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ABSTRACT

Mobile web browsing remains slow despite many efforts to accel-
erate page loads. Like others, we find that client-side computation
(in particular, JavaScript execution) is a key culprit. Prior solutions
to mitigate computation overheads, however, suffer from security,
privacy, and deployability issues, hindering their adoption.

To sidestep these issues, we propose a browser-based solution in
which every client reuses identical computations from its prior page
loads. Our analysis across roughly 230 pages reveals that, even on
a modern smartphone, such an approach could reduce client-side
computation by a median of 49% on pages which are most in need
of such optimizations.
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1 INTRODUCTION

Recent years have witnessed significant growth in the amount of
web traffic generated through mobile browsing [8]. Unfortunately,
mobile web performance has not kept up with this rapid rise in
popularity. Mobile page loads in the wild are often much slower than
what users can tolerate [23], with many pages requiring more than 7
seconds to fully render [5].

A key contributor to slow mobile page loads is client-side
computation—in particular, JavaScript execution—as seen in our
measurements (§2) and in prior studies [30, 41]. Given the impor-
tance of fast page loads for both user satisfaction [10] and content
provider revenue [1], much effort has been expended to alleviate
this bottleneck by reducing the work that mobile devices must do
to load pages. However, despite their promising results, existing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

HotMobile '21, February 24-26, 2021, Virtual, United Kingdom

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8323-3/21/02. .. $15.00
https://doi.org/10.1145/3446382.3448664

Vaspol Ruamviboonsuk
vaspol @umich.edu
University of Michigan

Harsha V. Madhyastha
harshavm @umich.edu
University of Michigan

solutions have (fundamental) practical drawbacks that have hindered
adoption.

o Offloading computation tasks in page loads to well-provisioned
proxy servers, which ship back computation results for clients to
apply locally [15, 38, 47], poses numerous security and scalability
challenges. Clients must trust proxies to preserve the integrity of
HTTPS objects, and they must share (potentially private) HTTP
Cookies with proxies in order to support personalization. In addi-
tion, proxies require non-trivial amounts of resources to support
large numbers of mobile clients [42].

e Having origin web servers return post-processed versions of their
pages which elide intermediate computations [33] results in frag-
ile content alternations that may break page functionality [14].
For example, pages may adapt execution based on client-side
state (e.g., localStorage); servers are inherently unaware of this
state while generating post-processed pages, and thus risk violat-
ing page correctness. Moreover, like proxy-based solutions, this
approach places undue burden on web servers to generate opti-
mized versions for the large number of pages they serve (including
versions personalized to individual users).

We argue that the key to easing deployability is to shift the fo-
cus to solutions which only require client-side changes. Doing so
sidesteps the security, privacy, and correctness concerns discussed
above. Moreover, only a handful of browsers need to be updated for
most users to benefit [2].

As a first step towards this vision, in this paper, we ask: how much
web computation can be eliminated by a purely client-side solution?
To answer this question, we propose a rethink of the functionality of
client browser caches. While client-side caching has been a staple
optimization in page loads for decades, browsers have used their
caches only to eliminate network fetches; recent caching proposals
for improved hit rates share the same focus [34, 46]. In contrast,
we propose that browser caches be extended to enable reuse of
computations from prior page loads.

The idea of computation reuse, commonly known as computation
memoization, dates all the way back to late 1960s [28] when the
idea of a function “remembering" results corresponding to any set
of specific inputs was first introduced. Memoization has found wide
applicability in language compilers [36, 44, 45] as well as other
domains such as image search [25], image rendering [17] and data
center computing [16, 24, 26]. In this paper, we study the potential
of such an approach in the context of web page loads and make
contributions along the following dimensions:

(1) Granularity. The granularity at which computation is cached
can have a significant impact on potential benefits, and must be
amenable to the fact that cache entries may be from page loads
performed several minutes or even hours ago. For example,
we find that 11% of JavaScript code on the landing page of



the median Alexa top 500 site changes each hour, thereby pre-
cluding computation reuse at a page level [33, 38]. Instead, we
propose finer-grained computation caching at the granularity of
JavaScript functions. Our proposal is rooted in our finding that
96% of JavaScript code is housed inside JavaScript functions
on the median page.

(2) Efficacy. To measure the potential benefits of our proposal, we
developed an automated JavaScript tracing tool that dynami-
cally tracks all accesses to page state made by each function
invocation in a page load; this information is required to de-
termine the reusability of computation from prior page loads.
We experiment with a state-of-the-art phone (Google Pixel
2) and over 230 pages (landing pages of top Alexa sites and
random sites from DMOZ [4]). For the subset of these pages
which require clients to perform over 3 seconds of computation
(“high-compute pages"), we estimate that client-side reuse of
JavaScript executions can eliminate 49% of client-side compu-
tation on the median page.

(3) Practicality. Finally, we sketch the design of a browser-based
system that performs computation caching. We outline the prac-
tical challenges of such a system, which largely revolve around
the high state tracking and cache management overheads. To
alleviate those overheads without sacrificing substantial reuse
opportunities, our key finding is that 80% of total JavaScript
execution time is accounted for by 27% of functions on the
median high-compute page. This allows for the system to target
only a small fraction of functions while reaping most of the
potential computation caching benefits.

2 MOTIVATION

We begin by presenting a range of measurements to illustrate the
large (negative) impact that client-side computation has on overall
page load times (PLTs). Our experiments use a modern smartphone
(Google Pixel 21y with Google Chrome (v73), and consider landing
pages from the Alexa top 1000 sites; these pages are more likely
to incorporate recommended best practices for enabling fast page
loads.

Mobile web page loads often have very high compute. We record
each page and then load it within the Mahimahi replay environ-
ment [35] over an emulated 4G network [7]; emulation was done
using Chrome’s network shaping feature. We focus our analysis on
the 223 pages which experienced PLTs greater than 3 seconds (the
“Shaped, all cores" line in Figure 1), since these loads are slower than
user tolerance levels [23].

Since page loads consist of fetching resources over the network
and processing those resources to display functional content, the
observed load times could be high due to network or computational
delays. To distinguish between these two factors, we loaded the 223
slow landing pages again using Mahimahi, but this time with an
unshaped network. We note that this represents the best case per-
formance for prior (complementary) web optimizations that target
network delays [18, 32, 43, 48]. As shown in the “Unshaped, all
cores" line of Figure 1, 39% of these pages (i.e., 86 pages) continue
to experience load times greater than 3 seconds, despite the lack of
network delays; we call these “high-compute” pages. While client-
side computation may not always be the primary bottleneck when

'We believe a more recent version of Google Pixel (e.g., Pixel 4) would show some,
albeit limited, improvements in the total client-side computation time due to a slightly
higher CPU clock speed [20].
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Figure 1: Page load times, with or without network delays
(shaped vs. unshaped) and when using all 8 CPU cores or only 4
of them. Results are for 223 landing pages with load times over
3 seconds with a shaped network.

these pages are loaded in the wild (i.e., network fetches may consti-
tute the critical path), these results show that compute delays alone
would slow down many web pages beyond user tolerance levels.

Our findings, while in line with recent work [30, 41], are in stark
contrast to observations made by earlier studies. For example, a
decade ago, Wang et al. [48] found that high network latency and
the serialization of network requests in page loads are the key con-
tributors to poor mobile web performance. Since then, the mobile
web landscape has changed significantly in three ways. First, due
to a 680% increase over the last 10 years in the number of bytes of
JavaScript included on the median mobile page [9], the amount of
client-side computation as part of web page loads has dramatically
increased. Second, the quality of mobile networks has improved
greatly, e.g., over the last 10 years, on the average mobile connection
globally, bandwidth has increased from 1MBps to 19MBps and RTT
has decreased from 700ms to 65ms [11-13]. Lastly, the increased
adoption of HTTP/2 has reduced the serialization of network re-
quests; while HTTP/2 did not exist a decade ago, the fraction of
requests on the median page that are served over HTTP/2 is now up
to 67% [6].

Compute will continue to slow down page loads. Improvements
in CPU performance generally come from increase in either the
number of cores or the clock speed of each core. However, with
mobile devices, improvements have been largely due to the former,
with clock speeds increasing at a far slower rate, e.g., CPU clock
speed on the Samsung Galaxy S series increased from 1.9GHz in
2013 to 2.73GHz in 2019; the number of CPU cores doubled during
that time (from 4 to 8).

Unfortunately, this trend of increased cores provides little benefit
to the mobile page load process. Web browsers are more dependent
on clock speed than the number of cores [21] because they are unable
to fully take advantage of all available CPU cores (described more
below). Indeed, Figure 1’s “Unshaped, 4 cores" line shows that
PLTs are largely unchanged even when we disable 4 out of 8 CPU
cores on the Pixel 2.

Cellular networks, on the other hand, are projected to continue to
get significantly faster [3]. Given these trends, as well as the energy
restrictions that hinder CPU speeds on mobile devices [39], client-
side computation will likely continue to significantly contribute to
load times.

JavaScript execution dominates computation delays. Computa-

tion delays in page loads stem from numerous tasks that browsers
must perform, such as parsing and evaluating objects like HTML,



1.00

n .-
4 -
‘@ 0.757 =—— High-compute

@ === Random

©  0.50-

3]

©

w  0.25-

[m]

(@)

0.0 S . !
8.00 0.25 0.50 0.75 1.00
(JavaScript execution)/(Total computation)

Figure 2: Fraction of browser computation accounted for by
JavaScript execution. Results are for 200 random landing pages
in the Alexa top 1000 and 86 high-compute pages.

CSS and JavaScript, and rendering content to the screen. Further-
more, the JavaScript engine in the browser spends time compiling
and executing JavaScript, and doing garbage collection. We ana-
lyzed the loads of each page in our corpus to identify which of these
compute tasks browsers spend the most time on. We consider two
sets of pages: 200 random pages from the Alexa top 1000 sites, and
the 86 high-compute pages from above.

We find that JavaScript execution is the primary contributor to
browser computation delays in page loads. In particular, Figure 2
shows that JavaScript execution accounts for 64% and 65% of overall
computation time for the median page in the two sets of pages,
respectively.

This explains why page load performance does not benefit much
from more cores, as we saw above. JavaScript execution in browsers
is single-threaded and non-preemptive for each frame in a web
page [40]. While this single-threaded model greatly simplifies web
page development, it does so at the cost of degraded performance
and resource utilization.

3 CLIENT-SIDE COMPUTATION REUSE

To overcome the practical limitations of prior systems (§1), we
advocate for a purely client-driven approach to reduce client-side
computation in mobile page loads. Rather than having clients reuse
the results of server-side or proxy-side page load processing, we
envision each client reusing computations from its own page loads
from the past. More specifically, like how web browsers cache ob-
jects to exploit temporal locality in a client’s page loads [49] and
eliminate redundant network fetches, we propose that browsers also
reuse JavaScript executions from prior page loads.

3.1 Need for Fine-Grained Computation Reuse

Although conceptually straightforward, our proposal necessitates a
fundamentally new approach for how computation is reused. The
primary difference between our vision and existing proxy-/server-
side approaches is that of timing (Figure 3). In existing solutions, a
proxy/server loads a page in response to a client request and returns
a compute-optimized version, which the client applies a few seconds
later. In this workflow, clients download a single post-processed
object that reflects all of the state in the latest version of the page.
In contrast, if the browser locally caches computations from one
of its page loads, the time gap until a subsequent load in which
the cached computation is reused can be unbounded. As this time
gap grows, operating the cache at the granularity of an entire page
becomes increasingly suboptimal since even a small change to page
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Figure 3: (a) Server-side acceleration techniques send a pro-
cessed page to the client. (b) Client-side acceleration requires
initial web page loads to populate the computation cache, and
then subsequent page loads to utilize this cache.
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Figure 4: Fraction of JavaScript that matches across two loads
of the same page one hour apart.

content will render the page-level cached object unusable in subse-
quent page loads.

To better understand how often and in what ways web pages
change over time, we load the landing pages of the Alexa top 500
sites twice, with a 1 hour time gap, and compare 1) the JavaScript
source code fetched during each page load, and 2) the final window
object that represents the constructed JavaScript heap. For source
code, we compute the fraction of bytes that are identical, and for
the heap, we compute the fraction of keys within the window object,
whose values have the same SHA-I hash in both loads. Figure 4
shows that both parts of web computation change over the course
of an hour on most pages. A common reason behind this frequent
change in page content is the increasing dynamism in modern web
pages [31]; web servers often compute responses on-the-fly in order
to deliver customized content catered to individual users.

3.2 Our Proposal: Function-Level Caching

While the above results highlight that a page-level caching approach
(i.e., a client entirely reuses computation results from a prior page
load) will present minimal opportunities for computation reuse,

they also show that large parts of JavaScript content remain un-
changed across loads of a page. For the median page, Figure 4
shows that 86% of heap state and 89% of JavaScript source code
match between two loads separated by an hour; also, JavaScript state

20ne approach to handling small changes in page content is to patch page-level caching
data. However, a client-side caching solution precludes this approach because clients
are unaware of content changes until they fully load the latest version of a page (thereby
foregoing caching benefits).
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Figure 5: Reusable JavaScript execution across different time intervals and across different sets of sites.

changes by over 75% across an hour on only 25% of pages. Taken
together, there exists significant potential for computation caching,
but a fine-grained strategy is necessary to realize the savings.

Determining how fine a granularity to cache at (e.g., small or
large code blocks) involves a tradeoff between potential benefits
and storage overheads. Finer-grained caching would result in more
cache entries and subsequently higher storage overhead, but would
also offer more potential benefits (and be less susceptible to page
changes).

We observe that a natural solution for balancing this tradeoff is
to leverage the fact that most of the JavaScript code on a page is
typically within JavaScript functions. On the median landing page
among the Alexa top 500 sites, 96% of all the JavaScript code
is inside functions. Furthermore, JavaScript functions represent a
logical unit of compute as intended by the code developer. These
properties naturally lend themselves to a function-level compute
caching approach.

4 BENEFITS OF CLIENT-SIDE COMPUTE
CACHE

Given the single-threaded nature of JavaScript execution (§2), if a
JavaScript function is deterministic, then its execution is reusable
when it is invoked with the exact same input state as one of its prior
invocations, i.e., outputs from the prior invocation can be applied
without executing the function again. In this section, we estimate the
potential benefits of client-side computation caching by determining
the percentage of JavaScript execution time that can be eliminated
by reusing the results of function invocations from prior page loads.

4.1 Overview of JavaScript Function State

A JavaScript function has access to a variety of web page state —
global objects, local variables, function arguments, and closures —
with the precise set being determined by web security policies (e.g.,
same-origin policy) and scope restrictions implicit to each state’s
definition. All of this state is mapped to objects on the JavaScript
heap, DOM tree, and disk storage (like localStorage and sessionStor-
age). Given this, a JavaScript function execution can be summarized
by the combination of its 1) input state, or the subset of the page’s
state that it consumes, and 2) externally visible effects, such as its
impact on the page’s global JavaScript heap, calls to internal browser
APIs (e.g., DOM), and network fetches.

4.2 Quantifying Potential for Computation Reuse

Methodology: We use the following approach to estimate the ben-
efits of reusing computation from one page load in a subsequent
page load. First, we identify all functions which make use of non-
deterministic APIs (e.g., Math.random, Date, key traversal of dic-
tionaries, and timing APIs [29]) and network APIs (e.g., XHR re-
quests), and mark all such functions as uncacheable. For all remain-
ing JavaScript functions, during both loads, we track the input state
consumed by every invocation. Note that we do not include the input
state of the nested functions in the parent functions, instead they are
treated as separate function invocations. For each function, we then
perform an offline analysis to determine which of its invocations in
the later page load had the same input state as an invocation in the
initial load; all matching invocations could be skipped via client-side
computation caching. We then correlate this information with func-
tion execution times reported by the browser’s profiler to compute
the corresponding savings in raw computation time.

To employ the above methodology, we record web pages with

Mahimabhi [35] and then rewrite those pages using static analysis
techniques [32]. The rewritten pages contain instrumentation code
required to track and log function input state; it suffices to log only
input states as our goal here is to only estimate the potential for
reuse, and not to actually reuse prior computations. We then reload
each instrumented page in Mahimahi and extract the generated logs.
We run our experiments on three different corpora: landing pages for
the Alexa top 500 sites, landing pages from 100 (less popular) sites
in the 0.5 million-site DMOZ directory [4], and the 86 high-compute
sites from Figure 2.
Reuse across loads of the same page. As discussed in Section 3,
the time between the page load where the cache is populated and
the load where the cache is used to skip function invocations is
unbounded. We therefore compare input states for each function
invocation across pages loads spaced apart by 1 minute, 1 hour, and
1 day.

Our dynamic tracing tool was successfully able to track input
state of JavaScript invocations for 150 of the 500 Alexa pages and
33 of the 86 high-compute pages. Since the distribution of load times
across these subsets of sites matches the overall distribution in the
respective corpus, we expect our findings to be representative of
other pages too. Figure 5(a) shows that, for the median Alexa page,
73% and 57% of JavaScript execution time can be skipped via com-
putation caching across 1 minute and 1 day. From Figure 5(b), the
fraction of JavaScript execution that is reusable a day later is higher
(76%) for pages which are more in need of computation caching:
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Figure 6: Reusable JavaScript execution across pairs of pages.

the high-compute pages.3 Since JavaScript execution accounts for
65% of client-side computation on the median high-compute page
(Figure 2), we estimate a net savings of 49% for the median page.
This translates to 990ms of eliminated execution time even on the
state-of-the-art Pixel 2 phone. We observe similar reuse potential
for the DMOZ pages (48 out of the 100), with a median of 70% of
Javascript execution time being reusable across a day.

Reuse across loads of different pages. Thus far, we have focused
on reusing computations from a prior load of the exact same page.
However, we observe that traditional browser caches support object
reuse even across pages. More specifically, object caches are keyed
by an object’s resource URI, which may appear on multiple pages;
this is a common occurrence for pages on the same site, e.g., a
shared jQuery library. Inspired by this, we extend our analysis of
computation caching to examine how cache entries can be reused
across loads of different pages from the same site.

We sample 10 sites at random from the Alexa top
1000, and then select 20 random pages on each site.
For example, www.gamespot.com/3-2-1-rattle-battle/ and
www.gamespot.com/101-dinopets-3d/ constitute two pages on the
same site. We then compare all pairs of pages on the same site to
determine what percentage of JavaScript execution time can be
reused between each pair. In other words, we load each of the 20
pages in a site once, load all of these pages again after a time gap,
and evaluate how much of the JavaScript execution time on the
latter load of a page can reuse executions from prior loads of the
other 19 pages. Our tool successfully tracked input states for 80 out
of the 200 pages. Figure 6 shows, that for the median pair, 29%
and 15% of JavaScript execution time can be reused across time
intervals of 1 minute and 1 day, respectively. The % of reuse varies
from site to site, with it being as high as 80% for www.cil23.com
and as low as 9% for www.prezi.com.

Note that a user can benefit from all of the reductions in client-
side computation that we estimate in this section, both across loads
of a page and across loads of multiple pages on the same site, with
only modifications to the user’s web browser. In contrast, a large
number of domains need to adopt prior server-side computation
eliding strategies [33] in order for users to see benefits across all of
the pages they visit. Furthermore, since JavaScript execution can be
reused across pages as well, even the very first load of any page at a
client can be sped up by reusing computation from that client’s prior
loads of other pages on the same site.

3To minimize the instrumentation overhead of our tracing tool, we exclude tracking of
closure state for high-compute pages. On the subset of these pages which we are able
to successfully load with closure state tracking enabled, we see that 59% of JavaScript
execution time can be reused a day later on the median page.
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Figure 7: JavaScript execution time breakdown for landing
pages of 150 out of Alexa top 500 sites loaded at a time gap
of 1 day. Reusable accounts for the execution time that can be
reused. Source, Inputs, and Nondeterminism account for exe-
cution time which is non-reusable due to change in JavaScript
source files, change in function inputs, and non-deterministic
functions, respectively.

4.3 Characterizing Computation Cache Misses

While our results above highlight the significant potential for compu-
tation reuse, we see that not all function invocations can be serviced
by the cache. To investigate the reason for such misses, we analyze
the data for the “/ day" line from Figure 5(a), and plot in Figure 7 the
breakdown of the total execution time into reusable and non-reusable
components (marking the reason precluding reuse).

Non-determinism. Functions which invoke non-deterministic APIs
are not amenable to computation caching. Figure 7°s “Nondetermin-
ism" shaded area shows the amount of execution time marked non-
reusable due to the presence of non-deterministic functions on the
page. For the median page in our corpus, 0.5% of total non-reusable
time was accounted for by such non-deterministic functions.

Changes to JavaScript source code. For a function’s execution
to be reusable from an earlier page load, the source code of the
JavaScript object file containing the function’s definition should not
have changed since that load.* As previously shown in Figure 4,
11% of JavaScript source code is subject to change within a time
period of one hour. The longer the time gap between loads, the more
susceptible are web pages to load object files with different source
code [46].

Figure 7 shows that change in source code is the predominant rea-
son for non-reusable computation. Further analysis reveals that for
13% of pages, change in source code was the only reason hindering
reuse.

Changes to input state. Figure 7 also shows the percentage of non-
reusable computation accounted for by changes in the input state of
a function. A JavaScript function can observe different sets of inputs
across invocations on different page loads, either due to changes in
server-side state or due to non-determinism on the page.

Changes in server-side state can influence the responses sent to
the client, which in turn can affect the input state of JavaScript
invocations. For example, www.cnblogs.com sends a cookie known
as RNLBSERVERID as a part of the response to a client request. This
cookie value is used for server-side load balancing. Since the value
of this cookie changes dynamically depending on server logic, a

# Though it would suffice for only the source code within the function’s boundaries to
remain unchanged, our analysis considers cache entries for a function as non-reusable if
the file containing the function changes.
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Figure 8: High level proposed design for enabling client-side
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JavaScript function on this page reads difterent values for this cookie
across loads spread out by 1 hour or more, causing this function to
forego the use of results from prior invocations.

Inputs to a function can also change across loads due to non-
determinism in functions which are invoked earlier in the page
load. In order to distinguish between server-side state and non-
determinism as the cause for change in input state, we load the same
recorded set of webpages twice using Mahimabhi. This eliminates
any potential changes in the source code of JavaScript object files
and server-side state. We then compare the input state across these
two loads. Any mismatch could only be due to non-determinism
on the page. Figure 5(a)’s “Omin" line shows that for the median
page, 18% of the total execution time is non-reusable due to such
non-determinism.

5 ENVISIONED SYSTEM AND CHALLENGES

While our primary goal in this paper is to motivate the need for client-
side solutions and quantify the potential benefits of our proposed
client-side reuse of JavaScript executions, we end by describing
how web browsers might implement a computation cache and the
challenges in doing so.

5.1 System Workflow

Figure 8 illustrates our envisioned approach. When the user loads
a page, the browser would fetch and cache previously un-cached
resources, as it does today. The browser can then use (offline) static
program analysis to instrument the cached scripts to track the state
that each JavaScript function accesses or modifies (Section 4.1).
Finally, when an instrumented script is executed in any page load,
prior to executing every instrumented function, the browser can
perform a computation cache lookup in search of a matching entry
(i.e., a prior invocation of the same function with the same inputs);
if a match is found, the browser would apply the effects from that
cache entry instead of executing the function; otherwise, it would
execute the function and add a new entry to the cache.

5.2 Practical Challenges

Although our proposed design requires only browser modifications
(easing deployability), our data collection in Section 4.2 reveals
several overheads that hinder practicality.

o Tracking: The instrumentation required to track per-function
state accesses and modifications can result in user-facing
slowdowns of up to 200x [19]. To mask these overheads,
tracking could be performed offline or using spare CPU cores
(§2), but such solutions would require special care (designed

per page) to avoid negatively impacting persistent client- or
server-side state (e.g., cookies) via, say, idempotent func-
tions [47].

e Cache management: Similar to the browser’s network cache,
the computation cache would incur various caching overheads
in terms of lookup times and storage. These overheads are
exacerbated in the case of computation cache because of dif-
ferences in the granularity at which the two caches operate:
cache entry per resource in the network cache versus cache
entry per function invocation in the compute cache. On the
median landing page across the Alexa top 500 sites, the num-
ber of function invocations per page load (close to 9K) are
more than two orders of magnitude higher than the number of
resources fetched (30). Therefore, the overheads associated
with the compute cache are likely to be much higher than
with the network cache.

Solution. To address these overheads, we make the following key
observations: 1) the distribution of execution time across JavaScript
functions on a page is (typically) heavily skewed towards only a
small fraction of functions, and 2) these small fraction of functions
have relatively stable execution times across page loads. For the high-
compute pages in our corpus, 80% of execution time on the median
page is accounted for by only 27% of the functions. Across loads
separated by an hour, the execution time for the median of these
functions changed by only 15%. This implies that, to sidestep the
aforementioned overheads without sacrificing most reuse benefits,
only the subset of functions accounting for the bulk of the execution
time should be considered for caching. Note that function-level
execution time information can be easily extracted using built-in
browser profilers [22] at low overheads.

6 CONCLUSION

Despite an abundance of proposed solutions, client-side computation
continues to slow down mobile web page loads. To overcome this,
we propose a purely client-side solution to elide web computations:
augmenting web browsers with a computation cache. As a first
step towards this vision, we empirically motivate the need for a
finer granularity of computation reuse than prior systems, and we
quantify the potential for client-side reuse of JavaScript function
executions. We estimate that 49% of client-side computation can be
reused across loads even a day apart on the median high-compute
web page. We outlined a potential system architecture to realize
our proposed client-side web computation cache and the challenges
entailed in reaping the estimated benefits.

The mobile web landscape is highly dynamic, with the underlying
technology changing at a rapid rate. In light of this dynamism, it
is hard to predict the applicability of a technique, such as ours,
even a few years down the line. However, we believe that certain
web trends will continue to hold, as they have in the past, and
would therefore continue to enable JavaScript computation reuse.
First, prior studies [37, 49] have shown that more than half the web
pages browsed by users are revisits. We expect page revisits to be
as common going forward. Second, despite the web’s dynamism,
it has been shown that large parts of web page content are fairly
static [27, 46]. Taken together, we believe there will continue to
exist significant opportunity for reusing JavaScript computations as
a means to improve mobile web performance in the long run.
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