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A B S T R A C T   

Loss of basic utilities, such as drinking water and electricity distribution, were sustained for months in the 
aftermath of Hurricane Maria’s (HM) landfall in Puerto Rico (PR) in September 2017. The goal of this study was 
to assess if there was deterioration in biological quality of drinking water due to these disruptions. This study 
characterized the microbial composition of drinking water following HM across nine drinking water systems 
(DWSs) in PR and utilized an extended temporal sampling campaign to determine if changes in the drinking 
water microbiome were indicative of HM associated disturbance followed by recovery. In addition to monitoring 
water chemistry, the samples were subjected to culture independent targeted and non-targeted microbial analysis 
including quantitative PCR (qPCR) and genome-resolved metagenomics. The qPCR results showed that residual 
disinfectant was the major driver of bacterial concentrations in tap water with marked decrease in concentrations 
from early to late sampling timepoints. While Mycobacterium avium and Pseudomonas aeruginosa were not 
detected in any sampling locations and timepoints, genetic material from Leptospira and Legionella pneumophila 
were transiently detected in a few sampling locations. The majority of metagenome assembled genomes (MAGs) 
recovered from these samples were not associated with pathogens and were consistent with bacterial community 
members routinely detected in DWSs. Further, whole metagenome-level comparisons between drinking water 
samples collected in this study with samples from other full-scale DWS indicated no significant deviation from 
expected community membership of the drinking water microbiome. Overall, our results suggest that disruptions 
due to HM did not result in significant and sustained deterioration of biological quality of drinking water at our 
study sites.   

Introduction 

A 2015 report on the Safe Drinking Water Act violations in Puerto 
Rico (PR) indicated high levels of contaminants such as volatile organic 
compounds (VOC), total coliform bacteria, and disinfection by products 

(DBPs) impacted around 70% of the islands population (NRDC, 2017). 
This report recommended investment in drinking water systems (DWSs), 
including treatment, distribution system upgrade and maintenance, and 
source water protection. Such investments are also important across the 
US, as the water infrastructure continues to age (ASCE, 2017) and water 
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quality violations are being increasingly reported (Allaire et al., 2018). 
Further complicating the issue of providing regulation compliant water 
while relying on an aging water infrastructure is the increasing fre
quency and intensity of extreme weather events (Estrada et al., 2015; 
Goodess, 2012). In the year 2017 alone, Hurricanes Harvey, Irma, and 
Maria (HM) caused widespread damages and were categorized as his
toric billion-dollar disasters in the US (NOAA NCEI, 2020). The resil
iency of DWSs during these extreme events is particularly important, as 
lack of access to safe drinking water may result in further detrimental 
health impacts. Natural disasters can contaminate source waters, 
impacting proper treatment, distribution, and ultimately affect con
sumer health (Ashbolt, 2015; Exum et al., 2018) Previous studies have 
highlighted water quality degradation associated with extreme weather 
events like hurricanes. Schwab et al. measured concentrations of fecal 
coliforms, E. coli, and enterococci in tap and surface waters following 
Hurricane Katrina and did not recover any of the bacterial indicators in 
tap water samples irrespective of chlorine residual concentration 
(Schwab et al., 2007). A recent study on the impacts of Hurricane 
Harvey on water quality from two DWSs in Texas highlighted that 
source water quality and water demand and their relationship to water 
age strongly impacted microbial communities and influenced the time 
for recovery (Landsman et al., 2019). Similarly, a amplicon 
sequencing-based study carried out in St. Thomas, post Hurricane Irma 
and HM revealed that the microbial community structure in rain cis
terns, coastal stations, and surface runoff waters was dramatically 
different between sampling sites with fecal indicator bacteria (FIB) 
detected in cisterns used as household water supply (Jiang et al., 2020). 

HM, classified as a category 4 hurricane, impacted 3 million people 
in PR. Loss of basic utilities (i.e., water, cellular coverage, and elec
tricity) was associated with remoteness category (Kishore et al., 2018). 
Water services generally recovered quickly in densely populated areas, 
while remote areas either recovered quickly or months later. However, 
electricity services took longer to recover irrespective of remoteness 
category. Even when water services were restored, intermittent water 
supply was common due to unreliable electrical supply; this could 
potentially degrade water quality via stagnation and loss of disinfectant 
residual, intrusion, and backflows (Bautista-de los Santos et al., 2019). 
Boil advisories and point of use chlorination were in place after water 
services resumed and were reported by the Puerto Rico Aqueducts and 
Sewers Authority (PRASA) through mid-January 2018 (Exum et al., 
2018). Previously, Lin et al. (Lin et al., 2020) provided insights into 
metals, micropollutants, and molecular toxicity of pre- and post-HM 
drinking water samples in PR and showed the impact of HM on chemi
cal water quality, suggesting that trace metals were potential drivers of 
cumulative risk from drinking water. Additionally, Keenum et al. 
(Keenum et al., 2021) characterized five unregulated small scale DWS 
and one large PRASA DWS in PR six months after HM. The authors used 
targeted culture and molecular based analyses (i.e., quantitative PCR 
(qPCR), 16S rRNA amplicon sequencing) and demonstrated similar 
microbial communities and concentrations of opportunistic premises 
plumbing pathogens (OPPPs) compared to those reported in the conti
nental US. In our study, we also aim to evaluate the microbial water 
quality in the aftermath of HM. However, unlike Keenum et al. (Keenum 
et al., 2021), we conducted a recurrent sampling campaign beginning in 
December 2017 spanning nine locations across PR for a duration of a 
year. Despite the magnitude of HM in PR, there hasn’t been a large effort 
to characterize microbial water quality. To date, there have been two 
reports focused on chemical contamination (Lin et al., 2020; Warren, 
2019) and two (including this one) on microbial composition (Keenum 
et al., 2021) of DWSs on the island. These studies are essential to 
establish relationships, sampling infrastructure, and methodologies 
needed to respond to future storms, as well as to communicate risk and 
execute corrective actions to decrease exposure risk and unwanted 
health outcomes. Thus, our goals were (1) to utilize an extended 
spatial-temporal sampling campaign to determine if changes in drinking 
water microbiome were indicative of disturbance followed by recovery, 

(2) if this disturbance-recovery dynamic was associated with presence of 
potential pathogens, (3) whether potential pathogen presence was 
persistent or transient, and finally (4) whether microbial composition of 
PR drinking water was consistent with or deviated significantly from 
other drinking water systems. 

2. Materials and methods 

2.1. Drinking water sampling and water quality analyses 

Nine sampling locations were chosen across different geographic 
locations in PR (Fig. 1). The choice of the sampling locations/drinking 
water systems was based on (1) accessibility and (2) geographic distri
bution. The sites represent locations that were consistently accessible 
throughout the sampling timeframe. In the immediate aftermath of 
HM’s landfall, the island’s entire power grid was inoperable, resulting in 
potable water distribution losses in all sampling sites and most of the 
island. Despite varying degree of damages at the sites (e.g., electricity, 
water distribution, road accessibility, flooding), the sites returned to 
operation in the order of weeks, owing to their commercial/service ca
pabilities. The sites’ abstraction source was surface waters for SJU, CAR, 
HAT, AGU, MAY, and HUM, and groundwater for MAN, GUA, and CAY. 
Tap water was flushed for 20–25 min during which time temperature 
and total chlorine were monitored to ensure stabilization indicating 
elimination of stagnant water from the premises plumbing. Subse
quently, it was filtered in triplicate on site through 0.2 µm Sterivex filters 
(EMD Millipore™, Cat. no. SVGP01050) using a field peristaltic pump 
(Geotech, Cat. no. 91352123) until the filter clogged or up to a 20 L 
volume for each filter. Sterivex filters for samples as well as field blanks 
were transported on ice during sample transportation, frozen at −20 ◦C 
at the end of the sampling day, and then stored at −80 ◦C until DNA 
extraction. Water quality parameters (i.e., temperature, pH, conductiv
ity, and dissolved oxygen) were recorded on site with an Orion Star 
probe (Thermo Scientific, Cat. no. 13645571). A portable spectropho
tometer (HACH, Cat. no. DR1900–01H) was used to measure total 
chlorine (HACH, Cat. no. 2105669) and phosphate (HACH, Cat. no. 
2106069) on site. Nitrogen species (i.e., ammonia, nitrate, nitrite) were 
measured in the laboratory with a HACH spectrophotometer using 
HACH test and tube format (HACH, Cat. no. 2606945, 2605345, 
2608345, respectively). Total Organic Carbon (TOC) was measured with 
a Shimadzu TOC- LCPH Analyzer (Shimadzu, Kyoto, Japan). Additional 
details about the 54 samples can be found in Table S1. 

2.2. DNA extraction and total bacteria qPCR 

DNA extractions were performed using a modified version of the 
DNeasy PowerWater Kit (QIAGEN, Cat no. 14900–50-NF) protocol 
(Vosloo et al., 2019). Briefly, the polyethersulfone (PES) membrane 
from the Sterivex filter was processed by aseptically cutting it into 
smaller pieces and transferring to a Lysing Matrix E tube (MP Biomed
ical, Cat. no. MP116914100). Subsequently, 294 μL of 10X Tris-EDTA 
buffer pH 8 (G-Biosciences, Cat. no. 501035446) was added to the 
Lysing Matrix E tube and supplemented with 6 μL of lysozyme (50 mg 
mL−1, Thermo Fisher Scientific, Cat. no. 90082), followed by a 60 min 
incubation at 37 ◦C with mixing at 300 rpm. Subsequently, 300 μL of 
PW1 solution from DNeasy PowerWater Kit was mixed in and 30 μL of 
Proteinase K (20 mg mL−1, Fisher Scientific, Cat. no. AM2546) was 
added. An incubation period of 30 min at 56 ◦C with mixing at 300 rpm 
followed. Previously removed spheres from the corresponding Lysing E 
matrix tube were replenished and 630 μl chloroform: isoamyl alcohol 
(Fisher Scientific, Cat. no. AC327155000) was added. Bead beating was 
performed at setting 6 for 40 s using a FastPrep – 24™ (MP Biomedical, 
Cat. no. 116004500). The resulting homogenized mixture was centri
fuged for 10 min at 14,000 x g at 4 ◦C and the upper aqueous phase was 
transferred to a clean 1.5 mL tube. A supplement of 6 μL carrier RNA 
(prepared by mixing 310 μl of Buffer EB from DNeasy PowerWater Kit 
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with 310 μg lyophilized carrier RNA (QIAGEN, Cat. no. 1,068,337)) was 
mixed with 600 μL of recovered supernatant. This was then purified 
using the automated DNA purification protocol with DNeasy Power
Water Kit on a QIACube system (QIAGEN, Cat. no. 9001292). In addition 
to the samples, controls were processed identically and consisted of 
unused transported Sterivex filter membranes (filter blank), no input 
material (reagent blank), and sterilized deionized water filtered through 
Sterivex (water blank). This set of three controls were included with 
each sampling campaign (n = 6) and extraction run. 

The 16S rRNA gene was targeted to quantify bacterial concentrations 
using a previously published primer pair (Caporaso et al., 2011, 
Table S2). qPCR was performed on a QuantStudio™ 3 Real-Time PCR 
System (ThermoFisher Scientific Cat. no. A28567). PCR reactions were 
carried out in a 20 μl volume containing Luna Universal qPCR Master 
Mix (New England Biolabs, Inc., Cat. no. NC1276266), primer pair 
(IDTDNA), DNAse/RNAse-Free water (Fisher Scientific, Cat. no. 
10977015), and 5 μL of 10X diluted DNA template. Reactions were 
prepared by an epMotion M5073 liquid handling system (Eppendorf, 
Cat. no. 5073000205D) in triplicate. The cycling conditions were as 
follows, initial denaturing at 95 ◦C for 1 min followed by 40 cycles of 
denaturing at 95 ◦C for 15 s, annealing at 50 ◦C for 15 s, and extension 72 
◦C for 1 min. Melting curve analyses was performed by ramping from 72 
◦C to 95 ◦C for 15 s, and 60 ◦C for 1 min, 95 ◦C for 15 s. A negative 
control (NTC) and a standard curve consisting of 7 points ranging from 
101 to 107 copies of 16S rRNA gene were included in every qPCR run. 

2.3. qPCR analyses for waterborne pathogens 

Previously published primers targeting Legionella spp. (Nazarian 
et al., 2008; Yáñez et al., 2005), Mycobacterium spp. (Chern et al., 2015; 
Radomski et al., 2010), pathogenic Leptospira (Stoddard et al., 2009), 
and Pseudomonas aerugionosa (Anuj et al., 2009) were used for qPCR 
assays. Reactions were set up by an epMotion M5073 liquid handling 
system in triplicate. The assays consisted of 2X PrimeTime Gene 
Expression Master Mix (IDTDNA, Cat no. 290479057) with low refer
ence ROX dye, target primers and probe (IDTDNA), 5 μL of 10X diluted 
DNA template and water (UltraPure™ DNase/RNase-Free Distilled 
Water, Thermo Fisher Scientific, Cat. no. 10977015). Single target re
actions were conducted in a total volume of 20 μL, whereas duplex qPCR 
(i.e., Pseudomonas aeruginosa assay) were conducted in 25 μL. Primer 
and probe sequences and cycling conditions are described in Table S2. 
Standard cycling conditions for all reactions were programmed on a 

QuantStudio™ 3 Real-Time PCR System. Target gene copy numbers 
were determined by comparing threshold cycle with standard curve 
generated using gblocks gene fragments as standards (Table S2). 

The qPCR efficiency, R2, Limit of detection (LOD), and Limit of 
quantitation (LOQ) for all qPCR assays are provided in Table S2. 
Negative controls (i.e., filter blank, reagent blank, and water blank) for 
each sampling campaign were included in every assay. 

2.4. Shotgun sequencing and metagenomic reads pre-processing 

Genomic DNA from selected samples were sent to University of Illi
nois Roy J. Carver Biotechnology Center (UI-RJCBC) for library prepa
ration using a low input DNA kit (NuGEN, Cat. no 0344NB). Libraries 
were loaded into two SP lanes on a NovaSeq 6000 instrument with an 
output of 2 × 150 nt reads. The prepared libraries included 33 samples 
and 3 pooled blanks (i.e., filter blank, reagent blank, and water blank) 
from all locations. The raw reads obtained from UI-RJCBC were pro
cessed with fastp (Chen et al., 2018) v0.19.7 to remove homopolymer 
stretches using the following flags ‘–trim_poly_g –trim_poly_x’. Further, 
trimmed reads were mapped with BWA-MEM (Li, 2013) v0.7.12 against 
the UniVec database build 10.0 (National Center for Biotechnology In
formation 2016) to perform vector screening and retained unmapped 
paired reads. Subsequently, Nonpareil (Rodriguez-R et al., 2018) v3.303 
was used on the quality filtered reads to estimate average community 
coverage and metagenomic dataset diversity using kmer algorithm with 
a kmer size of 20 and default parameters. 

2.5. Metagenome assembly and mapping 

Sample reads were co-assembled based on each sampling location 
using metaSPAdes (Nurk et al., 2017) v 3.11.1 with the following flags 
‘-meta -t 16 –phred-offset 33 -m 500 -k 21,33,55,77,99,119′ and further 
filtered to a minimum scaffold length of 500 bp. Reads from samples and 
controls (i.e., extraction blank, filter blank, DI water blank) were map
ped to co-assemblies using BWA-MEM. An approach similar to Dai et al. 
(Dai et al., 2020) was used to remove potential contaminant scaffolds. 
Briefly, BWA-MEM with flag -F4 and -f2 was used to map sample and 
control reads against co-assemblies. The BEDtools (Quinlan and Hall, 
2010) genomecov using flags -g, and -d was used to calculate coverage 
and per base coverage using generated BAM files. Relative abundances 
(RA) and normalized coverage deviation (NCD) were calculated for each 
scaffold with coverage and per base coverage information, respectively. 

Fig. 1. Site nomenclature by geographic location. Colors correspond to sampling sites and are consistent in all figures. Abstraction sources, surface water (S) or 
groundwater (G), are depicted in table. 
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Scaffolds that were not detected in the blanks or for which sample RA 
was greater than the blank RA and the sample NCD was less than the 
blank NCD were considered true scaffolds and were used in downstream 
analyses. All scaffolds that did not meet these criteria were considered 
contaminant scaffolds and removed from further analyses. Assembly 
statistics were obtained from QUAST (Gurevich et al., 2013) 5.0.2. To 
contextualize the metagenome assemblies with respect to other distri
bution systems, assemblies from other drinking water systems (consid
ered unperturbed systems because samples were not associated with any 
natural disaster or water quality issues) were compared against our 
co-assemblies. MASH (Ondov et al., 2016) v2.1.1 was used to estimate 
the dissimilarity between assemblies using ‘-r’ and ‘-m 2′ flags, and a 
sketch size of 100000. 

2.6. Taxonomic classification of metagenomic assemblies 

The taxonomic classification of scaffolds was performed with a 
contig annotation tool (Von Meijenfeldt et al., 2019) (CAT v5.0.4) 
program in which open reading frames (ORF) are predicted with Prod
igal (Hyatt et al., 2010) and used as alignment queries by DIAMOND 
(Buchfink et al., 2014) against the NCBI non-redundant (nr) protein 
database (downloaded ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/, 
2020–03–04). Selected genera known to contain pathogenic species, as 
well as non-pathogenic species, that are relevant to drinking water 
systems were further examined. The CAT annotations of true scaffolds 
were evaluated against annotated controls and only scaffolds with rpoB 
normalized coverage above controls and additional annotation support 
were considered to avoid false positives at the genus level. Specifically, 
additional support consisted of classification with kaiju (Menzel et al., 
2016) v1.7.2 using reference indexes containing NCBI BLAST nr data
base and microbial eukaryotes with default parameters (downloaded 
http://kaiju.binf.ku.dk/server, nr_euk 2019–06–25) and/or by kraken2 
(Wood et al., 2019) v2.0.9-beta against RefSeq database (downloaded 
https://lomanlab.github.io/mockcommunity/mc_databases.html). 
Additionally, we examined the scaffolds of eukaryotic origin with met
aEuk (Levy Karin et al., 2020) v3.8dc7e0b to assign taxonomy using a 
publicly available MMseqs2 database containing protein profiles from 
the marine eukaryotic reference catalog (MERC), Marine Microbial 
Eukaryote Transcriptome Sequencing Project (MMETSP), and Uni
clust50 (downloaded http://wwwuser.gwdg.de/~compbiol/metaeuk/2 
020_TAX_DB/). The relative abundance of each taxonomic unit is pre
sented by using the relative abundance of scaffolds (see Section 2.5) 
within each unit. 

2.7. Metagenomic assembled genomes 

Co-assemblies were binned with CONCOCT (Alneberg et al., 2014) 
within anvi’o (Eren et al., 2015) v5.1 by clustering scaffolds 2500 bp or 
longer into metagenome assembled genomes (MAGs) and manually 
refining them within the anvi’o platform. Furthermore, dRep (Olm et al., 
2017) v2.3.2 was used to dereplicate MAGs and obtain representative 
genomes with flags ‘-comp 50 -con 10′ and default values. GTDB-tk 
(Parks et al., 2018) v0.1.3 was used to assign taxonomy to MAGs with 
the flag ‘classify_wf’. Sample reads were mapped to corresponding single 
pseudo contig MAGs. Pseudo contigs were generated with the union 
command in EMBOSS (Rice et al., 2000) utility. Mapping was performed 
with BBMap (Bushnell, 2015) v38.24 using a 90% identity threshold and 
setting flags ‘ambiguous=best’, ‘mappedonly=t’, and ‘pairedonly=t’. 
Detection of a MAG in a sample was established when ≥ 25% of its bases 
were covered by at least one read from the corresponding sample. 
Coverage was determined with samtools (Li et al., 2009) v1.10 
‘coverage’. The abundance of a MAG in a sample was calculated as 
sample reads mapped per million reads per genome length in kbp 
(RPKM). Further information about MAGs, such as number of 5S rRNA, 
16S rRNA, 23S rRNA, and tRNA counts was obtained by annotating the 
MAGs using DRAM (Shaffer et al., 2020) v1.0.6. The databases used with 

DRAM were downloaded with the following flags ‘DRAM-setup.py pre
pare_databases –output_dir DRAM_data –skip_uniref’. MAGs from this 
study were compared to 52,515 MAGs recovered from environmentally 
diverse metagenomes by Nayfach et al. (Nayfach et al., 2020) (down
loaded https://portal.nersc.gov/GEM/genomes/fna.tar, 2020–11–10) 
using FastANI (Jain et al., 2018) v2.3.2 with default parameters. Met
adata linked with this genomic catalog of earth microbiomes, hereafter 
referred to as JGI MAGs (downloaded https://portal.nersc.gov/GEM/ge 
nomes/genome_metadata.tsv, 2020–11–30) was used to address niche 
association. Further, SEARCH-SRA (Stewart et al., 2015; Torres et al., 
2017; Towns et al., 2014) online portal was used to interrogate the SRA 
database (246,329 records) by aligning metagenomic datasets to our 
MAGs. Only records that mapped 10 or more reads from the SRA 
collection were further inspected. The metadata associated with SRA 
accession numbers (downloaded https://s3.amazonaws.com/starbu 
ck1/sradb/SRAmetadb.sqlite.gz, 2021–04–08) was incorporated 
through custom scripts in R software (R Development Core Team, 2016) 
that rely on the dbplyr (Wickham et al., 2021) package. Records that 
were classified as retrieved from metagenomic library sources and with 
a whole genome sequence strategy were retained for analysis. Consid
ering that SRA metadata is user provided, manual curation to ensure 
consistency and retrieve the same ecosystem categories as in JGI MAGs 
metadata was performed. Data with missing context (lacking informa
tion in title or description) were considered as “others” and removed 
from analyses. The association between a MAG and an ecosystem cate
gory was determined by multiplying the total number of reads from the 
ecosystem category mapping to the MAG by the ratio of the number of 
unique SRA records associated with a MAG and ecosystem category and 
the number of unique SRA records within the entire dataset assigned to 
the ecosystem category. For a schematic representation of bioinformatic 
approaches performed in this study, refer to Figure S1 and Figure S2. 

2.8. Data analyses and statistics 

Statistical analyses were conducted in R and visualizations generated 
with ggplot2 (Wickham, 2011) package. PCA analyses of water quality 
parameters were performed with centered and scaled data in R base 
prcomp(). Linear regression models of log10 (volume normalized 16S 
rRNA gene copies) against water quality parameters were fit using base 
R lm(). Pearson correlation between log10(volume normalized 16S 
rRNA gene copies) and chlorine concentrations (mg/L) was obtained 
with base R cor() and exponential decay curve with nls(). Euclidian 
distances between pairwise Mash distance of DW metagenomes was 
calculated with vegan (Oksanen et al., 2015) function vegdist() and 
clustered with complete linkage method with base R hclust(). PCoA 
ordination of Mash distances was performed with ape (Paradis et al., 
2004) function pcoa(). Group-wise non parametric testing was per
formed with R base statistic packages using function kruskal.test() or 
wilcox.test(), and adjusted p values were obtained based on Benjamini 
Hochberg correction. Permutational hypothesis testing (n iter
ations=10,000) of differences in group means between two groups was 
performed after up-sampling group data to balance observations using 
upsample() from the groupdata2 (Olsen, 2021) package. Analyses of 
variance (ANOVA) was performed with aov() and followed up with post 
hoc Tukey-Kramer testing using TukeyHSD() in base R. 

3. Results and discussion 

3.1. Bacterial concentrations were associated with water quality 
parameters, particularly total chlorine concentrations 

Water quality parameters were recorded for each sampling location 
and timepoint (Fig. 2A, Table S1). PCA analyses was conducted to assess 
whether water chemistry varied spatially and/or temporally. Nitrogen 
species were excluded from PCA analyses as their concentrations were 
below detection limit at several locations/timepoints and nitrate 
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concentrations also strongly correlated with conductivity (Pearson’s R 
= 0.88, p<0.001) and phosphate concentrations (Pearson’s R = 0.47, 
p<0.001). No clear clustering of samples by location or timepoint was 
observed despite drinking water samples being obtained from variable 
source waters (Fig. 2B). For instance, CAY, GUA, and MAN had higher 
mean and variable conductivities compared to other locations, which is 
consistent with source water type of these locations being groundwater. 
Phosphate, on the other hand, was relatively narrowly distributed across 
samples, and in lower concentration compared to other DW systems 
(Gooddy et al., 2015), with CAY location consistently higher than other 
PR locations. 

We quantified the abundance of 16S rRNA genes in all samples as a 
measure of bacterial concentrations (Fig. 2C). Volume normalized 16S 
rRNA gene copies (16S rRNA gene copies mL−1) ranged from 6.4 ×

10−2–9.1 × 104 copies mL−1. Independently regressing variables in the 
PCA as descriptors of log10(16S rRNA gene copies mL−1) for each 
location resulted in six significant (p<0.05) linear models. The goodness 
of fit for all models was relatively high with an average adjusted R2 of 
0.704 ± 0.062, and significant associations between log10(16S rRNA 
mL−1) and DO in CAR, pH in HUM, temperature in CAR, MAY and GUA, 
and TOC in AGU. However, regressing parameters against log10(16S 
rRNA mL−1) for all locations only resulted in statistically significant 
associations with temperature (adj R2 = 0.067, p < 0.05) and total 
chlorine (adj R2 = 0.227, p < 0.001). A multiple linear regression model 
with all water quality parameters as descriptors of log10(16S rRNA 
mL−1) (n = 51), indicated that total chlorine was the major driver 
associated with decreasing 16S rRNA gene concentrations (Adj R2 =

0.28, p<0.001, Fig. 3A, Table S3). Chlorine concentrations measured in 
samples were comparable to those reported in other US studies (Stanish 
et al., 2016), except for GUA where it was either below detection limit 
(BDL) or very low for all timepoints. All samples, except timepoint 1 in 
SJU, had total chlorine concentrations below 3 mg L−1 (Fig. 3B, 
Table S1). The negative relationship between bacterial load and chlorine 
concentration is particularly evident for SJU and CAR, where decreasing 
total chlorine concentration were associated with increased bacterial 
concentrations, relatively stable chlorine concentrations correspond to 
stable bacterial concentrations, and absence of chlorine shows high 
bacterial concentration, respectively (Fig. 3B). Not surprisingly, these 
results suggest that maintaining chlorine residual is critically important 
for ensuring low bacterial concentrations which could be particularly 
challenging due to infrastructure damage from natural disasters. Some 
locations did exhibit significant variation in chlorine concentrations 
between December 2017 and February 2018 (e.g., SJU, CAR, HAT), with 
some of these variations associated with water main breaks (e.g., CAR in 
December 2017). 

3.2. Microbial communities and metagenomes of PR samples were similar 
to those seen in other drinking water systems 

Based on total bacteria qPCR results and comparison to blanks, a 
select number of samples per location were subjected to metagenomic 
sequencing (n = 33, Fig. 2C, Table S4). The initial three sampling points 
for all locations were sequenced, unless their 16S rRNA gene copy 
numbers were below or equal to their matched controls. Further, any 

Fig. 2. (A) Concentrations of water quality parameters for nine locations from December 2017 to October 2018. Shapes and colors correspond to timepoints. All 
nitrite measurements were below detection limit (BDL, not shown), for ammonia 36 measurements were BDL, and for chlorine 3 samples were BDL. (B) Principal 
component analyses of water quality parameters. Colors and shapes correspond to sampling location. Direct labels of timepoints within sampling location, in white. 
The PCA does not show a clear clustering between samples or timepoints. (C) Gene copies of 16S rRNA gene for samples and blanks. Red lines correspond to samples 
and gray bars correspond to blanks. Comparison between samples and blanks guided sample selection for sequencing. Inverted black triangles denote samples that 
were sequenced. 
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other sampling point 10-fold or higher 16S rRNA gene copy numbers 
than the highest observed in the controls for corresponding timepoint 
was sequenced as well. A total of 1.18 Gb raw reads were generated after 
quality filtering and 1.16 Gb reads were not mapped against UniVec, 
resulting in less than 2.6% of the reads being discarded for the majority 
of samples (n = 31), only 2 samples (i.e. HUM_1, HUM_2) retained less 
than 92.5% of the raw reads (Table S4). Within sample diversity (Nd), as 
assessed by Nonpareil curves, ranged from 15.33 to 19.16 (Fig. 4A, 
Table S5). These indices rely on redundancy of reads in a metagenome to 
estimate diversity of metagenome, with higher Nd corresponding to 
more diverse communities. The Nd values observed here are consistent 
with those seen in other chlorinated drinking water systems (Dai et al., 
2020). The spread of observed Nd values within location was larger for 
GUA, HUM, and HAT, indicating higher temporal variation in diversity, 
while low variability in Nd values at CAR indicative of low temporal 
differences. Kruskal-Wallis test of Nd by location reveal significant dif
ferences in the median of at least one of the groups (p<0.05), however 
multiple hypothesis correction with Dunn test did not identify any sig
nificant pairwise differences. Significant and positive correlations were 
observed between Nd and pH at AGU (p<0.05), and Nd and DO at HUM 
(p<0.01), and significant negative correlations between HAT diversity 
and log10(16S rRNA mL−1) and CAY diversity and nitrate (p<0.05 for 
both locations). The median nonpareil estimated sample coverage 
attributed to sequencing effort across all samples was 90% and the range 
from the samples 70% to 97.9%. There were no time or location specific 
trends in variable coverage across samples. 

The reads were subsequently assembled and scaffolds identified as 

potential contamination were removed as outlined in the materials and 
methods section. A summary of statistics for the 9 co-assemblies that 
were generated can be found in Table S6. CAT was used to annotate true 
scaffolds (i.e., scaffolds retained post contamination analysis) and 
coverage information allowed us to obtain per sample profiles (Fig. 4B, 
Table S7). Bacteria generally constituted the largest portion in the 
samples from SJU, CAR, GUA, and CAY, with a mean relative abundance 
(RA) of 96.6 ± 1.72%. In contrast, scaffolds of eukaryotic origin (18.5 ±
19.5%) and unclassified scaffolds (5.62±2.85%) constituted a signifi
cant proportion of the community in MAN, HAT, AGU, MAY, and HUM. 
The RA of eukaryotic contigs is not consistent within locations, sug
gesting high temporal variation of the eukaryotic fraction in the systems. 
Despite highest eukaryotic contigs RA at timepoint 1 for AGU and MAY 
and timepoint 2 at HUM, water quality parameters at these sites had 
relatively low temporal variation. On the other hand, MAN had its 
highest RA at timepoint three when DO and phosphate concentrations 
were higher than mean values. In contrast with other sites with high 
contribution of eukaryotic contigs, MAN water source is groundwater. 
Phosphate concentration is associated with source water type and 
treatment processes (i.e., corrosion control). Douterelo et al. (Douterelo 
et al., 2018) compared metagenomic samples from sites with different 
source waters and saw dominance of bacteria and no significant differ
ences in the RA of eukaryotes. Moreover Inkinen et al. (Inkinen et al., 
2019) correlated the presence of phosphate concentrations with active 
eukaryotes in a chlorinated groundwater DWS in contrast with surface 
waters. At the HAT site, the largest eukaryotic RA was seen at timepoint 
1 consistent with highest chlorine concentration. Disinfection is a driver 

Fig. 3. (A) 16S rRNA gene copies normalized by volume correlated with total chlorine concentration. Colors and shapes correspond to sampling location. Total 
chlorine concentration was the major driver among all recorded water quality parameters when all samples were aggregated in a multiple linear regression model. 
The dashed line corresponds to an exponential decay fit characteristic to inactivation of bacteria. (B) Double y- axis plot with the concentration of log 16S rRNA gene 
copies normalized by volume (left, red) and total chlorine concentration (right, blue) by time point faceted by sampling location. Chlorine concentrations were 
compliant with EPA regulation and bacterial concentrations were within range of typical drinking water systems. Total chlorine concentration was below detection 
(BD) at GUA first three timepoints. On a per location basis, clear examples of the negative effect of total chlorine can be observed (i.e., SJU, MAN, and GUA), however 
other parameters may drive bacterial concentrations in the remaining locations. 
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of microbial composition in DWS and it likely reduced the contribution 
of bacterial community in these samples, resulting in an observed in
crease in the RA of eukaryotes. We further investigate the eukaryotic 
component of the microbial communities identified through CAT with 
MetaEuk (Figure S3, Table S8 and S9). MetaEuk based classification 
indicated that free living amoeba (FLA) capable of supporting intracel
lular growth of opportunistic pathogens (e.g., Vermamoeba, Acantha
moeba, etc.) were transiently detected at low RAs at CAR, MAN, HAT, 
AGU, MAY, CAY, and HUM (Figure S4, Table S9). Waterborne parasites 
like Giardia and Cryptosporidium were not detected. 

The coverage of scaffolds classified as bacteria was normalized by 
rpoB gene coverage in the respective samples to assess the bacterial 
community (Fig. 4C, Table S10). The proportion of bacterial scaffolds 
not classified beyond the domain level ranged from 9.20 to 24.80% and 
patterns were consistent within location. Similar to previous studies, 
Proteobacteria was the dominant phylum in the majority of samples, 
ranging from 27.31 to 90.07%, with a mean of 64.2 ± 16.6% for all 
samples. Actinobacteria and Planctomycetes were also detected in all 
samples. Actinobacteria is another group that is regularly detected in tap 
water (Hull et al., 2017). The Actinobacterial composition of MAN, HAT, 
AGU, MAY, and CAY tend to be higher relative to other locations, with 
an average RA of 9.10±6.95% in these samples, a mean 1.21±2.77% in 
other samples, and a global 5.27±6.61% RA. Planctomycetes is present 
at a RA greater than 1% in 72.72% of samples, but is predominant in 
CAR and AGU, with a mean RA of 13.41±15.08% and 20.58±7.24%, 
respectively, compared to a global average of 6.25±8.4%. On average, 
81.2 ± 9.61% of sample cumulative RA was not classified up to genus 

level. The dominant classified genera were Bradyrhizobium, Gemmata, 
Gemmatimonas, Hyphomicrobium, Methylobacterium, Mycobacterium, 
Novosphingobium, Pseudorhodoplanes, and Sphingomonas. We further 
compared the metagenomic assemblies recovered from the nine PR 
samples to other DWS (not impacted by natural disasters, i.e., undis
turbed, Table S11), to assess if there were indications of significant 
deviation that could be attributed to HM. There was no clear clustering 
of metagenomes as shown by PCoA ordination of pairwise Mash dis
tances including the nine co-assemblies from PR and 52 co-assemblies 
from other DWS (Fig. 5A). Furthermore, there was no statistical differ
ence between pairwise Mash distances grouped as PR vs other DWS and 
other DWS vs other DWS using permutational t tests (p>0.3, Fig. 5B). 
This suggests that the differences in metagenomes between HM 
impacted and other DWSs are similar to those observed between other 
DWSs. Additionally, complete linkage clustering indicated that SJU, 
MAN, HAT, and AGU, and GUA and CAY clustered closely, both within 
and between each other; CAR did not cluster directly with another 
location and MAY and HUM were similar, but separate from the rest of 
the PR locations (Figure S5A). The respective Mash distances of early 
and late samples clustered identically as the previous analyses when 
leveraging coverage data and CAT classification of scaffolds to subset 
scaffolds pertinent to these categories (Figure S5B-C). This indicates that 
the metagenomes from the samples collected in PR were largely 
consistent with what would be expected from drinking water samples, 
irrespective of time of collection (i.e., December 2017 or October 2018). 

Fig. 4. Diversity of microbial communities in metagenomes. (A) Nonpareil curves faceted by location. Each curve within facet denotes a sample directly labelled by 
timepoint. Respective Nonpareil diversity (Nd) is shown in table on the top left corner of each facet. The bars correspond to the sample estimated sequencing effort. 
Nd value indicates within sample community complexity in the sequence space. (B) Domain level relative abundances (RA) calculated with sample coverage in
formation and CAT annotations. RAs greater than 5% are directly labelled. In some locations a large proportion of the samples were not classified, but Bacteria makes 
up the largest portion of most samples. (C) Relative abundances at Phylum level. Scaffolds classified to Bacterial domain were designated as 100%. Proteobacteria 
was the dominant phyla in the majority of samples. 
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3.3. Opportunistic premise plumbing pathogens were ubiquitous and 
detected at low concentrations 

Genera that contain pathogenic species (i.e., Legionella, Leptospira, 

Mycobacterium, and Pseudomonas) were further investigated (Fig. 6A) 
using CAT annotations with additional support from Kraken and/or 
Kaiju. While monitoring of indicator organisms and residual chlorine is 
part of the emergency response in the aftermath of hurricanes 

Fig. 5. (A) PCoA ordination of Mash distances between DWS, including PR co-assemblies and reference DWSs. (B) Distribution of Mash distances prior to up 
sampling used for permutational t-test with group 1: other vs other and group 2: PR vs others. No significant differences were observed (p>0.3) between groupings. 
Colors and shapes correspond to PR locations or reference DWS. 

Fig. 6. (A) rpoB normalized coverage of selected genera relevant to drinking water systems. Annotations are based on CAT classification and support from Kaiju or/ 
and Kraken. (B) Ratio of copy numbers of targets (i.e. Legionella pneumophila, Legionella spp., and Mycobacterium spp.) to 16S rRNA gene copies above LOQ. Colors and 
shapes correspond to timepoints. Legionella spp. and Mycobacterium spp. are ubiquitous and more abundant than other targets. Notice the color change for detected, 
but not quantifiable (LOD, red hues), and quantifiable (LOQ, blue hues) Pseudomonas aeruginosa or Mycobacterium avium were not detected in any samples. 
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(Patterson and Adams, 2011), challenges with regulatory compliance 
were common in PR prior to HM and testing laboratories remained 
non-operational months after the hurricane. Further there was no sys
tematic effort to monitor the prevalence of OPPPs (e.g., Legionella, 
Pseudomonas, and NTM). Heavy rain and flooding can severely impact 
water sources and as a result, distribution systems may increase the 
prevalence of pathogens in drinking water systems, leading to potential 
health risks. 

Previous studies have reported the incidence of waterborne illnesses 
post hurricanes, including diseases with Legionella, NTM and Leptospira 
as causative agents (Maness, 2019; Shukla et al., 2018; Sutter and Sosa 
Pascual, 2018; Walker, 2018). Of the potential OPPP genera, Legionella 
and Mycobacterium were detected in most locations, while Pseudo
monas was consistently detected in MAN, HAT, and HUM. Pathogenic 
Leptospira was only detected in GUA. There were statistically significant 
(Wilcoxon test, p<0.05) temporal differences in relative abundances of 
OPPPs for Legionella in MAN, Mycobacterium in HAT, MAY, GUA, and 
HUM, and Pseudomonas in HAT. 

We used qPCR to quantify the abundance of Legionella spp. and 
Mycobacterium spp., while also conducting more targeted assays to detect 
and quantify the abundance of Legionella pneumophila, Mycobacterium 
avium, and Pseudomonas aeruginosa, and pathogenic species of the Lep
tospira genus (Fig. 6B). Mycobacterium avium and Pseudomonas aerugi
nosa were not detected in any of the samples. The mean concentration 
for Legionella pneumophila, Legionella spp., and Mycobacterium spp. in the 
samples was 0.71, 7.03, and 1.65 copies mL−1, respectively. 

Mycobacterium spp. were observed in all locations with a general 
frequency of detection of 61.11%. Mycobacterium spp. were detected at 
every sampling timepoint in MAN, GUA, and CAY at very low concen
trations (1.17±1.19 copies mL−1), while their concentrations were as 
high as 10 copies mL−1 at CAR and only detected in the first three 
timepoints. Consistent with metagenomic results, Legionella spp. was 
widely observed across all sampling locations at a 44.44% frequency of 
detection, with highest concentrations observed in SJU, CAR, and GUA. 
Legionella spp. concentrations decreased from 5 and 12 copies mL−1 at 
SJU and CAR, respectively to non-detects from December 2017 to 
October 2018. Legionella spp. thrive in warmer temperatures (Lesnik 
et al., 2016), such as those in PR. Interestingly, concentrations Legionella 
spp. and Mycobacterium spp. are several orders of magnitude lower that 
what has been published in literature (Huang et al., 2021; Isaac and 
Sherchan, 2020; Ley et al., 2020; Liu et al., 2019) (i.e., 1–104 copies 
mL−1). A potential reason for this could be over-chlorination in the 
systems, which had been reported in the aftermath of HM (Brown et al., 
2018), including in early phase of sampling as this study showed. 

The dotA gene assay to target Legionella pneumophila revealed low 
concentrations (i.e., 0.72±0.61 copies mL−1 for SJU and GUA locations. 
However, in SJU, L. pneumophila was detected only in timepoint 5, while 
being detected at GUA at all timepoints. This is consistent with obser
vations from other DWS where Legionella pneumophila was detected at 
low frequency and low concentrations (Lu et al., 2016; Wang et al., 
2012). 

The LipL32 gene of pathogenic Leptospira was not quantifiable, but 
detected only in GUA and at timepoints 1, and 4 (i.e., 3.7% frequency). 
The detection of Leptospira at this location was consistent with the 
detection of the genus Leptospira using metagenomics. Leptospira is not 
routinely reported in DWS, apart from the recent study by Keenum et al. 
(Keenum et al., 2021), possibly due to the efficacy of routine disinfection 
practices in the elimination of this pathogen (Wynwood et al., 2014). 
However, its importance has been highlighted in rivers and creeks when 
used as drinking water without proper treatment, particularly in situa
tions of water scarcity, such as hurricanes (Keenum et al., 2021; Truitt 
et al., 2020). The presence of Leptospira in GUA is possibly exacerbated 
by the absence of residual chlorine at this location. 

3.4. A small fraction of recovered metagenome assembled genomes were 
associated with pathogens 

Metagenomes were co-assembled by location, binned, and manually 
refined with anvi’o. 105 bacterial MAGs were recovered after der
eplication with dRep and quality filtering for completeness greater than 
50% and percent redundancy lower than 10%. We identified one or 
more 16S rRNA in 39% of the MAGs. Further, we compared the differ
ences in abundances between samples by accounting for MAGs read 
recruitment. Of these, 37% of the MAGs were detected in a quarter or 
more of the samples (Fig. 7, Table S12). The PR MAGs were shared 
homology with 4.55% of a recently published JGI MAG collection based 
on ANI values ranging from 74.65 to 99.49%. JGI MAGs ecosystem 
categories represent aquatic (36.75%), human (31.31%), terrestrial 
(6.5%), built environment (5.03%), and wastewater (5%) environments. 
In contrast, the ecosystem distribution of the PR MAGs pairwise com
parisons with JGI MAGs was comprised of aquatic (32.49%), terrestrial 
(20.57%), built environment (13.64%), plants (12.5%), and lab 
enrichment (4.95%) habitats. The aquatic ecosystem had the largest 
number of same species representation (20% of PR MAGs, Fig. 7) with 
species boundaries level set at 83% cutoff threshold (Jain et al., 2018), 
and included 2 JGI MAGs also recovered from DWS. 

Despite this observation, the JGI MAG dataset suffers from lack of 
representation of MAGs assembled from DWS habitats (n = 7). There
fore, a complimentary approach was used by mapping metagenomic 
reads from diverse ecosystems against the MAGs assembled in this study 
using the SearchSRA tool. This analysis indicated that the aquatic 
ecosystem was found to be the top environmental association for 63.8% 
of our recovered MAGs, the other top ecosystems were terrestrial 
(21.9%), human (13.3%), and mammal (1.0%) associated environments 
(Fig. 7). However, if we consider the top four environments, aquatic 
ecosystem category is represented in all of our MAGs. There were sta
tistically significant differences (ANOVA, p<0.001) between the pro
portion of reads mapping from each ecosystem category mapping to the 
PR MAGs, the only pairwise comparisons that were not statistically 
significant were terrestrial vs aquatic (Tukey’s, p = 0.96) and mammals 
vs human environments (Tukey’s, p = 0.06). Additionally, more than 
13% of the aquatic ecosystem metagenomes were associated with DWS. 
Altogether, these analyses show that our MAGs are widely distributed in 
the environment, but are largely associated with aquatic and DWS 
associated environments. 

The classification of resulting representative MAGs consisted of 
64.8% Proteobacteria, followed by 14.3% Cyanobacteria, 12.4% 
Planctomycetota, and 3.81% Actinobacteriota. All of the Actinobacteria 
MAGs were classified as Mycobacterium. More than 50% of the MAGs 
were not classified to genus level. The most abundant genera among the 
MAGs included Hyphomicrobium (n = 6), Bradyrhizobium (n = 4), 
Gemmata (n = 4), Mycobacterium (n = 4), and Porphyrobacter (n = 4). 
There was no relationship between environmental parameters and MAG 
abundance as assessed by Mantel statistic (r = 0.133, p > 0.05) or 
constrained redundancy analyses. Three of the four Mycobacterium 
MAGs were classified up to species level and correspond to Mycobacte
rium gordonae, Mycobacterium paragordonae, and Mycobacterium phocai
cum, all of which have been recovered from drinking water systems 
previously and are associated with infections in immunocompromised 
individuals (Shachor-Meyouhas et al., 2014). M. gordonae was more 
abundant (RPKM=2.27±2.77) and frequently detected (58%) than M. 
paragordonae (RPKM=0.77±0.41, 42% detection). Nevertheless, their 
abundance and frequency of detection was higher than for M. phocaicum 
(RPKM=1.8 ± 1.9, 15% detection). Mycobacterium MAGs were not 
detected from SJU, and infrequently detected at CAR, GUA, and HUM. A 
single Pseudomonas MAG was recovered and classified as Pseudomonas 
alcaligenes. This MAG was only detected once and at the first timepoint 
at CAR, HAT, AGU, and MAY. At the MAN location, it was detected in 
the initial and final timepoint and at higher abundance at the final 
timepoint. Pseudomonas alcaligenes carries multiple antibiotic resistance 
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genes, are considered opportunistic human pathogens and have been 
identified in previous literature characterizing drinking water systems, 
particularly in chlorinated systems (Jia et al., 2019; Ma et al., 2019). 

4. Conclusion 

This study characterized the microbial communities of nine locations 
in the aftermath of severe hurricanes (i.e., Irma and Maria) in a spatial- 
temporal yearlong survey using targeted and non-targeted molecular 
methods. Our results highlight that maintaining a disinfectant residual 
helps manage microbial concentration at the taps, yet sampling loca
tions showed significant variation in the earlier timepoints. The esti
mated bacterial concentrations based on 16S rRNA gene abundance at 
the sampling locations were consistent with literature established values 
characterizing DWSs and generally decreased over time. Additionally, 

members of the microbial community were comparable to those found 
in other DWSs which were not impacted by natural disasters. Regardless 
of the ubiquity of some targeted OPPPs, such as Legionella spp. and 
Mycobacterium spp., they were present at low concentrations. Interest
ingly, pathogenic Leptospira was only detected at a single location and 
its presence could be associated with a lack of disinfectant residual at 
that site. A small fraction of metagenome assembled genomes were 
associated with potential pathogens, and other recovered MAGs repre
sent previously reported taxa routinely found in drinking water systems. 
Altogether, the water disruptions (i.e., no water or intermittent supply) 
that were sustained after HM did not have a significant impact on the 
microbiological quality of drinking water in our study sites. 

Fig. 7. Metagenomic assembled genomes (MAG) information. From left to right: Phylogenomic tree of 105 recovered MAGs. Each branch is labelled by MAG code 
(italics) and marker lineage of MAG classified by GTDB-tk and annotated by color of phylum. Heatmap rows correspond to respective MAG and color gradient denotes 
log10(RPKM) values of MAGs detected in samples. A MAG was considered detected if ≥ 25% of its bases were covered by at least one read from the corresponding 
sample. Presence of color denotes detection of MAG and the blue gradient becomes lighter as abundance (i.e., RPKM) increases. Triangles in the heatmap highlight 
Pseudomonas spp. (white) and Mycobacterium spp. (black). MAG completeness ranges from 50 to 100% with color gradient from pale green to blue increasing value 
and contamination ranges from 0 to 10% with intense red corresponding to higher values. Red diamonds correspond to MAGs with one or more 16S rRNA gene 
detected. The highest ANI value between JGI MAGs and corresponding MAG from this study is colored according to ecosystem categories from JGI MAGs, if blank, no 
ANI above 83% was observed for that particular MAG. SearchSRA top environmental niche is depicted using the same color legend. 
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Ryzhikov, I., Täubel, M., Kauppinen, A., Paananen, J., Miettinen, I.T., Torvinen, E., 
Kolehmainen, M., Pitkänen, T., 2019. Active eukaryotes in drinking water 
distribution systems of ground and surface waterworks. Microbiome 7, 1–17. 
https://doi.org/10.1186/s40168-019-0715-5 https://doi.org/.  

Isaac, T.S., Sherchan, S.P., 2020. Molecular detection of opportunistic premise plumbing 
pathogens in rural Louisiana’s drinking water distribution system. Environ. Res. 181, 
108847 https://doi.org/10.1016/j.envres.2019.108847 https://doi.org/.  

Jain, C., Rodriguez-R, L.M., Phillippy, A.M., Konstantinidis, K.T., Aluru, S., 2018. High 
throughput ANI analysis of 90K prokaryotic genomes reveals clear species 
boundaries. Nat. Commun. 9, 1–8. https://doi.org/10.1038/s41467-018-07641-9 
https://doi.org/.  

Jia, S., Wu, J., Ye, L., Zhao, F., Li, T., Zhang, X.X., 2019. Metagenomic assembly provides 
a deep insight into the antibiotic resistome alteration induced by drinking water 
chlorination and its correlations with bacterial host changes. J. Hazard. Mater. 379, 
120841 https://doi.org/10.1016/j.jhazmat.2019.120841 https://doi.org/.  

Jiang, S.C., Han, M., Chandrasekaran, S., Fang, Y., Kellogg, C.A., 2020. Assessing the 
water quality impacts of two Category-5 hurricanes on St. Thomas, Virgin Islands. 
Water Res. 171, 115440 https://doi.org/10.1016/j.watres.2019.115440 https://doi. 
org/.  

Keenum, I., Medina, M.C., Garner, E., Pieper, K.J., Blair, M.F., Milligan, E., Pruden, A., 
Ramirez-Toro, G., Rhoads, W.J., 2021. Source-to-tap assessment of microbiological 
water quality in small rural drinking water systems in puerto rico six months after 
hurricane maria. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.0c08814 
https://doi.org/.  

Kishore, N., Marqués, D., Mahmud, A., Kiang, M.V., Rodriguez, I., Fuller, A., Ebner, P., 
Sorensen, C., Racy, F., Lemery, J., Maas, L., Leaning, J., Irizarry, R.A., Balsari, S., 
Buckee, C.O., 2018. Mortality in Puerto Rico after Hurricane Maria. N. Engl. J. Med. 
379, 162–170. https://doi.org/10.1056/NEJMsa1803972 https://doi.org/.  

Landsman, M.R., Rowles, L.S., Brodfuehrer, S.H., Maestre, J.P., Kinney, K.A., Kirisits, M. 
J., Lawler, D.F., Katz, L.E., 2019. Impacts of hurricane harvey on drinking water 
quality in two Texas cities. Environ. Res. Lett. 14 https://doi.org/10.1088/1748- 
9326/ab56fb https://doi.org/.  
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