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Bayesian optimization of nanoporous materials†
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Nanoporous materials (NPMs) could be used to store, capture, and sense many different gases. Given an

adsorption task, we often wish to search a library of NPMs for the one with the optimal adsorption

property. The high cost of NPM synthesis and gas adsorption measurements, whether these experiments

are in the lab or in a simulation, often precludes exhaustive search. We explain, demonstrate, and advocate

Bayesian optimization (BO) to actively search for the optimal NPM in a library of NPMs—and find it using

the fewest experiments. The two ingredients of BO are a surrogate model and an acquisition function. The

surrogate model is a probabilistic model reflecting our beliefs about the NPM-structure–property

relationship based on observations from past experiments. The acquisition function uses the surrogate

model to score each NPM according to the utility of picking it for the next experiment. It balances two

competing goals: (a) exploitation of our current approximation of the structure–property relationship to

pick the NPM we believe [under uncertainty] will be the highest-performing, and (b) exploration of regions

of NPM space we have not visited, to pick an NPM we are uncertain about and improve our approximation

of the structure–property relationship. We demonstrate BO by searching an open database of ∼70000

hypothetical covalent organic frameworks (COFs) for the COF with the highest simulated methane

deliverable capacity (pertinent for vehicular adsorbed natural gas storage). BO finds the optimal COF and

acquires ∼30% of the top 100 highest-ranked COFs after evaluating only ∼140 COFs. More, BO searches

more efficiently than evolutionary and one-shot supervised machine learning approaches.

1 Introduction

The selective gas adsorption properties of nanoporous
materials (NPMs) endow them with many possible
applications in the storage,1,2 separation,3 and sensing4 of
gases. As examples, promising applications of NPMs include
(i, storage) densifying hydrogen (H2)—a clean fuel—for
compact storage onboard vehicles,2,5 (ii, separation)
capturing carbon dioxide from flue gas of coal-fired power

plants; subsequently sequester it to prevent global warming,6

and (iii, sensing) detecting toxic compounds and
explosives.7,8

Several classes of NPMs, such as metal–organic
frameworks (MOFs),14 metal–organic polyhedra (MOPs),15

covalent organic frameworks (COFs),9 and porous organic
cages (POCs),16 are synthesized modularly by stitching
together molecular building blocks via coordination (MOFs,
MOPs) or covalent (COFs, POCs) bonds to form ∼ crystalline
(MOFs, COFs) or molecular (MOPs, POCs) materials. Fig. 1
illustrates the modular synthesis and rational design of COFs
in the sql topology.12 The many topologies,9,17,18 abundance
of molecular building blocks, and post-synthetic
modifiability19,20 permit an unlimited number of possible
structures exhibiting diverse adsorption properties.
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Design, System, Application

Nanoporous materials (NPMs) have many adsorption-based applications. Owing to their tunable structures, we have an abundance of possible NPMs for
each adsorption task. Given scarce resources and limited time, how can we efficiently search through a library of NPMs to find the optimal NPM for a
specific adsorption task? We explain and demonstrate Bayesian optimization (BO) to actively and intelligently search through a library of NPMs to find the
optimal one for a given task. BO relies on (i) a continually updated surrogate model to capture our beliefs about the NPM-structure–property relationship
and (ii) an acquisition function to make sequential decisions of which NPM to evaluate next, while balancing exploration and exploitation. We show that
BO can find the optimal NPM while evaluating only a small fraction of the NPMs in the library of candidates. The adoption of BO for NPM design for
specific tasks would impact the discovery and deployment of NPMs by (i) accelerating its schedule, (ii) reducing infrastructure needs, and (iii) lowering
costs.
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A common goal is to find, among a large set of candidate
NPM structures, the NPM structure(s) with the optimal
adsorption property for a given application. As opposed to an
exhaustive search, our goal is to search for the optimal NPM
efficiently, by consuming minimal resources (computational

and/or physical) in the process. In the laboratory setting,
synthesizing an NPM and measuring its property costs labor
and raw materials, and throughput is limited by the capital
equipment in the lab. In the computational setting,
constructing a high-fidelity computational model of an NPM

Fig. 1 Illustrating the modular synthesis of covalent organic frameworks (COFs).9–11 (a) The sql (square lattice) network topology specifies the
connectivity of tetratopic (green) and diptopic (blue) building units. (b and c) Two examples of COFs in the sql topology are (b) COF-366 and (c)
COF-66.12 (Top) The crystal structures. (Bottom) The building blocks: a planar, tetratopic building unit and a linear, diptopic building unit. The
building units are stitched together with covalent bonds, through a condensation reaction, to form 2D COF sheets in the sql topology. The sheets
stack into layers to form 3D channels. Owing to their modular synthesis, on the order of one hundred COFs have been experimentally synthesized
and reported.13

Fig. 2 Bayesian optimization (BO) is an active search method to find the input x that optimizes a black-box objective function f(x). In the BO of
nanoporous materials, we iterate within a feedback loop: (1) conduct an experiment that measures the property f(xn) of the material represented
by xn. (2) Using the new observation, update our belief about the underlying objective function f(x), encapsulated by the surrogate model f̂ (x). (3)
Use the acquisition function A(x) to pick the next material xn+1 for an experiment.
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structure21–25 and predicting its gas adsorption property
through molecular simulations26,27 consumes electricity, and
throughput is limited by computing resources. Thus, both in
the laboratory and on the computer, our goal is to find the
optimal NPM(s) for a given adsorption task using the fewest
experiments (experiment = constructing an NPM and
evaluating its adsorption property).

In this article, we explain, demonstrate, and advocate
Bayesian optimization (BO) to actively and efficiently search
for NPMs with an optimal property for a given adsorption
task. Active, because BO iterates, within a feedback loop,
between: (a) conducting an experiment on an NPM, (b)
updating our belief about the structure–property relationship,
and (c) selecting the NPM for the next experiment. See Fig. 2.
Efficient, because BO makes a data-informed decision on the
NPM to select for the next experiment, while balancing: (a)
exploitation of our current data-driven belief about the
structure–property relationship—to pick an NPM that we
believe, under uncertainty, will have the optimal property
and (b) exploration of regions of the NPM design space where
our belief about the structure–property relationship is weak—
to pick an NPM we are uncertain about and strengthen our
confidence in our approximation of the structure–property
relationship.

The two key components of BO are a surrogate model
and an acquisition function. The surrogate model, with
“surrogate” hinting at “substitute for the experiment”—is a
probabilistic model for the structure–property relationship.
It is trained on all observations from past experiments. The
surrogate model cheaply predicts the properties of the
unevaluated NPMs and, critically, quantifies the uncertainty
in its predictions. The acquisition function is used to make
the decision of which NPM to select for the next
experiment. It uses the surrogate model to score the utility
of selecting each unevaluated NPM for the next experiment
by striking a balance in the exploitation-exploration trade-
off. The acquisition function is maximal in regions of the
NPM design space where (i) we believe high-performing
materials will reside and/or (ii) we are uncertain about the
structure–property relationship. The acquisition function
relies on the surrogate model to give a resource-efficient,
intelligent, active search for optimal NPMs in a wide variety
of contexts.

We demonstrate BO of NPMs by efficiently searching an
open database28 of ∼70 000 hypothetical COFs, represented
by vectors of hand-designed features based on domain
knowledge, for those with the highest simulated methane
deliverable capacity to store natural gas onboard vehicles.2

BO recovers the optimal COF(s) using fewer experiments than
incumbent strategies including random search, an
evolutionary algorithm, and one-shot supervised machine
learning using random forests. In the Outlook, we discuss
active research areas in BO that are likely to apply to several
problems in NPM discovery: (i) batch BO, where experiments
are parallelized, (ii) multi-fidelity BO, where NPMs can be
evaluated using multiple methods which vary in accuracy and

resource cost, (iii) multi-objective BO, where we aim to find a
Pareto optimal set of NPMs to optimize multiple properties,
and (iv) constrained BO, where our goal is to find high-
performing NPMs which can be synthesized.

2 Review of previously used NPM
search methods

The NPM research community has adopted several
approaches to efficiently search a library of NPMs for the
optimal NPM(s).29,30 We define the efficiency of a search
strategy with respect to two naive baselines, where we
conduct the high-fidelity experiment on (i, exhaustive search)
every NPM in the library, and (ii, random search) a (uniform)
random sample of the NPMs in the library.

Supervised machine learning models

A supervised machine learning model can serve as a cheaper,
albeit lower fidelity, surrogate for the high-fidelity
experiment,29,31–35 thereby reducing the cost of an exhaustive
search. A machine learning approach is predicated upon
cheaply computed (relative to the experiment) (i) vector
representations of the NPMs—hand-engineered36,37 or
learned38 —that encode structural features and are correlated
to the property or (ii) kernels that capture the tendency for
any given pair of NPMs to exhibit similar properties.39

Training examples are gathered by selecting a small (random
or diverse40,41) subset of the library of NPMs and labeling
them with the property values via high-fidelity experiments.
Using the training examples, the supervised machine
learning model learns to predict the property of any given
NPM from e.g., its vector representation. The trained model
is then used, as a surrogate for the high-fidelity experiment,
to cheaply predict, from their vector representations, the
properties of the remaining NPMs in the library. Further
high-fidelity experiments may be directed on the NPMs
predicted to be optimal by the machine learning model. See
ref. 40 and 42–52 as examples.

Genetic algorithms

Genetic algorithms53 are iterative, stochastic search methods
inspired by Darwinian evolution. Each NPM is represented by
a “chromosome”—a vector of categorical variables that
uniquely specifies its structure. A small initial generation
(set) of property-labeled NPMs is iteratively evolved by
applying genetic operations to their chromosomes: mutation,
replication, selection, and recombination. At each generation,
we conduct experiments on each newly evolved NPM to
evaluate its fitness. This guides the genetic operations used
to evolve to the next generation of chromosomes
(representing NPMs), with the ambition of both exploring
NPM space and enriching future generations with high-
fitness NPMs. See ref. 54–57 as examples.
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Monte Carlo tree search

When the NPM search space can be framed as a tree, Monte
Carlo tree search58 is more efficient than random search.
Starting at the root node, a policy to select a child node is
iteratively applied, giving a path through the tree,
culminating at a leaf node. The experiment is then conducted
on the NPM represented by the leaf node. Its measured
property, viewed as a reward, is back-propagated through the
tree to update the statistics of each node along the path to it.
Both the visit counts and reward allocations of the nodes are
used in the tree policy to balance exploration of new
branches of the tree that have not been visited often (or at
all) and exploitation of current knowledge to follow branches
of the tree that appear likely to lead to optimal NPMs. See
ref. 59 and 60 as examples.

Each of these prior approaches suffer from drawbacks. The
supervised machine learning approach selects training data to
learn a good predictor of the property from the structure
representation, then uses the predictor to greedily acquire the
NPMs with the highest predicted property. This passive
approach can be viewed as one round of exploration and one
round of exploitation. Active learning61 can be used to reduce
the number of training examples to learn the structure–
property relationship but is not geared towards finding the
optimal NPM using the fewest experiments. In BO, we will
actively collect training examples according to the goal of
finding the optimal NPM with the fewest experiments. Genetic
algorithms are also sequential, active search procedures
aimed at quickly finding the optimal NPM. However, the
genetic operations are heuristic and do not balance
exploration and exploration rigorously. As a consequence,
genetic algorithms can be difficult to tune and could require
many experiments to find the optimal NPMs. MCTS balances
exploration and exploitation more rigorously. But, it requires
many NPM evaluations to identify promising regions of the
tree because it does not explicitly leverage the similarity
among structures for principled exploitation. Further, MCTS is
limited to NPM design spaces which can be framed as a tree.

3 Problem setup: find the optimal
material

Suppose we have a large database of candidate NPM
structures, X, for some adsorption task. Let f :X →  be a
black-box objective function that, given a candidate NPM x ∈
X, returns the relevant adsorption property y = f(x). Each
evaluation of f corresponds to performing an expensive
experiment—either in the laboratory or in a molecular
simulation—to measure the adsorption property y of NPM x.
Our goal is to find the highest-performing NPM x* from X

that maximizes the objective function f,

x* ¼ arg max
x∈X

f xð Þ; (1)

while conducting the fewest number of expensive experiments.

We can interpret f(x) as the [unknown] structure–property
relationship62,63 since x [abstractly, at this point in our
discussion] represents the structure of a unique NPM and
evaluating f means conducting an experiment to measure its
property, y.

4 Overview of Bayesian optimization

We explain the key ideas behind the Bayesian optimization
(BO) framework64,65 to find the highest-performing NPM—

solve the problem in eqn (1)—efficiently, by using the fewest
(expensive) experiments.

4.1 Defining an NPM feature space

While x as an abstract representation of an NPM suffices for
defining the problem in eqn (1), for BO we must concretely
define a NPM feature space or search space in which each
NPM x lies.

Take x to be a fixed-size (among all NPMs) vector
representation of the NPM that lies in a continuous feature

space. The NPM feature vectors xif g Xj j
i¼1 should be designed to

(1) encode the relevant structural and chemical features of
the NPMs, (2) be rotation-, translation-, and, if the NPM is a
crystal, replication-invariant, (3) be cheap to compute
compared to conducting the experiment (evaluating f ), and
(4) ideally, each correspond to a unique NPM (injective
mapping NPM → x).66 As a result of (1), we expect NPMs
close in the feature space to exhibit close values of the
property y.

The simplest example of a representation x of an NPM is a
list of hand-designed, based on domain expertise,
descriptors/features of its structure and composition, such as
pore volume, surface area, largest included sphere diameter,
density, weight fraction carbon, etc.67–69 Alternatively, x could
be learned from a graph70–72 or 3D image representation73,74

of a NPM by a graph neural network38 or convolutional
neural network,75 respectively. See reviews in ref. 29 and 76
for defining feature vectors of NPMs and ref. 40, 42, 44, 52
and 77–80 for different examples of NPM feature spaces. As
opposed to dwelling on how to define a good feature space of
NPMs, we will instead focus on BO, a technique to search the
defined feature space for the optimal NPM x* in an efficient
manner.

4.2 Active search: exploitation vs. exploration

Even with an NPM feature space defined, in practice, the
structure–property relationship f(x) is a black-box function;
analytical expressions for f(x) and/or its gradient ∇xf(x) are
not known, and it may be multi-modal.

BO is a derivative-free method to actively and efficiently
search the database of NPMs X for the NPM x* that
maximizes f(x). Active, because BO sequentially selects NPMs
from X for experimentation (to evaluate with f ), iterating
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between conducting an experiment and making a decision
about which experiment to conduct next. Efficient, because
BO makes a data-driven decision to select the next NPM for
an experiment while taking into account all observed (NPM
x, property y = f(x)) pairs from previous experiments. Each
decision to select the next unevaluated NPM from X to
evaluate with f must trade off two conflicting goals:

1) Exploitation suggests to use our current, but uncertain,
approximation of the structure–property relationship, based
on the past observations, to select the NPM that appears to
have the most promise as a high-performing material.

2) Exploration suggests to select the NPM that we are most
uncertain about to improve our approximation of the
structure–property relationship.

So, to balance exploitation and exploration, we must
balance visits to regions of NPM feature space that (i) appear
to contain high-performing NPMs and (ii) have not been
explored well. A colloquial example of the exploitation–
exploration dilemma in our lives is, in aiming to maximize
our enjoyment of food, whether to choose a restaurant that
we have visited and know we like versus a new one.81

4.3 The ingredients of BO for data-driven decision-making: a
surrogate model and an acquisition function

In the BO framework, the two key components used to make
each sequential decision of which NPM to conduct an
experiment on next are (1) a surrogate model that captures
our beliefs, based on past observations, about the structure–
property relationship and (2) an acquisition function that
scores each NPM according to the utility of conducting the
experiment on it next. The acquisition function uses the
surrogate model of the structure property-relationship f(x) to
decide which NPM to evaluate next while striking a balance
between exploitation and exploration.

The surrogate model. The surrogate model is a
probabilistic model of the structure–property relationship f(x)
trained on all observations‡ {(xi, yi = f(xi))}

n
i=1 from past

experiments. Typically, adopting a Bayesian perspective, the
surrogate model treats f(x) as a random variable that follows
a Gaussian distribution:

f xð Þ∼N ŷ xð Þ; σ2 xð Þ� �
(2)

with mean ŷ ∈  and variance σ2 ∈ . The surrogate model
reflects our current beliefs about f(x) and serves two purposes
in BO. First, to guide exploitation, ŷ(x) is a cheap-to-evaluate
approximation of the expensive-to-evaluate objective function
f(x), allowing us to cheaply estimate the properties of all
unevaluated NPMs. Second, to guide exploration, σ2(x)
quantifies the uncertainties in the predicted properties of the
unevaluated NPMs. This makes us aware of regions in NPM
feature space we need to explore to improve our

approximation ŷ(x) and reduce the uncertainty in our beliefs
about f(x).

The surrogate model is updated in each iteration of BO,
after the new observation (xn+1, yn+1 = f(xn+1)) is gathered, to
(i) improve the approximation of f(x) and (ii) account for the
reduced uncertainty in the region of the feature space
surrounding the newly evaluated NPM xn+1. Consequently, let
us denote the surrogate model after iteration n of BO as f̂n: x
→ (ŷ, σ).

The acquisition function. The acquisition function A(x;
f̂(x)): X |→  scores the utility of, next, evaluating NPM x ∈
X with the expensive objective function f. Here, “utility” is
defined in terms of our ultimate goal of finding the optimal
NPM x* in eqn (1) with the fewest experiments. The acquisition
function employs the prediction of the property ŷ and the
associated uncertainty σ2 from the surrogate model f̂(x) to
assign a utility score to the NPM that balances exploitation and
exploration, respectively. Maxima of the acquisition function
are located in regions of NPM feature space where the predicted
property is large and/or uncertainty is high.

The decision of which NPM to evaluate next is made by
maximizing the acquisition function:

xnþ1 ¼ arg max
x∈X=Xn

A x; f ̂n xð Þ� �
; (3)

where Xn: = {x1, x2, …, xn} is the acquired set of n NPMs that
have been evaluated already. Importantly, the acquisition
function must be cheap to evaluate.

4.4 Summarizing: BO active search iterations

Fig. 2 illustrates an iteration of BO. At the beginning of
iteration n, we conduct an experiment on NPM xn, i.e., we
evaluate NPM xn with the objective function f to obtain a new
observation (xn, yn = f(xn)). Next, we update the old surrogate
model f̂n−1(x) to account for this new observation, giving the
new surrogate model f̂n(x). We then select the next
(unevaluated) NPM to evaluate, xn+1, as the one that
maximizes the acquisition function A(x; f̂n(x)).

We terminate BO after we either (i) expend our budget for
experiments or (ii) find a material with a satisfactory property
value. The BO solution to the problem in eqn (1), x*, then
follows from the evaluated NPM with the highest observed
property, arg maxNi=1yi, where N is the number of BO
iterations ( = experiments) performed. Some theoretical work
focuses on characterizing how, under specific assumptions,
the quality of the approximate optimum in BO scales with
the number of iterations.82

N.b., typically, the surrogate model is retrained from
scratch after each iteration of BO, but some surrogate models
can be trained online,83 reducing the computational cost of
the search.

4.5 Remark: BO vs. active learning

We remark on a distinction between active learning84 and
Bayesian optimization. Both sequentially collect training

‡ Without loss of generality, the observations are assumed noise-less for clarity
of presentation.

MSDEPaper

Pu
bl

is
he

d 
on

 0
6 

O
ct

ob
er

 2
02

1.
 D

ow
nl

oa
de

d 
by

 W
as

hi
ng

to
n 

St
at

e 
U

ni
ve

rs
ity

 L
ib

ra
rie

s o
n 

4/
28

/2
02

2 
2:

06
:0

8 
PM

. 
View Article Online

https://doi.org/10.1039/d1me00093d


Mol. Syst. Des. Eng., 2021, 6, 1066–1086 | 1071This journal is © The Royal Society of Chemistry and IChemE 2021

examples for a supervised machine learning model. In active
learning, the examples are efficiently collected with the goal
of reducing the uncertainty in the machine learning model.
In Bayesian optimization, the examples are efficiently
collected with the goal of, instead, finding the optimal
material. BO is more efficient for finding the optimal
material than active learning because it avoids collecting
examples in regions of feature space that contain poor-
performing materials, whereas active learning will do so to
reduce the uncertainty of the model in those regions. E.g.
active learning can be used to sequentially decide pressures
at which to conduct molecular simulations of adsorption in
an NPM to characterize its adsorption isotherm.170

5 Surrogate models and acquisition
functions

In this section, we explain surrogate models and acquisition
functions commonly used in BO.

5.1 Surrogate models: Gaussian processes

Gaussian processes (GPs)85,86 are the most commonly used
surrogate models in BO owing to their flexibility as function
approximators, principled uncertainty quantification, and
compatibility with the kernel trick. GPs are non-parametric
models that can approximate complicated objective functions
f(x) given labeled training data {(xi, yi)}

n
i=1. Through a Bayesian

probabilistic framework, GPs provide uncertainty estimates in
their predictions and allow incorporation of prior beliefs. GPs
rely on a kernel function k(x, x′): X × X →  (ref. 87) to capture
the similarity between any two NPMs x and x′. This gives GPs
the flexibility to approximate arbitrary, complicated (but well-
behaved!) functions f(x). Moreover, it gives GPs versatility in
how to represent the NPMs, e.g., graph kernels88 can be used
for NPMs represented as crystal graphs (e.g., ref. 39).

What is a GP?. A GP is a stochastic process that treats the
value of the objective function at any given point in feature
space, fĲx), as a random variable. Specifically, GPs assume the
joint distribution of any finite collection of function values,
say at points {x1, x2, ..., xm} on its domain, follows a multi-
variate Gaussian distribution

f≡ f x1ð Þ; f x2ð Þ;…; f xmð Þ½ �T∼N 0;Σð Þ (4)

whose covariance matrix Σ ∈ m×m is given by the kernel
function applied pairwise over the points {x1, x2, ..., xm}, Σi,j:
= k(xi, xj). The kernel function k(x, x′) quantifies the similarity
of NPMs x and x′; hence, the idea in GPs is that the
properties fĲx) and fĲx′) of similar (dissimilar) NPMs x and x′
are highly (un)correlated.89 GPs effectively model the entire
function fĲx)—in a point-wise manner—by assuming eqn (4)
holds for any arbitrary, finite collection of function values on
its domain. The mean of zero in eqn (4) assumes the
measurements are centered.

From a Bayesian perspective, eqn (4) is a prior assumption
about the structure–property relationship fĲx). When we gather

new observations, we will update this prior assumption to
arrive at the posterior distribution reflecting our beliefs about
the structure–property relationships in light of new data.

Kernel functions. Examples of kernel functions that operate
on vector representations of two NPMs x and x′ include the
linear, polynomial, and radial basis function (RBF) kernels:

k(x, x′) = σfx
Tx′ linear kernel (5)

k(x, x′) = σf(x
Tx′)d homogeneous polynomial kernel (6)

k(x, x′) = σfe
−||x−x′||22/(2γ2). radial basis function (RBF) kernel

(7)

Each kernel possesses the hyperparameter σf, the signal
variance, which is a scale factor controlling the expected
range of the functions represented by the GP. The polynomial
kernel has a hyperparameter d that controls the order of the
polynomial in the features, and the RBF kernel contains a
length-scale hyperparameter γ that controls how close x and
x′ must be in the feature space to be considered “similar”
and the expected roughness of the functions represented by
the GP. Implicitly, each nonlinear kernel maps the two
vectors x and x′ into a new, higher-dimensional feature space
through a mapping τ, then takes the inner product of the
vectors in the new feature space:

k(x, x′) = τ(x)Tτ(x′). (8)

Interestingly, the feature map τ(x) corresponding to the RBF
kernel in eqn (7) maps vectors into an infinite dimensional
feature space! By implicitly operating in a higher-
dimensional feature space, nonlinear kernels give GPs more
flexibility, or expressiveness, for approximating complicated
objective functions fĲx). Notably, graph kernels88 and image
kernels90 can define similarities of two NPMs represented as
graphs (nodes: atoms, edges: bonds) and images,
respectively.

Inference with GPs. In BO, we exploit GPs for regression,
with uncertainty quantification, to build a surrogate model
for f(x). We have observations {(xi, yi)}

n
i=1 from previous

experiments (previous iterations of BO), with yi the measured
property of NPM xi. Under the Bayesian view, yi is a noise-
free observation§ of the random variable f(xi). We wish to
know the distribution of the random variable f(x) for an
unevaluated NPM x, to determine the utility of evaluating it
in the next experiment. Imposing the assumption in eqn (4)
for a specific collection of points on the domain of f(x)
composed of (i) the n evaluated NPMs from the past
experiments {x1, x2, ..., xn} and (ii) the unevaluated NPM, x:

f

f xð Þ

� �
∼N 0;

Σ σ

σT k x; xð Þ

� �� �
(9)

§ Note that we can pose GPs that relax the assumption that the observations are
noise-free.85
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with f = [f(x1), f(x2), …, f(xn)]
T the vector of random variables

representing the properties of the previously evaluated NPMs,
σ = [k(x, x1), k(x, x2), …, k(x, xn)]

T the vector of the kernel
between the unevaluted NPM and the previously evaluated
NPMs, and Σ the n × n kernel matrix for the previously
evaluated NPMs, with Σi,j = k(xi, xj). However, we have
observations of the random variables in f, y = [y1, y2, …, yn ]T.
Conditioning the joint distribution in eqn (9) on the
observations y of the random variables f, we arrive at the
posterior distribution for the property f(x) of the unevaluated
NPM, also Gaussian:

f xð Þ y∼Nj ŷ xð Þ; σ2 xð Þ� �
; (10)

with mean and variance:

ŷ(x) = σTΣ−1y (11)

σ2(x) = k(x, x) − σTΣ−1σ. (12)

We can interpret eqn (11) and (12). The predicted property of
the unevaluated NPM, ŷ(x), is a linear combination of the
observed properties of the evaluated NPMs, y, with weights
σTΣ−1. The weight on each measured property depends on
the similarity between that NPM and the unevaluated NPM.
The variance σ2(x) describing the uncertainty associated with
the prediction of the property of the unevaluated NPM x is
the prior assumption of k(x, x) reduced by σTΣ−1σ, which
captures the similarity of the unevaluated NPM x with the set
of previously evaluated NPMs.

Fig. 3 illustrates a GP model of a toy function f(x), based
on an RBF kernel, over a toy one-dimensional NPM feature
space X ⊂ , trained on five observations. The mean in the
GP, ŷ(x), approximates f(x), and the variance σ2(x) expresses
uncertainty in the approximation. Generally, the uncertainty

is small close to an observation and large when far from an
observation.

Hyperparameters of GPs. GPs are non-parametric models,
but most useful kernel functions used in GPs contain
hyperparameters. For example, the RBF kernel in eqn (7) has
the length-scale γ and the signal variance σf hyperparameters.
To learn the hyperparameters of the kernel that give us the
best approximation of f(x), typically we maximize the
marginal likelihood of the observed data as a function of the
kernel hyperparameters.89 Generally, at each iteration of BO,
the hyperparameters of the kernel are updated to account for
the newly acquired observation.

Two further interpretations of GP models of functions. A
GP model of the objective function f(x) can be interpreted as
(i, weight space view) Bayesian linear regression in the
implicit feature space of the kernel and (ii, function space
view) a distribution over functions.85 To clarify, the GP model
of f(x) in eqn (4) is equivalent to the parametric model:

f(x) ∼ wTτ(x), (13)

with weights w on which we place a Gaussian prior and τ the
map associated with the kernel k(x, x′) used in the GP. In the
weight space view, GP inference models the posterior
distribution over weights w in eqn (13). In the function space
view, GP inference models the posterior distribution over the
space of functions represented in eqn (13). Though eqn (13)
is helpful for understanding GPs and sampling functions
from the distribution over the function space they describe,
we in practice conduct GP inference using the kernel,
through eqn (11) and (12). E.g. τ(x) is a vector of infinite
dimension in the case of the RBF kernel, making the view of
GPs in eqn (13) unfriendly for computations.

5.2 Examples of acquisition functions

We provide three common examples of acquisition functions
and explain how they use the surrogate model to, while
trading exploration and exploitation, select the NPM to
evaluate in the next experiment.

Upper confidence bound (UCB). The UCB acquisition
function selects the point that maximizes the upper
confidence function:

A(x): = ŷ(x) + βσ(x) (14)

where ŷ(x) and σ(x) are the predicted property of NPM x and
its associated uncertainty, respectively, provided by the
surrogate model. The parameter β explicitly trades
exploration and exploitation: if β is large (small), the UCB is
exploratory (exploitative) and tends to select NPMs with the
highest uncertainty (predicted property). To explain the
terminology of UCB, the top boundary of the shaded region
that bands ŷ(x) in Fig. 3 is the UCB for β = 2.

Expected improvement (EI). Another acquisition strategy
is to select the NPM with the highest expected improvement

Fig. 3 Illustration of a Gaussian process (GP) model with an RBF
kernel over a toy one-dimensional NPM feature space. The black
points are the observed data from a toy structure–property
relationship, f(x). The blue line and shaded region visualize the GP
model trained on the observed data: the line is the approximation ŷ(x)
of the structure–property relationship, while the shaded region
illustrates the uncertainty by covering y(x) ± 2σ(x). The GP model
shows large (small) uncertainty in regions of feature space far from
(close to) the observations.
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(EI) of the property of the best evaluated NPM so far. Let the
random variable I(x): = max(0, f(x) − maxi yi) denote the
improvement in the property of a NPM x over the best
observed NPM thus far. The EI is then:

A xð Þ : =
ð∞

−∞
I xð ÞN y ŷj xð Þ; σ2 xð Þ� �

dy; (15)

which can be written in closed form:

A xð Þ ¼ ŷ xð Þ − maxiyi
� �

Φ
ŷ xð Þ − maxiyi

σ xð Þ
� �

þ σ xð Þϕ ŷ xð Þ − maxiyi
σ xð Þ

� �
σ xð Þ > 0

0 σ xð Þ ¼ 0;

8<
:

(16)

with Φ and ϕ the cumulative and probability distribution
functions, respectively, of the standard normal distribution.
The first and second terms in eqn (16), respectively, capture
the exploitation and exploration component of EI.

Information-theoretic acquisition functions. The principle
behind acquisition functions based on information theory is
to select the NPM x that maximizes the mutual information
between (i) its property y = f(x) and (ii) the location of the
NPM x* in feature space that maximizes f(x). Viewing both
f(x) and x* as random variables, the following acquisition
function describes the information gain about the location
x* of the optimal NPM by observing the property y = f(x) of a
newly acquired NPM, x.

A(x) = MI[(x, y), x*] (17)

= H[p(x*|Dn)] − Ey[H[p(x*|Dn∪(x,y))]] (18)

where MI[·,·] is the mutual information between two random
variables, Ey[·] the expectation over y, Dn = {(xi,yi)}

n
i=1 the

observations thus far, and H(·) is the entropy of a probability
density function p(·). The mutual information is the

reduction in the entropy of the probability density function of
the location of the optimum NPM, x*, as a result of observing
the property y = f(x) of NPM x. The distribution p(x*) could be
approximated under a GP surrogate model by sampling
functions from eqn (13) then optimizing them. In practice, eqn
(18) is expensive to compute, but there are several acquisition
functions based on instantiations of this general idea.91,169

Illustrating BO acquisition and the exploration–
exploitation tradeoff. Fig. 4a illustrates the EI acquisition
function in a toy one-dimensional NPM space under a GP
surrogate model with n = 5 observations. The EI acquisition
function exhibits twomaxima. The first (global) maximum is in
a region of the feature space where the predicted property ŷ(x)
is the largest. The second (local) maximum is where the
uncertainty σ(x) is largest. We select the NPM for the next
experiment, xn+1, as the one that maximizes the EI acquisition
function. Fig. 4a shows the acquired NPM assuming the
database of NPMsX covers all points on the domain shown. To
illustrate how the EI acquisition strategy balances exploration
and exploitation, for comparison, we also show the acquired
NPM xn+1 if the acquisition strategy were purely exploration
and purely exploitation. Pure exploration dictates xn+1 = arg
max σ(x), but this NPM has a poor property. Pure exploitation
dictates xn+1 = arg max ŷ(x), but this NPM is too close to an
existing observation. EI balances the trade-off by picking an
NPMwith both a high uncertainty and high predicted property.

6 Experiments and results

We now demonstrate Bayesian optimization by using it to
efficiently search for covalent organic frameworks (COFs) for
vehicular natural gas storage.2 Our experiments below use
the open data from Mercado et al.28 and can be fully
reproduced on a desktop computer using our computer code
at github.com/aryandeshwal/BO_of_COFs.

Fig. 4 Illustration of one iteration of BO where (i) the acquisition function is used to select the next NPM whilst balancing exploitation and
exploration and (ii) the GP surrogate model based on the RBF kernel is updated to account for the newly acquired observation. (a) Iteration n. (b)
Iteration n + 1, after the surrogate model is updated by the new observation (xn+1, yn+1) acquired to maximize the expected improvement (EI). In
both (a) and (b), the top panel shows the surrogate model, and the bottom panel shows the expected improvement (EI) acquisition function. For
comparison, in (a) we illustrate the NPM xn+1 that would have been selected under a pure exploitation or pure exploration acquisition strategy.
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6.1 Experimental problem setup

Our goal is to efficiently search a database of COFs for the
one with the largest methane deliverable capacity.

The database of COFs, X. The database of COFs contains
69 840 2D and 3D predicted COF structures constructed by
Mercado et al.28

The COF vector representation, x. We represent each COF
structure with a vector x ∈ 12 of structural and chemical
features listed in Table 1 and computed by Mercado et al.28

We min–max normalized each feature¶ to lie in [0, 1]. This
defines COF feature space as [0, 1]12.

The methane deliverable capacity, y. The COF property we
wish to maximize is the simulated deliverable capacity of
methane [L STP CH4/L COF] at 298 K under a 65 bar to 5.8
bar pressure swing. The deliverable capacity of the COF
primarily determines the driving range of a vehicle on a “full”
adsorbed natural gas fuel tank packed with the COF.2

The expensive objective function, f(x). Evaluating the
objective function f to give y = f(x) involves conducting two
grand-canonical Monte Carlo simulations of methane
adsorption in the COF structure represented by x—one at (65
bar, 298 K) and one at (5.8 bar, 298 K). The deliverable
capacity y then follows from the difference in the simulated
methane adsorption at the two conditions. The function f is
expensive to evaluate, as the run time of the molecular
simulations is on the order of hours.

Goal: data-efficient search for the optimal COF, x*. In an
exhaustive search, we would conduct expensive molecular
simulations to predict the methane deliverable capacity of
each candidate COF in the database—i.e., collect {(x, y =
f(x)) : x ∈ X}—to find the COF x* ∈ X with the highest
deliverable capacity. In contrast to an exhaustive search,
instead, our goal is to find the optimal COF x* efficiently–
while conducting expensive molecular simulations in only a
small proportion of the candidate COFs.

We hypothesize that BO will provide a simulation-efficient
search for the optimal COF, x*. In reality, Mercado et al.28

already simulated methane adsorption in all of the COFs at
(65 bar, 298 K) and (5.8 bar, 298 K) and computed their
methane deliverable capacities. Thus, (i) we know the optimal
COF x* and (ii) as opposed to actually conducting molecular
simulations of methane adsorption in a selected COF during
the active search, we instead look up the result of the
simulations (the deliverable capacity) from the data of
Mercado et al.28 Each data lookup, conceptually, represents
conducting the two expensive molecular simulations of
methane adsorption in a COF ourselves. N.b., that we look
up data as opposed to conducting a simulation ourselves has
no impact on the BO search efficiency when defined in terms
of the number of molecular simulations needed to find the

optimal COF. The exhaustive search of Mercado et al.28 allows
us to readily evaluate the simulation-efficiency of different
search strategies to find the optimal COF(s). We will compare
the search efficiency of BO to random search, an evolutionary
algorithm, and one-shot supervised learning.

6.2 Search strategies

We use several different strategies to search for the optimal
COF x* exhibiting the highest methane deliverable capacity y
in the database X.

Random search. Random search is a naive baseline. At
each iteration, we uniform randomly select an unevaluated
COF from X to evaluate. Random search does not make a
data-informed selection of a COF for the next evaluation, as it
ignores the past observations, {(xi, yi = f(xi))}. Thus, random
search is expected to perform poorly.

Bayesian optimization (BO). For BO, we employ (1) a
Gaussian process (GP) with the Matérn kernel (ν = 2.5)85 as
our surrogate model and (2) the expected improvement (EI)
in eqn (16) as our acquisition function. To initialize the GP
surrogate model for BO, we first randomly select ten COFs
from the database and evaluate their methane deliverable
capacity. Our [loose] reasoning for selecting ten COFs to
initialize the GP model for BO was to ∼ match the number of
COF features. The GP surrogate model is then trained on
{(xi, yi)}

10
i=1, which count towards the number of evaluations

when we report the search-efficiency of BO. At each iteration
of BO, we fit a new GP to all past observations {(xi, yi)}, which
includes choosing the hyperparameters of the Matérn kernel
(length-scale and signal variance) by maximizing the
marginal likelihood of the data under the GP. We
implemented our BO procedure in the BoTorch library.92 In
accordance with the assumption behind GPs, we z-score
standardize the deliverable capacities to have mean zero
and unit variance (using the training data only). During
the acquisition phase, we evaluate the acquisition
function for each COF in the database and select the
COF with the highest value, in contrast to optimizing
the acquisition function over the continuous COF
feature space.

Evolutionary search (via CMA-ES). As an evolutionary
search method, we use covariance matrix adaptation
evolution strategy (CMA-ES),93,94 a state-of-the-art, stochastic
optimizer for rugged, non-convex, black-box objective

Table 1 Features comprising the vector representation of a COF, x,
broken into those that capture its structure and chemical composition

Structural (geometrical) Chemical composition

Void fraction Density of carbon
Density Density of flourine
Largest included sphere diameter Density of hydrogen
Largest free sphere diameter Density of nitrogen
Gravimetric surface area Density of oxygen

Density of sulfur
Density of silicon

¶ We used the feature vectors of all COFs for the min–max normalization (both
acquired and non-acquired COFs). This does not constitute data leakage
because, in our setting, (i) the features are cheap to compute and (ii) we have a
finite library of COFs for which it is feasible to compute all features for all COFs
in X.
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functions. In CMA-ES, new COFs are stochastically selected
from the search space by sampling from a multivariate
Gaussian distribution over the feature space. The mean and
covariance matrix of the distribution are updated over the
search process, as COFs are acquired and evaluated in
batches (generations). To update the distribution, with the
aim of increasing the likelihood of acquiring and taking
search steps towards high-performing COFs, (i) the mean is
updated using a weighted average of the most high-
performing COFs in the generation (a selection mechanism)
and (ii) the covariance matrix is updated using a weighted
average of the best search steps (from the mean) towards the
high-performing COFs.94

CMA-ES has two hyperparameters: the initial standard
deviation for each COF feature and the number of new
candidate COFs acquired in each iteration (the population
size). We initialized the CMA-ES algorithm with a randomly
selected COF and set the initial standard deviation to 0.5 to
cover our COF feature space [0,1]12. The population size, 11,
was determined by a default heuristic in the cma library in
Python.

CMA-ES operates in a continuous search space. When it
selects a point in COF feature space for the next generation,
it does not exactly correspond to a feature vector of a COF in
the database; to apply CMA-ES, we select the nearest (in
feature space), unacquired COF in the database.

One-shot supervised learning (via RF). While one-shot
supervised learning does not constitute active search like BO,
it is the most popular COF acquisition method to circumvent
an exhaustive search for the optimal NPM using the high-
fidelity evaluation method. A one-shot supervised learning
strategy progresses through three stages. (1) To explore, we
select a small subset of the COFs and evaluate them. This
data serves as training examples for the supervised machine
learning model. (2) We use the trained model to predict the
deliverable capacity of the remaining, unevaluated COFs. (3)
Exploiting our trained model, we acquire the top-k
unevaluated COFs with the highest predicted deliverable
capacities and evaluate them. Stages (1) and (3) both incur
(costly) COF evaluations.

We compare one-shot supervised learning with the active
search strategies by comparing the deliverable capacities
among their acquired sets of COFs when given the same
budget of COF evaluations. Much like balancing exploration
and exploitation, we elect to split the budget of evaluations
for one-shot supervised learning among stages (1) and (3)
equally.

For stage (1), we assess two training set acquisition
strategies: (i) uniform random selection and (ii) max-min
diversity selection40,95 of COFs. For (ii), we sequentially
acquire COFs for the training set: at each iteration, we select
the COF with the maximum minimum distance (in COF
feature space) to a COF already in the training set. We
initialize the diverse set with a random COF.

As the supervised learning model, we use the commonly-
used40–42,46 random forest (RF) regression model (100 trees,

default parameters in scikit-learn) to approximate f(x) using
the (differently sized) training sets.

6.3 Results

We now execute each strategy to search for the optimal COF
x* exhibiting the highest methane deliverable capacity y in
the database X.

6.3.1 Search efficiency. Search efficiency curves for BO, in
terms of different performance metrics, are shown in Fig. 5
(blue). Each search efficiency curve describes the quality of
the acquired set of COFs Xn as the number of COFs
evaluated/acquired, n, (= the number of BO iterations = the
number of simulations/“experiments”) increases. The metrics
of acquisition set quality are (Fig. 5a) the maximum
deliverable capacity among the COFs in Xn, (Fig. 5b) the
highest deliverable capacity rank—rank among the entire
data set X—among the COFs in Xn and (Fig. 5c) the fraction
of the 100 COFs—top 100 in X—with the highest deliverable
capacity in Xn. All 100 BO searches acquired the optimal COF
after n = 139 COF evaluations. After n = 250 COF evaluations,
BO acquired 36% of the top 100 COFs in the data set of ∼70
000 COFs. This illustrates how BO can provide a simulation-
efficient search for the optimal COF, as opposed to
conducting an exhaustive search.

N.b., the shaded bands surrounding the search efficiency
curves in Fig. 5 show the standard deviation among the 100
runs; the stochasticity for BO emanates from the
initialization of the surrogate model, where we acquired ten
random COFs (different for each run) to train it.

BO also provides a more experiment-efficient search than
random search, evolutionary search, and the one-shot
supervised learning approach. Given the same budget of COF
evaluations (n = 250), a random search (on average) acquires
only the 340th ranked COF and 0.21% of the top 100 COFs.
The performance of random search is poor because it selects
the next COF to evaluate without considering the previous
observations. Evolutionary search and one-shot supervised
learning (diverse training set) provide a much more efficient
search than random search, acquiring the 11th/20th ranked
COF and the top 12%/15% of the top 100 COFs on a budget
of 250 evaluations. Though, evolutionary search nor the one-
shot supervised learning strategy recover the optimal COF x*
after 250 evaluations. Thus, BO outperforms the baseline
search methods of evolutionary search and one-shot
supervised learning using both metrics of (a) the highest
deliverable capacity in the acquired set and (b) the fraction of
the top 100 COFs in the acquired set (when given a budget of
fewer than 250 evaluations). N.b., BO is designed to optimize
the performance metric (a), but BO could be tailored to
optimize a top-k metric.96,97

Except when the training set is very small (10), the
search performance of the one-shot supervised learning
strategy via a RF benefits from acquiring a diverse
training set, compared to a randomly selecting training
examples.
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6.3.2 Visualizing the BO acquisition set. To understand
the behavior of BO for searching the database of COFs for
the optimal COF x*, we visualize the acquisition set of COFs
in feature space as one of the BO searches progresses. Given
that the feature space is 12-dimensional, we resort to
principal component analysis (PCA) to [approximately] reduce
the dimension of the feature space to two. I.e., we project
each COF feature vector onto a reduced, 2D feature space
through PCA of the data [x1x2⋯x Xj j].

First, we attempt to visualize the structure–property
relationship f(x). Fig. 6a shows a depiction of f(x) as a 2D
heatmap over the reduced 2D feature space. The color of each
voxel in the reduced COF space indicates the average
deliverable capacity of COFs that fall in that voxel.

Fig. 6b shows the acquired set of COFs, colored by
deliverable capacity, at 10 (initialization), 20, 40, 60, and
80 iterations of a BO run. For reference, (i) the gray
background shows the coverage of COF space by all COFs
in the dataset, shown in Fig. 6a and (ii) the top left panel

shows the search efficiency curve for this run. The top
right panel of Fig. 6b explains the acquisition decisions of
BO by showing the value of the EI acquisition function
for each acquired COF, broken into contributions from
the explorative and exploitative components (see eqn (16)).
Early in the search, exploration dominates, while
exploitation dominates at the later stages.

6.3.3 Effect of the initial training set size. The strategy to
select and size of the training set to initialize the GP
surrogate model for BO may impact the search efficiency of
BO. We opted to initialize the GP surrogate model for BO
with a training set of ten randomly selected then evaluated
COFs from the library. Here, we conduct BO searches using
varying initial training set sizes (5, 10, 15, 20, 25) to assess
the impact on the search efficiency curve of BO. See Fig. S1.†
Interestingly, the trend is that BO acquires higher deliverable
capacity COFs sooner if initialized with fewer COFs. Another
GP initialization strategy for BO is to acquire a single COF
closest to the center of the domain.98

Fig. 5 The search efficiency of BO in comparison with random search, evolutionary search, and one-shot supervised learning. The search
efficiency curves show (a) the maximum deliverable capacity, (b) the highest rank (among the entire data set X) of the deliverable capacity, and (c)
the fraction of the top 100 ranked (among X) COFs–among the acquired COFs as the number of acquired COFs increases. The shaded region
shows the variance over 100 [stochastic] runs. To give (a) context, we show the distribution of the deliverable capacities among the COFs in the
entire data set, X, on the right and two black bars to facilitate comparison of the scales on the y-axes.
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6.3.4 Balancing exploration and exploitation. We
conceptually illustrated how the expected improvement
acquisition function balances exploration and exploitation in
Fig. 4. We now show how balancing exploration and
exploitation is crucial for BO to recover the optimal COF with
the fewest experiments. To do so, we compare the search
efficiency of BO using three different acquisition functions:

A(x) = EI(x) exploration–exploitation balance (19)

A(x) = ŷ(x) pure exploitation (20)

A(x) = σ(x) pure exploration (21)

The expected improvement (EI) acquisition function in eqn
(16) (used in Fig. 5) balances exploration and exploitation;
acquiring the COF with the highest predicted deliverable
capacity ŷ is pure exploitation; acquiring the COF with the
highest uncertainty σ in the predicted deliverable capacity is
pure exploration (active learning). Fig. 7 shows the search
efficiency of BO under these three different acquisition
strategies, in terms of the highest deliverable capacity among
the acquired set of COFs. Both the pure exploitation and pure
exploration BO acquisition strategies exhibit subpar search
performance compared to the EI acquisition strategy that
trades off exploration and exploitation. The pure exploration
acquisition strategy (active learning) performs the worst, as it
acquires COFs with low deliverable capacities to reduce the

Fig. 6 Interpreting the acquisition behavior of BO. (a) An attempt to visualize f(x). The plane shows the first two principal components of COF
feature space with each voxel colored according to the average deliverable capacity of the COFs falling in it. (b) Pertaining to one BO run: (top
left) search efficiency curve, marked by the stages at which we visualize the acquired set of COFs. (Top right) The value of the EI acquisition
function (markers) of each acquired COF, partitioned into an exploratory and exploitative (usually negative) component. (Bottom) To visualize the
acquired set of COFs, points are the acquired COFs in reduced 2D COF feature space at 10, 20, 40, 60, and 80 iterations and are colored
according to the deliverable capacity (color bar in (a) pertains). The gray background shows the region of the feature space covered by the COFs
in (a).
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uncertainty in the surrogate model's predictions about COFs
with low deliverable capacities.

6.4 Feature importance

The search efficiency of BO is largely predicated on the
accuracy of the surrogate model, which in turn is predicated
on the information about the deliverable capacity of a COF
provided by its feature vector. Here, we determine which COF
features in Table 1 are most predictive of their deliverable
capacity through a feature permutation importance study.

First, we randomly sample 5000 COFs (required owing to
memory limitations with GPs) and split the 5000 (COF
feature vector, deliverable capacity) pairs into an 80%/20%
train/test set. Second, we fit a GP with the Matérn kernel (ν =
2.5) to the train set. The parity plot in Fig. 8a indicates the
good performance of the trained GP on the test set
(coefficient of determination R2 = 0.9, root mean square error
(RMSE) = 6.9). Third, we assess the importance of feature j
for the predictions of the GP by randomly shuffling the
values of feature j among the COFs in the test set and

observing the deterioration of the R2 of the GP on the test
data set with this feature permuted (average over five
shuffles). Fig. 8b displays the resulting feature importances.
The two most important features are the crystal density and
void fraction.

6.5 Conclusions from experiments

BO is an active search method to find the optimal NPM in a
library while evaluating, with some expensive method such as
a molecular simulation, only a small fraction of the NPMs in
the data set. BO achieves this by leveraging a surrogate model
to capture our beliefs about the structure–property
relationship, given the observations thus far, to make
principled acquisition decisions that balance exploration and
exploitation. The adoption of BO could dramatically impact
high-throughput computational screenings of NPMs by
reducing the computing cost of finding the optimal NPM,
allowing us to screen larger databases of NPMs, and enabling
the use of higher-fidelity but more expensive molecular
models and simulation methods. Notably, BO applies to NPM
search in the experimental domain as well.

7 Outlook

We explained the key ideas behind Bayesian optimization
(BO) and demonstrated its use to efficiently search databases
of NPMs for the one with the optimal property, while
synthesizing and evaluating the fewest NPMs. The ideas of
BO, to sequentially, actively make intelligent decisions on
which NPM to synthesize and evaluate based on the past
experiments, can be applied to both the laboratory (driven by
humans or robots99–103) and computational settings. The two
core ingredients of BO are (1) a surrogate model that
approximates the structure–property relationship and
describes our uncertainty in it and (2) an acquisition function
that scores the utility of evaluating each NPM next, designed
to balance exploration and exploitation. We demonstrated BO

Fig. 7 BO search efficiency using three different acquisition functions:
expected improvement (balances exploration and exploitation), the
predicted deliverable capacity (full exploitation), and the uncertainty in
the predicted deliverable capacity (full exploration).

Fig. 8 Permutation feature importance in the GP model (using randomly selected set of 5000 COFs). (a) Parity plot showing the performance of
the GP on the test set. (b) Permutation feature importances.
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of NPMs by using BO to search through a database of ca.
70 000 COFs to find the COF with the highest simulated
methane deliverable capacity; all 100 BO searches acquired
the optimal COF after evaluating only 139 COFs. While
preparing our article, Donval and Hand et al.104 also
demonstrated BO of MOFs and COFs for the acceleration of
virtual screenings.

There are several extensions to and modifications of
Bayesian optimization that are useful for different problem
settings in NPM discovery:

• Batch BO

In standard BO, we select a single NPM to evaluate in each
iteration. However, we may have parallel experimental
resources to leverage to further accelerate the search for the
optimal NPM. In batch BO,97,105–110 at each BO iteration, we
select multiple NPMs to synthesize and evaluate in parallel.
Assuming the time required to evaluate each COF is the
same, we expect batch BO to reduce the total time to find the
optimal COF, compared to sequential BO. Assuming the
resources required to evaluate each COF is the same,
however, we expect batch BO to consume more resources to
find the optimal COF, compared to sequential BO. The
reason is that batch BO makes sub-optimal acquisition
decisions for the second, third, and so forth acquired COF of
each batch; e.g. the second decision would be better
informed if we knew the outcome of the experiment from the
first COF in the batch.

• Multi-fidelity BO

Often, we have a choice of multiple experimental methods to
evaluate the property of an NPM. These methods usually
involve a tradeoff in resource cost and the accuracy of the
evaluation. For example, a molecular simulation of gas
adsorption in an NPM is a low-fidelity experiment (cheap, but
inaccurate) while measurement of gas adsorption in an NPM
in a physical laboratory is a high-fidelity experiment (costly,
but accurate). Intuitively, it is possible to leverage low-fidelity
experiments to prune NPMs with low property values and to
identify promising NPM candidates that can be searched
further using high-fidelity experiments. In multi-fidelity
BO,111–120 we select both an NPM to evaluate and the fidelity
of the experiment in each iteration. This allows optimization
of the overall resource cost of experiments—of both low- and
high-fidelity—for identifying high-performing NPMs.

• Multi-objective BO

We often need to optimize NPMs for multiple property
objectives which are conflicting in nature and cannot be
optimized simultaneously. For example, for gas separations,
we often wish an NPM to have both a high selectivity and a
high working capacity for the gas we wish to capture.54 In
[linear] scalarization, we aggregate the multiple objectives
into a single objective by specifying a weight for each
objective describing our priority for optimizing it.121

However, such weights are often subjective or cannot be
declared a priori. In such multi-objective optimization
problems, we wish to find the Pareto optimal set of solutions
and leave objective prioritization for downstream decision-
makers who may weigh the objectives differently. A solution
is Pareto optimal if it cannot be improved in any of the
objectives without compromising some other objective. The
goal of multi-objective BO122–128 is to find the optimal Pareto
set of NPMs using the fewest NPM evaluations. Similarly, the
ε-PAL algorithm129 has recently been used to find Pareto
optimal polymers.

• Constrained BO

Possibly, some NPMs in the search space cannot be
synthesized. More, often we cannot know if an NPM is
synthesizable until we attempt its synthesis, which still
incurs a cost. In this context, synthesizability is a black-box
constraint over the search space. In constrained BO,130–136 we
perform BO where the synthesizability of an NPM cannot be
verified without performing an experiment. The typical
approach involves learning a statistical model based on the
past evaluations of constraint(s) and selecting high-utility
NPMs from the predicted feasible region (minimal to no
constraint violation). Notably, a random forest classifier has
been trained to predict the ease of synthesis of precursors for
porous organic cages, using data collected from human
experts on organic synthesis.137 See ref. 77 for an overview of
strategies to optimize molecules with synthesizability in
consideration.

• Cost-aware BO

The evaluation cost can vary from one NPM to another (e.g.,
cost of synthesizing NPM). We would like to take this cost
into account to reduce the overall costs incurred during the
search for the optimal NPM. In cost-aware BO,138,139 the
acquisition strategy considers not only the information gain
of acquiring an NPM but also the cost incurred to synthesize
it and measure its property.

• Robust solutions to BO

We may be uncertain about the measured/computed features
of the NPMs and seek an optimum NPM that is robust to
variations in its features. In robust BO, we account for the
uncertainty in the inputs x when optimizing f(x) and seek flat
as opposed to sharp optima.140,141

• BO that searches spaces with categorical or hybrid inputs

In some cases, the search space could be composed of
categorical as opposed to continuous variables, or a mix of
them; developing BO frameworks that can handle categorical
and hybrid search spaces is an active area of research.142,143

Some popular software packages for BO include BoTorch,144

BayesOpt,145 and SMAC.146 COMBO147 is a BO library tailored
to materials science.
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In addition to efficiently searching for NPMs with optimal
properties, BO is applicable to a wide variety of optimization
problems in the chemical and materials sciences.148,149 BO
has been used in both the laboratory and computational
settings to efficiently search for optimal reaction
conditions,150–152 organic molecules,153 ferroelectric
materials,154 compositions of and processing conditions for
materials,101,155 ligands to dock on proteins,97,156,157 crystal
structures,110,158,159 shape memory alloys,160 and density
functional models.161 For more general overview, see the
reviews of Coley,162 Coley et al.,163 Terayama et al.,164 Frazier
and Wang,165 and Lookman et al.166

The effectiveness of BO is predicted upon an accurate
surrogate model of the structure–property relationship with
calibrated uncertainty quantification.167 In turn, the accuracy
of the surrogate model is predicated on (i) an information-
rich representation x of the NPM that encodes the salient
features of its structure and chemical composition and (ii) a
statistical model that (a) is sufficiently flexible/expressive to
approximate the underlying objective function and (b) learns
in a data-efficient manner. This gives important and
currently active directions for future research. Particularly,
engineering useful vector representations x of NPMs, using
domain knowledge, is a very active research area. The
representation should be invariant to rotations, translations,
replications (if a crystal), and permutations of the list of
atoms comprising the structure. Moreover, the mapping from
NPM structures to feature vectors should be injective. Graph
neural networks can, instead, learn vector representations of
NPMs from their crystal structures represented as graphs
with node labels. Recent work has developed graph neural
networks capable of uncertainty quantification,157,168

enabling the use of graph neural networks as surrogate
models for BO.
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