. A calculation shows that

ň(l, α̇l) = v−1(α2
l + 2αlα̇l + α̇2

l

)− α̇2
l − βl − r−1

= v−1α2
l+1 − βl+1 − r−1 = n(l + 1,0).

Similarly, d(l, α̇l) = d(l + 1,0) and so θ → d(θ) is piecewise linear, continuous and
strictly increasing from d(1,0) = −r−1 < 0 to +∞ as θ → ∞. Consequently, there is a
unique θ∗ = (l∗,ω∗) at which d(θ∗) = 0.

From these remarks, it follows that σ(l,ω) is piecewise quadratic and convex for ω ∈
[αl, αl+1]. Hence its maxima can only occur among the join points ω = 0,ωl,1 and ω∗ in the
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single case l = l∗. However, since d(θ∗) = 0, it follows from (48) that σ(l∗,ω∗) ≤ 1, so we
can safely ignore this case. Consequently, from (47) and noting that σ(0,1−) = 1, we have

(49) ‖σ‖∞ := max
θ≥0,θ=(l,ω)

σ (l,ω) = 1 ∨ max
l≥1

{
σ(l,0), σ (l,ωl), σ (l, α̇l)

}
.

Now suppose that 0 ≤ ω ≤ ωl and that d(l,ω) ≤ 0. In this case, since n ≤ ň and 1−rv−1 =
−r , we have

σ(l,ω) = (αl + ω)2 − rn(l,ω)

= ω2 + (α2
l + 2αlω

)(
1 − rv−1)+ rβl + 1

= 1 + ω2 + r
(
βl − α2

l

)− 2rαlω

≤ 1 + ω2 − 2rω

(50)

say, where we used αl ≥ 1 and α2
l − βl ≥ α2

1 − β1 = 0, from (35).
In particular σ(l,0) ≤ 1, and combining with (48), this holds for all l. Also, for l ∈ L =

{l : d(l,ωl) < 0}, we have σ(l,ωl) ≤ 1 + ωl(ωl − 2r), while for l /∈ L, again from (48),
σ(l,ωl) ≤ 1. Now, (49) simplifies to

(51) ‖σ‖∞ ≤ 1 + max
l∈L ωl(ωl − 2r)+.

For the grid prior, b = 1. We have ωl = (1 + v)/2 = (2r + 1)/(2r + 2), and

ωl(ωl − 2r) = (1 + 2r)(1 + r)−2(1 − 2r − 4r2)/4 = hr

and we have established the upper bound in Theorem 1.1.
For the lower bound, it suffices to look at the risk at a single point. In view of Figure 3 and

the discussion preceding (49), we try θ1 = λ(1 + ω1). Look at the risk at θ1. Apply Lemma
3.2 using n(1,ω1) = 2v−1ω1, to get from (25),

ρ(θ1, p̂G) ≥ (2r)−1λ2{(1 + ω1)
2 − 2rv−1ω1

}+ O(λ) = (2r)−1λ2(1 + h+
r

)+ O(λ),

since the quantity in braces equals 1 + ω2
1 − 2rω1 = σ(1,ω1) = 1 + h+

r . This completes the
proof of Theorem 1.1.

We now turn our attention to proving Theorem 1.2. We first verify that if b ≤ min{1,4r},
then l ≥ 1 + �2b−3/2
 necessarily implies d(l,ωl) ≥ 0.

From the monotonicity (35), along with ω ≥ 0, we have

d(l,ωl) + r−1 ≥ α2
l − βl ≥ α2

K − βK ≥ b2(K − 1)2 ≥ 4b−1 ≥ r−1,

using b ≤ 2 for the third, K ≥ 1+�2b−3/2
 for the fourth and b ≤ 4r for the fifth inequalities.
Now, return to (51): if l ∈ L then d(l,ωl) < 0 and so, from the previous paragraph neces-

sarily l < 1+�2b−3/2
, which by definition entails α̇l = b so long as K ≥ 1+�2b−3/2
. Now
ωl = b(1 + v)/2 ≤ 2r is equivalent to b ≤ 4r/(1 + v). So, in this case, ‖σ‖ = 1, and so for
all θ we have ρ(θ, p̂D) ≤ (2r)−1λ2 + O(λ), which establishes (29), and hence Theorem 1.2.

3.4. Proof of Theorem 1.3. By Theorem 1.2, it suffice to prove a lower bound on the
Bayes risk. As πB,n is i.i.d. and due to the product structure of the problem, its Bayes risk
simplifies

B(πB,n, p̂B) = nB(πB, p̂B).

For the univariate problem the Bayes risk of the prior πB is

B(πB, p̂B) ≥ ηn c(ηn)
{
ρ(λn, p̂B) + ρ(−λn, p̂B)

}
= 2ηn c(ηn)ρ(λn, p̂B) ≥ 2ηn c(ηn)

[
λ2

n/(2r) −E logNλn,v(Z)
]
,
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where the equality above follows by symmetry and the inequality by (25). From (36), we
have 2c(ηn) = cB(η) ≥ 1 − O(ηb2v

n ). Lemma 3.2 shows that E logNλ,v(Z) = O(λ) because
n(1,0) [defined in (45)] equals 0. Hence B(πB, p̂B) ≥ ηnλ

2
n/(2r) · (1 + o(1)) and the proof

is done.

3.5. Three point priors. Let πa = πa[η] be a sparse symmetric three point prior given by
(8) with ν+ = δaλ for a > 0. In Section 6, we prove the following.

LEMMA 3.3. Let p̂a be the prde corresponding to πa . Then, as η → 0,

ρ(aλ, p̂a) ≤ (2r)−1λ2τ(a) + O(λ)(52)

τ(a) =
{
a2 a2 ≤ 1,[
1 − r

(
a2 − 1

)]
+ a2 ≥ 1.

(53)

In particular, as η → 0, the prior πa is least favorable only when a = 1:

B(πa, p̂a) ∼ ηρ(aλ, p̂a) ∼ (2r)−1ηλ2τ(a).(54)

3.6. Remarks. 1. When K = ∞, the bi-grid prior πB has support points (in R
+) separated

by (1, b, b, . . .). We denote this special case πB′ , and we emphasize that it is still a bi-grid
prior (unless b = 1), though it may be seen as simpler than πB. The proof of Theorem 1.2
shows that with b = 4r(1 + r)(1 + 2r)−1, prior πB′ is asymptotically minimax for r ≤ r0.

However, there is no choice of b for which πB′ is asymptotically minimax for all r . Indeed,
if b be fixed, simply choose r small enough that b > 4r(1 + r)(1 + 2r)−1 = 4r/(1 + v), and
then from (50), we have

‖σ‖∞ ≥ σ(1,ω1) = 1 + ω1(ω1 − 2r) > 1.

2. When sn does not diverge to ∞, an “independent blocks” sparse prior using πB is
asymptotically least favorable, along the lines of [19], Chapter 8.6. Let πS(τ ;m) denote a
single spike prior of scale τ on R

m. This chooses an index I ∈ {1, . . . ,m} at random and
sets θ = τeI , where ei is a unit length vector in the ith coordinate direction. We randomly
draw τ from (ν+

B + ν−
B )/2. However, instead of (11), we choose λ = v1/2(tm − log tm) where

tm = √
2 logm. The independent blocks prior πIB,n on �[sn] is built by dividing {1, . . . , n}

into sn contiguous blocks Bj , each of length m = mn = [n/sn]. Independently, for each block
Bj , draw components according to πS(·;m) and set θi = 0 for the remaining n − mnsn co-
ordinates. This prior is supported on �[sn] as any draw from πIB,n has exactly sn nonzero
components. The proof that it is least favorable is then analogous to that of Theorem 6 in
[34].

4. Risk properties of spike and slab procedures. We again use the risk decomposi-
tion provided by Lemma 2.1, now with the univariate spike and slab prior πS[η, �]. We use
NS

θ,v(Z) and DS
θ (Z) to denote the associated risk components of Lemma 2.1 for the spike

and slab predictive density estimates p̂S[�] based on the prior πS[η, �] for some � > 0 (the
dependence on � is kept implicit in the notation).

Figure 4 gives a schematic showing the strategy for the proof of Theorems 1.5 and 1.6.
Separate risk bounds for p̂S[�] are established below for θ lying in intervals roughly corre-
sponding to [0, λn], [λn,λe] and [λe, �] where λe = v−1/2λn; a threshold used in sparse point
estimation. The critical interval is [λn,λe], and the risk bound there suffices for asymptotic
minimaxity if log � = o(λ2

n), which leads to Theorem 1.5 if log tn = o(λ2
n) and we take � = tn.
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FIG. 4. Schematic for risk bounds (56) for uniform slab prior πS[η, �] and estimate p̂S [�].

If, however, log tn ∼ βλ2
n, then no uniform slab width works: if log� ≥ βλ2

n/(2v), roughly,
then the maximum at approximately θ = √

1 + βλn is too high, while for log � < βλ2
n/(2v),

the maximum risk is too large near the right endpoint, θ = tn.
To ease notation, we often drop the suffixes from λn and ηn, particularly while discussing

univariate prdes. Their risk functions are calculated in the regime λ → ∞ as η → 0.

PROOF OF LEMMA 1.4. For the first upper bound, simply take ν = δ0 in Lemma 2.1; the
corresponding π = δ0 has ρ(θ, p̂δ0) = θ2/(2r). The bound now follows from (19). For the
second statement, we claim that whenever tn > λn, then as n → ∞,

(55) RN

(
�n[sn, tn])∼ RN

(
�n[sn])∼ snλ

2
n/(2r).

Indeed, the independent blocks prior π IB
n constructed in [34], Theorem 6, to show that

RN(�n[sn]) ∼ snλ
2
n/(2r) is actually, by its very definition, supported on �n[sn, νn], where

νn <
√

v
√

2 log[n/sn] ≤ λn < tn. Since obviously �n[sn, νn] ⊂ �n[sn, tn] ⊂ �n[sn], the con-
clusion (55) follows. �

For lower bounds on risk of its predictive density estimate, the following convexity in-
equality is helpful. It is proved in the Supplementary Material.

LEMMA 4.1. If η ≤ 1
2 and θ�/v ≥ 1, then

E logNS
θ,v(Z) ≤ θ�/v.

The proof of (16) follows easily from the above lemma. From the left-hand side of (25)
and Lemma 4.1,

ρ
(
θ, p̂S[�])≥ θ2

2r
− θ�

v
, for θ ≥ v

�
.

Hence, from (18),

sup
�n[sn]

ρ
(
θ , p̂S[�])≥ sn sup

θ∈R
ρ
(
θ, p̂S[�])= ∞,

while RN(�n[sn]) is finite for each n, for example, [34], so (16) follows.
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4.1. Proof of Theorem 1.5. Recall that λ =
√

2v logη−1 and define λ̃ = λ/
√

v+√
2 logλ.

We will show a piecewise risk bound

(56) ρ
(
θ, p̂S[�])≤

⎧⎪⎪⎨
⎪⎪⎩

θ2/(2r) + O(λ logλ) 0 < θ < λ,

λ2/(2r) + log� + O(λ logλ) λ ≤ θ < λ̃,

log� + O(λ) λ̃ ≤ θ ≤ �.

For 0 < θ < λ, simply use the basic upper bound (25) along with the following bound for
DS

θ , shown in the Supplementary Material: for each r > 0,

(57) E logDS
θ (Z) ≤

{
O(λ logλ) 0 < θ < λ̃,

θ2/2 − λ2/(2v) + O(λ) θ ≥ λ̃.

For the remaining two cases, that is, for θ > λ, we use the full decomposition (21) of
Lemma 2.1. To this end, an alternative representation for NS

θ,v will be useful. Completing the
square in (22), we get

(58) NS
θ,v(Z) = 1 + c(η)

√
v exp

(
1

2
Z2

θ,v

)

�,v,

where we have set Zθ,v = Z + θ/
√

v and


�,v = 

(
v−1/2(� − θ) − Z

)− 

(
v−1/2(−� − θ) − Z

)
.

In the Supplementary Material, we show that, uniformly in v ∈ (0,1), � ≥ 1 and |θ | ≤ �,

(59) E log
�,v ≥ a0 := logφ(0) + 2/3.

The constant c(η) = η(1 − η)−1{2�φ(0)}−1 satisfies

(60) − log� − λ2/(2v) ≤ log
{
(1 − η)c(η)

}= logφ(0) − log� − λ2/(2v)

From the preceding three displays and EZ2
θ,v = 1 + θ2/v, we obtain

−E logNS
θ,v(Z) ≤ − log c(η) − 1

2
logv − 1

2
EZ2

θ,v −E log
�,v

≤ log� + λ2/(2v) − θ2/(2v) + O(1).

(61)

Now observe from (61) and v−1 = r−1 + 1 that

θ2/(2r) −E logNS
θ,v(Z) ≤ λ2/(2r) − (θ2 − λ2)/2 + log� + O(1).

Combining this with the bounds in (57) yields the remaining two bounds.
For any � ≥ 1 such that log� = o(λ2), we conclude that as λ → ∞,

sup
θ≤�

ρ
(
θ, p̂S[�])≤ λ2

2r

(
1 + o(1)

)
.

This completes the proof of (29) and, as remarked there, the proof of Theorem 1.5.

4.2. Proof of Theorem 1.6. We use the basic lower risk bound (25), and show that for
suitable θ that E logNS

θ,vZ cannot be large enough to offset the leading term θ2/(2r). To
obtain a result uniform over all slab widths �, we need two different types of upper bound on
NS

θ,v .
Define tλ and t̃λ = o(tλ) by setting log tλ = βλ2/(2v) and log t̃λ = log tλ − λ. We look first

at large values of �, using representation (58). Observe first that for � > t̃λ, the right-hand
side of (60) yields√

vc(η) ≤ C exp
{− log t̃λ − λ2/(2v)

}= C exp
{−θ̃2/(2v)

}
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for a constant C = C(v) if we set θ̃2 = λ2 + 2v log t̃λ. Using now (58) and 
�,v < 1, we have

logNS

θ̃,v
(Z) ≤ log

{
1 + C exp

[−θ̃2/(2v) + (Z + θ̃/
√

v)2/2
]}

≤ log 2 + log(1 + C) + Z2/2 + |Z|θ̃/
√

v.

Consequently, E logNS

θ̃,v
(Z) ≤ k1 + k2θ̃ where ki = ki(v). Hence, from the left-hand side of

risk bound (25),

ρ
(
θ̃ , p̂S[�])≥ θ̃2

2r
− k1θ̃ − k2.

Now observe from the definition of t̃λ that θ̃2 = (1 + β)λ2 − 2vλ and that θ̃ < tλ for large λ.
We conclude that for large λ,

(62) inf
�>t̃λ

sup
θ∈[0,tλ]

ρ(θ, p̂S[�])
λ2/(2r)

≥ 1 + β + O
(
λ−1).

For � ≤ t̃λ, we set θ = tλ and use the left-hand side of (25), then Lemma 4.1:

sup
θ≤tλ

ρ
(
tλ,pS[�])≥ t2

λ

2r
− tλ�

v
≥ t2

λ

2r
− tλt̃λ

v
≥ t2

λ

2r

(
1 + o(1)

)
,

where in the last inequality we used t̃λ = o(tλ). Consequently,

(63) inf
�≤t̃λ

sup
θ∈[0,tλ]

ρ(θ, p̂S[�])
λ2/(2r)

≥ t2
λ

λ2

(
1 + o(1)

)
.

Combining (62) with (63) and then using (19) to go over to the multivariate problem, we
obtain

min
�>1

sup
�n[sn,tn]

ρ
(
θ, p̂S[�])≥ (1 + β)snλ

2
n/(2r)

(
1 + o(1)

)
.

Theorem 1.6 now follows from (17) of Lemma 1.4.

5. Numerical experiments. We turn to the numerical effectiveness of our asymptotic
results under different levels of sparsity ηn, with special focus on moderate values. The prod-
uct structure and the good bounds (19) relating maximal multivariate and univariate risks
allow us to concentrate on the univariate prdes. We use a constrained prior space

m�(η) = {π ∈P(R) : π(θ = 0) ≥ 1 − η, π
(|θ | > �

)= 0
}
,

and set � = 5λ = 5
√

2 logη−v . We consider three sparsity levels: (a) Moderate: η = 0.1, (b)
High: η = 0.001, (c) Very High: η = 10−10.

We compare the following prdes:

• Hard threshold Plug-in prde (H-Plugin): [34], equation (31),

p̂H (y|x) = p(y|θ̂H , vy) where θ̂H (x) = x I
{|x| > (vx/v)1/2λ

}
.

• Cluster prior and Thresholding (C-Thresh) based asymptotically minimax prde p̂T pro-
posed in [34], equations (12)–(14),

• Bayes prdes based on the grid and bi-grid priors (Grid, Bi-Grid) rescaled on m�: p̂G, p̂B

• Spike and slab predictive density estimator (SS): p̂S[�].
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TABLE 1
Numerical evaluation of the maximum risk for the different univariate predictive densities over [−�, �] as the

degree of sparsity (η) and predictive difficulty r varies. Here, we have chosen � = 5λ, where λ is defined in (11).
In the “Asymp” column, we report the asymptotic minimax risk λ2/(2r). In the other columns, we report the

maximum risk of the estimators as quotients of the “Asymp” risk

Sparsity r Asymp H-Plugin C-Thresh Grid Bi-Grid SS

0.1 1 1.1513 120.4% 82.5% 88.3% 88.3% 105.8%
0.5 1.5351 173.6% 108.8% 104.9% 104.9% 118.0%
0.25 1.8421 278.5% 128.0% 127.0% 129.0% 132.3%
0.1 2.0933 588.1% 145.2% 165.4% 155.9% 146.5%

0.001 1 3.4539 109.1% 70.7% 70.8% 70.8% 86.2%
0.5 4.6052 162.1% 85.9% 84.6% 84.6% 96.9%
0.25 5.5262 267.6% 89.9% 100.2% 96.8% 106.9%
0.1 6.2798 582.8% 107.2% 115.6% 113.4% 118.0%

1E-10 1 11.5129 123.9% 150.4% 78.6% 78.6% 86.9%
0.5 15.3506 185.4% 87.9% 87.1% 87.1% 93.9%
0.25 18.4207 308.4% 94.6% 98.1% 96.3% 100.1%
0.1 20.9326 677.0% 101.8% 110.5% 101.7% 106.3%

Table 1 reports the maximum value of the risk plots for these predictive estimators (Sup-
plementary Material, Table 1 shows the locations of the respective maximas). Figure 5 plots
θ → ρ(θ, p̂), showing however the rescaled value ρ(0, p̂)(1 − η)/η at θ = 0. [The hard
threshold plug-in density estimator p̂H is omitted, as has poor maximum risk in Table 1 and
confuses the plots.]

The tables and plots show that the bi-grid prior Bayes prde p̂B and the C-Thresh prde
p̂T have similar worst case performance. For each r , the maximal risks of p̂B and p̂T lie
near or below the asymptotic level of logη−1/(1 + r) under high and very high sparsity,
and at worst moderately above the asymptotic level for moderate sparsity. However, p̂T has
substantially higher risk at the origin than the other prdes considered here, particularly for
moderate sparsity. Differences in the performances of the grid and bi-grid prior based prdes
appear under high sparsity; for further comparisons, see Figures 2 and 3 in the Supplementary
Material. The maximal risk of the spike and slab procedure is higher than that of p̂T or p̂B

but does not exceed the asymptotic minimax level by much. Finally, the basic features of the
risk plots are unchanged even under moderate sparsity.

6. Discussion and future work. Product priors based on infinite cluster priors π∞[η, r]
of [34], Section 6, will lead to minimax optimal Bayes prdes. Details, which do not follow
directly from those for the bi-grid prior, are provided in [8].

Our discussion of spike and slab priors was confined to uniform slabs. Theorem 2.1 can be
used to show that Gaussian slabs are suboptimal, while Bayes prdes based on heavier-tailed
slabs in the range from Laplace to Cauchy are minimax optimal. The tools to bound the
maximal risk of continuous priors differ from those used here and will be detailed separately
[33].

Our results are based on known sparsity levels. We make a few remarks on adaptation to
unknown sparsity from theoretical and computational perspectives. A manuscript in prepa-
ration considers adaptivity for continuous slabs with Laplace and Cauchy tails. Adaptation
to minimax risk is possible up to multiplicative constants and an additive logarithmic term.
Both exact sparsity (�0) and approximate sparsity (�p , 0 < p < 2) are considered.

Recently, computationally tractable Bayesian methods which adapt to unknown sparsity
levels and possibly dense signals have been developed for point estimation [3, 5, 40]. In our
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FIG. 5. Risk plots ρ(θ, ·) {(1 − η)/η}I {θ=0} for univariate predictive density estimators p̂T (dark green), p̂G
(skyblue), p̂B (blue) and p̂S (red) versus θ ∈ [0, �], for � = 5λ. Columns vary with moderate, high and very
high sparsity, η = 0.1,0.001,10−10, left to right. Rows vary r = 1,0.5,0.25 and 0.1 from top to bottom. The

horizontal line shows the asymptotic univariate minimax risk of logη−1/(1 + r) = λ2/(2r), with λ =
√

2 logη−v

and � shown in the insets. Note that, p̂G (skyblue) and p̂B (blue) overlap exactly in plots for the first two rows.

sequence model (1), under unknown sparsity level ηn = sn/n, there exist fast procedures for
estimating posteriors from spike-and-slab priors that are mixtures of a Dirac measure at 0 and
a continuous distribution [6, 20, 41].

APPENDIX

We present proofs of the risk bounds in Lemmas 3.1 and 3.3. The proof of Lemma 3.2 uses
tools similar to Lemma 3.1 and appears in the Supplementary Material.



100 G. MUKHERJEE AND I. M. JOHNSTONE

Proof of Lemma 3.1. We do the easy lower bounds involving Nθ,v(Z) first. Indeed, the
bound for θ < λ follows just from Nθ,v(Z) ≥ 1. For θ = λ(αl + ω) ≥ λ, from (44) using
E(Z) = 0 we get

E logNl = log c1(η) + 1

2
λ2n(l,ω), and,

E logNl+1 = log c1(η) + 1

2
λ2ň(l,ω).

But log c1(η) = log c(η) − log(1 − η)−1 = O(1) as λ → ∞. Hence, the proof of the lower
bound is completed by using

E logNθ,v(Z) ≥ max{E logNl,E logNl+1}.
The proof of the upper bound on E logDθ(Z) is more involved, and we first outline the

approach. From (39) and 1 + x + y < (1 + x)(1 + y/x), we have

(64) logDθ(Z) ≤ log(1 + Dl) + log(1 + Ďl),

where we set Ďl =∑
i /∈{0,l} Di/Dl . Henceforth in the proof, we make the choice l = l(θ)

except that when 0 ≤ θ < μ1 we set l = 1.
For the first term (henceforth we call it the main term) in (64), we will show

(65) E log(1 + Dl) ≤
⎧⎨
⎩

1

2
λ2d+(l,ω) + O(λ) for l ≥ 1,

O(1) if 0 ≤ θ < λ

with O(λ) being uniform in l. For the other term in (64), we will show that it is O(λ) for all
l (and so, henceforth we call it the remainder term). For that purpose, we write Di,l = Di/Dl

and decompose

Ďl =
∞∑

k=1

Dl+k,l +
l−1∑
k=1

Dl−k,l +
∞∑

j=1

D−j,l .

We use the elementary inequality log(1+∑γm) ≤∑ log(1+γm) to obtain that E log(1+Ďl)

is bounded above by

E log

(
1 +

∞∑
k=1

Dl+k,l

)
+E log

(
1 +

l−1∑
k=1

Dl−k,l

)
+E log

(
1 +

∞∑
j=1

D−j,l

)
.

Now, note that D−j
D= Dj exp{−2μjθ} ≤ Dj since μj = −μj , π−j = πj and L(Z) is sym-

metric. Hence

∞∑
j=1

D−j,l

D≤
∞∑

j=1

Dj,l =
l−1∑
k=1

Dl−k,l + 1 +
∞∑

k=1

Dl+k,l .

Combining the above two displays and again using the aforementioned inequality on log
sums, we obtain

(66) E log(1 + Ďl) ≤ 2E log

(
1 +

∞∑
k=1

Dl+k,l

)
+ log 2 + 2E log

(
1 +

l−1∑
k=1

Dl−k,l

)
.

We will later show that the two main right-hand side terms are each O(λ). This concludes
the outline; we now turn to detailed analysis.
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The main term in (64). We first dispose of the case 0 ≤ θ < λ. From (40) and (41),

D1 = c1(η) exp
{
λZ + λθ − 1

2
λ2(2 + r−1)}.

Since θ < λ and c1(η) < (1 − η)−1, and using log(1 + x) ≤ log 2 + (logx)+,

log(1 + D1) ≤ log 2 + log(1 − η)−1 + λ
(
Z − 2−1r−1λ

)
+

and hence E log(1 +D1) ≤ O(1). This last bound uses an inequality we also need later: from
the two term bound on Mills ratio (e.g., [19], Exercise 8.1),

(67) E(Z − x)+ = φ(x) − x
̃(x) ≤ x−2φ(x).

Now suppose that θ = λ(αl + ω) ≥ λ and use representation (44) for Dl . Abbreviating
1
2λ2d(l,ω) as dlω, we obtain

E log(1 + Dl) = E logDl +E log
(
1 + D−1

l

)
= log c(η) + log(1 − η)−1 + dlω + log 2 +E

(
logD−1

l

)
+.

Symmetry of L(Z) about 0 implies that logD−1
l

D= − log c(η) + log(1 − η) + μlZ − dlω. As
c(η) < 1, we have

E
(
logD−1

l

)
+ ≤ − log c(η) +E(μlZ − dlω)+.

From the previous two displays and log(1 − η)−1 = O(η), we have

(68) E log(1 + Dl) ≤ dlω +E(μlZ − dlω)+ + O(1).

We now bound the expectation on the right-hand side. Consider first those l for which αl ≤
2 + r−1, and thus μl ≤ (2 + r−1)λ. Noting that

E(μlZ − dlω)+ ≤ −dlωI {dlω ≤ 0} + μl EZ+,

we then conclude that

dlω +E(μlZ − dlω)+ ≤ (dlω)+ + (2 + r−1)φ(0)λ.

Now consider the remaining l, with αl ≥ 2 + r−1, for which we claim that

(69) α2
l − βl − r−1 ≥ 1

2
α2

l .

We verify this via the equivalent form α2
l − 2βl ≥ 2r−1. Indeed, since βl ≤ αl , we have

α2
l − 2βl ≥ αl(αl − 2) ≥ (2 + r−1)r−1 ≥ 2r−1.

Since ω ≥ 0, we have from (45) and (69),

dlω ≥ 1

2
λ2[α2

l − βl − r−1]≥ 1

4
(λαl)

2 = 1

4
μ2

l .

From the bound (67), we calculate

E(μlZ − dlω)+ ≤ μlE(Z − μl/4)+ ≤ 16
φ(μl/4)

μl

uniformly in λ ≥ 1 and l such that αl ≥ 2 + r−1. The right-hand side is uniformly bounded
in l. Combining the two cases with (68), we have proven the bound (65) on the first term of
(64).
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We turn now to bounding the remainder (66). This depends on the decay between suc-
cessive terms Dj , so we start by using (42) to derive a useful representation for Dj+1/Dj .
Indeed, using μj = λαj and θ = λ(αl + ω), we define

�j = �(j ; l,ω) = (2/λ2)[G(μj+1; θ) − G(μj ; θ)
]

= α̇j [αj+1 + αj − 2αl − 2ω] + β̇j

and arrive at, for j ≥ 1,

(70)
Dj+1

Dj

= exp
{
λα̇jZ − 1

2
λ2�j

}
.

We now show that �j crosses zero at j = l, meaning �j ≥ 0 for j ≥ l and �j ≤ 0 for
j < l. This will also verify the claim in Section 2 that j → G(μj ; θ) is minimized at j = l(θ)

for each θ ∈ [μl,μl+1). The argument splits into two largely parallel cases.
Suppose first that j ≥ l, so that j = l +k for k ≥ 0. Using αl +ω < αl+1, then β̇l+k = α̇2

l+k
and finally α̇l+k + αl+k = αl+k+1, we have for any k ≥ 0,

�l+k > α̇l+k[αl+k+1 + αl+k − 2αl+1] + α̇2
l+k = 2α̇l+k(αl+k+1 − αl+1) ≥ 0,(71)

with the last inequality being strict for k ≥ 1.
Suppose now that j < l, so that j = l − k − 1 for k ≥ 0. Using αl +ω ≥ αl , then β̇l−k−1 =

α̇2
l−k−1, and finally α̇l−k−1 + αl−k−1 = αl−k , we have

�l−k−1 ≤ α̇l−k−1[αl−k + αl−k−1 − 2αl] + α̇2
l−k−1

= 2α̇l−k−1(αl−k − αl) ≤ 0,

with strict inequality when k ≥ 1.
As final preparation, we record a useful bound whose proof is provided in the Supplemen-

tary Material.

LEMMA A.1. If a1, a2, . . . are positive, then for each n ≥ 1,

(72) log

(
1 +

n+1∑
k=1

ak

)
< log(1 + a1) +

n∑
k=1

ak+1

ak

.

We next concentrate on bounding the first term of (66). Noting that Dj s are positive, use
(72) with ak = Dl+k/Dl and log(1 + a1) ≤ log 2 + (loga1)+ to write

(73) E log

(
1 +

∞∑
k=1

Dl+k,l

)
≤ log 2 +E

(
log

Dl+1

Dl

)
+

+E

{ ∞∑
k=1

Dl+k+1

Dl+k

}
.

In (70) with j = l, we have seen that �l ≥ 0 and so

E

(
log

Dl+1

Dl

)
+

≤ λα̇l EZ+ ≤ λφ(0).

When j = l +k, observe from (71) that �l+k ≥ 2α̇2
l+k +2α̇l+k(αl+k −αl+1). From (70), now

with j = l + k for k ≥ 1,

E

{
Dl+k+1

Dl+k

}
= exp

{
1

2
λ2[α̇2

l+k − �l+k

]}

≤ exp
{
−1

2
λ2[α̇2

l+k + 2α̇l+k(αl+k − αl+1)
]}

≤ exp
{
−1

2
λ2b2 − λ2b2(k − 1)

}
,
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so that the right-hand side of (73) is O(λ) + O(e−λ2b2/2) = O(λ). The last inequality in the
above display uses j → α̇j is increasing and α̇j ≥ b.

Second term of (66). Now use (72) with ak = Dl−k/Dl :

(74) E log

(
1 +

l−1∑
k=1

Dl−k,l

)
≤ log 2 +E

(
log

Dl−1

Dl

)
+

+E

{
l−2∑
k=1

Dl−k−1

Dl−k

}
.

In (70) with j = l − 1, we have seen that �l−1 ≤ 0 and so

E

(
log

Dl−1

Dl

)
+

≤ λα̇l−1EZ+ ≤ λφ(0).

From (70), now with j = l − k − 1,

E

{
Dl−k−1

Dl−k

}
= E

{
exp
{
−λα̇l−k−1Z + 1

2
λ2�l−k−1

}}

≤ exp
{

1

2
λ2α̇l−k−1

[
α̇l−k−1 + 2(αl−k − αl)

]}
,

as �l−k−1 ≤ 2α̇l−k−1(αl−k − αl). Again, using j → α̇j is increasing and α̇j ≥ b, we have

α̇l−k−1 + 2(αl−k − αl) ≤ α̇l−k − 2(αl − αl−k+1) − 2α̇l−k ≤ −b − 2(k − 1)b.

Using α̇l−k−1 ≥ b again, we conclude that

E

{
l−2∑
k=1

Dl−k−1

Dl−k

}
≤

∞∑
k=1

exp
{
−1

2
λ2b2 − λ2b2(k − 1)

}
= O

(
e−λ2b2/2).

Thus, we have proved the desired bound on the second term. This completes the proof of the
lemma.

Proof of Lemma 3.3. The argument borrows some steps from the proof of Lemma 3.1,
but is simpler, though not a special case. The three point prior corresponds, in (30) to choices
π0 = 1 − η, π1 = η/2, μ1 = aλ. From (37)–(38), we have Naλ,v(Z) = 1 + N1 + N−1, with

(75) N1 = c1(η) exp
{
v−1/2aλZ + (2v)−1a2λ2 − 1

2
λ2(1 + r−1)},

where c1(η) = 2−1(1 − η)−1 and N−1 = N1 exp(−2v−1/2aλZ − 2v−1a2λ2). Correspond-
ingly Dθ(Z) = 1 + D1 + D−1, where D1 and D−1 are obtained from N1 and N−1 by replac-
ing v with 1. From Theorem 2.1, and log(1+D1 +D−1) ≤ log(1+D1)+ log(1+D−1/D1),

ρ(aλ, p̂a) = (2r)−1a2λ2 −E log(1 + N1 + N−1) +E log(1 + D1 + D−1)

≤ (2r)−1a2λ2 −E log(1 + N1) +E log(1 + D1) +E log(1 + D−1/D1)

≤ (2r)−1a2λ2 − (E logN1)+ + 2 log 2 +E(logD1)+ +E
[
log(D−1/D1)

]
+.

From (75), and its analog for D1, we have, on setting ε(η) = log c1(η) < 0, recalling that
rv−1 = r + 1, and using (67),

(E logN1)+ = [ε(η) + (2v)−1(a2 − 1
)
λ2]

+ ≥ ε(η) + (2r)−1λ2(r + 1)
(
a2 − 1

)
+,

E(logD1)+ ≤ ε(η) + aλEZ+ + (2r)−1λ2(ra2 − r − 1
)
+,

E
[
log(D−1/D1)

]
+ = 2aλE(Z − aλ)+ = 2φ(aλ)/aλ = O(λ).
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Combine the last four displays to get

ρ(aλ, p̂a) ≤ (2r)−1λ2τ̃ (a) + O(λ),

where

τ̃ (a) = a2 − (r + 1)
(
a2 − 1

)
+ + (ra2 − r − 1

)
+ = τ(a).

Acknowledgments. The authors thank the Associate Editor and three referees for espe-
cially stimulating comments that improved the presentation.

Funding. GM was supported in part by the Zumberge individual award from the Univer-
sity of Southern California’s James H. Zumberge faculty research and innovation fund and
by NSF Grant DMS-1811866.

IMJ was supported in part by NSF Grants DMS-1407813, 1418362 and 1811614 and
thanks the Australian National University for hospitality while working on this paper.

SUPPLEMENTARY MATERIAL

Supplementary Materials to “On minimax optimality of sparse Bayes predictive
density estimates” (DOI: 10.1214/21-AOS2086SUPP; .pdf). The supplement [35] proves
Lemma 3.2 and all the inequalities and lemmas used in Section 4. It also contains results from
additional numerical experiments and further discussions on the risk properties of prdes.
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