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Pennate Actuators: Force, Contraction, and 
Stiffness 
Tyler Jenkins and Matthew Bryant  

North Carolina State University, Department of Mechanical and Aerospace Engineering  

Abstract 
Hierarchical actuators are comprised of multiple individual actuator elements arranged into a system, 

resulting in improved and expanded performance. Natural muscle tissue is a complex and multi-level 

example of hierarchical actuation, with its hierarchy spanning from the micrometer to the centimeter 

scale. In addition to a hierarchical configuration, muscle tissue exists in varying geometric arrangements. 

Pennate muscle tissue, denoted by its characteristic fibers extending obliquely away from the muscle 

tissue line of action, leverages geometric complexity to transform the relationship between fiber inputs 

and muscle tissue outputs. In this paper, a bioinspired hierarchical pennate actuator is detailed. This work 

expands on previous pennate actuator studies by deriving constitutive force, contraction, and stiffness 

models for a general pennate actuator, where the constituent fibers can be constructed from any linear 

actuator. These models are experimentally validated by studying a pennate actuator with McKibben 

artificial muscles constituting the actuator fibers. McKibben artificial muscles are used because they have 

a high force-to-weight ratio and are inexpensive to construct, making them an attractive candidate for 

hierarchical actuators and mobile robotics. Using the derived constitutive models, general pennate 

actuator performance is better understood by analyzing the transmission ratio, blocked force, and free 

contraction. Loaded contractions and stiffness during isotonic and isobaric contractions are also explored. 

The results allow for informed design decisions and an understanding of the associated tradeoffs when 

recreating the remarkable properties of pennate musculature. Future work will leverage the results of this 

paper to create an adaptive pennate actuator that is capable of changing configuration in response to 

force, contraction, and stiffness demands. 

Introduction 
Hierarchical actuators incorporate multiple individual actuators into geometrically complex macro-level 

systems to enable advantageous functionality. By integrating multiple actuators into a hierarchical 

configuration, the resulting speed, force, efficiency, stroke, and redundancy can be tailored. This approach 

has proven useful in cellular piezoelectric actuators [1], whiffletree actuators [2], series-parallel 

approaches [3], and bio-inspired actuator recruitment [4], which utilize multiple small actuators to expand 

actuator bandwidth and efficiency. Because current mobile robotics applications need energetic 

improvements [5], hierarchical actuation schemes are of research interest. When considering hierarchical 

actuation schemes in nature, biological muscle tissue offers a dramatic example. A muscle tissue’s 

hierarchy is organized into sequentially larger groups progressing from sarcomeres (where the contractile 

protein interactions take place) at the smallest level, to myofibrils, fibers, fascicles, and finally entire 

muscles at the largest level. Recent studies have used muscle-inspired hierarchies to create bundles of 

linear actuators that mimic biological orderly recruitment schemes to improve efficiency [4]. Similar to 

mammalian muscles, by purposely using a bundle's smallest necessary motor unit, the energy consumed 

is minimized. Actuator bundles currently configure the individual actuators in parallel – i.e., the 
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longitudinal axis of each linear actuator is oriented in the same direction as the overall actuator line-of-

action [6]. However, in nature many muscle topologies exist that deviate from this parallel arrangement; 

this paper considers a pennate arrangement. 

In contrast to their parallel-fibered counterpart, pennate muscle tissue has fibers oriented at an oblique 

angle relative to the muscle tissue’s contractile line-of-action [7]. Pennate muscle tissues have 

demonstrated unique properties; in a series of papers outlining the biological advantages of pennate 

musculature [8–10], the implications of the muscle fibers’ oblique orientation on fast contractions, shock 

absorption, aging, and damage prevention during extension were explored. Furthermore, pennate muscle 

tissue was shown to passively regulate its thickness and bulging, altering the effective gear ratio coupling 

the fiber force and displacement to the macro-level muscle force and displacement [8]. These effects are 

attributed to pennate muscles effectively functioning with a variable gear ratio, where the gearing dictates 

the relationship between fiber inputs and muscle outputs. Presently, the literature exploring bio-mimetic 

pennate actuators is sparse. In 2013, a uni-pennate actuator implementing McKibben artificial muscle 

actuators was outlined [11]. The authors showed that the variable gearing concept exists in a uni-pennate 

array prototype. In 2014, variable stiffness and recruitment using nylon actuators in a pennate topology 

was explored experimentally [12]. Although both studies provide a promising baseline, a constitutive 

model relating the “fiber” actuator force, position, and stiffness to the “muscle” actuator force, position, 

and stiffness has not been developed. 

Beyond readily integrating with other bio-inspired hierarchical actuator technologies, such as orderly 

recruitment, understanding the constitutive relationships will allow the development of a pennate 

actuator as a Variable Stiffness Actuator (VSA). VSA’s are useful for roboticists and engineers because they 

enable features atypical of traditional, stiff kinematic linkages, such as energy storage or increased 

human-interaction safety. Traditionally, robots are designed with minimal compliance to enable precise 

trajectory tracking and high bandwidth. However, by intentionally introducing compliance into the 

drivetrain of a robot, advantages such as shock tolerance, low reflected inertia, stable force control, 

decreased damage during contact, and potential for energy storage are possible [13]. By adaptively 

varying the actuator stiffness, VSA’s can improve actuator performance by adjusting stiffness to the task 

at hand [14,15]. If human interactive safety is of concern, optimal control theory has been used to 

determine upper bounds on actuator stiffness, thus reducing the engineering tradeoff on tracking 

performance, all while quantitatively remaining safe [16]. 

This paper explores the modeling, design, experimental validation, and analysis of a bio-inspired pennate 

hierarchical actuator. The development of analytic models allows for a deeper understanding of the 

coupling between force, stiffness, and speed of the individual “fibers” and the net “muscle” output. To 

this end, first the muscle-level force and strain are related to the fiber-level force and strain via a 

constitutive kinematic model, resulting in a relationship for the transmission ratio and an actuator 

stiffness model. Next, a hardware proof-of-concept is built to validate the stiffness model. A pennate 

hierarchical actuator is then constructed from McKibben pneumatic actuators. Existing McKibben 

actuator analytic models are modified for use with the newly developed pennate relationships, and 

experimental data is collected on a custom actuator testing machine. Finally, the models are used to 

analyze specific cases, providing further insight into actuator characteristics. 
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Kinematic model and gear ratio 
In mammalian musculature, pennate muscle tissue is denoted by muscle fibers extending obliquely away 

from a central connective tissue. This pattern has the appearance of a feather, hence the Latin penna, 

meaning feather. Due to the muscle fibers’ oblique orientation, the muscle fiber forces generated are not 

entirely directed along the tissue’s line of action, thus attenuating the force transmission. During a 

contraction, the muscle fibers rotate, altering the force component oriented along the line of action. Fiber 

rotation amplifies the fiber contraction, meaning the pennate muscle tissue has a greater contraction than 

that of an individual fiber. Pennate muscle configuration effectively functions as a variable transmission 

ratio, capable of passively arranging into a favorable configuration for the demanded actuation task. 

Connective tissue is thought to passively regulate the fiber rotation [8]. During a contraction, the material 

properties of a highly loaded pennate muscle tissue allow the muscle fibers to orient more parallel to the 

line of action (reducing pennation angle and favoring force output), whereas a minimally loaded pennate 

muscle tissue’s fibers are more obliquely oriented to the line of action (increasing pennation angle and 

favoring velocity output)[8]. Thus, pennate muscle tissue passively adapts to a favorable configuration 

based on the load. When considering a pennate actuator in lieu of biological tissue, individual linear 

actuators are analogous to muscle fibers, whereas the entire pennate configuration is analogous to a 

whole muscle tissue. The fiber (i.e. individual actuator) force, strain, and activation are the inputs, and the 

muscle tissue (i.e. bulk pennate actuator) force and strain are the outputs.  

To understand the actuator-agnostic force and geometric amplification of the pennate configuration, the 

kinematic relationships governing force attenuation and stroke amplification are explored in this section. 

Of interest are the relationships of muscle force to fiber force, muscle stroke to fiber stroke, muscle and 

fiber stroke to changing pennation angle, and fiber stiffness to muscle stiffness. Kinematics are used to 

relate the muscle and fiber through the formulation of a transmission ratio. This is analogous to the 

architectural gear ratio (AGR) shown in biomechanics studies [8]. Throughout this paper, the term fiber 

Figure 1: A diagram of the pennate topology. “Fibers” are arranged obliquely to the “muscle” line of action via a 
pennation angle. The muscle is made up of multiple individual fibers.  
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refers to an individual actuator and fiber parameters are denoted with a subscript f, while the term muscle 

refers to the bulk actuator with parameters denoted by a subscript m.  

Transmission ratio 
A pennate actuator diagram is shown in Figure 1 and is used to relate the muscle force Fm to the fiber 

force Ff  in equation (1), where n is the number of fibers, and θ is the pennation angle. 

 cosm fF F n =   (1) 

Functional biomechanics models and schematics similar to that in Figure 1 have been dated as far back as 

1664 [17], and have been of continuing interest to biomechanics researchers [18,19]. Using equation (1), 

the transmission ratio relating output muscle force to input fiber force is  

 cosm
force

f

FTR
nF

= =   (2) 

where TRforce is the transmission ratio relating the output force to input force. Assuming constant 

thickness, the transmission ratio relating the contraction rates of the fiber and muscle is  

 ( )2 2

2 2
secposition

dh d l lTR l t
dl dl hl t

= = − = = =
−

  (3) 

where TRposition is the transmission ratio relating a differential change in muscle output length to a 

differential change in fiber input length. Note that TRforce and TRposition are reciprocals, as expected. By 

understanding the transmission ratio, the pennate actuator is classified as operating via a “continuously 

variable transmission” mechanism, one of the many high-level variable stiffness actuator (VSA) groups 

outlined in the comprehensive VSA review papers [14,20]. The transmission ratio is later used to analyze 

the relationship between pennate muscle outputs, fiber actuator contraction, and initial position. 

General Stiffness Model 
The pennate muscle stiffness, km, is defined as the ratio of a differential change in muscle force to a 

differential change in muscle position. A stiffer actuator will exert a greater force in response to a unit 

displacement as compared to a less stiff actuator. Differentiating equation (1) with respect to the output 

position, and noting that cos /h l =  , pennate muscle stiffness is 

 
1f fm

m f

dF FdF h dh dk n F h
dh dh l l dh dh l

  
= = + +   

  
 , (4) 

and via the chain rule:  

 
1f f f

m f
f

dF dS Fdl h d dlk n F h
dS dl dh l l dl l dh
  

= + +  
   

  (5) 

where the extending fiber strain Sf is  
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 0

0
f

l lS
l
−

=   (6) 

and the necessary derivatives are   

 
0

1fdS
dl l

=   (7) 

 
2 2

dl h h
dh lh t

= =
+

  (8) 

 2

1 1d
dl l l
 

= − 
 

 . (9) 

Substituting and simplifying yields: 

 

2 2 2 2 2 2

2 3 2 3
0 0

2 2

2 3
0

1 1

f f
m f f

f f

f
f

f

dF dFh l h l t tk n F n F
dS l l l dS l l l

dF t tn F
dS l l l

   − −
= + = +   

      

  
= − +  

   

 . (10) 

Recognizing that 
2

2
2 sint
l

=  and 2 21 sin cos − =  , we arrive at:   

 
2 2

0

cos sin
1

f f
m

f f

dF Fnk
l dS S

 
 

= + 
+  

 . (11) 

Equation (11) is general for any actuator “fiber” in a pennate “muscle” configuration. It relates the fiber 

force, initial actuator configuration, current actuator configuration, and fiber stiffness to compute the 

muscle stiffness. 

Stiffness model validation 
As a proof of concept, a simple pennate device is constructed for experimental validation of the stiffness 

model. The setup, shown in Figure 2a, is made of 3D printed components connected by linear springs in a 

pennate configuration. The outer connection points are movable to discretely adjust the thickness of the 

pennate device. Force vs position data are collected by slowly changing the “muscle” position and 

recording the “muscle” force. Control and data collection were executed by a National Instruments cRIO 

FPGA/Real-Time Controller with a custom actuator testing machine. Actuator position was controlled in 

open-loop via a non-back-drivable stepper motor and lead screw with a resolution of 0.0025 cm/step, 

driven in 1/16 step-per-pulse mode to minimize vibration. Actuator force was measured using a six-axis 

ATI Gamma load cell with a maximum z-axis force of 200 N and a resolution of 0.025 N. All testing was 

performed at a slow contraction rate of 0.1 mm/s to approximate a quasi-static condition.  
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The force vs position data are first collected for individual linear springs in a parallel configuration to 

validate the manufacturer spring constant and verify a linear force-position relationship. Appropriate end 

fittings are used to ensure the spring remained collinear with the stroke of the linear actuator. The 

individual spring constant is used as an input parameter to the pennate analytic models given in equations 

(1) and (11). Next, quasi-static force vs position data are collected for linear springs in a pennate 

configuration. Five trials are conducted at a thickness of 3.2 cm. Data is collected at 1 kHz and low-pass 

filtered in software. The force vs displacement curve in Figure 2 is obtained by computing the mean and 

standard deviation of the five trials, with data points and error bars (representing one standard deviation) 

displayed at 0.5 cm intervals. Stiffness is computed by fitting the force vs position data via a Savitzky-Golay 

filter [21], creating a smooth fit with a differentiable function. Each trial is fit and differentiated in this 

manner. The data is then plotted against the linear spring pennate model, shown in Figure 2a. The force 

data shows good agreement with the model. Experimental errors are attributed to the friction between 

the sliding 3D printed components. The two small bumps in Figure 2c near 7 and 9 cm are due to the 

springs beginning to contact one another; note that, because stiffness is the derivative of the force vs 

strain curve, subtle changes in the force measurement lead to shape changes in the stiffness vs position 

curve. The stiffness, shown in Figure 2c, follows the correct trend of the model, however oscillating peaks 

are present in the differentiated data. These are the result of small changes in the force vs stroke curve 

that manifest as roughness in the derivative. Interestingly, the pennate configuration has a non-constant 

stiffness, even though the actuators have a constant stiffness. This behavior is due to the nonlinear 

relationship between the “fiber” force, stroke, and stiffness and the “muscle” force, stroke, and stiffness, 

 

  

Figure 2: (a) Ten constant stiffness linear springs are arranged in a pennate configuration with adjustable thickness, 
(b) Force vs position data for a single linear spring, (c) Pennate force vs position data, (d) Pennate stiffness vs 

position data. Stiffness is analytically computed via the general stiffness model and compared with the derivative of 
the measured data. 
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as shown in equation (11). As the pennate muscle length changes, the linear springs rotate, changing the 

configuration and force transmission, leading to this nonlinear relationship. Additionally, note that the 

stiffness model gives non-zero stiffness at zero stroke. For this configuration, the springs had a slight 

stretch at a 90 degree pennation angle, therefore leading to the second term of equation (11) having a 

non-zero value.  

McKibben Actuator Experiments – data, modeling, and validation 
McKibben actuators (often called McKibben muscles or fluidic artificial muscles) are lightweight, easy to 

construct, and naturally compliant linear actuators. They are generally constructed using an elastomeric 

inner tube surrounded by a braided sheath, shown in Figure 3. A pressurized working fluid is applied 

through one end of the actuator, resulting in radial expansion and axial contraction. Because of their high 

force-to-weight ratio, McKibben actuators can be assembled into bundles [22,23]; for these reasons, they 

are an ideal actuator candidate for a bio-inspired hierarchical pennate actuator. To develop the McKibben 

pennate actuator concept in this section, first an individual McKibben actuator is modeled (i.e., the “fiber 

model”). The fiber model is then validated using quasi-static experimental data. Next, the fibers are 

assembled into a pennate muscle. Using the models developed earlier, a McKibben pennate muscle model 

is derived. The model is then validated using quasi-static experimental data.  

The data collection system used the same cRIO, load cell, and lead screw as in the previous section. In 

addition, closed-loop pressure control is added to maintain pressure in the McKibben actuators during 

testing, as shown in Figure 4. The system controls actuator pressure in closed-loop using a pneumatic 5/3-

Servo Valve (MPYE, Festo). Pressure feedback is measured with an analog pneumatic pressure transducer 

rated to 689 kPa (100 PSI, Measurement Specialties, Inc.), and is conditioned with an instrumentation 

amplifier circuit. PID pressure control is executed at 1 kHz. Before quasi-static data is collected for the 

entire pennate muscle actuator, data is first collected for a single McKibben fiber to facilitate the 

computation of blocked-force and free-strain correction factors, as defined in the next section. 

McKibben actuator – pennate actuator fiber model 
McKibben actuators embody the fibers of the pennate actuator. To better understand the performance 

of the McKibben pennate actuator, the McKibben fiber is modeled using virtual work principles [24], 

resulting in an ideal force-strain McKibben model, shown in equation (12), 

 ( )( )22
, 0 1f idealF P r a b = − −   (12) 

Figure 3: An example of an unpressurized (top) and pressurized (bottom) pneumatic McKibben actuator 
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 2 2
0 0

3 1,
tan sin

a b
 

= =   (13) 

 0

0
f

l l S
l


−

= = −   (14) 

where P is the applied pressure, r0 is the initial bladder radius, a and b are constants determined by the 

initial braid angle relative to the longitudinal axis, α0 is the initial braid angle with respect to the 

longitudinal axis, and ε is the contractile strain. Note that, while strain is generally defined as in equation 

(6), the notation ε and its definition are used in this section to remain consistent with the McKibben 

actuator literature. 

In practice, the McKibben ideal force-strain model is accurate for high pressures and for McKibben 

actuators constructed with inner bladders of negligible stiffness. However, the model requires correction 

factors when considering ordinary elastic bladder materials, such as commonplace latex. To this end, 

correction factors have been developed to adjust the axis zero-intercepts of the force-strain curves 

[24,25]. The corrected virtual work model is used because it provides a balanced tradeoff between the 

simplicity of the virtual work model, while still capturing many of the complexities introduced by elastic 

effects. A systematic method for determining these correction factors was later developed [26] and is 

used here. The modified McKibben actuator force is modeled as  

 ( )( )22
, 0 1f mod FF P r a b   = − −   (15) 

where κF is the blocked-force correction factor and κε is the free-strain correction factor. Both correction 

factors are functions of pressure and are determined by curve-fitting empirical data. At the blocked-force 

condition, strain is equal to zero and a McKibben actuator’s force is maximized for a given pressure. 

Solving equation (15) for the blocked-force correction factor yields  

 
( )

( )
,

2
0

f blocked
F

F P
P r a b




=
−

   (16) 

Figure 4: System block diagram for the actuator test stand. The system uses a LabVIEW host program, 
communicating with a NI cRIO FPGA/Real-Time Controller. cRIO inputs are load cell signals and pressure transducer 
(PT) signals amplified by an instrumentation amplifier circuit. Outputs are servo valve position signals and a motor 

drive signal.  
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where Ff,blocked(P) is a polynomial as a function of pressure, determined via curve fit to experimentally 

measured blocked-force data. At the free-strain condition, force is equal to zero and a McKibben 

actuator’s contraction is maximized for a given pressure. Similarly, the free-strain correction factor is 

solved in equation (15) at the zero force condition, giving 

 
( )

1 1
free

b
P a



 
= −  

 

  (17) 

where εfree(P) is a polynomial as a function of pressure, determined via curve fit to experimentally 

measured free-strain data points. The fiber stiffness is then derived as 

 ( )
2

0

0

2 1F
f

r Pak
l




  
 = −  . (18) 

Table 1: McKibben actuator fiber initial parameters. 

Parameter Value 

r0 0.25 [cm] 

α0 20.8° 

l0 13.56 [cm] 

 

  

  

Figure 5: (a) Experimental blocked-force and (b) free-strain data as a function of pressure is collected and used to 
compute the (c) blocked-force correction factor and the (d) free-strain correction factor. Correction factors 

approach unity as pressure increases. 
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Using the actuator testing machine described previously, the blocked-force and free-strain as functions of 

pressure are measured and plotted in Figure 5. Note that because the above models deal with a single 

McKibben fiber, only one actuator is tested at a time and it is oriented collinear with the lead screw. 

Curves are fit to the blocked-force and free-strain data, with the resulting equations and coefficients 

shown in equation (19) and Table 2. For equation (19), f(P) represents either the blocked-force correction 

factor or the free-strain correction factor, contingent upon which set of coefficients are used from Table 

2. Equation (19)’s input pressure is in Pascals, and the outputs are Newtons (for the blocked-force 

correction factor) and decimal strain contraction (for the free-strain correction factor). Data is not 

presented at low pressures because the McKibben fiber does not begin contracting until ~138 kPa is 

applied, due to the bladder elasticity and braid material properties [27]. Both correction factors are fit 

with a third order polynomial, with coefficients described in equation (19) and Table 2. The curve fit is 

valid from 138 kPa to 550 kPa (20 to 60 PSI).  

 ( ) 3
3 4

2
1 2 , 138000 550000 [Pa]f P c P c P c P c P= + + +     (19) 

Table 2: Coefficients for the blocked-force and free-strain curve fit. 

Coefficient Blocked Force [N] Free Strain 

c1 -2.715e-15 1.188e-18 

c2 2.127e-09 -3.063e-12 

c3 -1.522e-4 1.903e-06 

c4 -4.387 -0.1984 

 

The blocked-force and free-strain correction factors are then used to compute the modified McKibben 

model using equations (15)-(17) and (19). Quasi-static contraction data is collected for pressures of 207 

kPa (30 PSI) and 276 kPa (40 PSI), and is plotted against the fiber model in Figure 6a. The force model 

shows good agreement with the data. Note that the slope of the force-strain model slightly differs from 

the experiment, which is attributed to braid friction and material effects that are not entirely accounted 

for by the correction factors. The single McKibben stiffness is shown in Figure 6b. Stiffness is again 

computed using the Savitzky-Golay filter approach. Any McKibben model parameter uncertainty, or 

unmodeled effects such as hysteresis and friction, will lead to the model deviating from the measured 

data. This effect, in turn, causes the stiffness model to deviate from the computed data. The average 

  

Figure 6: (a) Quasi-static force-contraction and (b) stiffness-contraction data and model for a single McKibben 
actuator  
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experimental percent error for the 207 kPa stiffness case is 10.6%, and is 7.7% for the 276 kPa stiffness 

case. 

McKibben actuator pennate muscle model 
The McKibben fiber model is next implemented in the pennate muscle model. The additional length of 

the end fittings is accounted for by distinguishing between the McKibben actuator length, l, and the entire 

fiber length, lf. The 0 subscript designates the initial, inactivated configuration. Note that linactive is a 

constant. 

 
,0 0

f inactive

f inactive

l l l
l l l
= +

= +
  (20) 

Strain ε is still computed relative to the McKibben fiber, so its definition is unchanged. Using the modified 

McKibben fiber force-strain relationship in equation (15), the pennate muscle force FM,mod is modeled as  

 ( )( ) ( )
22

, 0 1 cosM mod FF r P a b n    = − −   (21) 

If the load on the muscle is prescribed, the contraction of the muscle will depend on both its activation 

(pressure) and its configuration. Using equations (11) and (21), the pennate muscle stiffness is then  

 
( )

( )
( )( )

( )

2

2 2
0

2
,

0

12 1
cos sinM mod F

f

a ba
k r P n

l l
 

   
   

 − −− = +
 
  

  (22) 

To validate the model, a physical prototype of a pennate muscle is constructed as shown in Figure 7. The 

pennate muscle is composed of four fibers and has an adjustable thickness. The 3D printed fiber 

connections also act as turnbuckles for finely adjusting the initial fiber lengths. Data is collected on the 

Figure 7: Overhead view of the physical pennate muscle prototype with four McKibben actuator fibers. 
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custom-built actuator testing platform introduced at the beginning of this section and described by Figure 

4.  

The geometry of the McKibben actuators used in the experiments is shown in Table 1. Four actuators are 

used to facilitate future inclusion of other bioinspired hierarchical behaviors, including orderly 

recruitment. Quasi-static force-strain data is collected for two thickness configurations at activation 

pressures of 207 kPa (30 PSI) and 276 kPa (40 PSI). Pressures greater than 276 kPa (40 PSI) saturated the 

load cell measurement range. All muscle fibers are at the same activation pressure during an experiment 

trial. Initial pennation angle is computed by digital measurement of an overhead photograph and 

validated using measured lengths and geometric relationships. Muscle force data are plotted with the 

muscle analytic model in Figure 8 for two configurations and two pressures. Figure 8a and Figure 8b show 

the force-contraction and stiffness-contraction models and data for an actuator thickness of t = 13 cm. 

Figure 8c and Figure 8d show the force-contraction and stiffness-contraction models and data for an 

actuator thickness of t = 15 cm. Data and models show good agreement, except for a noticeable deviation 

at zero-contraction for 207 kPa in Figure 8d. The large spike in the data is observable in the slope of the 

207 kPa force data in Figure 8c. Because the pennate actuator model is constructed directly from the 

McKibben model, any parameter uncertainty and unmodeled effects in the McKibben model are 

propagated into the pennate actuator data.  Note that for the pennate actuator model to represent the 

data well, the McKibben actuator must have an accurate model, because any modeling errors will be 

reflected n times in the pennate actuator model. 

  

  

Figure 8: Force and stiffness vs contraction model and data for two pennate muscle configurations and two 
different pressures. (a) and (b) are for a thickness of 13 cm, (c) and (d) are for a thickness of 15 cm. 
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Analysis – Using the McKibben model to understand the pennate actuator 
Using the analytical model, detailed analysis can be performed to understand actuator performance via 

case studies. This section outlines the pennate actuator transmission ratio, blocked-force, free-strain, and 

a comparison between pennate actuator isotonic and isobaric contractions. 

Transmission ratio  
The muscle model shows that fiber force is attenuated by the cosine of the pennation angle, and a change 

in fiber displacement is amplified by the secant of the pennation angle. To understand the effects of 

pennate muscle configuration, the transmission ratios are plotted in Figure 9. For contractile fibers, the 

initial configuration of the actuator (parameterized by the initial pennation angle θ0) and the maximum 

muscle strain dictate what portion of the transmission ratio curve the contraction will traverse. For 

example, a pennate muscle with unit fiber length, an initial pennation angle of 30 degrees, and fibers that 

contract 25% will have a maximum pennation angle of 42 degrees. Variations of this scenario are shown 

in Figure 9. For the aforementioned scenario (denoted by red triangles in Figure 9), the contraction has 

an initial force transmission ratio of 0.87, the point moves along the force transmission ratio curve as the 

actuator contracts, and has a final force transmission ratio of 0.75. Similarly, the position transmission 

ratio has an initial value of 1.16 and a final value of 1.34. Note that pennate actuators using the same 

fibers, but with different initial pennation angles, will travel different regimes of these curves. A more 

oblique pennate actuator will traverse a greater range of transmission ratios than a more-parallel pennate 

actuator. 

Pennate actuator blocked-force 
For a contractile pennate actuator at a constant pressure, the initial configuration represents the 

maximum force because it is the minimum pennation angle. Using this knowledge, the muscle blocked-

force can be computed via equation (15), which represents the maximum force the pennate actuator can 

produce.  

  

Figure 9: Plots showing (a) the force transmission ratio and (b) the position transmission ratio relating the 
pennate actuator and fiber actuator as a function of pennation angle. The filled markers indicate an initial 

configuration, and the empty makers indicate the configuration at 25% fiber strain. A more oblique pennate 
actuator will traverse a greater range of transmission ratios than a more-parallel pennate actuator. 
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( ) ( )2
, 0 0

1
0

0

cos

sin

m blocked F

f

F r P a b n

t
l

  

 −

= −

 
=   

 

  (23) 

At sufficiently high pressure (i.e., as κF approaches 1), the blocked-force increases linearly with pressure, 

just like with a McKibben fiber. To maximize the transmission of fiber force to muscle force, the pennation 

angle should be as small as possible, orienting the fibers more parallel.  

Pennate actuator free-contraction 
Pennate actuator free-contraction is the maximum contraction of the actuator under a zero-load 

condition. When considering a single McKibben actuator, the ideal fiber force equation has two scenarios 

for zero-force to occur: either the trivial case when the actuator is at zero pressure, or when 

1free b a = = − . When considering the pennate actuator, a third zero exists when the pennation 

angle approaches a singularity configuration at θ = 90 degrees. Scenarios two and three need to be 

considered when analyzing the free-contraction of the pennate actuator. 

To maximize free-contraction, the muscle thickness should equal the fiber free-length (plus any inactive 

length). This represents the fibers simultaneously approaching free-length as the muscle approaches its 

singularity. If the muscle thickness is smaller than the fiber free-length, the fiber will stop contracting 

before the fibers have completely rotated, and muscle free-contraction will not be maximized. This 

scenario is represented in Figure 10 by the curves on the right-hand side of the vertical dashed line. Figure 

Figure 10: The relationship between pennate actuator stroke (non-dimensionalized by initial fiber length) and 
pennate actuator configuration (fiber free-length non-dimensionalized by pennate actuator thickness). The 

horizontal-axis value represents the fiber free-length divided by the constant muscle thickness, and the vertical-axis 
value represents the pennate actuator stroke. Pennate actuator free contraction is maximized when the thickness is 

equal to the fiber free length. 
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10 shows the muscle contraction (non-dimensionalized by the initial fiber length) as a function of the ratio 

of fiber free-length to muscle thickness. If the muscle thickness is larger than the free-length of the muscle, 

the fibers will completely rotate before they are fully contracted, resulting in a free-contraction that is not 

maximized. This scenario is represented in Figure 10 by the curves on the left-hand side of the vertical 

dashed line. The nondimensional free-contraction Δh/l0 is represented by the piecewise function 

 

( ) ( )

( )

,
0

0

,
0

0

cot cot 1

cot 1

f free
free

f free

lh
l t

lh
l t

 




= − 


= 

  (24) 

and ( ), 0 1f free inactive freel l l = + − , where 1free b a = −  in the ideal case, or equal to the polynomial 

determined in equation (19) when considering material effects. θfree is the pennation angle at the free-

contraction, 

 1

,

sinfree
f free

t
l

 −
 

=   
 

  (25) 

When fiber free-length equals the muscle thickness (i.e., lf,free/t = 1), the muscle contraction is maximized, 

as denoted by the peaks of the curves. The corresponding pennation angle is denoted as 
*

0 . When the 

fiber free-length is greater than the thickness (i.e., a more “parallel” configuration), the non-dimensional 

muscle contraction asymptotically approaches a value equal to the fiber free-strain. This is because the 

fibers rotate less in a more-parallel configuration, meaning the muscle contraction is nearly equivalent to 

the fiber contraction. When the fiber free-length is smaller than the thickness, the fibers do not fully 

contract before the fiber rotation is maximized, limiting contraction. Horizontal intercepts of the plot 

denote the maximum muscle thickness, where t = l0 in the extreme case. The vertical axis of the curve 

represents the stroke amplification effect of the pennate muscle. For example when εfree = 0.33, the 

maximum Δh/l0 value is 0.74. This means that the fiber has contracted 33% of its initial length, but the 

muscle stroke is 74% of the fiber’s initial length. When Δh/l0 > εfree, the pennate actuator maximum 

contraction is greater than the fiber maximum contraction. Note that Figure 10 is general for any pennate 

actuator, regardless of its constituent fiber actuators. 

At play here is the idea of work performed by the fiber and muscle. When lf,free/t is less than 1, the fibers 

cannot fully contract, meaning less work is performed than an actuator with the same length fibers but 

less thickness. When lf,free/t is greater than or equal to 1, the output work of the muscle (divided by the 

number of fibers) equals the work done by each fiber. As long as the fibers can fully contract, all 

configurations produce the same amount of work, shown in equation (26). The transmission ratio effect 

of the pennate actuator serves to alter this work from high force, low stroke to lower force, with increased 

contraction.  

 

,

0 0

f freel

l
f

h

h
mW n F dl F dh= =    (26) 
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Isotonic contractions 
Due to the transmission ratio effect of the pennate geometry, pennate actuators with identical fibers but 

different initial pennation angles will have different contraction behaviors. This is especially evident during 

loaded contractions, where highly pennate actuators will not be able to effectively move large loads. To 

explore this effect, isotonic contractions are modeled by implicitly computing the pressure required to 

create a constant force at a given position. To maintain continuity with the previous experiments, pressure 

is bounded to a maximum of 414 kPa (60 PSI). Figure 11 summarizes this by displaying the maximum 

contraction as a function of initial configuration for six constant loads. For small loads, the maximum 

contraction occurs when the initial pennation angle is close to 
*

0 . As the load increases, the 

configuration maximizing contraction trends towards a more parallel alignment. When the load is 

sufficiently high, some highly pennate configurations are unable to generate any contraction. Future work 

should explore methods of adapting the pennate actuator’s configuration in response to changing 

contraction and force demands. 

Stiffness during isobaric and isotonic contractions 
We have previously shown that stiffness increases with pressure and a more parallel configuration. 

Alternatively, reducing pressure or increasing the pennation angle serves to reduce the stiffness of the 

actuator. However, if the muscle contracts isotonically, the required input pressure will increase 

(effectively increasing stiffness) and the pennation angle will increase (effectively reducing stiffness). To 

more clearly pose these competing effects, consider two configurations of the same pennate actuator. 

For configuration 1, consider a pennation angle θ1, force F1, pressure P1 required to produce F1, and 

stiffness k1. For configuration 2, consider a pennation angle θ2 > θ1, an identical force F2 = F1 = F, a pressure 

P2 > P1 required to produce F, and a stiffness k2. It is unclear whether k1 is less or greater than k2.  

Figure 11: Maximum contractions vs initial pennation angle for six different isotonic loads. The red circles 
denote the maximum of each curve. The vertical dashed line represents the configuration when t = lf,free, 
i.e. θ0 = θ0*. The applied pressure is bounded at 414 kPa (60 PSI). The simulations use McKibben actuator 

parameters from Table 1 and Table 2. As the load increases, the configuration maximizing contraction 
trends towards a more parallel alignment. 

Page 16 of 20AUTHOR SUBMITTED MANUSCRIPT - BB-102016.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Acc
ep

ted
 M

an
us

cri
pt



17 
 

Considering a case study where muscle thickness equals the fiber free-length at 414 kPa (60 PSI), isotonic 

contractions of the McKibben pennate actuator are explored. Figure 12a shows muscle force as a function 

of pennation angle when undergoing isobaric quasi-static contractions. Figure 12b shows the required 

input pressure to create an isotonic contraction as a function of pennation angle. Note that Figure 12b’s 

vertical axis is limited to 414 kPa (60 PSI) because the correction factors κF and κε considered here are valid 

from 138-414 kPa (20-60 PSI). Figure 12c combines this information, showing the muscle stiffness for 

isotonic and isobaric contractions as a function of pennation angle. Figure 12c shows that there is a 

nonlinear relationship governing stiffness change as a McKibben pennate actuator contracts isotonically. 

If a 10N isotonic contraction is considered, the changing pennation angle reduces stiffness at a higher rate 

than the increasing pressure serves to stiffen the actuator. Therefore, at the fully contracted position, the 

muscle is less stiff than at the uncontracted position. The opposite is true as the isotonic force is increased 

– at a 40N isotonic contraction, the actuator stiffness is greatest when it is fully contracted because the 

increased pressure stiffens the muscle more quickly than the fiber rotation decreases stiffness.  

For a specific application when parameters such as fiber length are known, the contraction can be solved 

computationally. If thickness is constant, the equilibrium position and pressure are unique. However, if 

thickness can be varied, the extra control will allow both force and stiffness to be prescribed within a 

bounded range, which is outside the scope of this paper. This work lays the foundation for extension into 

a true variable stiffness actuator. 

 

 

 

Figure 12: (a) Force vs pennation angle for isobaric contractions, (b) required input pressure vs pennation angle for 
isotonic contractions, and (c) stiffness vs pennation angle for isobaric and isotonic contractions. Given a desired 

position and load, the required pressure and stiffness can be computed. 
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Conclusion 
This paper outlines the conceptualization, design, modeling, and analysis of a bio-inspired pennate 

actuator. The pennate actuator is one embodiment of a hierarchical actuator, which generally offer the 

ability to use geometric complexity to tailor configuration, speed, force, efficiency, stroke, or redundancy. 

To this end, a constitutive kinematic model relating the muscle-level force and strain to the fiber-level 

force and strain was first developed. The kinematic model is used to describe the transmission ratio, which 

describes the relationship between the muscle outputs and the fiber inputs as a function of pennation 

angle. A model for the muscle stiffness was also developed using the kinematic relationships, and the 

actuator was shown to have a position-dependent stiffness. To validate the kinematic model, a proof-of-

concept physical model of a pennate muscle was built; this prototype showed nonlinear stiffness as a 

function of position as predicted by the model, even though linear stiffness fibers were used. Next, a 

pennate muscle with McKibben actuators was built. By adapting existing McKibben models to the new 

model in this paper, the McKibben pennate actuator model was validated against experimental data. Data 

was collected using a custom built actuator testing platform. The testbed is capable of controlling actuator 

pressure in closed loop, prescribing position, measuring force, and reconfiguring to test a variety of 

pennate muscle configurations. After validation, the model was used to further analyze the actuator 

characteristics. Relationships between the configuration and gear ratio were then outlined. The couplings 

between free-contraction, blocked-force, and loaded contractions to initial configuration were analyzed. 

Finally, relationships between stiffness and configuration were better understood by examining the 

actuator model in isobaric and isotonic contractions. This work lays the foundation for the creation of a 

versatile, adaptive pennate actuator. Advanced actuation techniques are needed to continue making 

improvements in the safety, efficiency, and performance of mobile robotics. To progress towards a 

functioning adaptive pennate actuator capable of altering configuration to meet force, stroke, and 

stiffness demands, future work should address the sensitivity of the pennate actuator to fiber parameter 

uncertainty and the implications of adjusting the number of constitutive actuators.  
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