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Abstract

We consider the problem of black-box multi-objective optimization (MOO) using expen-
sive function evaluations (also referred to as experiments), where the goal is to approximate
the true Pareto set of solutions by minimizing the total resource cost of experiments. For
example, in hardware design optimization, we need to find the designs that trade-off per-
formance, energy, and area overhead using expensive computational simulations. The key
challenge is to select the sequence of experiments to uncover high-quality solutions using
minimal resources. In this paper, we propose a general framework for solving MOO prob-
lems based on the principle of output space entropy (OSE) search: select the experiment
that maximizes the information gained per unit resource cost about the true Pareto front.
We appropriately instantiate the principle of OSE search to derive efficient algorithms for
the following four MOO problem settings: 1) The most basic single-fidelity setting, where
experiments are expensive and accurate; 2) Handling black-box constraints which cannot
be evaluated without performing experiments; 3) The discrete multi-fidelity setting, where
experiments can vary in the amount of resources consumed and their evaluation accuracy;
and 4) The continuous-fidelity setting, where continuous function approximations result in
a huge space of experiments. Experiments on diverse synthetic and real-world benchmarks
show that our OSE search based algorithms improve over state-of-the-art methods in terms
of both computational-efficiency and accuracy of MOO solutions.

1. Introduction

Many engineering and scientific applications involve making design choices to optimize
multiple objectives. Some examples include tuning the knobs of a compiler to optimize per-
formance and efficiency of a set of software programs; designing new materials to optimize
strength, elasticity, and durability; and designing hardware to optimize performance, power,
and area. There are a few common challenges in solving these kind of multi-objective opti-
mization (MOO) problems: 1) The objective functions are unknown and we need to perform
expensive experiments to evaluate each candidate design choice, where expense is measured
in terms of the consumed resources (physical or computational). For example, performing
computational simulations and physical lab experiments for hardware optimization and ma-
terial design applications respectively. 2) The objectives are conflicting in nature and all of
them cannot be optimized simultaneously. Therefore, we need to find the Pareto optimal
set of solutions. A solution is called Pareto optimal if it cannot be improved in any of
the objectives without compromising some other objective. 3) The solutions may need to
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satisfy black-box constraints, which cannot be evaluated without performing experiments.
For example, in aviation power system design applications, we need to find the designs that
trade-off total energy and mass while satisfying specific thresholds for motor temperature
and voltage of cells. 4) We have the ability to perform multi-fidelity experiments (discrete
or continuous) to evaluate objective functions via cheaper approximations, which vary in
the amount of resources consumed and their accuracy. For example, in hardware design op-
timization, we can use multi-fidelity simulators for design evaluations. We want to leverage
this additional freedom to reduce the overall cost for optimization. Real-world MOO prob-
lems come with two or more of the above challenges and the overall goal is to approximate
the optimal Pareto set while minimizing the total resource cost of conducted experiments.

Bayesian Optimization (BO) (Shahriari, Swersky, Wang, Adams, & De Freitas, 2016)
is an effective framework to solve black-box optimization problems with expensive func-
tion evaluations. The key idea behind BO is to build a cheap surrogate statistical model,
e.g., Gaussian Process (Williams & Rasmussen, 2006), using the real experimental data;
and employ it to intelligently select the sequence of experiments or function evaluations
using an acquisition function, e.g., expected improvement (EI) and upper-confidence bound
(UCB). There is a large body of literature on single-objective BO algorithms (Shahriari
et al., 2016) and their applications including hyper-parameter tuning of machine learning
methods (Snoek, Larochelle, & Adams, 2012; Kotthoff, Thornton, Hoos, Hutter, & Leyton-
Brown, 2017). However, there is relatively less work on the more challenging problem
of BO for multiple objective functions (first and second challenges) (Hernández-Lobato,
Hernandez-Lobato, Shah, & Adams, 2016), very limited work on the constrained multi-
objective optimization problem (third challenge), and no prior work on multi-objective op-
timization in the multi-fidelity setting (fourth challenge). To the best of our knowledge, this
is the first work on discrete and continuous-fidelity settings for multi-objective BO within
the ML literature as discussed in the related work section.

Prior work on multi-objective BO is lacking in the following ways. Many algorithms
reduce the problem to single-objective optimization by designing appropriate acquisition
functions, e.g., expected improvement in Pareto hypervolume (Knowles, 2006; Emmerich &
Klinkenberg, 2008). This can potentially lead to aggressive exploitation behavior. Addition-
ally, algorithms to optimize Pareto Hypervolume (PHV) based acquisition functions scale
poorly as the number of objectives and the dimensionality of input space grows. There are
also methods that rely on input space entropy based acquisition function (Hernández-Lobato
et al., 2016) to select the candidate inputs for evaluation. However, it is computationally
expensive to approximate and optimize this acquisition function.

In this paper, we study a general framework for solving a large-class of black-box MOO
problems based on the principle of output space entropy (OSE) search (Wang & Jegelka,
2017; Hoffman & Ghahramani, 2015). Our work is inspired by the prior success of the OSE
principle for solving single-objective BO problems and is an extension of Wang and Jegelka
(2017) to several multi-objective optimization settings. The key idea is to select the input
and fidelity vector (if applicable) that maximizes the information gain per unit resource
cost about the optimal Pareto front in each iteration. Output space entropy search has
many advantages over algorithms based on input space entropy search (Belakaria, Deshwal,
& Doppa, 2019): a) it allows much tighter approximation; b) it is cheaper to compute; and
c) it naturally lends itself to robust optimization with respect to the number of samples
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used for acquisition function computation. We appropriately instantiate the OSE principle
to derive efficient algorithms for solving four qualitatively different MOO problems: the
most basic single-fidelity setting (Belakaria et al., 2019), MOO with black-box constraints,
discrete multi-fidelity setting (Belakaria, Deshwal, & Doppa, 2020a), and continuous-fidelity
setting. Comprehensive experiments on diverse synthetic and real-world benchmarks show
that our OSE search based algorithms are computationally-efficient and perform better than
the state-of-the-art algorithms.

Contributions. The main contribution of this paper is the development and evaluation
of multi-objective BO algorithms based on the principle of output space entropy search for
four different MOO problem settings. Specific contributions include the following:

• Development of an approach referred to as MESMO to solve the most basic MOO
problem in the single-fidelity setting, where experiments are expensive and accurate
(Belakaria et al., 2019).

• Development of an approach referred to as MESMOC to handle MOO problems with
black-box constraints, which cannot be evaluated without performing experiments.

• Development of an approach referred to as MF-OSEMO to solve MOO problems in the
discrete multi-fidelity setting, where experiments can vary in the amount of resources
consumed and their evaluation accuracy (Belakaria et al., 2020a).

• Development of an approach referred to as iMOCA to solve MOO problems in the
continuous-fidelity setting, where continuous function approximations result in a huge
space of experiments with varying cost. We provide two qualitatively different approx-
imations for iMOCA.

• Experimental evaluation on diverse synthetic and real-world benchmark problems to
demonstrate the effectiveness of the proposed algorithms over existing MOO algo-
rithms and a naive continuous-fidelity baseline.

• Open-source code for all methods: MESMO1, MESMOC2, MF-OSEMO3, and iMOCA4

2. Background and Problem Setup

In this section, we first provide an overview of the generic Bayesian optimization framework.
Next, we formally define the different MOO problem settings considered in this work.

2.1 Bayesian Optimization Framework

Bayesian Optimization (BO) is a very efficient framework to solve global optimization prob-
lems using black-box evaluations of expensive objective functions. Let X ⊆ <d be an input
space. In the single-objective BO formulation, we are given an unknown real-valued objec-
tive function f : X 7→ <, which can evaluate each input x ∈ X to produce an evaluation y
= f(x). Each evaluation f(x) is expensive in terms of the consumed resources. The main

1. github.com/belakaria/MESMO
2. github.com/belakaria/MESMOC
3. github.com/belakaria/MF-OSEMO
4. github.com/belakaria/iMOCA
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Max-value Entropy Search for Multi-Objective Bayesian Optimization

q Bayesian optimization (BO) is a framework to maximize 
expensive black-box functions using the following elements: 

!

Ø Statistical models as a prior for the functions: Gaussian processes 
(GPs) can provide prediction " ! and uncertainty via variance #(!)

Ø Acquisition function to score the utility of evaluating input !
Ø Optimization procedure to select the best input ! for evaluation

Multi-Objective Bayesian Optimization

q Input space entropy-based acquisition function

qOutput space entropy-based acquisition function

qHow to sample &∗ ?  
Ø Sample functions from posterior GPs based on random Fourier 
features sampling procedure. We approximate each GP prior as ()* =
, ! -., where . ~ 0(0, 3).

Ø Solve a cheap multi-objective optimization problem over the sampled 
functions ()4 … ()6 to compute sample Pareto front 

q For each function, select the maximum-value in the cheap Pareto front 
78∗ as an upper bound for the truncated Gaussian

qMESMO’s Acquisition Function 
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,	B and F are the p.d.f and c.d.f of a standard normal distribution 

q Theoretical Regret Bound
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MESMO Algorithm

qDrawbacks of existing methods
Ø Scalarization: relies on random scalars that can be sub-optimal 
Ø Hypervolume improvement: not scalable for high-dimensional input 
spaces and large number of objective functions

Ø Input space entropy search: maximizes information gain about the 
optimal Pareto set `∗. Relies on approximating a very expensive and 
high-dimensional (a. b) distribution over input space, where a is the 
size of sample Pareto set and b is the dimensionality of input space.

Prior Work and Our Contributions

q Evaluation metrics
Ø The Pareto hypervolume difference: hypervolume between c∗ deb fcJ
Ø G] Indicator: Average distance between points in c∗ deb fcJ

qMESMO vs. State-of-the-art
Ø MESMO consistently performs better than all baselines and also
converges much faster

Ø MESMO is robust to the number of samples: it maintains better 
performance consistently even with a single sample!

Experiments and Results
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next input for evaluation. ParEGO is simple and fast, but more advanced approaches often outperform
it. Many methods optimize the Pareto hypervolume (PHV) metric [5] that captures the quality of a
candidate Pareto set. This is done by extending the standard acquisition functions to PHV objective,
e.g., expected improvement in PHV (EHI) [5] and probability of improvement in PHV (SUR)[17].
Unfortunately, algorithms to optimize PHV based acquisition functions scale very poorly and are
not feasible for more than two objectives. SMSego is relatively faster method [19]. To improve
scalability, the gain in hypervolume is computed over a limited set of points: SMSego finds those
set of points by optimizing the posterior means of the GPs. A common drawback of this family of
algorithms is that reduction to single-objective optimization can potentially lead to more exploitation
behavior with sub-optimal results.

PAL [31] and PESMO [7] are principled algorithms based on information theory. PAL tries to
classify the input points based on the learned models into three categories: Pareto optimal, non-Pareto
optimal, and uncertain. In each iteration, it selects the candidate input for evaluation towards the
goal of minimizing the size of uncertain set. PAL provides theoretical guarantees, but it is only
applicable for input space X with finite set of discrete points. PESMO [7] relies on input space
entropy based acquisition function and iteratively selects the input that maximizes the information
gained about the optimal Pareto set X ⇤. Unfortunately, optimizing this acquisition function poses
significant challenges: a) requires a series of approximations, which can be potentially sub-optimal;
and b) optimization, even after approximations, is expensive c) performance is strongly dependent
on the number of Monte-Carlo samples. In comparison, our proposed output space entropy based
acquisition function overcomes the above challenges, and allows efficient and robust optimization.
More specifically, the time complexities of acquisition function computation in PESMO and MESMO
ignoring the time to solve cheap MO problem that is common for both algorithms are O(SKm3)
and O(SK) respectively, where S is the number of Monte-Carlo samples, K is the number of
objectives, andm is the size of the sample Pareto set in PESMO. Additionally, as demonstrated in
our experiments, MESMO is very robust and performs very well even with one sample.

4 MESMO Algorithm for Multi-Objective Optimization
In this section, we explain the technical details of our proposed MESMO algorithm. We first mathe-
matically describe the output space entropy based acquisition function and provide an algorithmic
approach to efficiently compute it. Subsequently, we theoretically analyze MESMO in terms of
asymptotic regret bounds.

Surrogate models. Gaussian processes (GPs) are shown to be effective surrogate models in prior
work on single and multi-objective BO [8, 27, 26, 25, 7]. Similar to prior work [7], we model the
objective functions f1, f2, · · · , fK usingK independent GP modelsM1,M2, · · · ,MK with zero
mean and i.i.d. observation noise. Let D = {(xi,yi)}t�1

i=1 be the training data from past t�1 function
evaluations, where xi 2 X is an input and yi = {y1i , y2i , · · · , yKi } is the output vector resulting from
evaluating functions f1, f2, · · · , fK at xi. We learn surrogate modelsM1,M2, · · · ,MK from D.

Output space entropy based acquisition function. Input space entropy based methods like PESMO
[7] selects the next candidate input xt (for ease of notation, we drop the subscript in below discussion)
by maximizing the information gain about the optimal Pareto set X ⇤. The acquisition function based
on input space entropy is given as follows:

↵(x) = I({x,y},X ⇤ | D) (4.1)
= H(X ⇤ | D)� Ey[H(X ⇤ | D [ {x,y})] (4.2)
= H(y | D,x)� EX⇤ [H(y | D,x,X ⇤)] (4.3)

Information gain is defined as the expected reduction in entropy H(.) of the posterior distribution
P (X ⇤ | D) over the optimal Pareto set X ⇤ as given in Equations 4.2 and 4.3 (resulting from
symmetric property of information gain). This mathematical formulation relies on a very expensive
and high-dimensional (m · d dimensions) distribution P (X ⇤ | D), where m is size of the optimal
Pareto set X ⇤. Furthermore, optimizing the second term in r.h.s poses significant challenges: a)
requires a series of approximations [7] which can be potentially sub-optimal; and b) optimization,
even after approximations, is expensive c) performance is strongly dependent on the number of
Monte-Carlo samples.

To overcome the above challenges of computing input space entropy based acquisition function, we
take an alternative route and propose to maximize the information gain about the optimal Pareto

3

front Y⇤. This is equivalent to expected reduction in entropy over the Pareto front Y⇤, which relies
on a computationally cheap and low-dimensional (m ·K dimensions, which is significantly less than
m · d as K ⌧ d in practice) distribution P (Y⇤ | D). Our acquisition function that maximizes the
information gain between the next candidate input for evaluation x and Pareto front Y⇤ is given as:

↵(x) = I({x,y},Y⇤ | D) (4.4)
= H(Y⇤ | D)� Ey[H(Y⇤ | D [ {x,y})] (4.5)
= H(y | D,x)� EY⇤ [H(y | D,x,Y⇤)] (4.6)

The first term in the r.h.s of equation 4.6 (entropy of a factorizable K-dimensional gaussian distribution
P (y | D,x)) can be computed in closed form as shown below:

H(y | D,x) =
K(1 + ln(2⇡))

2
+

KX

i=1

ln(�i(x)) (4.7)

where �2
i (x) is the predictive variance of i

th GP at input x. The second term in the r.h.s of equation 4.6
is an expectation over the Pareto front Y⇤. We can approximately compute this term via Monte-Carlo
sampling as shown below:

EY⇤ [H(y | D,x,Y⇤)] ' 1

S

SX

s=1

[H(y | D,x,Y⇤
s )] (4.8)

where S is the number of samples and Y⇤
s denote a sample Pareto front. The main advantages of our

acquisition function are: computational efficiency and robustness to the number of samples. Our
experiments demonstrate these advantages over input space entropy based acquisition function.

There are two key algorithmic steps to compute Equation 4.8: 1) How to compute Pareto front
samples Y⇤

s ?; and 2) How to compute the entropy with respect to a given Pareto front sample Y⇤
s ?

We provide solutions for these two questions below.

1) Computing Pareto front samples via cheap multi-objective optimization. To compute a
Pareto front sample Y⇤

s , we first sample functions from the posterior GP models via random fourier
features [8, 20] and then solve a cheap multi-objective optimization over theK sampled functions.

Sampling functions from posterior GP. Similar to prior work [8, 7, 26], we employ random
fourier features based sampling procedure. We approximate each GP prior as f̃ = �(x)T ✓, where
✓ ⇠ N(0, I). The key idea behind random fourier features is to construct each function sample
f̃(x) as a finitely parametrized approximation: �(x)T ✓, where ✓ is sampled from its corresponding
posterior distribution conditioned on the data D obtained from past function evaluations: ✓|D ⇠
N(A�1�Tyn,�

2A�1), where A = �T�+ �2I and �T = [�(x1), · · · ,�(xt�1)].

Cheap MO solver. We sample f̃i from GP modelMi for each of theK functions as described
above. A cheap multi-objective optimization problem over theK sampled functions f̃1, f̃2, · · · , f̃k
is solved to compute sample Pareto front Y⇤

s . This cheap multi-objective optimization also allows us
to capture the interactions between different objectives. We employ the popular NSGA-II algorithm
[3] to solve the MO problem with cheap objective functions noting that any other algorithm can be
used to similar effect.

2) Entropy computation with a sample Pareto front. Let Y⇤
s = {z1, · · · , zm} be the sample

Pareto front, where m is the size of the Pareto front and each zi = {z1i , · · · , zKi } is a K-vector
evaluated at theK sampled functions. The following inequality holds for each component yj of the
K-vector y = {y1, · · · , yK} in the entropy term H(y | D,x,Y⇤

s ):

yj  max{zj1, · · · zjm} 8j 2 {1, · · · ,K} (4.9)

The inequality essentially says that the jth component of y (i.e., yj) is upper-bounded by a value
obtained by taking the maximum of jth components of all m K-vectors in the Pareto front Y⇤

s . This
inequality can be proven by a contradiction argument. Suppose there exists some component yj of
y such that yj > max{zj1, · · · zjm}. However, by definition, y is a non-dominated point because no
point dominates it in the jth dimension. This results in y 2 Y⇤

s which is a contradiction. Therefore,
our hypothesis that yj > max{zj1, · · · zjm} is incorrect and inequality 4.9 holds.

4

Input dimension d

Requires 
approximation

Output dimension k < < d

Sum of truncated 
Gaussians

By combining the inequality 4.9 and the fact that each function is modeled as a GP, we can model
each component yj as a truncated Gaussian distribution since the distribution of yj needs to satisfy
yj  max{zj1, · · · zjm}. Furthermore, a common property of entropy measure allows us to decompose
the entropy of a set of independent variables into a sum over entropies of individual variables [2]:

H(y | D,x,Y⇤
s ) '

KX

j=1

H(yj |D,x,max{zj1, · · · zjm}) (4.10)

Equation 4.10 and the fact that the entropy of a truncated Gaussian distribution[13] can be computed
in closed form gives the following mathematical expression for the entropy term H(y | D,x,Y⇤

s ).
We provide the complete details of the derivation in the Appendix.

H(y | D,x,Y⇤
s ) '

KX

j=1

"
(1 + ln(2⇡))

2
+ ln(�j(x)) + ln�(�j

s(x))�
�j
s(x)�(�

j
s(x))

2�(�j
s(x))

#
(4.11)

where �j
s(x) =

yj⇤
s �µj(x)
�j(x)

, yj⇤s = max{zj1, · · · zjm}, and � and � are the p.d.f and c.d.f of a standard
normal distribution respectively. By combining equations 4.7 and 4.11 with Equation 4.6, we get the
final form of our acquisition function as shown below:

↵(x) ' 1

S

SX

s=1

KX

j=1

"
�j
s(x)�(�

j
s(x))

2�(�j
s(x))

� ln�(�j
s(x))

#
(4.12)

A complete description of the MESMO algorithm is given in Algorithm 1. The blue colored steps
correspond to computation of our output space entropy based acquisition function via sampling.

Algorithm 1MESMO Algorithm
Input: input space X;K blackbox objective functions f1(x), f2(x), · · · , fK(x); and maximum no.
of iterations Tmax

1: Initialize Gaussian process modelsM1,M2, · · · ,MK by evaluating at N0 initial points
2: for each iteration t = N0 + 1 to Tmax do
3: Select xt  argmaxx2X ↵t(x), where ↵t(.) is computed as:
4: for each sample s 2 1, · · · , S:
5: Sample f̃i ⇠Mi, 8i 2 {1, · · · ,K}
6: Y⇤

s  Pareto front of cheap multi-objective optimization over (f̃1, · · · , f̃K)
7: Compute ↵t(.) based on the S samples of Y⇤

s as given in Equation 4.12
8: Evaluate xt: yt  (f1(xt), · · · , fK(xt))
9: Aggregate data: D  D [ {(xt,yt)}
10: Update modelsM1,M2, · · · ,MK

11: t t+ 1
12: end for
13: return Pareto front of f1(x), f2(x), · · · , fK(x) based on D

4.1 Theoretical Analysis

In this section, we provide a theoretical analysis for the behavior of MESMO algorithm. Multi-
objective optimization literature has multiple metrics to assess the quality of Pareto front approxi-
mation. The two commonly employed metrics include Pareto Hypervolume indicator [26] and R2

indicator[15]. R2 indicator is a natural extension of the cumulative regret measure in single-objective
BO as proposed in the well-known work by Srinivasan et al., [22] to prove convergence results. Prior
work [14] has shown that R2 and Pareto Hypervolume indicator show similar behavior. Indeed,
our experiments validate this claim for MESMO. Therefore, we present the theoretical analysis of
MESMO with respect to R2 indicator. Let x⇤ be a point in the optimal Pareto set X ⇤. Let xt be a
point selected for evaluation by MESMO at the tth iteration. Let R(x⇤) = kR1, · · · , RKk, where
Rj =

PT 0

t=1(fj(x
⇤)� fj(xt)) and k.k is the norm of theK-vector. We discuss asymptotic bounds

for this measure over the input set X.

5
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Our Approach: 
qMESMO algorithm selects the candidate input ! for evaluation that 
maximizes the information gain about the optimal Pareto front &∗
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qKey advantages of MESMO’s acquisition function (AF)
Ø Robust to the number of samples for AF computation
Ø Scalable for high-dimensions via output space entropy search
Ø Tight approximation with closed-form expression

q Theoretical analysis in terms of asymptotic regret bounds
q Comprehensive experiments to support all the claims
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BO as proposed in the well-known work by Srinivasan et al., [25] to prove convergence results. Prior
work [17] has shown that R2 and Pareto Hypervolume indicator show similar behavior. Indeed,
our experiments validate this claim for MESMO. Therefore, we present the theoretical analysis of
MESMO with respect to R2 indicator. Let x⇤ be a point in the optimal Pareto set X ⇤. Let xt be a
point selected for evaluation by MESMO at the tth iteration. Let R(x⇤) = kR1, · · · , RKk, where
Rj =

PT 0

t=1(fj(x
⇤)� fj(xt)) and k.k is the norm of theK-vector. We discuss asymptotic bounds

for this measure over the input set X.
Theorem 1. Let P be a distribution over vector [y1⇤, · · · , yK⇤], where each yj⇤ is the maximum value
for function fj among the vectors in the Pareto front obtained by solving the cheap multi-objective op-
timization problem over sampled functions from the K Gaussian process models. Let the observation
noise for function evaluations is i.i.dN (0,�) and w = Pr[

�
y1⇤ > f1(x

⇤)
�
, · · · ,

�
yK⇤ > fK(x⇤)

�
].

If xt is the candidate input selected by MESMO at the tth iteration according to 4.12 and
[y1⇤, · · · , yK⇤] is drawn from P , then with probability atleast 1 � �, in T 0 =

PT
i=1 logw

�
2⇡i

number of iterations

R(x⇤) =

vuut
KX

j=1

 ⇣
vjt⇤ + ⇣T

⌘2
 

2T�j
T

log(1 + ��2)

!!
(4.13)

where ⇣T = (2 log(⇡T /�))
1/2, ⇡i > 0, and

PT
i=1

1
⇡i

 1, vjt⇤ = maxt v
j
t with vjt =

minx2X
yj⇤�µj,t�1(x)

�j,t�1(x)
, and �j

T is the maximum information gain about function fj after T func-
tion evaluations.

We provide details of the proof in the Appendix. The key message of this result is that since each
term Rj in R(x⇤) grows sub-linearly in the asymptotic sense, R(x⇤) which is defined as the norm
also grows sub-linearly.

5 Experiments and Results
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q Acquisition function optimization time
Ø The acquisition function optimization time of MESMO is significantly 
smaller than PESMO for the same number of samples

Ø MESMO with one sample is comparable to ParEGO
Ø The time for PESMO and SMSego increases significantly as the 
number of objective functions grow MO 

Algorithm 
BC-2,2 PRDZPS-6,6

MESMO-1 3.5±0.34 4.56±0.71

MESMO-10 24.4±5.75 38.65±0.65

MESMO-100 242.434±8.9 377.53±4.29

PESMO-1 13.6±3.2 110.4±17.8

PESMO-10 115.23±17.1 614.27±44

PESMO-100 1128.3±15.3 6092.96±53

ParEGO 3.2±1.6 5.3±2.3

SMSego 80.5±2.1 300.43±35.7

Figure 1: Overview of the Bayesian optimization process for two objective functions (k=2).

goal is to find an input x∗ ∈ X that approximately optimizes f by performing a limited
number of function evaluations. BO algorithms learn a cheap surrogate model from training
data obtained from past function evaluations. They intelligently select the next input for
evaluation by trading-off exploration and exploitation to quickly direct the search towards
optimal inputs. The three key elements of BO framework are:

1) Statistical Model of the true function f(x). Gaussian Process (GP) (Williams
& Rasmussen, 2006) is the most commonly used model. A GP over a space X is a random
process from X to <. It is characterized by a mean function µ : X 7→ < and a covariance
or kernel function κ : X × X 7→ <. If a function f is sampled from GP(µ, κ), then f(x) is
distributed normally N (µ(x), κ(x, x)) for a set of inputs from x ∈ X .

2) Acquisition Function (α) to score the utility of evaluating a candidate input
x ∈ X based on the statistical model. Some popular acquisition functions in the single-
objective literature include expected improvement (EI), upper confidence bound (UCB),
predictive entropy search (PES) (Hernández-Lobato, Hoffman, & Ghahramani, 2014), and
max-value entropy search (MES) (Wang & Jegelka, 2017).

3) Optimization Procedure to select the best scoring candidate input according
to α depending on statistical model. DIRECT (Jones, Perttunen, & Stuckman, 1993) is a
very popular approach for acquisition function optimization.

2.2 Multi-Objective Optimization Problem Setting Overview

Multi-objective optimization (MOO) problems can be formalized in terms of the following
key elements: number of objectives, necessity to satisfy black-box constraints, and avail-
ability of cheaper approximations or fidelities (discrete/continuous) for function evaluations.
Below we provide a brief overview of the four different MOO problem settings that are ad-
dressed in this paper noting that a more detailed problem setup is specified under each
technical section.
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Notation Definition

x,y, f ,m bold notation represents vectors

x input vector of d dimensions

[n] set of first n natural numbers {1, 2, · · · , n}
f1, f2, · · · , fK true objective functions

C1, C2, · · · , CL Constraints functions

f̃j function sampled from the highest fidelity of the jth Gaussian process model

X Input space

I Information gain

Y∗ true pareto front of the objective functions [f1, f2, · · · , fK ]

Y∗s Pareto front of the sampled functions [f̃1, f̃2, · · · , f̃K ]

Table 1: Table describing the general mathematical notations.

Basic Multi-objective Optimization Problem. The goal is to maximize real-valued
objective functions f1(x), f2(x), · · · , fK(x), with K ≥ 2, over continuous space X ⊆ <d.
Each evaluation (also called an experiment) of an input x ∈ X produces a vector of objective
values y = (y1, y2, · · · , yK) where yi = fi(x) for all i ∈ {1, 2, · · · ,K}.
MOO Problem with Constraints. This is a generalization of the basic MOO problem,
where we need to satisfy some black-box constraints. Our goal is to maximize real-valued
objective functions f1(x), f2(x), · · · , fK(x), with K ≥ 2, while satisfying L black-box con-
straints of the form C1(x) ≥ 0, C2(x) ≥ 0, · · · , CL(x) ≥ 0 over continuous space X ⊆ <d.
Each evaluation of an input x ∈ X produces a vector of objective values and constraint
values y = (yf1 , yf2 , · · · , yfK , yc1 · · · ycL) where yfj = fj(x) for all j ∈ {1, 2, · · · ,K} and
yci = Ci(x) for all i ∈ {1, 2, · · · , L}.
MOO Problem with Discrete Multi-fidelity Experiments. This is a general version
of the MOO problem, where we have access to Mj fidelities for each function fj that vary
in the amount of resources consumed and the accuracy of evaluation. The evaluation of an
input x ∈ X with fidelity vector m = [m1,m2, · · · ,mK ] produces an evaluation vector of K

values denoted by ym ≡ [y
(m1)
1 , · · · , y(mK)

K ], where y
(mj)
j = f

(mj)
j (x) for all j ∈ {1, 2, · · · ,K}.

MOO Problem with Continuous-fidelity Experiments. In this general version of
the multi-fidelity setting, we have access to gi(x, zi) where gi is an alternative function
through which we can evaluate cheaper approximations of fi by varying the fidelity variable
zi ∈ Z (continuous function approximations). The evaluation of an input x ∈ X with
fidelity vector z = [z1, z2, · · · , zK ] produces an evaluation vector of K values denoted by
y ≡ [y1, y2, · · · , yK ], where yi = gi(x, zi) for all i ∈ {1, 2, · · · ,K}.

3. Related Work

In this section, we discuss prior work from the BO literature that is related to the four
MOO problem settings considered in this paper.

Single-fidelity Multi-Objective Optimization. There is a family of model based multi-
objective BO algorithms that reduce the problem to single-objective optimization. The
ParEGO method (Knowles, 2006) employs random scalarization for this purpose: scalar
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weights of K objective functions are sampled from a uniform distribution to construct a
single-objective function and expected improvement is employed as the acquisition function
to select the next input for evaluation. ParEGO is simple and fast, but more advanced
approaches often outperform it. Many methods optimize the Pareto hypervolume (PHV)
metric (Emmerich & Klinkenberg, 2008) that captures the quality of a candidate Pareto
set. This is done by extending the standard acquisition functions to PHV objective, e.g.,
expected improvement in PHV (EHI) (Emmerich & Klinkenberg, 2008) and probability of
improvement in PHV (SUR) (Picheny, 2015). Unfortunately, algorithms to optimize PHV
based acquisition functions scale very poorly and are not feasible for more than two objec-
tives. SMSego is a relatively faster method (Ponweiser, Wagner, Biermann, & Vincze, 2008).
To improve scalability, the gain in hypervolume is computed over a limited set of points:
SMSego finds those set of points by optimizing the posterior means of the GPs. A common
drawback of this family of algorithms is that reduction to single-objective optimization can
potentially lead to more exploitation behavior resulting in sub-optimal solutions.

PAL (Zuluaga, Sergent, Krause, & Püschel, 2013), PESMO (Hernández-Lobato et al.,
2016), and the concurrent works USeMO (Belakaria, Deshwal, Jayakodi, & Doppa, 2020b)
and MESMO (Belakaria et al., 2019) are principled algorithms based on information theory.
PAL tries to classify the input points based on the learned models into three categories:
Pareto optimal, non-Pareto optimal, and uncertain. In each iteration, it selects the can-
didate input for evaluation towards the goal of minimizing the size of uncertain set. PAL
provides theoretical guarantees, but it is only applicable for input space X with finite set of
discrete points. USeMO is a general framework that iteratively generates a cheap Pareto
front using the surrogate models and then selects the input with highest uncertainty for
evaluation. PESMO (Hernández-Lobato et al., 2016) relies on input space entropy based
acquisition function and iteratively selects the input that maximizes the information gained
about the optimal Pareto set X ∗. Unfortunately, optimizing this acquisition function poses
significant challenges: a) it requires a series of approximations, which can be potentially
sub-optimal; b) the optimization, even after approximations, is expensive; and c) the per-
formance is strongly dependent on the number of Monte-Carlo samples. In comparison, our
proposed output space entropy based acquisition function partially overcomes the above
challenges, and allows efficient and robust optimization with respect to the number of sam-
ples used for acquisition function computation. More specifically, the time complexities of
acquisition function computation in PESMO and MESMO ignoring the time to solve the
cheap MO problem that is common for both algorithms are O(SKm3) and O(SK) respec-
tively, where S is the number of Monte-Carlo samples, K is the number of objectives, and
m is the size of the sample Pareto set in PESMO. In fact, PESMO formulation relies on an
expensive and high-dimensional (l · d dimensions) distribution over the input space, where
l is size of the optimal Pareto set X ∗ while MESMO relies on a computationally cheap and
low-dimensional distribution over the output space (l ·K dimensions, which is considerably
less than l·d as K � d in practice). Additionally, Belakaria et al. (2019) demonstrated that
MESMO is very robust and performs very well even with one sample.

Constrained Multi-Objective Optimization. There exists very limited prior work to
address constrained MO problems (Garrido-Merchán & Hernández-Lobato, 2019; Feliot,
Bect, & Vazquez, 2017). PESMOC (Garrido-Merchán & Hernández-Lobato, 2019) is the
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current state-of-the-art method for this problem setting. PESMOC extends the information-
theoretic approach PESMO that relies on the principle of input space entropy search to the
constrained setting. As a consequence, it inherits the drawbacks of PESMO. Our proposed
MESMOC algorithm based on OSE search is intended to improve over PESMOC. MES-
MOC+ (Fernández-Sánchez, Garrido-Merchán, & Hernández-Lobato, 2020) is a concurrent
work that also employs the principle of output space entropy search to solve constrained
multi-objective optimization problems. However, this paper uses a completely different
approximation of the information gain leading to a different expression of the acquisition
function. This method employs a series of complex mathematical approximations based on
Assumed Density Filtering (ADF). Our proposed MESMOC algorithm uses the truncated
Gaussian distribution approximation that results in a closed-form expression, fast, and
easy to implement acquisition function. Additionally, the ADF based method (Fernández-
Sánchez et al., 2020) considers blackbox constraints only in the acquisition function defini-
tion while MESMOC addresses the constraints both in the acquisition function expression
and in the acquisition function optimization to ensure the selection of valid inputs.

Multi-fidelity Single-Objective Optimization. Acquisition functions (AFs) for single-
fidelity and single-objective BO are extensively studied (Shahriari et al., 2016). AFs can
be broadly classified into two categories. First, myopic AFs rely on improving a “local”
measure of utility (e.g., expected improvement). Second, non-myopic AFs measure the
“global” utility of evaluating a candidate input for solving the black-box optimization prob-
lem (e.g., predictive entropy search). Canonical examples of myopic acquisition function
include expected improvement (EI) and upper-confidence bound (UCB). EI was extended to
multi-fidelity setting (Huang, Allen, Notz, & Miller, 2006; Picheny, Ginsbourger, & et al.,
2013a; Lam, Allaire, & et al, 2015). The popular GP-UCB method (Srinivas, Krause,
Kakade, & Seeger, 2009) was also extended to multi-fidelity setting with discrete fideli-
ties (Kandasamy, Dasarathy, Oliva, & et al, 2016) and continuous fidelities (Kandasamy,
Dasarathy, Schneider, & Poczos, 2017). Entropy based methods fall under the category of
non-myopic AFs. Some examples include entropy search (ES) (Hennig & Schuler, 2012)
and predictive entropy search (PES) (Hernández-Lobato et al., 2014). Their multi-fidelity
extensions include MT-ES (Swersky, Snoek, & Adams, 2013; Klein, Falkner, Bartels, Hen-
nig, & Hutter, 2017) and MF-PES (Zhang, Hoang, & et al, 2017; McLeod, Osborne, &
Roberts, 2017). Unfortunately, they inherit the computational difficulties of the original ES
and PES. Max-value entropy search (MES) (Wang & Jegelka, 2017) and output space pre-
dictive entropy search (Hoffman & Ghahramani, 2015) are recent approaches that rely on
the principle of output space entropy (OSE) search. Prior work (Wang & Jegelka, 2017) has
shown advantages of OSE search in terms of compute-time, robustness, and accuracy over
input space entropy search methods. Recent work (Song, Chen, & Yue, 2019) proposed a
general approach based on mutual information. Takeno, Fukuoka, Tsukada, Koyama, Shiga,
Takeuchi, and Karasuyama (2019) extended MES to multi-fidelity setting and showed its
effectiveness over MF-PES. MUMBO (Moss, Leslie, & Rayson, 2020) extended MES to the
continuous-fidelity and multi-task setting.

Multi-fidelity Multi-Objective Optimization. Prior work outside ML literature has
considered domain-specific methods that employ single-fidelity multi-objective approaches
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in the context of multi-fidelity setting by using the lower fidelities only as an initialization
(Kontogiannis, Demange, Kipouros, & et al., 2018; Ariyarit & et al., 2017). Specifically,
Ariyarit and et al. (2017) employs the single-fidelity algorithm based on expected hypervol-
ume improvement acquisition function and Kontogiannis et al. (2018) employs an algorithm
that is very similar to SMSego. Also, both these methods model all fidelities with the same
GP and assume that higher fidelity evaluation is a sum of lower-fidelity evaluation and off-
set error. These are strong assumptions and may not hold in general multi-fidelity settings
including the problems from our experimental evaluation. Our proposed MF-OSEMO (Be-
lakaria et al., 2020a) and iMOCA algorithms (generalized versions of MESMO (Belakaria
et al., 2019) solve MOO problem in discrete and continuous-fidelity settings respectively
using the principle of output space entropy search and leverage some technical ideas from
the prior work on single-objective optimization. We are not aware of any prior work on
generic discrete/continuous-fidelity algorithms for MOO problems in the BO literature.

4. MESMO Algorithm for the Basic MOO Problem

In this section, we address the most basic MOO problem in the single-fidelity setting,
where the goal is to optimize multiple black-box objective functions. To solve this prob-
lem, we propose an algorithm referred to as Max-value Entropy Search for Multi-objective
Optimization (MESMO). In what follows, we first describe the problem setup and surro-
gate models. Next, we mathematically describe the output space entropy based acquisition
function and provide an algorithmic approach to efficiently compute it.

Problem Setup (Basic Multi-Objective Optimization Problem). The goal is to
maximize real-valued objective functions f1(x), f2(x), · · · , fK(x), with K ≥ 2, over contin-
uous space X ⊆ <d. Each evaluation (also called an experiment) of an input x ∈ X produces
a vector of objective values y = (y1, y2, · · · , yK) where yi = fi(x) for all i ∈ {1, 2, · · · ,K}.
We say that an point x Pareto-dominates another point x′ if fi(x) ≥ fi(x

′) ∀i and there
exists some j ∈ {1, 2, · · · ,K} such that fj(x) > fj(x

′). The optimal solution of MOO
problem is a set of points X ∗ ⊂ X such that no point x′ ∈ X \X ∗ Pareto-dominates a point
x ∈ X ∗. The solution set X ∗ is called the optimal Pareto set and the corresponding set
of function values Y∗ is called the optimal Pareto front. The goal of multi-objective BO is
to approximate X ∗ while minimizing the number of expensive function evaluations. In the
application of hardware design optimization, x ∈ X is a candidate hardware design; evalu-
ation of of design x to get output objectives such as power, performance, and area involve
performing computationally-expensive simulation to mimic the real hardware; and our goal
is to find the optimal Pareto set of hardware designs to trade-off power, performance, and
area. Table 1 contains all the mathematical notations used in this section.

Surrogate Models. Gaussian processes (GPs) are shown to be effective surrogate models
in prior work on single and multi-objective BO (Hernández-Lobato et al., 2014; Wang,
Zhou, & Jegelka, 2016; Wang & Jegelka, 2017; Srinivas et al., 2009; Hernández-Lobato
et al., 2016). Similar to prior work (Hernández-Lobato et al., 2016), we model the objective
functions f1, f2, · · · , fK using K independent GP models GP1,GP2, · · · ,GPK with zero
mean and i.i.d. observation noise. Let D = {(xi,yi)}t−1

i=1 be the training data from past
t−1 function evaluations, where xi ∈ X is an input and yi = {yi1, yi2, · · · , yiK} is the output
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vector resulting from evaluating functions f1, f2, · · · , fK at xi. We learn surrogate models
GP1,GP2, · · · ,GPK from D.

4.1 MESMO Algorithm

Output Space Entropy Based Acquisition Function. Input space entropy based
methods like PESMO (Hernández-Lobato et al., 2016) selects the next candidate input
xt (for ease of notation, we drop the subscript in below discussion) by maximizing the
information gain about the optimal Pareto set X ∗. The acquisition function based on input
space entropy is given as follows:

α(x) = I({x,y},X ∗ | D) (4.1)

= H(X ∗ | D)− Ey[H(X ∗ | D ∪ {x,y})] (4.2)

= H(y | D,x)− EX ∗ [H(y | D,x,X ∗)] (4.3)

Information gain is defined as the expected reduction in entropy H(.)5 of the posterior
distribution P (X ∗ | D) over the optimal Pareto set X ∗ as given in equations (4.2) and (4.3)
(resulting from symmetric property of information gain). This mathematical formulation
relies on an expensive and high-dimensional (l ·d dimensions) distribution P (X ∗ | D), where
l is size of the optimal Pareto set X ∗. Furthermore, optimizing the second term in r.h.s
poses significant challenges: a) it requires a series of approximations (Hernández-Lobato
et al., 2016) which can be potentially sub-optimal; and b) the optimization, even after
approximations, is expensive c) the performance is strongly dependent on the number of
Monte-Carlo samples.

To overcome the above challenges of computing input space entropy based acquisition
function, we take an alternative route and propose to maximize the information gain about
the optimal Pareto front Y∗. This is equivalent to expected reduction in entropy over
the Pareto front Y∗, which relies on a computationally cheap and low-dimensional (l · K
dimensions, which is considerably less than l·d as K � d in practice) distribution P (Y∗ | D).
Our acquisition function that maximizes the information gain between the next candidate
input for evaluation x and Pareto front Y∗ is given as:

α(x) = I({x,y},Y∗ | D) (4.4)

= H(Y∗ | D)− Ey[H(Y∗ | D ∪ {x,y})] (4.5)

= H(y | D,x)− EY∗ [H(y | D,x,Y∗)] (4.6)

The first term in the r.h.s of equation (4.6) (entropy of a factorizable K-dimensional
Gaussian distribution P (y | D,x)) can be computed in closed form as shown below:

H(y | D,x) =
K(1 + ln(2π))

2
+

K∑

j=1

ln(σj(x)) (4.7)

where σ2
i (x) is the predictive variance of ith GP at input x. The second term in the r.h.s of

equation (4.6) is an expectation over the Pareto front Y∗. We can approximately compute

5. The conditioning on D and x in H(y | D,x) is on fixed values and not random variables
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this term via Monte-Carlo sampling as shown below:

EY∗ [H(y | D,x,Y∗)] ' 1

S

S∑

s=1

[H(y | D,x,Y∗s )] (4.8)

where S is the number of samples and Y∗s denote a sample Pareto front. The main advan-
tages of our acquisition function are: computational efficiency and robustness to the number
of samples. Our experiments demonstrate these advantages over input space entropy based
acquisition function.

There are two key algorithmic steps to compute equation (4.8). We want to know: 1)
how to compute Pareto front samples Y∗s ?; and 2) and how to compute the entropy with
respect to a given Pareto front sample Y∗s ? We provide solutions for these two questions.

1) Computing Pareto Front Samples via Cheap Multi-Objective optimiza-
tion. To compute a Pareto front sample Y∗s , we first sample functions from the posterior
GP models via random Fourier features (Hernández-Lobato et al., 2014; Rahimi & Recht,
2008) and then solve a cheap multi-objective optimization over the K sampled functions.

Sampling functions from posterior GP. Similar to prior work (Hernández-Lobato
et al., 2014, 2016; Wang & Jegelka, 2017), we employ random Fourier features based sam-
pling procedure. We approximate each GP prior as f̃ = φ(x)T θ, where θ ∼ N(0, I). The
key idea behind random Fourier features is to construct each function sample f̃(x) as a
finitely parametrized approximation: φ(x)T θ, where θ is sampled from its corresponding
posterior distribution conditioned on the data D obtained from past function evaluations:
θ|D ∼ N(A−1ΦTyn, σ

2A−1), where A = ΦTΦ + σ2I and ΦT = [φ(x1), · · · , φ(xt−1)].
Cheap MO solver. We sample f̃i from GP model GP i for each of the K functions

as described above. A cheap multi-objective optimization problem over the K sampled
functions f̃1, f̃2, · · · , f̃k is solved to compute sample Pareto front Y∗s . This cheap multi-
objective optimization also allows us to capture the interactions between different objectives.
We employ the popular NSGA-II algorithm (Deb, Pratap, Agarwal, Meyarivan, & Fast,
2002a) to solve the MO problem with cheap objective functions noting that any other
algorithm can be used to similar effect.

2) Entropy Computation with a Sample Pareto Front. Let Y∗s = {v1, · · · ,vl}
be the sample Pareto front, where l is the size of the Pareto front and each vi = {vi1, · · · , viK}
is a K-vector evaluated at the K sampled functions. The following inequality holds for each
component yj of the K-vector y = {y1, · · · , yK} in the entropy term H(y | D,x,Y∗s ):

yj ≤ y∗js ∀j ∈ {1, · · · ,K} (4.9)

where y∗js = max{v1
j , · · · vlj}. The inequality essentially says that the jth component of y

(i.e., yj) is upper-bounded by a value obtained by taking the maximum of jth components
of all l K-vectors in the Pareto front Y∗s . This inequality can be proven by a contradiction
argument. Suppose there exists some component yj of y such that yj > y∗js . However, by
definition, y is a non-dominated point because no point dominates it in the jth dimension.
This results in y ∈ Y∗s , which is a contradiction. Therefore, our hypothesis that yj > y∗js is
incorrect and inequality (4.9) holds.

By combining the inequality (4.9) and the fact that each function is modeled as a GP,
we can approximate each component yj as a truncated Gaussian distribution since the
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distribution of yj needs to satisfy yj ≤ y∗js . Furthermore, a common property of entropy
measure allows us to decompose the entropy of a set of independent variables into a sum
over entropies of individual variables (Cover & Thomas, 2012):

H(y | D,x,Y∗s ) =
K∑

j=1

H(yj |D,x, y∗js) (4.10)

The r.h.s is a summation over entropies of K variables {y1, · · · , yK}. The probability
distribution of each variable yj is a truncated Gaussian with upper bound y∗js (Michalowicz,
Nichols, & Bucholtz, 2013). The differential entropy for each yj is given as:

H(yj | D,x,Y∗s ) '
[

(1 + ln(2π))

2
+ ln(σj(x)) + ln Φ(γjs(x))− γjs(x)φ(γjs(x))

2Φ(γjs(x))

]
(4.11)

equation (4.10) and equation (4.11) give the followong expression of H(y | D,x,Y∗s ).

H(y | D,x,Y∗s ) '
K∑

j=1

[
(1 + ln(2π))

2
+ ln(σj(x)) + ln Φ(γjs(x))− γjs(x)φ(γjs(x))

2Φ(γjs(x))

]
(4.12)

where γjs(x) =
y∗js−µj(x)

σj(x) , and φ and Φ are the p.d.f and c.d.f of a standard normal

distribution respectively. By combining equations (4.7) and (4.12) with equation (4.6), we
get the final form of our acquisition function as shown below:

α(x) ' 1

S

S∑

s=1

K∑

j=1

[
γjs(x)φ(γjs(x))

2Φ(γjs(x))
− ln Φ(γjs(x))

]
(4.13)

A complete description of the MESMO algorithm is given in Algorithm 1. The blue colored
steps correspond to computation of our output space entropy based acquisition function.

5. MESMOC Algorithm for MOO Problem with Constraints

In this section, we address the MOO problem with constraints, where the goal is to optimize
multiple real-valued objective functions while satisfying several black-box constraints over
continuous space. To solve this problem, we propose an algorithm referred to as Max-value
Entropy Search for Multi-objective Optimization with Constraints (MESMOC). In what
follows, we explain the technical details and acquisition function derivation.

Problem Setup (MOO Problem with Constraints). This is a generalization of the
basic MOO problem, where we need to satisfy some black-box constraints. Our goal is
to maximize real-valued objective functions f1(x), f2(x), · · · , fK(x), with K ≥ 2, while
satisfying L black-box constraints of the form C1(x) ≥ 0, C2(x) ≥ 0, · · · , CL(x) ≥ 0 over
continuous space X ⊆ <d. Each evaluation of an input x ∈ X produces a vector of objective
values and constraint values y = (yf1 , yf2 , · · · , yfK , yc1 · · · ycL) where yfj = fj(x) for all
j ∈ {1, 2, · · · ,K} and yci = Ci(x) for all i ∈ {1, 2, · · · , L}.We say that a valid input x
(satisfies all constraints) Pareto-dominates another input x′ if fj(x) ≥ fj(x

′) ∀j and there
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Algorithm 1 MESMO Algorithm

Input: input space X; K blackbox objective functions f1(x), f2(x), · · · , fK(x); and maxi-
mum no. of iterations Tmax

1: Initialize Gaussian process models GP1, · · · ,GPK by evaluating at N0 initial points
2: for each iteration t = N0 + 1 to Tmax do
3: Select xt ← argmaxx∈X αt(x), where αt(.) is computed as:
4: for each sample s ∈ 1, · · · , S:
5: Sample f̃j ∼ GPj , ∀j ∈ {1, · · · ,K}
6: Y∗s ← Pareto front of cheap multi-objective optimization over (f̃1, · · · , f̃K)
7: Compute αt(.) based on the S samples of Y∗s as given in equation (4.13)
8: Evaluate xt: yt ← (f1(xt), · · · , fK(xt))
9: Aggregate data: D ← D ∪ {(xt,yt)}

10: Update models GP1,GP2, · · · ,GPK
11: t← t+ 1
12: end for
13: return Pareto front of f1(x), f2(x), · · · , fK(x) based on D

exists some j ∈ {1, 2, · · · ,K} such that fj(x) > fj(x
′). The goal of multi-objective BO

with constraints is to approximate the Pareto set over valid inputs X ∗ while minimizing the
number of expensive function evaluations. For example, in electric aviation power system
design applications, we need to find the designs that trade-off total energy and the mass
while satisfying specific thresholds for motor temperature and voltage of cells. Table 1
contains all the mathematical notations used in this section.

Surrogate Models. Similar to section 4, we model the objective functions and black-box
constraints by independent GP models GPf1 ,GPf2 , · · · ,GPfK and GPc1 ,GPc2 , · · · ,GPfK
with zero mean and i.i.d. observation noise. Let D = {(xi,yi)}t−1

i=1 be the training data from
past t−1 function evaluations, where xi ∈ X is an input and yi = {yif1 , · · · , yifK , y

i
c1 , · · · yicL}

is the output vector resulting from evaluating the objective functions and constraints at xi.
We learn surrogate models from D.

5.1 MESMOC Algorithm

Output Space Entropy Based Acquisition Function. To overcome the challenges of
computing input space entropy based acquisition function, MESMO (Belakaria et al., 2019)
proposed to maximize the information gain about the optimal Pareto front. However,
MESMO did not address the challenge of constrained Pareto front. We propose an exten-
sion of MESMO’s acquisition function to maximize the information gain between the next
candidate input for evaluation x and constrained Pareto front Y∗ given as:

α(x) = I({x,y},Y∗ | D) = H(y | D,x)− EY∗ [H(y | D,x,Y∗)] (5.1)

In this case, the output vector y is K + L dimensional: y = (yf1 , yf2 , · · · , yfK , yc1 · · · ycL)
where yfj = fj(x) for all j ∈ {1, 2, · · · ,K} and yci = Ci(x) for all i ∈ {1, 2, · · · , L}.
Consequently, the first term in the r.h.s of equation (5.1), entropy of a factorizable (K+L)-
dimensional Gaussian distribution P (y | D,x, can be computed in closed form as shown
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Figure 2: Overview of the MESMO algorithm for two objective functions (K=2). We build
statistical models GP1, GP2 for the two objective functions f1(x) and f2(x) re-
spectively. First, we sample functions from the statistical models. We compute
sample pareto fronts by solving a cheap MO problem over the sampled functions.
Second, we select the best candidate input xt that maximizes the information
gain. Finally, we evaluate the functions for xt to get (y1, y2) and update the
statistical models using the new training example.

below:

H(y | D,x) =
(K + C)(1 + ln(2π))

2
+

K∑

j=1

ln(σfj (x)) +
L∑

i=1

ln(σci(x)) (5.2)

where σ2
fj

(x) and σ2
ci(x) are the predictive variances of jth function and ith constraint GPs

respectively at input x.

The l.h.s of equation (5.1) can be decomposed in a similar way to equation (4.8). There
are two key algorithmic steps to compute this part of the equation: 1) The first is how to
compute Pareto front samples Y∗s ?; and 2) The second is how to compute the entropy with
respect to a given Pareto front sample Y∗s ? We provide solutions for these two questions
below.
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1) Computing Pareto Front Samples via Cheap Multi-Objective Opti-
mization. To compute a Pareto front sample Y∗s , we first sample functions and constraints
from the posterior GP models via random Fourier features (Hernández-Lobato et al., 2014;
Rahimi & Recht, 2008) and then solve a cheap constrained multi-objective optimization
over the K sampled functions and L sampled constraints.

Cheap MO solver. We sample f̃i from GP model GPfj for each of the K func-

tions and C̃i from GP model GPci for each of the L constraints. A cheap constrained
multi-objective optimization problem over the K sampled functions f̃1, f̃2, · · · , f̃k and the
L sampled constraints C̃1, C̃2, · · · , C̃L is solved to compute the sample Pareto front Y∗s .
We employ the popular constrained NSGA-II algorithm (Deb et al., 2002a; Deb, Pratap,
Agarwal, & Meyarivan, 2002b) to solve the constrained MO problem with cheap sampled
objective functions and constrained.

2) Entropy Computation with a Sample Pareto Front. Let Y∗s = {v1, · · · ,vl}
be the sample Pareto front, where l is the size of the Pareto front and each vi is a
(K + L)-vector evaluated at the K sampled functions and L sampled constraints vi =
{vif1 , · · · , vifK , v

i
c1 , · · · , vicL}. The following inequality holds for each component yj of the

(K + L)-vector y = {yf1 , · · · , yfK , yc1 , · · · ycL} in the entropy term H(y | D,x,Y∗s ):

yj ≤ max{v1
j , · · · vlj} ∀j ∈ {f1, · · · , fK , c1, · · · , cL} (5.3)

The inequality essentially says that the jth component of y (i.e., yj) is upper-bounded
by a value obtained by taking the maximum of jth components of all l (K + L)-vectors
in the Pareto front Y∗s . This inequality had been proven by a contradiction for MESMO
(Belakaria et al., 2019) for j ∈ {f1, · · · , fK}. We assume the same for j ∈ {c1, · · · , cL}.

By combining the inequality (5.3) and the fact that each function is modeled as an inde-
pendent GP, we can approximate each component yj as a truncated Gaussian distribution
since the distribution of yj needs to satisfy yj ≤ max{v1

j , · · · vlj}. Let yci∗s = max{v1
ci , · · · vlci}

and y
fj∗
s = max{v1

fj
, · · · vlfj}. Furthermore, a common property of entropy measure allows

us to decompose the entropy of a set of independent variables into a sum over entropies of
individual variables (Cover & Thomas, 2012):

H(y | D,x,Y∗s ) =
K∑

j=1

H(yfj |D,x, y
fj∗
s ) +

C∑

i=1

H(yci |D,x, yci∗s ) (5.4)

The r.h.s is a summation over entropies of (K+L)-variables y = {yf1 , · · · , yfK , yc1 , · · · ycL}.
The differential entropy for each yj is the entropy of a truncated Gaussian distribution
(Michalowicz et al., 2013) and given by the following equations:

H(yfj |D,x, y
fj∗
s ) '

[
(1 + ln(2π))

2
+ ln(σfj (x)) + ln Φ(γ

fj
s (x))− γ

fj
s (x)φ(γ

fj
s (x))

2Φ(γ
fj
s (x))

]
(5.5)

H(yci |D,x, yci∗s ) '
[

(1 + ln(2π))

2
+ ln(σci(x)) + ln Φ(γcis (x))− γcis (x)φ(γcis (x))

2Φ(γcis (x))

]
(5.6)

680



Output Space Entropy Search Framework for Multi-Objective Bayesian Optimization

Consequently we have:

H(y | D,x,Y∗s ) '
K∑

j=1

[
(1 + ln(2π))

2
+ ln(σfj (x)) + ln Φ(γ

fj
s (x))− γ

fj
s (x)φ(γ

fj
s (x))

2Φ(γ
fj
s (x))

]

+

L∑

i=1

[
(1 + ln(2π))

2
+ ln(σci(x)) + ln Φ(γcis (x))− γcis (x)φ(γcis (x))

2Φ(γcis (x))

]
(5.7)

where γcis (x) =
y
ci∗
s −µci (x)

σci (x) , γ
fj
s (x) =

y
fj∗
s −µfj (x)

σfj (x) , φ and Φ are the p.d.f and c.d.f of a

standard normal distribution respectively. By combining equations (5.2) and (5.7) with
equation (5.1), we get the final form of our acquisition function as shown below:

α(x) ' 1

S

S∑

s=1




K∑

j=1

γ
fj
s (x)φ(γ

fj
s (x))

2Φ(γ
fj
s (x))

− ln Φ(γ
fj
s (x)) +

L∑

i=1

γcis (x)φ(γcis (x))

2Φ(γcis (x))
− ln Φ(γcis (x))




(5.8)

A complete description of the MESMOC algorithm is given in Algorithm 2.

Algorithm 2 MESMOC Algorithm

Input: input space X; K blackbox functions f1(x), f2(x), · · · , fK(x); L blackbox constraints
C1(x), C2(x), · · · , CL(x); and maximum no. of iterations Tmax

1: Initialize Gaussian process models GPf1 ,GPf2 , · · · ,GPfK and GPc1 ,GPc2 , · · · ,GPcL by
evaluating at N0 initial points

2: for each iteration t = N0 + 1 to Tmax do
3: Select xt ← argmaxx∈X αt(x)

s.t (µc1 ≥ 0, · · · , µcL ≥ 0)
4: αt(.) is computed as:
5: for each sample s ∈ 1, · · · , S:
6: Sample f̃j ∼ GPfj , ∀j ∈ {1, · · · ,K}
7: Sample C̃i ∼ GPci , ∀i ∈ {1, · · · , L}
8: // Solve cheap MOO over (f̃1, · · · , f̃K) constrained by (C̃1, · · · , C̃L)
9: Y∗s ← argmaxx∈X (f̃1, · · · , f̃K)

s.t (C̃1 ≥ 0, · · · , C̃L ≥ 0)
10: Compute αt(.) based on the S samples of Y∗s as given in equation (5.8)
11: Evaluate xt; yt ← (f1(xt), · · · , fK(xt), C1(xt), · · · , CL(xt))
12: Aggregate data: D ← D ∪ {(xt,yt)}
13: Update models GPf1 ,GPf2 , · · · ,GPfK and GPc1 ,GPc2 , · · · ,GPcL
14: t← t+ 1
15: end for
16: return Pareto front of f1(x), f2(x), · · · , fK(x) based on D
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6. MF-OSEMO Algorithm for Discrete Multi-Fidelity MOO Problem

In this section, we address the multi-fidelity version of MOO problem, where we have
access to multiple fidelities for each function that vary in the amount of resources consumed
and the accuracy of evaluation. To solve this problem, we propose an algorithm referred
to as Multi-Fidelity Output Space Entropy Search for Multi-objective Optimization (MF-
OSEMO). We first describe the complete details related to the multi-fidelity MOO problem.
Subsequently, we explain our proposed MF-OSEMO algorithm with two mathematically
different approximations of the output space entropy based acquisition function.

Problem Setup (Discrete Multi-Fidelity MOO Problem). This is a general version
of the MOO problem, where we have access to Mj fidelities for each function fj that vary
in the amount of resources consumed and the accuracy of evaluation. The evaluation of an
input x ∈ X with fidelity vector m = [m1,m2, · · · ,mK ] produces an evaluation vector of K

values denoted by ym ≡ [y
(m1)
1 , · · · , y(mK)

K ], where y
(mj)
j = f

(mj)
j (x) for all j ∈ {1, 2, · · · ,K}.

Let λ
(mj)
j be the cost of evaluating ith function fj at mj ∈ [Mj ] fidelity, where mj=Mj

corresponds to the highest fidelity for fj . Our goal is to approximate the optimal Pareto
set X ∗ over the highest fidelities functions while minimizing the overall cost of function
evaluations (experiments). For example, in power system design optimization, we need to
find designs that trade-off cost, size, efficiency, and thermal tolerance using multi-fidelity
simulators for design evaluations. Table 2 contains all the mathematical notations used in
this section (MF-OSEMO).

Cost of Function Evaluations. The total normalized evaluation cost is
λ(m) ≡ ∑K

j=1

(
λ

(mj)
j /λ

(Mj)
j

)
. We normalize the total cost since the cost units can be

different for different objectives (e.g. cost unit for f1 is computation time while cost unit
for f2 could be memory space size). If the cost is known, it can be directly injected in the
latter expression. However, in some real world settings, the cost of a function evaluation
can be only known after the function evaluation. For example, in hyper-parameter tuning
of a neural network, the cost of the experiment is defined by the training and inference time.
However, we cannot know the exact needed time until after the experiment is finalised. In
this case, the cost can be modeled by an independent Gaussian process. The predictive
mean can be used during the optimization. Our goal is to approximate X ∗ by minimizing
the overall cost of function evaluations.

Multi-Fidelity Gaussian Process Model. Let D = {(xi,y(m)
i )}t−1

i=1 be the training data

from past t−1 function evaluations, where xi ∈ X is an input and y
(m)
i = [y

(m1)
1 , · · · , y(mK)

K ]

is the output vector resulting from evaluating functions f
(m1)
1 , f

(m2)
2 , · · · , f (mk)

K at xi. Gaus-
sian processes (GPs) are known to be effective surrogate models in prior work on single and
multi-objective BO (Srinivas et al., 2009; Hernández-Lobato et al., 2016). We learn K sur-
rogate models GP1,GP2, · · · ,GPK from D, where each GPj corresponds to the jth function
fj . In our setting, each function has multiple fidelities. So one ideal property desired for the
surrogate model of a single function is to take into account all the fidelities in a single model.
Multi-fidelity GPs (MF-GP) are capable of modeling functions with multiple fidelities in a
single model. Hence, each of our surrogate model GPj is a multi-fidelity GP.
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Notation Definition

f
(m1)
1 , f

(m1)
2 , · · · , f (mK)

K functions the mj fidelity of the true objective functions

f̃
(mj)
j function sampled from jth Gaussian process model at mjth fidelity

M1,M2, · · · ,MK no. of fidelities for each function

m = [m1,m2, · · · ,mK ] fidelity vector where each fidelity mj ∈ [Mj ]

y
mj
j jth function fj evaluated at mjth fidelity where mj ∈ [Mj ]

ym output vector equivalent to [y
(m1)
1 , · · · , y(mK)

K ]

λ
(mj)
j cost of evaluating jth function fj at mjth fidelity

λ(m) total normalized cost λ(m) ≡∑K
j=1

(
λ

(mj)
j /λ

(Mj)
j

)

Y∗ true pareto front of the objective functions [f1, f2, · · · , fK ] (the highest fidelities )

Y∗s Pareto front of the sampled highest fidelities [f̃1, f̃2, · · · , f̃K ]

Table 2: Table describing additional mathematical notations used in this section (MF-
OSEMO).

Specifically, we use the MF-GP model as proposed in Kennedy and O’Hagan (2000),
Takeno et al. (2019). We describe the complete details of the MF-GP model below for
the sake of completeness. One key thing to note about MF-GP model is that the kernel
function (k((xi,mi), (xj,mj))) is dependent on both the input and the fidelity. For a given
input x, the MF-GP model returns a vector (one for each fidelity) of predictive mean, a
vector of predictive variance, and a matrix of predictive covariance. The MF-GP model
has two advantages. The first is that all fidelities are integrated into one single GP. The
second is that difference among fidelities are adaptively estimated without any additional
feature representation for fidelities. It should be noted that we employ an independent
multi-fidelity GP for each function.

We describe full details of a MF-GP model for one objective function fj (without loss of
generality) below:

Let y
(1)
j (x), . . . , y

(Mj)
j (x) represent the values obtained by evaluating the function fj at

its 1st, 2nd, . . . ,Mjth fidelity respectively. In a MF-GP model, each fidelity is represented
by a Gaussian process and the observation is modeled as

y
(mj)
j (x) = f

(mj)
j (x) + ε, ε ∼ N (0, σ2

noise).

Let f
(1)
j ∼ GP (0, k1(x,x′)) be a Gaussian process for the 1st fidelity i.e. mj = 1, where

k1 : Rd×Rd → R is a suitable kernel. The output for successively fidelities mj = 2, . . . ,Mj

is recursively defined as

f
(mj)
j (x) = f

(mj−1)
j (x) + f

(mj−1)
je

(x), (6.1)

where, f
(mj−1)
je

∼ GP (0, ke(x,x
′)) with ke : Rd × Rd → R. It is assumed that f

(mj−1)
je

is
conditionally independent from all fidelities lower than mj . As a result, the kernel for a
pair of points evaluated at the same fidelity becomes:

kmj (x,x
′) ≡ k1(x,x′) + (mj − 1)ke(x,x

′) (6.2)
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and as a result, the output for mjth fidelity is also modeled as a Gaussian process:

f
(mj)
j ∼ GP (0, kmj (x,x

′)).

The kernel function for a pair of inputs evaluated at different fidelities mj and m′j is:

k((x,mj), (x
′,m′j)) = cov

(
f

(mj)
j (x), f

(m′j)

j (x′)

)
= kmj (x,x

′)

where mj ≤ m′j and cov represents covariance. Using a kernel matrix K ∈ Rn×n in

which the p, q element is defined by k((x,mp
j ), (x

′,mq
j)), all fidelities f

(1)
j , . . . , f

(Mj)
j can be

integrated into one common Gaussian process by which predictive mean and variance are
obtained as

µ(mj)(x) = K + σ2
noiseI

−1Y, (6.3)

σ2(mj)(x) = k((x,mj), (x,mj))− k(mj)
n (x)>K + σ2

noiseI
−1k

(mj)
n (x), (6.4)

where k
(mj)
n (x) ≡ (k((x,mj), (x1,mj1)), . . . , k((x,mj), (xn,mjn)))> and

Y = (y
(mj1 )
1 (x1), . . . , y

(mjn )
n (xn))>. We also define σ2

(mjm
′
j)

(x) as the predictive covariance
between (x,mj) and (x,m′j), i.e., covariance for identical x at different fidelities:

σ2(mjm
′
j)(x) = k((x,mj), (x,m

′
j))− k

(mj)
n (x)>K + σ2

noiseI
−1k

(m′j)
n (x). (6.5)

6.1 MF-OSEMO Algorithm with Two Approximations

We describe our proposed acquisition function for the multi-fidelity MOO problem setting.
We leverage the information-theoretic principle of output space information gain to develop
an efficient and robust acquisition function. This method is applicable for the general case,
where at each iteration, the objective functions can be evaluated at different fidelities.

The key idea behind the proposed acquisition function is to find the pair {x,m} that
maximizes the information gain about the Pareto front of the highest fidelities (de-
noted by Y∗) per unit cost, where {x,m} represents a candidate input x evaluated at a
vector of fidelities m = [m1,m2, · · · ,mK ]. This idea can be expressed mathematically as
given below:

α(x,m) = I({x,y(m)},Y∗ | D)/λ(m) (6.6)

where λ(m) is the total normalized cost of evaluating the objective functions at m and D
is the data collected so far. Figure 3 provides an overview of the MF-OSEMO algorithm.
The information gain in equation (6.6) is defined as the expected reduction in entropy H(.)
of the posterior distribution P (Y∗ | D) as a result of evaluating x at fidelity vector m:

I({x,y(m)},Y∗ | D) = H(Y∗ | D)− Ey(m) [H(Y∗ | D ∪ {x,y(m)})] (6.7)

= H(y(m) | D,x)− EY∗ [H(y(m) | D,x,Y∗)] (6.8)
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Figure 3: Overview of the MF-OSEMO algorithm for two objective functions (K=2). We
build multi-fidelity statistical models MFGP1, MFGP2 for the two objective
functions f1(x) and f2(x) with M1 and M2 fildelities respectively. First, we
sample highest fidelity functions from the statistical models. We compute sample
pareto fronts by solving a cheap MO problem over the sampled functions. Second,
we select the best candidate input xt and fidelity vector mt = (m1,m2) that
maximizes the information gain per unit cost . Finally, we evaluate the functions

for xt at fidelities mt to get (y
(m1)
1 , y

(m2)
2 ) and update the statistical models using

the new training example.

equation (6.8) follows from equation (6.7) as a result of the symmetric property of infor-
mation gain. The first term in the r.h.s of equation (6.8) is the entropy of a factorizable
K-dimensional Gaussian distribution P (y(m) | D,x)) which can be computed in closed form
as shown below:

H(y(m) | D,x) =
K(1 + ln(2π))

2
+

K∑

j=1

ln(σ
(mj)
j (x)) (6.9)

where σ
(mj)
j (x) is the predictive variance of jth surrogate model GPj at input x and fidelity

mj . The second term in the r.h.s of equation (6.8) is an expectation over the Pareto front
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of the highest fidelities Y∗. We can approximately compute this term via Monte-Carlo
sampling as shown below:

EY∗ [H(y(m) | D,x,Y∗)] ' 1

S

S∑

s=1

[H(y(m) | D,x,Y∗s )] (6.10)

where S is the number of samples and Y∗s denote a sample Pareto front obtained over
the highest fidelity functions sample from K surrogate models. The main advantages of
our acquisition function are: cost efficiency, computational-efficiency, and robustness to the
number of samples. Our experiments demonstrate these advantages over state-of-the-art
single fidelity AFs for multi-objective optimization.

There are two key algorithmic steps to compute equation (6.10). The first is computing
Pareto front samples Y∗s ; and the second is computing the entropy with respect to a given
Pareto front sample Y∗s . We provide solutions for these two steps below.

1) Computing Pareto Front Samples via Cheap Multi-Objective optimiza-
tion. To compute a Pareto front sample Y∗s , we first sample highest fidelity functions from
the posterior MF-GP models via random Fourier features (Hernández-Lobato et al., 2014;
Rahimi & Recht, 2008) and then solve a cheap multi-objective optimization over the K
sampled high fidelity functions. It is important to note that we are sampling only the
highest fidelity function from each MF-GP surrogate model.

Sampling functions from the posterior of MF-GP model. Similar to prior work
(Hernández-Lobato et al., 2014, 2016; Wang & Jegelka, 2017), we employ random Fourier
features based sampling procedure. We approximate each GP prior of the highest fidelity
as f̃ (M) = φ(x)T θ, where θ ∼ N(0, I). The key idea behind random Fourier features
is to construct each function sample f̃ (M)(x) as a finitely parametrized approximation:
φ(x)T θ, where θ is sampled from its corresponding posterior distribution conditioned on
the data D obtained from past function evaluations: θ|D ∼ N(A−1ΦTyn, σ

2A−1), where
A = ΦTΦ + σ2I and ΦT = [φ(x1), · · · , φ(xt−1)].

Cheap MO solver. We sample f̃
(Mi)
i from each surrogate model MF − GP i as de-

scribed above. A cheap multi-objective optimization problem over the K sampled functions

f̃
(M1)
1 , f̃

(M2)
2 , · · · , f̃ (MK)

K is solved to compute the sample Pareto front Y∗s . This cheap multi-
objective optimization also allows us to capture the interactions between different objectives.
We employ the popular NSGA-II algorithm (Deb et al., 2002a) to solve the MO problem
with cheap objective functions noting that any other algorithm can be used.

2) Entropy Computation with a Sample Pareto Front. Let Y∗s = {v1, · · · ,vl}
be the sample Pareto front, where l is the size of the Pareto front and each vi = {vi1, · · · , viK}
is a K-vector evaluated at the K sampled high fidelity functions. The following inequality

holds for each component y
(mj)
j of the K-vector y(m) = {y(m1)

1 , · · · , y(mk)
K } in the entropy

term H(y(m) | D,x,Y∗s ):

y
(mj)
j ≤ y∗js ∀j ∈ {1, · · · ,K} (6.11)

where y∗js = max{v1
j , · · · vlj}. The inequality essentially says that the jth component of ym

(i.e., y
mj
j ) is upper-bounded by a value obtained by taking the maximum of jth components
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of all l vectors {v1, · · · ,vl} in the Pareto front Y∗s . The proof of 6.11 can be divided into
two cases:

Case I. If yj is evaluated at its highest fidelity (i.e mj = Mj), inequality (6.11) can be

proven by a contradiction argument. Suppose there exists some component y
(Mj)
j of y(M)

such that y
(Mj)
j > y∗js . However, by definition, y(M) is a non-dominated point because no

point dominates it in the jth dimension. This results in y(M) ∈ Y∗s which is a contradiction.

Therefore, our hypothesis that y
(Mj)
j > y∗js is incorrect and inequality (6.11) holds.

Case II. If yj is evaluated at one of its lower fidelities (i.e, mj 6= Mj), the proof
follows from the assumption that the value of lower fidelity of a objective is usually smaller

than the corresponding higher fidelity, i.e., y
(mj)
j ≤ y

(Mj)
j ≤ y∗js . This is especially true

for most real-world experiments. For example, in optimizing a neural network’s accuracy
with respect to its hyperparameters, a commonly employed fidelity is the number of data
samples used for training. It is reasonable to believe that the accuracy is always higher
for the higher fidelity (more data samples to train on) when compared to a lower fidelity
(less data samples). By combining the inequality (6.11) and the fact that each function
is modeled as an independent MF-GP, a common property of entropy measure allows us
to decompose the entropy of a set of independent variables into a sum over entropies of
individual variables (Cover & Thomas, 2012):

H(y(m) | D,x,Y∗s ) =
K∑

j=1

H(y
(mj)
j |D,x, y∗js) (6.12)

The computation of equation (6.12) requires the computation of the entropy of p(y
(mj)
j |D,x, y∗js).

This is a conditional distribution that depends on the value of mj and can be expressed as

H(y
(mj)
j |D,x, y(mj)

j ≤ y∗js). This entropy is dealt with in two cases.

First, for mj = Mj, the density function of this probability is approximated by trun-
cated Gaussian distribution and its entropy can be expressed as (Michalowicz et al., 2013):

H(y
(Mj)
j |D,x, y(Mj)

j ≤ y∗js) '
(1 + ln(2π))

2
+ ln(σ

(Mj)
j (x)) + ln Φ(γ

(Mj)
s (x))

− γ
(Mj)
s (x)φ(γ

(Mj)
s (x))

2Φ(γ
(Mj)
s (x))

(6.13)

where γ
(Mj)
s (x) =

y∗js−µ
(Mj)

j (x)

σ
(Mj)

j (x)
, and φ and Φ are the p.d.f and c.d.f of a standard normal

distribution respectively.

Second, for mj 6= Mj, the density function of p(y
(mj)
j |D,x, y∗js) can be computed using

two different approximations as described below.

Approximation 1 (MF-OSEMO-TG): As a consequence of Case II, which states that

y
(mj)
j ≤ y∗js also holds for all lower fidelities, the entropy of p(y

(mj)
j |D,x, y∗js) can also be
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approximated by the entropy of a truncated Gaussian distribution and expressed as follow:

H(y
(mj)
j |D,x, y(mj)

j ≤ y∗js) '
(1 + ln(2π))

2
+ ln(σ

(mj)
j (x)) + ln Φ(γ

(mj)
s (x))

− γ
(mj)
s (x)φ(γ

(mj)
s (x))

2Φ(γ
(mj)
s (x))

(6.14)

where γ
(mj)
s (x) =

y∗js−µ
(mj)

j (x)

σ
(mj)

j (x)
.

Approximation 2 (MF-OSEMO-NI): Although equation (6.14) is sufficient for com-
puting the entropy for mj 6= Mj , it can be improved by conditioning on a tighter inequality

y
(Mj)
j ≤ y∗js as compared to the general one, i.e., y

(mj)
j ≤ y∗js . As we show below, this im-

provement comes at the expense of not obtaining a final closed-form expression, but it can
be efficiently computed via numerical integration. We apply the derivation of the entropy
based on numerical integration for single-objective problem, proposed in (Takeno et al.,
2019), for the multi-objective setting.

Now, for calculating H(y
(mj)
j |D,x, y(mj)

j ≤ y∗js) by replacing p(y
(mj)
j |D,x, y(mj)

j ≤ y∗js) with

p(y
(mj)
j |D,x, y(Mj)

j ≤ y∗js) and using Bayes’ theorem, we have:

p(y
(mj)
j |D,x, y(Mj)

j ≤ y∗js) =
p(y

(Mj)
j ≤ y∗js |y

(mj)
j , D,x)p(y

(mj)
j , D,x)

p(y
(Mj)
j ≤ y∗js |D,x)

(6.15)

Both the densities, p(y
(Mj)
j ≤ y∗js |D,x) and p(y

(mj)
j , D,x) can be obtained from the predic-

tive distribution of MF-GP model and is given as follows:

p(y
(mj)
j , D,x) =

φ(γ
(mj)
j (x))

σ
(mj)
j

(6.16)

p(y
(Mj)
j ≤ y∗js |D,x) = Φ(γ

(Mj)
s (x))) (6.17)

where γ
(mj)
j (x) =

y
(mj)

j −µ
(mj)

j (x)

σ
(mj)

j (x)
. Since MF-GP represents all fidelities as one unified Gaus-

sian process, the joint marginal distribution p(y
(Mj)
j , y

(mj)
j |D,x) can be immediately ob-

tained from the posterior distribution of the corresponding model GPj as given below:

p(y
(Mj)
j |y(mj)

j ,x, D) ∼ N (µj(x), s2
j (x)) (6.18)

where µj(x) =
σ2

(mjMj)

j (x)(y
(mj)

j −µ
mj
j (x))

σ2
(mj)

j (x)
and s2

j (x) = σ2(Mj)

j (x)− (σ2
(mjMj)

j (x))2

σ2
(mj)

j (x)
. As a result,

p(y
(Mj)
j ≤ y∗js |y

(mj)
j , D,x) is expressed as the cumulative distribution of the Gaussian in

(6.18):

p(y
(Mj)
j ≤ y∗js |y

(mj)
j , D,x) = Φ(

y∗js − µj(x)

sj(x)
) (6.19)
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Algorithm 3 MF-OSEMO Algorithm
Input: input space X; K blackbox objective functions where each function fj has multiple fidelities Mj(
{f (1)

1 (x), · · · , f (M1)
1 (x)}, · · · , {f (1)

K (x), · · · , f (MK)
K (x)}

)
; and total budget λTotal

1: Initialize multi-fidelity Gaussian process models GP1, · · · ,GPK by evaluating at initial points D
2: While λt ≤ λtotal do
3: for each sample s ∈ 1, · · · , S:
4: Sample highest-fidelity functions f̃

(Mi)
i ∼ GPi, ∀i ∈ {1, · · · ,K}

5: Y∗s ← Pareto front of cheap multi-objective optimization over (f̃
(M1)
1 , · · · , f̃ (MK)

K )
6: Find the next point to evaluate: select (xt,mt)← argmaxx∈X,m αt(x,m,Y∗)
7: Update the total cost consumed: λt ← λt + λ(mt)

8: Aggregate data: D ← D ∪ {(xt,ym
t )}

9: Update models GP1, · · · ,GPK
10: t← t+ 1
11: end while
12: return Pareto front and Pareto set of f1(x), · · · , fK(x) based on D
13: Procedure αt(x,m,Y∗s )
14: // Computes information gain (I) about the posterior of true Pareto front (Y∗) per unit cost as a result

of evaluating x
15: // I = H1 - H2; where H1 = Entropy of y(m) conditioned on D and x

// and H2 = Expected entropy of y(m) conditioned on D, x and (Y∗)
16: Set H1 = H(y(m) | D,x) = K(1 + ln(2π))/2 +

∑K
j=1 ln(σ

(mj)

j (x)) (entropy of K-factorizable Gaussian)

17: To compute H2 ' 1
S

∑S
s=1

∑K
j=1H(y

(mj)

j |D,x, y∗js), initialize H2 = 0
18: for each sample Y∗s do
19: for j ∈ 1 · · ·K do
20: Set y∗js = maximum of jth component of all vectors in Y∗s
21: If mj = Mj // if evaluating jth function at highest fidelity

22: H2 += H(y
(Mj)

j |D,x, y(Mj)

j ≤ y∗js) (entropy of truncated Gaussian p(y
(Mj)

j |D,x, y(Mj)

j ≤ y∗js))

23: If mj 6= Mj // if evaluating jth function at lower fidelity
24: // two approximations are provided
25: If approximation = TG

26: H2 += H(y
(mj)

j |D,x, y(mj)

j ≤ y∗js) (entropy of truncated Gaussian

p(y
(Mj)

j |D,x, y(mj)

j ≤ y∗js))

27: If approximation = NI

28: H2 += H(y
(mj)

j |D,x, y(Mj)

j ≤ y∗js) (entropy computed via numerical integration)
29: end for
30: end for
31: Divide by number of samples: H2 = H2/S
32: return (H1 −H2)/λ(m)

By substituting (6.16), (6.17), and 6.19 into (6.15) we get:

H(y
(mj)
j |D,x, y(Mj)

j ≤ y∗js) = −
∫

Ψ(y
(mj)
j ) log(Ψ(y

(mj)
j ))dy

(mj)
j (6.20)

With Ψ(y
(mj)
j ) = Φ(

y∗js−µj(x)

sj(x) )
Φ(γ

(Mj)
s (x)))φ(γ

(mj)

j (x))

σ
(mj)

j

. Since this integral is over one-dimension

variable y
(mj)
j , numerical integration can result in a tight approximation.

A complete description of the MF-OSEMO algorithm is given in Algorithm 3. The blue
colored steps correspond to computation of our acquisition function via sampling.
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7. iMOCA Algorithm for Continuous-Fidelity MOO Problem

In this section, we address the continuous-fidelity MOO problem, we have access to al-
ternative functions through which we can evaluate cheaper approximations of objective
functions by varying a continuous fidelity variable. To solve this problem, we propose
an algorithm referred to as information-Theoretic Multi-Objective Bayesian Optimization
with Continuous Approximations (iMOCA). We first describe the complete details related
to the continuous-fidelity MOO problem. Subsequently, we explain our proposed iMOCA
algorithm with two mathematically different approximations of the output space entropy
based acquisition function.

Problem Setup (Continuous-Fidelity MOO Problem). The continuous-fidelity MOO
problem is the general version of the discrete multi-fidelity setting where we have access
to gi(x, zi) where gi is an alternative function through which we can evaluate cheaper
approximations of fi by varying the fidelity variable zi ∈ Z (continuous function approx-
imations). Without loss of generality, let Z=[0, 1] be the fidelity space. Fidelities for
each function fi vary in the amount of resources consumed and the accuracy of eval-
uation, where zi=0 and z∗i =1 refer to the lowest and highest fidelity respectively. At
the highest fidelity z∗i , gi(x, z

∗
i ) = fi(x). The evaluation of an input x ∈ X with fi-

delity vector z = [z1, z2, · · · , zK ] produces an evaluation vector of K values denoted by
y ≡ [y1, y2, · · · , yK ], where yi = gi(x, zi) for all i ∈ {1, 2, · · · ,K}. Let Ci(x, zi) be the
cost of evaluating gi(x, zi). Our goal is to approximate the optimal Pareto set X ∗ over the
highest fidelities functions while minimizing the overall cost of function evaluations (exper-
iments). For example, in rocket launching research, we need to find designs that trade-off
return-time and angular distance using continuous-fidelity simulators (e.g., varying toler-
ance parameter to trade-off simulation time and accuracy) for design evaluations. Table 3
contains all the mathematical notations used in this section (iMOCA).

Cost of Function Evaluations. The total normalized cost of function evaluation is
C(x, z) =

∑K
i=1 (Ci(x, zi)/Ci(x, z∗i )). We normalize the cost of each function by the cost of

its highest fidelity because the cost units of different objectives can be different. If the cost
is known, it can be directly injected in the latter expression. However, in some real-world
settings, the cost of a function evaluation can be only known after the function evaluation.
In this case, the cost can be modeled by an independent Gaussian process. The predictive
mean can be used during the optimization. The final goal is to recover X ∗ while minimizing
the total cost of function evaluations.

Continuous-Fidelity GPs as Surrogate Models. Let D = {(xi,yi, zi)}t−1
i=1 be the

training data from past t-1 function evaluations, where xi ∈ X is an input and yi =
[y1, y2, · · · , yK ] is the output vector resulting from evaluating functions g1, g2, · · · , gK for
xi at fidelities z1, z2, · · · , zK respectively. We learn from D, K surrogate statistical models
GP1, · · · ,GPK , where each model GPj corresponds to the jth function gj . Continuous
fidelity GPs (CF-GPs) are capable of modeling functions with continuous fidelities within
a single model. Hence, we employ CF-GPs to build surrogate statistical models for each
function. Specifically, we use the CF-GP model proposed in (Kandasamy et al., 2017).
W.l.o.g, we assume that our functions gj are defined over the spaces X = [0, 1]d and Z =
[0, 1]. Let gj ∼ GPj(0, κj) such that yj = gj(zj ,x) + ε, where ε ∼ N (0, η2) and κ :
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(Z × X )2 → R is the prior covariance matrix defined on the product of input and fidelity
spaces.

κj([zj ,x], [z′j ,x
′]) = κjX (x,x′) · κjZ(zj , z

′
j)

where κjX , κjZ are radial kernels over X and Z spaces respectively. Z controls the smooth-
ness of gj over the fidelity space to be able to share information across different fidelities.
A key advantage of this model is that it integrates all fidelities into one single GP for infor-
mation sharing. We denote the posterior mean and standard deviation of gj conditioned on
D by µgj (x, zj) and σgj (x, zj). We denote the posterior mean and standard deviation of the
highest fidelity functions fj(x) = gj(x, z

∗
j ) by µfj (x) = µgj (x, z

∗
j ) and σfj (x) = σgj (x, z

∗
j )

respectively. We define σ2
gj ,fj

(x) as the predictive co-variance between a lower fidelity zj
and the highest fidelity z∗j at the same x.

Notation Definition

g1, g2, · · · , gK General objective functions with low and high fidelities

g̃j Function sampled from the jth Gaussian process model at fidelity zj
z1, z2, · · · , zK The fidelity variables for each function

z Fidelities vector

z∗ = [z∗1 , z
∗
2 , · · · , z∗K ] Fidelities vector with all fidelities at their highest value

yj jth function gj evaluated at fidelity zj
y = [y1, y2, · · · , yK ] Output vector resulting from evaluating g1, g2, · · · , gK

for xi at fidelities z1, z2, · · · , zK respectively

f = [f1, f2, · · · , fK ] Output vector resulting from evaluating functions f1, f2, · · · , fK
or equivalently g1, g2, · · · , gK for xi at fidelities z∗1 , z

∗
2 , · · · , z∗K respectively

Cj(x, zj) Cost of evaluating jth function gj at fidelity zj
C(x, z) Total normalized cost C(x, z) =

∑K
i=1 (Ci(x, zi)/Ci(x, z∗i ))

Z Fidelity space

Z(j)
t Reduced fidelity space for function gj at iteration t

Zr Reduced fidelity space

ξ Information gap

β
(j)
t Exploration/exploitation parameter for function gj at iteration t

Table 3: Mathematical notations and their associated definition used in this section
(iMOCA)

7.1 iMOCA Algorithm with Two Approximations

We first describe the key idea behind our proposed iMOCA algorithm including the main
challenges. Next, we present our algorithmic solution to address those challenges.

Key Idea of iMOCA: The acquisition function behind iMOCA employs principle of
output space entropy search to select the sequence of input and fidelity-vector (one for
each objective) pairs. iMOCA is applicable for solving MO problems in both continuous
and discrete fidelity settings. The key idea is to find the pair {xt, zt} that maximizes the
information gain I per unit cost about the Pareto front of the highest fidelities (denoted by
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Y∗), where {xt, zt} represents a candidate input xt evaluated at a vector of fidelities zt =
[z1, z2, · · · , zK ] at iteration t. Importantly, iMOCA performs joint search over input space
X and reduced fidelity space Zr over fidelity vectors for this selection.

(xt, zt)← argmaxx∈X ,z∈Zr αt(x, z) , where αt(x, z) = I({x,y, z},Y∗|D)/C(x, z) (7.1)

In the following sections, we describe the details and steps of our proposed algorithm
iMOCA. We start by explaining the bottlenecks of continuous fidelity optimization due
to the infinite size of the fidelity space followed by describing a principled approach to
reduce the fidelity space. Subsequently, we present the computational steps of our pro-
posed acquisition function: Information gain per unit cost for each candidate input and
fidelity-vector pair.

7.1.1 Approach to Reduce Fidelity Search Space

In this work, we focus primarily on MO problems with continuous fidelity space. The
continuity of this space results in infinite number of fidelity choices. Thus, selecting an
informative and meaningful fidelity becomes a major bottleneck. Therefore, we reduce
the search space over fidelity-vector variables in a principled manner guided by the learned
statistical models (Kandasamy et al., 2017). Our fidelity space reduction method is inspired
from BOCA for single-objective optimization (Kandasamy et al., 2017). We apply the
method in BOCA to each of the objective functions to be optimized in MO setting.

A favourable setting for continuous-fidelity methods would be for the lower fidelities
gj to be informative about the highest fidelity fj . Let hj be the bandwith parameter of
the fidelity kernel κjZ and let ξ : Z → [0, 1] be a measure of the gap in information

about gj(., z
∗
j ) when queried at zj 6= z∗j with ξ(zj) ≈

‖zj−z∗j ‖
hj

for the squared exponential

kernels (Kandasamy et al., 2017). A larger hj will result in gj being smoother across Z.
Consequently, lower fidelities will be more informative about fj and the information gap
ξ(zj) will be smaller.

To determine an informative fidelity for each function in iteration t, we reduce the space

Z and select zj from the subset Z(j)
t defined as follows:

Z(j)
t (x) = {{zj ∈ Z\{z∗j }, σgj (x, zj) > γ(zj), ξ(zj) > β

(j)
t ‖ξ‖∞} ∪ {z∗j }} (7.2)

where γ(zj) = ξ(zj)(
Cj(x,zj)
Cj(x,z∗j ))q and q = 1

pj+d+2 with pj , d the dimensions of Z and X respec-

tively. Without loss of generality, we assume that pj = 1. β
(j)
t =

√
0.5d · log (2tl + 1) is

the exploration/exploitation parameter (Kandasamy et al., 2017). where, l is the effective
L1 diameter of X and is computed by scaling each dimension by the inverse of the band-

width of the SE kernel for that dimension. We denote by Zr = {Z(j)
t , j ∈ {1 . . .K}}, the

reduced fidelity space for all K functions.
We filter out the fidelities for each objective function at BO iteration t using the above-

mentioned two conditions. We provide intuitive explanation of these conditions below.
The first condition σgj (x, zj) > γ(zj): A reasonable multi-fidelity strategy would query
the cheaper fidelities in the beginning to learn about the function gj by consuming the least
possible cost budget and later query from higher fidelities in order to gain more accurate
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information. Since the final goal is to optimize fj , the algorithm should also query from the
highest-fidelity. However, the algorithm might never query from higher fidelities due to their
high cost. This condition will make sure that lower fidelities are likely to be queried, but
not excessively and the algorithm will move toward querying higher fidelities as iterations
progress. Since γ(zj) is monotonically increasing in Cj , this condition can be easily satisfied
by cheap fidelities. However, if a fidelity is very far from z∗j , then the information gap ξ
will increase and hence, uninformative fidelities would be discarded. Therefore, γ(zj) will
guarantee achieving a good trade-off between resource cost and information.

The second condition ξ(zj) > β
(j)
t ‖ξ‖∞: We recall that if the first subset of Z(j)

t is
empty, the algorithm will automatically evaluate the highest-fidelity z∗j . However, if it is
not empty, and since the fidelity space is continuous (infinite number of choices for zj), the
algorithm might query fidelities that are very close to z∗j and would cost nearly the same
as z∗j without being as informative as z∗j . The goal of this condition is to prevent such
situations by excluding fidelities in the small neighborhood of z∗j and querying z∗j instead.

Since β
(j)
t increases with t and ξ is increasing as we move away from z∗j , this neighborhood

is shrinking and the algorithm will eventually query z∗j .

7.1.2 Naive-CFMO: A Simple Continuous-Fidelity MO Baseline

In this section, we first describe a simple baseline approach referred to as Naive-CFMO
to solve continuous-fidelity MO problems by combining the above-mentioned fidelity space
reduction approach with existing multi-objective BO methods. Next, we explain the key
drawbacks of Naive-CFMO and how our proposed iMOCA algorithm overcomes them.

A straightforward way to construct a continuous-fidelity MO method is to perform a
two step selection process similar to the continuous-fidelity single-objective BO algorithm
proposed in (Kandasamy et al., 2017):

Step 1) Select the input x that maximizes the acquisition function at the highest
fidelity. This can be done using any existing multi-objective BO algorithm.

Step 2) Evaluate x at the cheapest valid fidelity for each function in the reduced

fidelity space Z(j)
t (x) computed using the reduction approach mentioned in the previous

section. Since we are studying information gain based methods in this work, we instantiate
Naive-CFMO using the state-of-the-art information-theoretic MESMO algorithm (Belakaria
et al., 2019) for Step 1. Algorithm 5 shows the complete pseudo-code of Naive-CFMO.

Drawbacks of Naive-CFMO: Unfortunately, Naive-CFMO has two major drawbacks.

• The acquisition function solely relies on the highest-fidelity fj . Therefore, it does
not capture and leverage the statistical relation between different fidelities and full-
information provided by the global function gj .

• Generally, there is a dependency between the fidelity space and the input space
in continuous-fidelity problems. Therefore, selecting an input that maximizes the
highest-fidelity and then evaluating it at a different fidelity can result in a mismatch
in the evaluation process leading to poor performance and slower convergence.

iMOCA vs. Naive-CFMO: Our proposed iMOCA algorithm overcomes the drawbacks
of Naive-CFMO as follows.
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• iMOCA’s acquisition function maximizes the information gain per unit cost across all
fidelities by capturing the relation between fidelities and the impact of resource cost
on information gain.

• iMOCA performs joint search over input and fidelity space to select the input variable
x ∈ X and fidelity variables z ∈ Zr while maximizing the proposed acquisition func-
tion. Indeed, our experimental results demonstrate the advantages of iMOCA over
Naive-CFMO.

7.1.3 Information-Theoretic Continuous-Fidelity Acquisition Function

In this section, we explain the technical details of the acquisition function behind iMOCA.
We propose two approximations for the computation of information gain per unit cost.

The information gain in equation (7.1) is defined as the expected reduction in entropy
H(.) of the posterior distribution P (Y∗|D) due to evaluating x at fidelity vector z. Based
on the symmetric property of information gain, the latter can be rewritten as follows:

I({x,y, z},Y∗|D) = H(y|D,x, z)− EY∗ [H(y|D,x, z,Y∗)] (7.3)

In equation (7.3), the first term is the entropy of a K-dimensional Gaussian distribution
that can be computed in closed form as follows:

H(y|D,x, z) =
K∑

j=1

ln(
√

2πe σgj (x, zj)) (7.4)

In equation (7.3), the second term is an expectation over the Pareto front of the highest
fidelities Y∗. This term can be approximated using Monte-Carlo sampling:

EY∗ [H(y|D,x, z,Y∗)] ' 1

S

S∑

s=1

[H(y|D,x, z,Y∗s )] (7.5)

where S is the number of samples and Y∗s denote a sample Pareto front obtained over the
highest fidelity functions sampled from K surrogate models. To compute equation (7.5),
we provide algorithmic solutions to construct Pareto front samples Y∗s and to compute the
entropy with respect to a given Pareto front sample Y∗s .

1) Computing Pareto Front Samples: We first sample highest fidelity functions
f̃1, · · · , f̃K from the posterior CF-GP models via random Fourier features (Hernández-
Lobato et al., 2014; Rahimi & Recht, 2008). This is done similar to prior work (Hernández-
Lobato et al., 2016; Wang & Jegelka, 2017). We solve a cheap MO optimization problem
over the K sampled functions f̃1, · · · , f̃K using the popular NSGA-II algorithm (Deb et al.,
2002a) to compute the sample Pareto front Y∗s .

2) Entropy Computation for a Given Pareto Front Sample: Let Y∗s = {v1, · · · ,vl}
be the sample Pareto front, where l is the size of the Pareto front and each vi = {vi1, · · · , viK}
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is a K-vector evaluated at the K sampled highest-fidelity functions. The following inequality
holds for each component yj of y = (y1, · · · , yK) in the entropy term H(y|D,x, z,Y∗s ):

yj ≤ f j∗s ∀j ∈ {1, · · · ,K} (7.6)

where f j∗s = max{v1
j , · · · vlj}. Essentially, this inequality says that the jth component of y

(i.e., yj) is upper-bounded by a value, which is the maximum of jth components of all l
vectors {v1, · · · ,vl} in the Pareto front Y∗s . Inequality (7.6) holds by the same proof of
(6.11). For the ease of notation, we drop the dependency on x and z. We use fj to denote
fj(x) = gj(x, z

∗
j ), the evaluation of the highest fidelity at x and yj to denote gj(x, zj) the

evaluation of gj at a lower fidelity zj 6= z∗j .
By combining the inequality (7.6) and the fact that each function is modeled as an

independent CF-GP, a common property of entropy measure allows us to decompose the
entropy of a set of independent variables into a sum over entropies of individual variables
(Cover & Thomas, 2012):

H(y|D,x, z,Y∗s ) =

K∑

j=1

H(yj |D,x, zj , f j∗s ) (7.7)

The computation of (7.7) requires the computation of the entropy of p(yj |D,x, zj , f j∗s ).
This is a conditional distribution that depends on the value of zj and can be expressed as

H(yj |D,x, zj , yj ≤ f j∗s ). This entropy can be computed using two different approximations
as described below.

Truncated Gaussian Approximation (iMOCA-T): As a consequence of (7.6),
which states that yj ≤ f j∗s also holds for all fidelities, the entropy of p(yj |D,x, zj , f j∗s ) can
also be approximated by the entropy of a truncated Gaussian distribution and expressed as
follows:

H(yj |D,x, zj , yj ≤ f j∗s ) ' ln(
√

2πe σgj ) + ln Φ(γ
(gj)
s )− γ

(gj)
s φ(γ

(gj)
s )

2Φ(γ
(gj)
s )

where γ
(gj)
s =

f j∗s − µgj
σgj

(7.8)

From equations (7.5), (7.4), and (7.8), we get the final expression of iMOCA-T as shown
below:

αt(x, z,Y∗) '
1

C(x, z)S

K∑

j=1

S∑

s=1

[
γ

(gj)
s φ(γ

(gj)
s )

2Φ(γ
(gj)
s )

− ln(Φ(γ
(gj)
s ))

]
(7.9)

Extended-skew Gaussian Approximation (iMOCA-E): Although equation (7.9)
is sufficient for computing the entropy, this entropy can be mathematically interpreted and
computed with a different approximation. The condition yj ≤ f j∗s , is originally expressed

as fj ≤ f j∗s . Substituting this condition with it’s original equivalent, the entropy becomes

H(yj |D,x, zj , fj ≤ f j∗s ). Since yj is an evaluation of the function gj while fj is an evaluation

of the function fj , we observe that yj |fj ≤ f j∗s can be approximated by an extended-skew

695



Belakaria, Deshwal, & Doppa

Gaussian (ESG) distribution (Moss et al., 2020; Azzalini, 1985). It has been shown that
the differential entropy of an ESG does not have a closed form expression (Arellano-Valle,
CONTRERAS-REYES, & Genton, 2013). Therefore, we derive a simplified expression
where most of the terms are analytical by manipulating the components of the entropy. We
apply the derivation of the entropy based on ESG formulation, proposed by Moss et al.
(2020), to the multi-objective setting.

In order to simplify the calculation H(yj |D,x, zj , fj ≤ f j∗s ), let us define the normalized

variable Γ
fj∗s

as Γ
fj∗s
∼ yj−µgj

γgj
|fj ≤ f j∗s . Γ

fj∗s
is distributed as an ESG with p.d.f whose

mean µΓ
f
j∗
s

and variance σΓ
f
j∗
s

are defined in Appendix A. We define the predictive corre-

lation between yj and fj as τ =
σ2
gj ,fj

σgjσfj
. The entropy can be computed using the following

expression. Due to lack of space, we only provide the final expression. Complete derivation
for equations (7.10) and (7.11) are provided in Appendix A.

H(yj |D,x, zj , fj ≤ f j∗s ) ' ln(
√

2πe σgj ) + ln(Φ(γ
(fj)
s ))− τ2φ(γ

(fj)
s )γ

(fj)
s

2Φ(γ
(fj)
s )

− Eu∼Γ
f
j∗
s

[
ln(Φ(

γ
(fj)
s − τu√

1− τ2
))

]
(7.10)

From equations (7.5), (7.4) and (7.10), the final expression of iMOCA-E can be expressed
as follow:

αt(x, z,Y∗) '
1

C(x, z)S

K∑

j=1

S∑

s=1

[
τ2 γ

(fj)
s φ(γ

(fj)
s )

2Φ(γ
(fj)
s )

− ln(Φ(γ
(fj)
s )) + Eu∼Γ

f
j∗
s

[
ln(Φ(

γ
(fj)
s − τu√

1− τ2
))

]]

(7.11)

The expression given by equation (7.11) is mostly analytical except for the last term. We

perform numerical integration via Simpson’s rule using µΓ
f
j∗
s

∓ γ
√
σ(Γ

fj∗s
) as the integral

limits. Since this integral is over one-dimension variable, numerical integration can result
in a tight approximation with low computational cost. Complete pseudo-code of iMOCA is
shown in Algorithm 4.

Generality of the Two Approximations: We observe that for any fixed value of
x, when we choose the highest-fidelity for each function z=z∗, a) For iMOCA-T, we will
have gi = fj ; and b) For iMOCA-E, we will have τ = 1. Consequently, both equation (7.9)
and equation (7.11) will degenerate to the acquisition function of MESMO optimizing only
highest-fidelity functions given in equation (4.13) in section 4.

The main advantages of our proposed acquisition function are: cost-efficiency, computational-
efficiency, and robustness to the number of Monte-Carlo samples. Indeed, our experiments
demonstrate these advantages over state-of-the-art single-fidelity MO algorithms.
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Algorithm 4 iMOCA Algorithm
Input: input space X ; K blackbox functions fj and

their continuous approximations gj ; total budget Ctotal

1: Initialize continuous fidelity Gaussian process
GP1, · · · ,GPK by initial points D

2: While Ct ≤ Ctotal do
3: for each sample s ∈ 1, · · · , S:
4: Sample highest-fidelity functions f̃j ∼ GPj(., z∗j )

5: Y∗s ← Solve cheap MOO over (f̃1, · · · , f̃K)
6: Find the query based on Y∗ = {Y∗s , s ∈ {1 . . . S}}
7: // Choose one of the two approximations
8: If approx = T // Use eq (7.9) for αt (iMOCA-T)
9: select (xt, zt)← argmaxx∈X ,z∈Zr αt(x, z,Y∗)

10: If approx = E // Use eq (7.11) for αt (iMOCA-E)
11: select (xt, zt) ← argmaxx∈X ,z∈Zr αt(x, z,Y∗)

12: Update the total cost: Ct ← Ct + C(xt, zt)
13: Aggregate data: D ← D ∪ {(xt,yt, zt)}
14: Update models GP1, · · · ,GPK
15: t← t+ 1
16: end while
17: return Pareto front and Pareto set of black-box func-

tions f1(x), · · · , fK(x)

Algorithm 5 Naive-CFMO Algorithm
Input: input space X ; K blackbox functions fj and

their continuous approximations gj ; total budget Ctotal

1: Initialize continuous fidelity Gaussian process
GP1, · · · ,GPK by evaluating at initial points D

2: While Ct ≤ Ctotal do
3: for each sample s ∈ 1, · · · , S:
4: Sample highest-fidelity functions f̃j ∼ GPj(., z∗j )

5: Y∗s ← Solve cheap MOO over (f̃1, · · · , f̃K)
6: Find the query based on Y∗ = {Y∗s , s ∈ {1 . . . S}}:
7: // Use eq (4.13) for αt (MESMO)
8: select xt ← argmaxx∈X αt(x,Y∗)
9: for j ∈ 1 · · ·K do

10: select zj ← argmin
zj∈Z

(j)
t (xt)∪{z∗j }

Ci(xt, zj)

11: Fidelity vector zt ← [z1 . . . zK ]
12: Update the total cost: Ct ← Ct + C(xt, zt)
13: Aggregate data: D ← D ∪ {(xt,yt, zt)}
14: Update models GP1, · · · ,GPK
15: t← t+ 1
16: end while
17: return Pareto front and Pareto set of black-box func-

tions f1(x), · · · , fK(x)

8. Experiments and Results

In this section, we first describe the experimental evaluation of MESMO (single-fidelity al-
gorithm), MF-OSEMO (discrete multi-fidelity algorithm) and iMOCA (continuous-fidelity
algorithm) on synthetic and real-world engineering problems. Subsequently, we present ex-
perimental results of MESMOC (constrained MO algorithm) on two real-world engineering
problems, namely, electrified aviation power system design and analog circuit design.

8.1 Experimental Evaluation of iMOCA, MF-OSEMO, and MESMO

We mainly present the results for iMOCA with MESMO and MF-OSEMO as baselines for
the following reasons: First, iMOCA is the generalisation of both MESMO and MF-OSEMO
to the most general setting (continuous-fidelity); and second, the performance, robustness,
and effectiveness of MESMO and MF-OSEMO have been shown in (Belakaria et al., 2019)
and (Belakaria et al., 2020a) respectively.

Experimental Setup. In our experiments, we employed CF-GP models as described
in section 7 with squared exponential kernels. We initialize the surrogate models of all
functions with the same number of points selected randomly from both lower and higher
fidelities. We compare iMOCA with several baselines: six state-of-the-art single-fidelity
MO algorithms (ParEGO, SMSego, EHI, SUR, PESMO, and MESMO) and one naive
continuous-fidelity baseline that we proposed in Section 7.1.2. We employ the code for
ParEGO, PESMO, SMSego, EHI, and SUR from the BO library Spearmint6. The code
for all four of our algorithms are available in public Github repositories. We provide more
details about the algorithms parameters, libraries, and computational resources in the Ap-

6. github.com/HIPS/Spearmint/tree/PESM
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pendix B.2. For experiments in discrete fidelity setting, the number of fidelities is very
limited. Thus, the fidelity space reduction method deem meaningless in this case. There-
fore, we employ iMOCA without fidelity space reduction for those scenarios. Additionally,
we compare to the state-of-the-art discrete fidelity method MF-OSEMO. MF-OSEMO has
two variants: MF-OSEMO-TG and MF-OSEMO-NI. Since MF-OSEMO-TG has the same
formulation as iMOCA-T and provide similar results, we compare only to MF-OSEMO-NI.

8.1.1 Synthetic Benchmarks

We evaluate our most general algorithm iMOCA and baselines on four different synthetic
benchmarks. We construct two problems using a combination of benchmark functions
for continuous-fidelity and single-objective optimization (Surjanovic & Bingham, 2020):
Branin,Currin (with K=2, d=2) and Ackley, Rosen, Sphere (with K=3, d=5). To show
the effectiveness of iMOCA on settings with discrete fidelities, we employ two of the known
general MO benchmarks: QV (with K=2, d=8) and DTLZ1 (with K=6, d=5) (Habib,
Singh, & et al., 2019; Shu, Jiang, Zhou, Shao, Hu, & Meng, 2018). We provide their
complete details in Appendix B.1. The titles of plots in Fig. 4, Fig. 8, and Fig. 5 denote
the corresponding experiments.

8.1.2 Real-world Engineering Design Optimization Problems

We evaluate iMOCA and baselines on four real-world design optimization problems from
diverse engineering domains. We provide the details of these problems below.

1) Analog Circuit Design Optimization. Design of a voltage regulator via Cadence
circuit simulator that imitate the real hardware (Belakaria, Zhou, Deshwal, Doppa, Pande,
& Heo, 2020d; Hong & et al, 2019). The simulation time can be adjusted to vary the
simulation from fast and inaccurate to long and accurate. Each candidate circuit design is
defined by 33 input variables (d=33). We optimize nine objectives: efficiency, four output
voltages, and four output ripples. This problem has a continuous-fidelity space with cost
varying from 10 mins to 120 mins.

2) Panel Structure Design for Large Vessels. The deck structure in large vessels
commonly require the design of panels resisting uni-axial compression in the direction of
the stiffeners (Zhu, Wang, & Collette, 2014). We consider optimizing the trade-off between
two objective functions: weight and strength of the panel. These functions depend on six
input variables (d=6): one of them is the number of stiffeners used and five others relating
to the plate thickness and stiffener dimensions. This problem has a discrete fidelity setting:
two fidelities with computational costs 1 min and 21 mins respectively.

3) Rocket Launching Simulation. Rocket launching studies (Hasbun, 2012) require
several long and computationally-expensive simulations to reach an optimal design. In
this problem, we have three input variables (d = 3): mass of fuel, launch height, and
launch angle. The three objective functions are return time, angular distance, and difference
between the launch angle and the radius at the point of launch. The simulator has a
parameter that can be adjusted to perform continuous fidelity simulations. We employ the
parameter range to vary the cost from 0.05 to 30 mins.

698



Output Space Entropy Search Framework for Multi-Objective Bayesian Optimization

4) Network-On-Chip Design. Communication infrastructure is critical for efficient data
movement in hardware chips (Joardar et al., 2018; Deshwal et al., 2019; Choi et al., 2018;
Das et al., 2017) and they are designed using cycle-accurate simulators. We consider a
dataset of 1024 configurations of a network-on-chip with ten input variables (d=10) (Che,
Boyer, Meng, Tarjan, Sheaffer, Lee, & et al., 2009). We optimize two objectives: latency and
energy. This problem has two discrete fidelities with costs 3 mins and 45 mins respectively.

8.1.3 Results and Discussion

We compare iMOCA with both approximations (iMOCA-T and iMOCA-E) to all baselines.
We employ two known metrics for evaluating the quality of a given Pareto front: Pareto
hypervolume (PHV ) metric and R2 indicator. PHV (Zitzler, 1999) is defined as the vol-
ume between a reference point and the given Pareto front; and R2 (Picheny, Wagner, &
Ginsbourger, 2013b) is a distance-based metric defined as the average distance between two
Pareto-fronts. We report both the difference in the hyper-volume, and the average distance
between an optimal Pareto front (F∗) and the best recovered Pareto front estimated by
optimizing the posterior mean of the models at the highest fidelities (Hernández-Lobato
et al., 2016). The mean and variance of PHV and R2 metrics across 10 different runs are
reported as a function of the total cost.

Fig. 4 shows the PHV results of all the baselines and iMOCA for synthetic and real-
world experiments (Fig. 5 shows the corresponding R2 results). We observe that iMOCA
consistently outperforms all baselines. Both iMOCA-T and iMOCA-E have lower converge
cost. Additionally, iMOCA-E shows a better convergence rate than iMOCA-T. This re-
sult can be explained by its tighter approximation. Nevertheless, iMOCA-T displays very
close or sometimes better results than iMOCA-E. This demonstrates that even with loose
approximation, using the iMOCA-T approximation can provide consistently competitive
results using less computation time. For experiments with the discrete fidelity setting,
iMOCA most of the times outperformed MF-OSEMO or produced very close results. It is
important to note that MF-OSEMO is an algorithm designed specifically for the discrete-
fidelity setting. Therefore, the competitive performance of iMOCA shows its effectiveness
and generalisability.

Figure 8 in appendix B.3 shows the results of evaluating iMOCA and PESMO with
varying number of Monte-Carlo samples S ∈ {1, 10, 100}. For ease of comparison and
readability, we present these results in two different figures side by side. We observe that
the convergence rate of PESMO is dramatically affected by the number of MC samples S.
However, iMOCA-T and iMOCA-E maintain a better performance consistently even with a
single sample. These results strongly demonstrate that our method iMOCA is much more
robust to the number of Monte-Carlo samples.

Cost Reduction Factor. We also provide the cost reduction factor for experiments with
continuous fidelities, which is the percentage of gain in the convergence cost when compared
to the best performing baseline (the earliest cost for which any of the single-fidelity baselines
converge). Although this metric gives advantage to baselines, the results in Table 4 show a
consistently high gain ranging from 52.1% to 85%.
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Figure 4: Results of iMOCA and the baselines algorithms on synthetic benchmarks and
real-world problems. The PHV metric is presented against the total resource
cost of function evaluations.
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Figure 5: Results of iMOCA and the baselines algorithms on synthetic benchmarks and
real-world problems. The R2 metric is presented against the total resource cost
of function evaluations.
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Table 4: Best convergence cost from all baselines CB, Worst convergence cost for iMOCA
C, and cost reduction factor G.

Name BC ARS Circuit Rocket

CB 200 300 115000 9500

C 30 100 55000 2000

G 85% 66.6% 52.1% 78.9%

8.2 Experimental Evaluation of MESMOC

Experimental Setup: In this section, we compare MESMOC with PESMOC (Garrido-
Merchán & Hernández-Lobato, 2019), the state-of-the-art BO algorithm for solving con-
strained MO problems and MESMOC+ (Fernández-Sánchez et al., 2020), the concurrent
approach which also relies on the same principle of output space entropy search. Due to
lack of BO approaches for constrained MO setting, we also compare to known genetic al-
gorithms: NSGA-II (Deb et al., 2002a) and MOEAD (Zhang & Li, 2007). However, they
require large number of function evaluations to converge which is not practical for the op-
timization of expensive functions. We employ a GP based statistical model with squared
exponential (SE) kernel in all our experiments. The hyper-parameters are estimated after
every five function evaluations (iterations). We initialize the GP models for all functions by
sampling the initial points at random. We employ the code for PESMOC and MESMOC+
from the BO library Spearmint7. We employ NSGA-II and MOEAD from the Platypus
library8. Our code for MESMOC is available at the following Github repository 9. We
provide additional details about the algorithms parameters, libraries, and computational
resources in the Appendix B.2.

8.2.1 Real-world Engineering Design Problems

Below we provide the details of the two real-world problems and associated optimization
task that are employed for our experimental evaluation.

1) Electrified Aviation Power System Design. We consider optimizing the design of
electrified aviation power system of unmanned aerial vehicle (UAV) via a time-based static
simulation. The UAV system architecture consists of a central Li-ion battery pack, hex-
bridge DC-AC inverters, PMSM motors, and necessary wiring (Belakaria, Jackson, Cao,
Doppa, & Lu, 2020c). Each candidate input consists of a set of 5 (d=5) variable design
parameters such as the battery pack configuration (battery cells in series, battery cells in
parallel) and motor size (number of motors, motor stator winding length, motor stator
winding turns). We minimize two objective functions: mass and total energy. This problem

7. github.com/EduardoGarrido90/Spearmint
8. platypus.readthedocs.io/en/latest/getting-started.html#installing-platypus
9. github.com/belakaria/MESMOC
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has 5 black-box constraints:

C0 : Maximum final depth of discharge ≤ 75%

C1 : Minimum cell voltage ≥ 3V

C2 : Maximum motor temperature ≤ 125°C
C3 : Maximum inverter temperature ≤ 120°C
C5 : Maximum modulation index ≤ 1.3

2) Analog Circuit Optimization Domain. We consider optimizing the design of a multi-
output switched-capacitor voltage regulator via Cadence circuit simulator that imitates the
real hardware (Belakaria et al., 2020d). This circuit relies on a dynamic frequency switching
clock. Each candidate circuit design is defined by 33 input variables (d=33). The first 24
variables are the width, length, and unit of the eight capacitors of the circuit Wi, Li,Mi ∀i ∈
1 · · · 8. The remaining input variables are four output voltage references Vrefi ∀i ∈ 1 · · · 4 and
four resistances Ri ∀i ∈ 1 · · · 4 and a switching frequency f . We optimize nine objectives:
maximize efficiency Eff , maximize four output voltages Vo1 · · ·Vo4 , and minimize four
output ripples OR1 · · ·OR4. Our problem has a total of nine constraints. Since some of
the constraints have upper bounds and lower bounds, they are defined in the problem by
15 different constraints:

C0 : Cptotal ' 20nF with Cptotal =

8∑

i=1

(1.955WiLi + 0.54(Wi + Li))Mi

C1 to C4 : Voi ≥ Vrefi ∀ ∈ 1 · · · 4
C5 to C8 : ORlb ≤ ORi ≤ ORub ∀i ∈ 1 · · · 4
C9 : Eff ≤ 100%

where ORlb and ORub are the predefined lower-bound and upper-bound of ORi respectively.
Cptotal is the total capacitance of the circuit.

8.2.2 Results and Discussion

We evaluate the performance of our algorithm and the baselines using the Pareto hyper-
volume (PHV) metric. PHV is a commonly employed metric to measure the quality of
a given Pareto front (Zitzler, 1999). Figure 6 shows that MESMOC outperforms existing
baselines. It recovers a better Pareto front with a significant gain in the number of function
evaluations. Both of these experiments are motivated by real-wold engineering applications
where further analysis of the designs in the Pareto front is crucial.

Electrified Aviation Power System Design. In this setting, the input space is discrete
with 250,000 combinations of design parameters. Out of the entire design space, only 9% of
design combinations passed all the constraints and only five points are in the optimal Pareto
front. From a domain expert perspective, satisfying all the constraints is critical. Hence,
the results reported for the hypervolume include only points that satisfy all the constraints.
Despite the hardness of the problem, 90% (180 out of 200 inputs) of the designs selected
by MESMOC satisfy all the constraints while for MESMOC+, PESMOC, MOEAD, and
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NSGA-II, this was 49% (98 out of 200), 1.5% (3 out of 200 inputs), 9.5% (19 out of 200
inputs), and 7.5% (15 out of 200 inputs) respectively. MESMOC was not able to recover all
the five points from the optimal Pareto front. However, it was able to closely approximate
the optimal Pareto front and recover better designs than the baselines.

Analog Circuit Design Optimization. In this setting, the input space is continuous,
consequently there is an infinite number of candidate designs. From a domain expert per-
spective, satisfying all the constraints is not critical and is impossible to achieve. The main
goal is to satisfy most of the constraints (and getting close to satisfying the threshold for
violated constraints) while reaching the best possible objective values. Therefore, the re-
sults reported for the hypervolume include all the evaluated points. In this experiment, the
efficiency of circuit is the most important objective function. The table in Figure 2 shows
the optimized circuit parameters from different algorithms.

Figure 6: Results of different constrained multi-objective algorithms including MESMOC.
The PHV metric is shown as a function of the number function evaluations.

performance objectives are plotted, measured, and calculated 
from Cadence to ensure the accuracy of the results.    
Baselines. We compare our USeMOC algorithm with the state-
of-the-art multi-objective evolutionary algorithms NSGA-II 
[13] and MOEA/D [14]. NSGA-II evaluates the objective 
functions at several input designs and sorts them into a 
hierarchy of sub-groups based on the ordering of Pareto 
dominance. The similarity between members of each sub-group 
and their Pareto dominance is used by the algorithm to move 
towards more promising parts of the input space. MOEA/D 
decomposes a multi-objective optimization problem into a 
number of scalar optimization sub-problems and optimizes 
them simultaneously. Each sub-problem is optimized by only 
using the information from its neighboring sub-problems. We 
employ the NSGA-II and MOEA/D code from the known 
python library Platypus.  
Prior work has proposed surrogate models-based 

optimization methods in the context of circuit optimization 
[13,14]. However, none of these algorithms consider 
constrained optimization setting. Consequently, we cannot 
compare USeMOC with these methods in a fair manner. 
Setup for USeMOC. We employ a Gaussian process (GP) 
based statistical model with squared exponential (SE) kernel in 
all our experiments. The SE kernel is defined as 𝜅(𝑥, 𝑥U) = 𝑠 ⋅

𝑒𝑥𝑝 á9V<9<
$V
%

%>%
à , where 𝑠  and 𝜎  correspond to scale and 

bandwidth parameters. These hyper-parameters are estimated 
after every 10 function evaluations. We initialize the GP model 
using five inputs chosen randomly. 
Evaluation Metrics. To measure the performance of baselines 
and USeMOC, we employ two different metrics, one measuring 
the accuracy of solutions and another one measuring the 
efficiency in terms of the number of simulations.   
1) Pareto hypervolume (PHV) is a commonly employed metric 
to measure the quality of a given Pareto front [12]. PHV is 
defined as the volume between a reference point and the given 
Pareto front. After each iteration 𝑡 (or the number of circuit 

simulations), we measure the PHV for all algorithms. We 
evaluate all algorithms for 100 circuit simulations.  
2) Percentage gain in simulations is the fraction of simulations 
our ML-based optimization algorithm (USeMOC) is saving to 
reach the PHV accuracy of solutions at the convergence point 
of baseline algorithm employed for comparison.  
Results and Discussion. We evaluate the performance of 
USeMOC with three different acquisition functions (EI, LCB, 
and TS) to show the generality and robustness of our approach. 
We also provide results for the percentage gain in simulations 
achieved by USeMOC when compared to each baseline method 
in Table 1. We also applied the same algorithms on the circuit 
with fixed frequency. The best performing algorithm was 
USeMOC with EI. Therefore, we include those results in our 
comparison. Fig. 5 shows the PHV indicator achieved by 
different multi-objective methods including USeMOC as a 
function of the number of circuit simulations. We make the 
following observations: 1) USeMOC with EI, LCB, and TS 
acquisition functions perform significantly better than all 
baseline methods. 2) USeMOC produces better quality Pareto 
designs than all baselines using a smaller number of circuit 
simulations. This result shows the efficiency of our ML based 
optimization approach. USeMOC achieves percentage gain in 
simulations w.r.t baseline methods of 94%.  
3) The optimized circuit with dynamic frequency performs 
better than the optimized circuit with fixed frequency. The 
dynamic frequency reduces the switching loss of SCVR without 
compromising other performance by applying the proposed 
framework. We achieve percentage gain in simulations w.r.t to 
circuit with fixed frequency of 90%.  
B. Quality of Optimized SCVR Circuits  
The SCVR is implemented in the industry-provided process 

design kit (PDK) and shows better efficiency and output ripples. 
Due to the huge number of parameters and design specs in the 
analog circuit design optimization, traditional methods will be 
very expensive. Our results show huge practical benefits in 
terms of faster convergence and better-quality Pareto designs. 

 UseMOC-EI 
(fixed freq.) 

MOEAD 
(dynamic freq.) 

NSGA-II 
(dynamic freq.) 

gain in simulations 90% 94% 94% 
Table 1. Percentage gain in simulations achieved by our USeMOC algorithm 
when compared with each baseline and circuit with fixed and dynamic freq. 

  
Fig. 5. Results of different multi-objective algorithms. The hypervolume 
Indicator is shown as a function of the number of circuit simulation. 

SPECS NSGA-II PESMOC MESMOC 
𝑉!"#$(V) 0.6 0.5 0.52 0.53 0.63 0.52 
𝑉!"#%(V) 0.55 0.62 0.55 0.61 0.51 0.53 

𝑉!"#&(V) 1.06 1.06 1.07 1.12 1.05 1.13 
𝑉!"#'(V) 1.07 1.09 1.09 1.06 1.05 1.06 

𝑉($(mV) 699.6 713.1 677.10 760.60 678.40 551.62 
𝑉(% (mV) 700.4 712.2 690.70 725.70 520.61 632.80 
𝑉(& (V) 1.10 1.06 1.08 1.15 1.12 1.16 
𝑉(' (V) 1.09 1.09 1.08 0.99 1.14 1.08 
Eff (%) 73.26 71.85 76.20 74.82 88.81 88.53 

Table 2. Comparison table of optimized four-output SCVR parameters obtained by NSGA-II 
and USeMOC-EI. For dynamic frequency optimization, NSGA-II has optimized switching 
frequency at 70MHz and 130MHz and USeMOC-EI has it at 30MHz and 70MHz (optimized 
points are selected from the Pareto set prioritized by efficiency, resulting in the different load, 
switching frequency, and flying capacitor assignment). 
 

 

Figure 7: Comparison table of optimized circuit parameters obtained from different algo-
rithms (designs are selected from the Pareto set prioritized by efficiency)
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All algorithms can generate design parameters for the circuit that meets the voltage
reference requirements. The optimized circuit using MESMOC can achieve the highest
conversion efficiency of 88.81% (12.61% improvement when compared with PESMOC with
fixed frequency optimization and 17.86% improvement when compared with NSGA-II) with
similar output ripples. The circuit with optimized parameters can generate the target
output voltages within the range of 0.52V to 0.76V (1/3x ratio) and 0.99V to 1.17V (2/3x
ratio) under the loads varying from 14 Ohms to 1697 Ohms.

9. Summary and Future Work

We introduced a novel and general framework for solving multi-objective (MO) Bayesian
optimization problems based on the principle of output space entropy (OSE) search. The
key idea is to select the sequence of experiments that maximize the information gained per
unit cost about the optimal Pareto front. We instantiated this principle appropriately to
solve a variety of MO problems from the most basic setting and its constrained version to
the multi-fidelity and continuous-fidelity settings. Our comprehensive experimental results
on both synthetic and real-world benchmarks showed that all our OSE based algorithms
yield consistently better results than state-of-the-art methods, and are more efficient and
robust than methods based on input space entropy search.

Future work includes extending this framework to handle high-dimensional BO problems
(Oh, Gavves, & Welling, 2018) and combinatorial spaces, e.g., sets, sequences, and graphs
(Doppa, 2021; Deshwal, Belakaria, Doppa, & Fern, 2020; Oh, Tomczak, Gavves, & Welling,
2019; Deshwal, Belakaria, & Doppa, 2021b, 2021a); and investigating important scientific
applications including biological sequence design (Yang, Wu, & Arnold, 2019) and molecule
design (Deshwal, Simon, & Doppa, 2021).

Acknowledgements. Some of the material in this paper was first published at NeurIPS-
2019 (Belakaria et al., 2019) and AAAI-2020 (Belakaria et al., 2020a). The authors grate-
fully acknowledge the support from National Science Foundation (NSF) grants IIS-1845922,
OAC-1910213, and SII-2030159. The views expressed are those of the authors and do not
reflect the official policy or position of the NSF.

Appendix A. Full Derivation of iMOCA’s Acquisition Function

Our goal is to derive a full approximation for iMOCA algorithm. In this appendix, we
provide the technical details of the extended-skew Gaussian approximation (iMOCA-E) for
the computation of the information gain per unit cost.

The information gain in equation (7.1) is defined as the expected reduction in entropy
H(.) of the posterior distribution P (Y∗|D) due to evaluating x at fidelity vector z. Based
on the symmetric property of information gain, we can rewrite it as shown below:

I({x,y, z},Y∗|D) = H(y|D,x, z)− EY∗ [H(y|D,x, z,Y∗)] (A.1)
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In equation (A.1), the first term is the entropy of a K-dimensional Gaussian distribution
that can be computed in closed form as follows:

H(y|D,x, z) =
K∑

j=1

ln(
√

2πe σgj (x, zj)) (A.2)

The second term of equation (A.1) is an expectation over the Pareto front of the highest
fidelities Y∗. This term can be approximated using Monte-Carlo sampling:

EY∗ [H(y|D,x, z,Y∗)] ' 1

S

S∑

s=1

[H(y|D,x, z,Y∗s )] (A.3)

In the main paper, we showed that :

yj ≤ f j∗s ∀j ∈ {1, · · · ,K} (A.4)

By combining the inequality (A.4) and the fact that each function is modeled as an indepen-
dent CF-GP, a common property of entropy measure allows us to decompose the entropy
of a set of independent variables into a sum over entropies of individual variables (Cover &
Thomas, 2012):

H(y|D,x, z,Y∗s ) '
K∑

j=1

H(yj |D,x, zj , f j∗s ) (A.5)

In what follows, we provide details of iMOCA-E approximation to compute H(yj |D,x, zj , f j∗s ).

The condition yj ≤ f j∗s , is originally expressed as fj ≤ f j∗s . Substituting this condi-

tion with it’s original equivalent, the entropy becomes H(yj |D,x, zj , fj ≤ f j∗s ). Since yj is
an evaluation of the function gj and fj is an evaluation of the function fj , we make the

observation that yj |fj ≤ f j∗s can be approximated by an extended-skew Gaussian (ESG)
distribution (Azzalini, 1985). It had been shown that the differential entropy of an ESG
does not have a closed-form expression (Arellano-Valle et al., 2013). Therefore, we de-
rive a simplified expression where most of the terms are analytical by manipulating the
components of the entropy as shown below.

In order to simplify the calculation H(yj |D,x, zj , fj ≤ f j∗s ), we start by deriving an
expression for its probability distribution. Based on the definition of the conditional distri-
bution of a bi-variate normal, fj |yj is normally distributed with mean µfj +

σfj
σgj
τ(yj − µgj )

and variance σ2
fj

(1− τ)2, where τ =
σ2
gj ,fj

σgjσfj
is the predictive correlation between yj and fj .

We can now write the cumulative distribution function for yj |fj ≤ f j∗s as shown below:

P (yj ≤ u|fj ≤ f j∗s ) =
P (yj ≤ u, fj ≤ f j∗s )

P (fj ≤ f j∗s )
=

∫ u
−∞ φ

(
θ−µgj
σgj

)
Φ

(
fj∗s −µfj−

σfj
σgj

τ(θ−µgj )√
σ2
fj

(1−τ)2

)
dθ

σgjΦ

(
fj∗s −µfj
σfj

)
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Let us define the normalized variable Γ
fj∗s

as Γ
fj∗s
∼ yj−µgj

γgj
|fj ≤ f j∗s . After differentiating

with respect to u, we can express the probability density function for Γ
fj∗s

as:

P (u) =
φ(u)

Φ(γ
(fj)
s )

Φ(
γ

(fj)
s − τu√

1− τ2
)

which is the density of an ESG with mean and variance defined as follows:

µΓ
f
j∗
s

= τ
φ(γ

(fj)
s )

Φ(γ
(fj)
s )

, σΓ
f
j∗
s

= 1− τ2 φ(γ
(fj)
s )

Φ(γ
(fj)
s )

[
γ

(fj)
s +

φ(γ
(fj)
s )

Φ(γ
(fj)
s )

]
(A.6)

Therefore, we can express the entropy of the ESG as shown below:

H(Γ
fj∗s

) = −
∫
P (u) ln(P (u))du (A.7)

We also derive a more simplified expression of the iMOCA-E acquisition function based on
ESG. For a fixed sample fs

j∗, H(Γ
fj∗s

) can be decomposed as follows:

H(Γ
fj∗s

) = Eu∼Γ
f
j∗
s

[
− ln(φ(u)) + ln(Φ(γ

(fj)
s ))− ln(Φ(

γ
(fj)
s − τu√

1− τ2
))

]
(A.8)

We expand the first term as shown below:

Eu∼Γ
f
j∗
s

[− ln(φ(u))] =
1

2
ln(2π) +

1

2
Eu∼Γ

f
j∗
s

[
u2
]

(A.9)

From the mean and variance of Γ
fj∗s

in equation (A.6), we get:

Eu∼Γ
f
j∗
s

[
u2
]

= µ2
Γ
f
j∗
s

+ σΓ
f
j∗
s

= 1− τ2φ(γ
(fj)
s )γ

(fj)
s

Φ(γ
(fj)
s )

(A.10)

We note that the final entropy can be computed using the following expression.

H(yj |D,x, zj , yj ≤ f j∗s ) = H(Γ
fj∗s

) + ln(σgj ) (A.11)

By combining equations (A.8) and (A.11), we get:

H(yj |D,x, zj , fj ≤ f j∗s ) ' ln(
√

2πe σgj ) + ln(Φ(γ
(fj)
s ))− τ2φ(γ

(fj)
s )γ

(fj)
s

2Φ(γ
(fj)
s )

− Eu∼Γ
f
j∗
s

[
ln(Φ(

γ
(fj)
s − τu√

1− τ2
))

]
(A.12)

From equations (A.3), (A.2), and (A.12), the final expression of iMOCA-E can be ex-
pressed as follows:

αt(x, z,Y∗) '
1

C(x, z)S

K∑

j=1

S∑

s=1

τ2 γ
(fj)
s φ(γ

(fj)
s )

2Φ(γ
(fj)
s )

− ln(Φ(γ
(fj)
s )) + Eu∼Γ

f
j∗
s

[ln(Φ(
γ

(fj)
s − τu√

1− τ2
))]

Since the differential entropy of an ESG cannot be computed analytically, we perform nu-
merical integration via Simpson’s rule using µΓ

f
j∗
s

∓ γ
√
σΓ

f
j∗
s

as the integral limits. In

practice, we set γ to 5. Since this integral is over one-dimension variable, numerical inte-
gration can result in a tight approximation with small amount of computation.
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Appendix B. Additional Experiments and Results

B.1 Description of Synthetic Benchmarks

In what follows, we provide complete details of the synthetic benchmarks employed in
this paper. Since our algorithm is designed for maximization settings, we provide the
benchmarks in their maximization form.

1) Branin, Currin experiment

In this experiment, we construct a multi-objective problem using a combination of existing
single-objective optimization benchmarks (Kandasamy et al., 2017). It has two functions
with two dimensions (K=2 and d=2).

Branin Function: We use the following function where C(z) = 0.05 + z6.5

g(x, z) = −
(
a(x2 − b(z)x2

1 + c(z)x1 − r)2 + s(1− t(z))cos(x1) + s
)

where a = 1, b(z) = 5.1/(4π2)− 0.01(1− z), c(z) = 5/π − 0.1(1− z), r = 6, s = 10 and
t(z) = 1/(8π) + 0.05(1− z).

Currin Exponential Function: We use C(z) = 0.1 + z2

g(x, z) = −
(

1− 0.1(1− z) exp

(−1

2x2

))(
2300x3

1 + 1900x2
1 + 2092x1 + 60

100x3
1 + 500x2

1 + 4x1 + 20

)
.

2) Ackley, Rosen, Sphere experiment

In this experiment, we construct a multi-objective problem using a combination of existing
single-objective optimization benchmarks (Wu & Frazier, 2018). It has three functions with
five dimensions (K=3 and d=5). For all functions, we employed C(z) = 0.05 + z6.5

Ackley Function

g(x, z) = −


−20 exp


−0.2

√√√√1

d

d∑

i=1

x2
i


− exp

[
1

d

d∑

i=1

cos(2πxi)

]
+ e+ 20


− 0.01(1− z)

Rosenbrock Function:

g(x, z) = −
d−1∑

i=1

[
100

(
xi+1 − x2

i + 0.01(1− z)
)2

+ (1− xi)2
]

Sphere Function:

g(x, z) = −
d∑

i=1

x2
i − 0.01(1− z)

3) DTLZ1 experiment

In this experiment, we solve a problem from the general multi-objective optimization
benchmarks (Habib et al., 2019). We have six functions with five dimensions (K=6 and
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d=5) with a discrete fidelity setting. Each function has three fidelities in which z takes
three values from {0.2, 0.6, 1} with z∗=1. The cost of evaluating each fidelity function is
C(z)={0.01, 0.1, 1}

gj(x, z) = fj(x)− e(x, z)

f1(x) = −(1 + r)0.5Π5
i=1xi

fj(x) = −(1 + r)0.5(1− x6−j+1)Π6−j
i=1xi with j = 2 . . . 5

f6(x) = −(1 + r)0.5(1− x1)

r = 100[d+
∑d

i=1((xi − 0.5)2)− cos(10π(xi − 0.5))]

e(x, z) =
∑d

i=1 α(z)cos(10πα(z)xi + 0.5πα(z) + π) with α(z) = 1− z

4) QV experiment

In this experiment, we solve a problem from the general multi-objective optimization bench-
marks (Shu et al., 2018). We have two functions with eight dimensions (K=2 and d=8)
with a discrete fidelity setting.

Function 1 has only one fidelity which is the highest fidelity

f1(x) = −(
1

d

d∑

i=1

(x2
i − 20πxi + 10))

1
4

Function 2 has two fidelities with cost {0.1, 1} respectively and the following expres-
sions:

High fidelity: f2(x, High) = −(1
d

∑d
i=1((xi − 1.5)2 − 20π(xi − 1.5) + 10))

1
4

Low fidelity: f2(x, Low) = −(1
d((
∑d

i=1(α[i](xi − 1.5)2 − 20π(xi − 1.5) + 10))
1
4

with α=[0.9, 1.1, 0.9, 1.1, 0.9, 1.1, 0.9, 1.1]

B.2 Additional Information About Experimental Setup

Experimental Setup For Our Proposed Algorithms:

• The hyper-parameters are estimated after every five function evaluations (BO iter-
ations) for MESMO and MESMOC. For iMOCA and MF-OSEMO, the number of
evaluations would be higher due to the low cost of lower fidelities. Therefore, the
hyper-parameters are estimated every twenty iterations.

• During the computation of Pareto front samples, we solve a cheap MO optimization
problem over sampled functions using NSGA-II. We use Platypus10 library for the im-
plementation. For NSGA-II, the most important parameter is the number of function
calls. We experimented with several values. We noticed that increasing this number
does not result in any performance improvement for our algorithms. Therefore, we
fixed it to 1500 for all our experiments.

Parameters Used for NSAG-II and MOEAD as Constrained Baselines:

10. platypus.readthedocs.io/en/latest/getting-started.html#installing-platypus
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• Since we allow only 200 evaluations for MESMOC and PESMOC, we also set the
number of functions evaluations for NSGA-II and MOEAD to 200. We leave any
other parameter to the default value provided by the Platypus library.

Computational Resources

• We performed all experiments on a machine with the following configuration: Intel
i7-7700K CPU @ 4.20GHz with 8 cores and 32 GB memory.

B.3 Additional Results

Figure 8: Results of synthetic benchmarks showing the effect of varying the number of
Monte-Carlo samples for iMOCA, MESMO, and PESMO. The hypervolume dif-
ference is shown against the total resource cost of function evaluations.

References

Arellano-Valle, R. B., CONTRERAS-REYES, J. E., & Genton, M. G. (2013). Shannon
entropy and mutual information for multivariate skew-elliptical distributions. Scan-
dinavian Journal of Statistics, 40 (1).

Ariyarit, A., & et al. (2017). Multi-fidelity multi-objective efficient global optimization
applied to airfoil design problems. Applied Sciences, 7 (12).

Azzalini, A. (1985). A class of distributions which includes the normal ones. Scandinavian
Journal of Statistics.

710



Output Space Entropy Search Framework for Multi-Objective Bayesian Optimization

Belakaria, S., Deshwal, A., & Doppa, J. R. (2019). Max-value entropy search for multi-
objective Bayesian optimization. In Conference on Neural Information Processing
Systems, pp. 7823–7833.

Belakaria, S., Deshwal, A., & Doppa, J. R. (2020a). Multi-fidelity multi-objective Bayesian
optimization: An output space entropy search approach.. In AAAI, pp. 10035–10043.

Belakaria, S., Deshwal, A., Jayakodi, N. K., & Doppa, J. R. (2020b). Uncertainty-aware
search framework for multi-objective Bayesian optimization. In AAAI conference on
artificial intelligence.

Belakaria, S., Jackson, D., Cao, Y., Doppa, J. R., & Lu, X. (2020c). Machine learning
enabled fast multi-objective optimization for electrified aviation power system design.
In IEEE Energy Conversion Congress and Exposition (ECCE).

Belakaria, S., Zhou, Z., Deshwal, A., Doppa, J. R., Pande, P., & Heo, D. (2020d). De-
sign of multi-output switched-capacitor voltage regulator via machine learning. In
Proceedings of the Twenty-Third IEEE/ACM Design Automation and Test in Europe
Conference (DATE).

Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J. W., Lee, S., & et al. (2009). Rodinia: A
benchmark suite for heterogeneous computing. In 2009 IEEE international symposium
on workload characterization (IISWC).

Choi et al. (2018). On-chip communication network for efficient training of deep convolu-
tional networks on heterogeneous manycore systems. IEEE Transactions on Comput-
ers (TC), 67 (5), 672–686.

Cover, T. M., & Thomas, J. A. (2012). Elements of information theory. John Wiley and
Sons.

Das et al. (2017). Design-space exploration and optimization of an energy-efficient and reli-
able 3D small-world network-on-chip. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems (TCAD), 36 (5), 719–732.

Deb, K., Pratap, A., Agarwal, S., Meyarivan, T., & Fast, A. (2002a). Nsga-ii. IEEE
Transactions on Evolutionary Computation, 6 (2), 182–197.

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002b). A fast and elitist multiobjective
genetic algorithm: Nsga-ii. IEEE transactions on evolutionary computation, 6 (2), 182–
197.

Deshwal, A., Belakaria, S., & Doppa, J. R. (2021a). Bayesian optimization over hybrid
spaces. In Proceedings of the 38th International Conference on Machine Learn-
ing (ICML), Vol. 139 of Proceedings of Machine Learning Research, pp. 2632–2643.
PMLR.

Deshwal, A., Belakaria, S., & Doppa, J. R. (2021b). Mercer features for efficient combinato-
rial bayesian optimization. In Thirty-Fifth AAAI Conference on Artificial Intelligence
(AAAI), pp. 7210–7218. AAAI Press.

Deshwal, A., Belakaria, S., Doppa, J. R., & Fern, A. (2020). Optimizing discrete spaces via
expensive evaluations: A learning to search framework. In The Thirty-Fourth AAAI
Conference on Artificial Intelligence (AAAI), pp. 3773–3780. AAAI Press.

711



Belakaria, Deshwal, & Doppa

Deshwal, A., Simon, C., & Doppa, J. R. (2021). Bayesian optimization of nanoporous
materials. ChemRxiv.

Deshwal et al. (2019). MOOS: A multi-objective design space exploration and optimization
framework for NoC enabled manycore systems. ACM Transactions on Embedded
Computing Systems (TECS), 18 (5s), 77:1–77:23.

Doppa, J. R. (2021). Adaptive experimental design for optimizing combinatorial struc-
tures. In Proceedings of the Thirtieth International Joint Conference on Artificial
Intelligence (IJCAI), pp. 4940–4945.

Emmerich, M., & Klinkenberg, J.-w. (2008). The computation of the expected improvement
in dominated hypervolume of pareto front approximations. Technical Report, Leiden
University, 34.

Feliot, P., Bect, J., & Vazquez, E. (2017). A Bayesian approach to constrained single-and
multi-objective optimization. Journal of Global Optimization, 67 (1-2), 97–133.

Fernández-Sánchez, D., Garrido-Merchán, E. C., & Hernández-Lobato, D. (2020). Max-
value entropy search for multi-objective bayesian optimization with constraints. arXiv
preprint arXiv:2011.01150v1.

Garrido-Merchán, E. C., & Hernández-Lobato, D. (2019). Predictive entropy search for
multi-objective Bayesian optimization with constraints. Neurocomputing, 361, 50–68.

Habib, A., Singh, H. K., & et al. (2019). A multiple surrogate assisted multi/many-objective
multi-fidelity evolutionary algorithm. Information Sciences.

Hasbun, J. E. (2012). Classical mechanics with MATLAB applications. Jones & Bartlett
Publishers.

Hennig, P., & Schuler, C. J. (2012). Entropy search for information-efficient global opti-
mization. Journal of Machine Learning Research (JMLR), 13 (Jun), 1809–1837.

Hernández-Lobato, D., Hernandez-Lobato, J., Shah, A., & Adams, R. (2016). Predictive
entropy search for multi-objective Bayesian optimization. In Proceedings of Interna-
tional Conference on Machine Learning (ICML), pp. 1492–1501.

Hernández-Lobato, J. M., Hoffman, M. W., & Ghahramani, Z. (2014). Predictive entropy
search for efficient global optimization of black-box functions. In Advances in Neural
Information Processing Systems, pp. 918–926.

Hoffman, M. W., & Ghahramani, Z. (2015). Output-space predictive entropy search for
flexible global optimization. In NIPS workshop on Bayesian Optimization.

Hong, W., & et al (2019). A dual-output step-down switched-capacitor voltage regula-
tor with a flying capacitor crossing technique for enhanced power efficiency. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 27 (12).

Huang, D., Allen, T. T., Notz, W. I., & Miller, R. A. (2006). Sequential kriging optimization
using multiple-fidelity evaluations. Structural and Multidisciplinary Optimization.

Joardar et al. (2018). Learning-based application-agnostic 3D NoC design for heterogeneous
manycore systems. IEEE Transactions on Computers, 68 (6), 852–866.

712



Output Space Entropy Search Framework for Multi-Objective Bayesian Optimization

Jones, D. R., Perttunen, C. D., & Stuckman, B. E. (1993). Lipschitzian optimization without
the lipschitz constant. Journal of Optimization Theory and Applications, 79 (1), 157–
181.

Kandasamy, K., Dasarathy, G., Oliva, J. B., & et al (2016). Gaussian process bandit
optimisation with multi-fidelity evaluations. In Conference on Neural Information
Processing Systems.

Kandasamy, K., Dasarathy, G., Schneider, J., & Poczos, B. (2017). Multi-fidelity Bayesian
optimisation with continuous approximations. ICML.

Kennedy, M. C., & O’Hagan, A. (2000). Predicting the output from a complex computer
code when fast approximations are available. Biometrika.

Klein, A., Falkner, S., Bartels, S., Hennig, P., & Hutter, F. (2017). Fast Bayesian opti-
mization of machine learning hyperparameters on large datasets. In International
Conference on Artificial Intelligence and Statistics.

Knowles, J. (2006). Parego: a hybrid algorithm with on-line landscape approximation for
expensive multiobjective optimization problems. IEEE Transactions on Evolutionary
Computation, 10 (1), 50–66.

Kontogiannis, S. G., Demange, J., Kipouros, T., & et al. (2018). A comparison study of two
multifidelity methods for aerodynamic optimization. In 56th AIAA/ASCE/AHS/ASC
Structures, Structural Dynamics, and Materials Conference.

Kotthoff, L., Thornton, C., Hoos, H. H., Hutter, F., & Leyton-Brown, K. (2017). Auto-weka
2.0: Automatic model selection and hyperparameter optimization in weka. Journal of
Machine Learning Research (JMLR), 18 (1), 826–830.

Lam, R., Allaire, D. L., & et al (2015). Multifidelity optimization using statistical surrogate
modeling for non-hierarchical information sources. In 56th AIAA/ASCE/AHS/ASC
Structures, Structural Dynamics, and Materials Conference.

McLeod, M., Osborne, M. A., & Roberts, S. J. (2017). Practical Bayesian optimization for
variable cost objectives. arXiv preprint arXiv:1703.04335.

Michalowicz, J. V., Nichols, J. M., & Bucholtz, F. (2013). Handbook of differential entropy.
Chapman and Hall/CRC.

Moss, H. B., Leslie, D. S., & Rayson, P. (2020). Mumbo: Multi-task max-value Bayesian
optimization. The European Conference on Machine Learnin.

Oh, C., Gavves, E., & Welling, M. (2018). BOCK : Bayesian optimization with cylindrical
kernels. In Dy, J. G., & Krause, A. (Eds.), Proceedings of the 35th International
Conference on Machine Learning (ICML), Vol. 80 of Proceedings of Machine Learning
Research, pp. 3865–3874. PMLR.

Oh, C., Tomczak, J., Gavves, E., & Welling, M. (2019). Combinatorial Bayesian Optimiza-
tion using the Graph Cartesian Product. In NeurIPS.

Picheny, V. (2015). Multi-objective optimization using Gaussian process emulators via
stepwise uncertainty reduction. Statistics and Computing, 25 (6), 1265–1280.

Picheny, V., Ginsbourger, D., & et al. (2013a). Quantile-based optimization of noisy com-
puter experiments with tunable precision. Technometrics.

713



Belakaria, Deshwal, & Doppa

Picheny, V., Wagner, T., & Ginsbourger, D. (2013b). A benchmark of kriging-based infill
criteria for noisy optimization. Structural and Multidisciplinary Optimization, 48 (3),
607–626.

Ponweiser, W., Wagner, T., Biermann, D., & Vincze, M. (2008). Multiobjective optimization
on a limited budget of evaluations using model-assisted s-metric selection. In Inter-
national Conference on Parallel Problem Solving from Nature, pp. 784–794. Springer.

Rahimi, A., & Recht, B. (2008). Random features for large-scale kernel machines. In
Advances in Neural Information Processing Systems, pp. 1177–1184.

Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., & De Freitas, N. (2016). Taking the
human out of the loop: A review of Bayesian optimization. Proceedings of the IEEE,
104 (1), 148–175.

Shu, L., Jiang, P., Zhou, Q., Shao, X., Hu, J., & Meng, X. (2018). An on-line variable
fidelity metamodel assisted multi-objective genetic algorithm for engineering design
optimization. Applied Soft Computing, 66.

Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical Bayesian optimization of ma-
chine learning algorithms. In Advances in Neural Information Processing Systems,
pp. 2951–2959.

Song, J., Chen, Y., & Yue, Y. (2019). A general framework for multi-fidelity Bayesian opti-
mization with Gaussian processes. International Conference on Artificial Intelligence
and Statistics.

Srinivas, N., Krause, A., Kakade, S. M., & Seeger, M. (2009). Gaussian process opti-
mization in the bandit setting: No regret and experimental design. arXiv preprint
arXiv:0912.3995.

Surjanovic, S., & Bingham, D. (2020). Virtual library of simulation experiments: Test
functions and datasets. Retrieved January 21, 2020, from http://www.sfu.ca/

~ssurjano.

Swersky, K., Snoek, J., & Adams, R. P. (2013). Multi-task Bayesian optimization. In
Conference on Neural Information Processing Systems.

Takeno, S., Fukuoka, H., Tsukada, Y., Koyama, T., Shiga, M., Takeuchi, I., & Kara-
suyama, M. (2019). Multi-fidelity Bayesian optimization with max-value entropy
search. arXiv:1901.08275.

Wang, Z., & Jegelka, S. (2017). Max-value entropy search for efficient Bayesian optimization.
In Proceedings of International Conference on Machine Learning (ICML).

Wang, Z., Zhou, B., & Jegelka, S. (2016). Optimization as estimation with Gaussian pro-
cesses in bandit settings. In Proceedings of International Conference on Artificial
Intelligence and Statistics (AISTATS), pp. 1022–1031.

Williams, C. K., & Rasmussen, C. E. (2006). Gaussian processes for machine learning,
Vol. 2. MIT Press.

Wu, J., & Frazier, P. I. (2018). Continuous-fidelity Bayesian optimization with knowledge
gradient. NIPS Workshop on Bayesian Optimization.

714

http://www.sfu.ca/~ssurjano
http://www.sfu.ca/~ssurjano


Output Space Entropy Search Framework for Multi-Objective Bayesian Optimization

Yang, K. K., Wu, Z., & Arnold, F. H. (2019). Machine-learning-guided directed evolution
for protein engineering. Nature methods, 16 (8), 687–694.

Zhang, Q., & Li, H. (2007). Moea/d: A multiobjective evolutionary algorithm based on
decomposition. IEEE Transactions on Evolutionary Computation, 11 (6), 712–731.

Zhang, Y., Hoang, T. N., & et al (2017). Information-based multi-fidelity Bayesian op-
timization. In Conference on Neural Information Processing Systems Workshop on
Bayesian Optimization.

Zhu, J., Wang, Y.-J., & Collette, M. (2014). A multi-objective variable-fidelity optimization
method for genetic algorithms. Engineering Optimization, 46 (4), 521–542.

Zitzler, E. (1999). Evolutionary algorithms for multiobjective optimization: Methods and
applications, Vol. 63. Ithaca: Shaker.
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