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ABSTRACT

In this work, complementary formulas are presented to compute free-energy differences via perturbation
(FEP) methods and thermodynamic integration (TT). These formulas are derived by selecting only the most
statistically significant data from the information extractable from the simulated points involved. On the
one hand, commonly used FEP techniques based on overlap sampling leverage the full information
contained in the overlapping macrostate probability distributions. On the other hand, conventional TI
methods only use information on the first moments of those distributions, as embodied by the first
derivatives of the free-energy. Since the accuracy of simulation data degrades considerably for high-order
moments (for FEP) or free-energy derivatives (for TI), it is proposed to consider, consistently for both
methods, data up to second order moments/derivatives. This provides a compromise between the limiting
strategies embodied by common FEP and TI and leads to simple, optimized expressions to evaluate free-
energy differences. The proposed formulas are validated with an analytically solvable harmonic
Hamiltonian (for assessing systematic errors), an atomistic system (for computing a potential of mean force
with coordinate dependent order parameter), and a binary-component coarse-grained model (for tracing a
solid-liquid phase diagram in an ensemble sampled through alchemical transformations). It is shown that
the proposed FEP and TI formulas are straightforward to implement, perform similarly well, and allow
robust estimation of free-energy differences even when the spacing of successive points does not guarantee

them to have proper overlapping in phase space.



I. INTRODUCTION

Numerous studies, book chapters, and monographs have been reported on the methodology for

7 a research area that can be considered

free-energy calculations via molecular simulations, "
mature, with well-established formulas extensively and successfully deployed. Nonetheless,
improvement of such methods is still an active area of research, as the effectiveness and ease of
use of a given method tends to strongly depend on the characteristics of the system at hand.>!*
Two widely used methods to obtain free-energy differences between two states, and by extension
over an arbitrary multi-state thermodynamic path, are the free-energy perturbation (FEP) and
thermodynamic integration (TI)>** methods. FEP encompasses such methods as simple

2 overlap sampling like Bennett’s acceptance ratio method (BAR)," weighed

perturbations,
histogram analysis (or multihistogram reweighting) WHAM!6' and multistatt BAR (MBAR)
methods,”® and the closely related transition matrix methods.?!** The conceptual and practical
connections between FEP and TI are well known and while they can successfully be deployed
interchangeably for many systems, one of them is often the method of choice for specific classes
of problems.>>® For example, in simulating the free-energy of ordered assemblies, overlap
sampling and TI were found to have roughly equivalent efficiency, while the MBAR method
offered no advantage,'* while in the simulation of benchmark systems involving insertion/deletion
of atomic sites and changing partial charges, the BAR and MBAR methods were found to be

consistently among the top performers.?* For concreteness, we will not consider non-equilibrium

work based methods®*-° despite their connection to FEP and TI methods.

Free-energy calculations can also be classified based on the type of independent variable(s)
“A” used to define the different states. These variables can be either (i) Hamiltonian and state
parameters (HPs) if they appear as parameters in the ensemble Boltzmann’s factor and hence are
trivial to set, or (i1) order parameters (OPs) or “reaction coordinates” if they depend on (a subset

of) the coordinates (or phase space) of the system and are generally more difficult to fix.? In



general, free-energy calculations based on HPs are more straightforward to implement with both
TI and FEP, while those using OPs often require specialized methods or combination of methods,

such as umbrella sampling®' with WHAM when obtaining free-energy profiles or surfaces.'®!”

The most effective FEP methods rely on overlap sampling between neighboring states; i.e.,
if states A and B are simulated, then important regions of the phase space of state A are also
sampled by state B and vice versa.”!%3 It is well-known that FEP overlap methods can fail if the
target and reference states do not share a sufficiently large set of relevant configurations; i.e., for
large systems.!* When simulating along multiple state points, it is customary to employ statistics
of all such points leveraging the collected distribution of microstates or of “work™ (virtual
transitions to neighboring states) henceforth to be denoted as the “IT distribution”. The best-known
and widely used method to implement this calculation is BAR for the two-state case,'” and
MBAR?® or equivalently, WHAM, %" for the many-states case. However, if states A and B are
nearest neighbors in phase space, then in computing the free-energy difference between them,
using statistics from more distant states may not be worth the extra effort, especially if those other

states only overlap on the less relevant and noisier “outer” tails of the A and B Il-distributions.**
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Likewise, when using TI it has been customary to use data from multiple points, but from
first-order derivatives of the free-energy only, to evaluate the integrand. Indeed, as per typical
formulas like the Simpson’s rule or Gaussian quadratures,®’ polynomial functions are fitted to such
first-derivative data. More than 2 points are needed to capture the curvature of the integrand
function which helps not only with the integration (and interpolation process involved) but also
with any needed extrapolation,” which is crucial when advancing A in a particular direction as in
TI intended to stepwise trace a phase coexistence line,*3** referred to as Gibbs-Duhem integrations
“GDI”. However, fitting numerous points to a function is not beneficial for stiff integrands, and it

may place too much weight on points distant from the interval of interest, or unduly smooth-out



local features of the free-energy function, thus reducing the nimbleness of the extrapolating
function to adapt to quick changes of slope. In this work, we advocate the use of simulation data
from only those two points, say 4 and B, constituting the bounds of a single TI step, when
evaluating the integral between them, with the tenet that unless one is using very narrowly spaced
A values, then other distant points are unlikely to provide essential information that is not already
contained in points 4 and B. To compensate for the lack of integrand curvature information when
using only such two points, it is proposed to use simulation data on second derivatives of the free
energy,*” which are typically as readily accessible as first derivatives with no or minimal
computation overhead.*** We show that using such 2™ order TI brings the two-point integration
formula closer to FEP overlap methods. We disregard higher than 2™ order derivatives since in
practice the accuracy of the simulated data degrades for such high order effects. While this strategy
has been already embodied by the FENEX method** — a variant of GDI - here we present additional

optimized formulas for polynomial fitting and in a general context for broader applicability.

We also show that FEP formulas that only employ up to 2" IT-moments data (related to
2™ order free-energy derivatives) are easier to use than, e.g., BAR, which requires significantly
more bookkeeping and a numerical procedure to solve an integral equation (with numerical issues
compounding for WHAM®*). Further, such 2"-order FEP methods do not rely on overlapping
neighboring IT’s to work as intended nor in properly sampling the IT distribution tails. Indeed,
considering that even first moment IT data can exhibit significant statistical and systematic errors
(i.e., due to ergodic issues), it would seem unwarranted to assume that using the full I'T distribution
will invariably lead to a significant gain in robustness or accuracy in the calculated free-energies.
Cumulant expansions of the free-energy, which when truncated to second order correspond to an
underlying Gaussian I1, have been successfully used in the past to derive perturbation
approximations,” e.g., the Born’s formula for the free-energy of an ion in a liquid.* Most recently,

2" order expansions of Jarzynski’s equality have been deployed for non-equilibrium simulation



methods;*”%° e.g., for steering simulations where it was shown that for stiff springs, the work is

Gaussian-distributed regardless of the speed of the process simulated.?’

It is important to keep in mind that in optimizing the statistical efficiency of free-energy
estimations (e.g., see Sec. A of Appendix), one should consider the interplay between a “breadth”
strategy that uses more points and finer staging, and a “depth” strategy that uses fewer points but
leverages as much information from each point as possible. Indeed, a fixed computational budget
could be equally allocated by either shorter but more numerous runs using the most accurate first-
order data only, or by longer but fewer runs using higher order data. Regardless of number of
points, however, the most elementary calculation involves two “successive” points and hence
optimizing such calculations should always pay off, help strike a balance between breadth and

depth, and provide a cornerstone to complement multi-state or higher-order methods.

Machine Learning (ML) methods*® have been used to aid countless problems seeking to
unveil complex correlations between variables, including the construction and prediction of free-
energy surfaces from simulation data.*”>? Indeed, ML models can be trained on datasets generated
by molecular simulations such as those obtained from TI, FEP, WHAM and other similar
approaches, as a means to create “black-box” correlations that can be used to efficiently interpolate
data or extrapolate results to unexplored conditions. Such data-driven methods, however, are
arguably most indicated in data-rich situations,>® i.e., once extensive free-energy data has already
been generated. In contrast, the strategies discussed here focus on making the most out of limited
data; they are relevant in cases where little is known about the free-energy landscape of a system
and where only a limited cross-section is of interest. Hence, while ML could still be used in such

data-scarce situations, it would be a most fruitful complement at later stages in the analysis.

The rest of paper is organized as follows. In Section II we summarize the main definitions and
overarching strategy to be followed. In Sections III and IV (plus the Appendix) we describe the

proposed formulas developed for FEP and TI, respectively. In Section V we present three sample



applications of the proposed FEP and TI formulas and in Section VI we provide concluding

remarks.

II. BASIC DEFINITIONS

The independent variable defining the path over which free-energy calculations are performed can
be classified as being either: (i) An explicit parameter in the ensembles Boltzmann’s factor, which
may be a thermodynamic field or a force-field parameter and (ii) a collective property that depends
on (a subset of) the atomic coordinates. Henceforth we will refer to the former variables as
“Hamiltonian parameters” or HPs and the latter variables as “order parameters” or OPs. The value
of'a HP or its change can be specified and enacted in a straightforward way and is associated with
a change in either the thermodynamic state of the system or alchemical transformations. In
contrast, OPs can only be indirectly controlled (e.g., by a biasing potential) and their changes
typically occur within the same thermodynamic state. We will use symbol X to denote an OP and
ffor a HP. The boldfaced symbols f and X indicate “vectors” containing multiple parameters; i.e.,

f={fif ...  and X = (X1,X>, ...}

We stress that our usage of the term Hamiltonian in HPs is broader than simply referring
to the total energy of a system and pertains to a generalized Hamiltonian function appearing inside
the exponential terms of the partition function [as per Eq. (1) below]. Examples of HPs include
state parameters like temperature, pressure, chemical potentials, chemical potential differences
between species, volume, and number of particles (changes in the latter often used to compute
chemical potentials), but also parameters of the “force field” like energy well depths, site
diameters, charges, force constants, etc., whose changes effectively enact alchemical
transformations or mutations. Examples of OPs include the distances between atoms or multiatom
groups (often used to compute binding free energies and potentials of mean force), torsional

angles, potential energy or subcomponents thereof, root mean square deviations from reference



structures, and structural metrics of local order such the largest cluster of an incipient phase

(appropriate for computing free-energy nucleation barriers).

The configurational part of the partition function for an isothermal ensemble can be written as:

Q(f) = X exp[-H (X|f)] (1)

where the sum is over configurations, and H is a dimensionless Hamiltonian, e.g., with energy
units reduced by AT (where T is temperature and k is Boltzmann’s constant). The associated

dimensionless free energy @ (also reduced by £T) is related to the partition function via
o(f) = -InQ() . 2)
The generalized Hamiltonian corresponding to a particular point p will be denoted thus:
3,0 = #(x]t,)

For future reference, we write the special but important case of a “linear” Hamiltonian

corresponding to:
HEX) = Ho + - X =Hy + L freXi 3)

where the sum is over all relevant coupling parameters. Here the f’s would typically represent
reduced thermodynamic fields or TI coupling parameters as in Einstein integrations® for solids
[where the modified Hamiltonian is often expressed as H = )i fxH) so that Hj; would
essentially be X}, in Eq. (3)], the X’s correspond to extensive fluctuating quantities in the ensemble,

and changes in @ relate to changes in fi and /> through the fundamental thermodynamic equation:

dd =%, X;df; 4)
where:
D
(a_fi)fj = Xi (5)



%P 9’
( )f = —cov(X;, X1, orof, —cov(X;, X;) (6)

where: (X;) =X, cov(Xi,Xj) = aizj = (Xin> - (Xl-)(Xj) 7
where () denote ensemble averages.

In general (not just for linear Hamiltonians), a probability density function associated with point

‘p’ having field f, = {fip, f2p, ...} (in general a vector) is
,(X) = M(X|f,) ®)

IT , is often plotted as a normalized histogram of collected X data, but any discretization is
immaterial. Such a I, can be characterized by its moments; in particular, the first two moments

are the averages X;;, and covariances o

{ip as defined in relations (7).

A “Landau” free energy can also be associated with microstates corresponding to macrostate X, so

that for fixed f and within an additive constant:
d(X|f) = —In II(X|f) )

Or simply ®(X) = —In I1(X) where I1(X) is the probability of observing configurations where X
has a particular value. Note that @ from Eq. (9) is not the same as that in Eq. (2), being

distinguishable by the variable they are function of (f or X), and are related, e.g., as:
O (fp) — (fy) = (X|fp) — P(X|fy) + H (X|fz) — H(X|f,) (10)

As stated in the Introduction, the formulas to be derived in the following sections exploit the fact
that the information content of the IT functions, if assumed to be Gaussian-like, can be suitably
distilled into its first two moments which are also the data that are most accurately estimated in

simulations and circumvent the need for bookkeeping histogram or transition data. As equations



(5)-(6) illustrate, the first two moments typically translate into information about the first and

second derivatives of ®(f). If the I'T functions are Gaussians, then for a single X:

I, (X) zmexp (—%) (11)

14
where o = (X?), —(X )Z; and for a two-dimensional function I1,(X) = I1(Xy, X,|fip, fop) is a
bivariate Gaussian, i.c.,

1

Zn(a—%lp O—222p 9)

M, (X) ~ 1 [(Xl—le)2 X2=Xop)?  (Xa=X1p)(X2=Xop)

exp (—
1/2 2 2 2 2 2
/ 0 2011p 2055p UllpJZZp/alzp

) an

2

where 673, are covariances at point p [as defined in Eq. (7)] and 6 = 1 — (alzzp)z [ (0%10%2p)-

In the following sections we will consider formulas to obtain free-energy differences Ad 45
between two states 4 and B using FEP and TI methods when both states are simulated. In these
two methods the integration step is conducted in different order: in FEP one finds the finite
difference of @ (between states 4 and B) by directly evaluating an integrated form which entails
instantaneous “switching” between the 4 and B Hamiltonians, while in TI one first considers the
infinitesimal difference in ® which is then integrated to “gradually” get the finite difference
between 4 and B. Their connection can be made even more apparent by describing them as limiting
cases of Non-Equilibrium Work “NEW” methods.?**" In FEP we will exploit knowledge of the
first two moments of the underlying IT distributions while in TI we will exploit the (largely

equivalent) knowledge of the first and second order derivatives of ®@.

Figure 1 illustrates some of the connections between @, £, X and I'1(X) for the case of a one-

dimensional linear Hamiltonian.



f
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Fig. 1. Depiction of the connection between changes in free-energy ®, Hamiltonian Parameter (HP) shown
as the variable f (horizontal axis), and Order Parameter (OP) shown as the X variable (vertical axis) in the
case of a linear Hamiltonian. I1(X) distributions, whose variances are related to the slopes of the free-energy
derivative curve, are also illustrated. A® 45 appears here as the hatched area under the curve. Because of the
different slopes marked by red dashed lines, the area of rectangle (f3-f1)xXp is closer than (fz-f4)xX4 to the

correct hatched area representing AD 3.

III. FEP-BASED FORMULAS
3.1 Free energies over HPs
3.1.1 Optimized Simple Overlap Sampling (OSOS).

While there are multiple FEP-based working expressions for A® 45 = @p-D4, we consider first a
basic formula that combines forward and reverse perturbations, related to the simple overlap
sampling (SOS),!* wherein virtual perturbations do not occur between 4 and B but through an

intermediate state with Hamiltonian:

10



where « is an interpolating factor; in such a case it can be shown that the free-energy difference

can be found from:

—Adap _ 9B _ (e~ PmM=H(XfA)ly, _ [ dX T4 (X) e~ (XfB) =3 (Xf4)] (13)
Q4 <e—[}[M—H(X,fB)]>B de l-[B(X)e(1—a)[}[(X,fB)—:I~[(X,fA)]

where the brackets denote ensemble average at the subscripted state. Equation (13) reduces to the

standard SOS for a constant « = 4. The variance in the free-energy estimation can be obtained

from:>"

1 (14)

2 1 (e—za[H(X,fB)—H(X,fA)])A 1 <ez(1—a)[}[(X,fB)—S'-[(X,fA)])B
Oro = ] [

1a | e 1| T [ anim i

where /, is the number of statistically independent samples taken in state p; we will henceforth

assume that /4 = [p=1.

If o in Egs. (13)-(14) is assumed to be a function of X [i.e., @ =a(X)], then it can be shown
that minimizing the variance with respect to « leads to the same result obtained by Bennett'* (the
BAR formula shown later in Eq. (32) for /4 = I3). We will consider instead the case that parameter
a in Egs. (12)-(14) is a constant (independent of X); finding then the o value (0< o <I) that
minimizes oZg in Eq. (14) is workable through numerical methods akin to those needed to
implement BAR. The math simplifies greatly if the IT functions needed for the estimation of 07
can be approximated by Gaussian distributions and H is a polynomial function of X; in such a
case the integrals in Eq. (14) are analytically solvable. Of course that Gaussian I1s will also
simplify the evaluation of A®4p in Eq. (13), a trait that we also exploit. We will denote this

approach as the “optimized SOS” or “OSOS” and will be exemplified in subsections 3.1.2 and

3.1.3.

3.1.2 Linear Hamiltonian

11



For the single-HP case Eq. (3) is H=H+fX and the variance in the estimation of A®4p from Eq.

(14) [with Gaussian IT as in Eq. (11)] simplifies to:

oo = s o s

where Af = f3— f1, and Af? = (Af)?and the optimal value of « found by setting doZq,/da = 0

satisfies:

_ 2
(cZa? —o2(1— @)?)Af2 = In8=2% (16)

ao,
which can be simply solved for & via a numerical procedure.

If the Gaussian IT approximation is also used in Eq. (13), then after taking logarithms the result

can be expressed as:
Adyp = [aXy + (1 — a)Xp]Af + % [(1 - a)?0f — a®af]Af? (17)

which can be interpreted as a TI polynomial formula, with the 1*' and 2" terms providing weighed
contributions from the 1% and 2™ derivatives to ® as per Eqs. (5) and (6), respectively. An
alternative approach to find an optimal « value is to consider that the truncation error in A® 5 can
be (over) estimated as the second order term in Eq. (17). Indeed, based on the similarity of this
result to the Euler-Maclaurin series expansion to be discussed later [see Eq. (58)], one can
conjecture that more accurate estimates of A®43 would produce a polynomial with additional
higher order terms of the form: prefactor x[(1 — a@)?"02"™ — a?"af™|Af*" with n>1 (and
Gaussian central moments proportional to powers of ¢°). In such a case, higher order corrections

are rendered negligible by setting (1 — a)" o} = a™ay', resulting in:

a = og/(04 + 08) (18)

12



which, as a bonus, simplifies formula (17) by dropping the 2" order term leading to the remarkably

simple expression:

AD, 5 =MA]‘ (19)

opt+oy

Equations (16)-(19) embody the intuitive idea that since 074 increases with the magnitude of the
distribution variances, the intermediate Hamiltonian between points 4 and B should be apportioned
weighing more conservatively the point with larger standard deviation/variance or, leveraging the
relation (6), larger curvature. Figure 1 also illustrated this point geometrically, interpreting
relations (17) and (19) as TI formulas. In our numerical tests, very little difference was found in
the quality of the Ad,p results when computing o from either (16)-(17) or (18)-(19), likely
reflecting the presence of a broad minimum in the 624 (a) function. Our results are reminiscent
but different from a formula suggested in Ref. [7] to optimally combine exponential (free-energy)

averages from forward (4—B) and backward (B—A) FEP simulations.

The analysis above can be readily extended to the multidimensional linear Hamiltonian of
Eq. (3); i.e., for the case of two X properties: H = H, + fi.X1 + /2X>2. Here we choose as intermediate

Hamiltonian
Hy = Ho + 271 [(1 = a) fia + aifislXs, (20)
where the o's are adjustable factors (noting that we could choose ai=a2). Hence,

~ADup _ (e~ (tM=T4)y, _ [ dX 4 (X)e~*18f1X1-0f2X2 1)
(e=(¥mM=Hp)y, — [dXTNp(X)e(1-aDAf1X1+(1-a2)Af2X2

e

where Af; = fiB-fia, Adopting the bivariate Gaussian of Eq. (11°) for the IT’s, the integrals in Eq.

(21) are solved analytically to yield:

13



1
ADyp = [a1 X140+ (1 — a)X1p]Af; + [aXp4 + (1 — a2)Xpp]Af; + 2 [(1 = ay)?0t15 —
1

afofialAf7 + > [(1 = a3)?03,5 — a505,410f7 + [(1 — a)) (1 — ax)of,p — a1 a,08,4]Af1Af,
(22)

Likewise, the associated variance in A®,p can be estimated from:

loje = exp(afofiJAf7 + a50540f7 + 201008 40f1Af2) + expl(1 — ay)?of; pAf7F + (1 —

a3)?05,pAf7 + 2(1 — o) (1 — ax)of,5Af1Af,] — 2 (23)

which could be minimized to find the optimal values of a1 and o using any suitable numerical

procedure.’” (This would simplify somewhat if o = a2 = & were appropriate, albeit having two

parameters allows greater flexibility for minimizing 674). As in the single-X case, an approximate

solution for the &’s could be chosen so that the second order terms associated with Af? and Af;}?

in Eq. (22) vanish:

a1 = 0118/ (0114 + 0118), @2 = 0228/ (0224 + O22B) (24)

2 2
0118X14+0114X1B 0228X2410224X28 0114022401281011B022B0124
ADyp = Afi + Af, + AfiAf,  (22°)
011810114 022810224 (011B10114)(0228+0224)

The above equations can be straightforwardly extended to systems with more than 2 X variables.

3.1.3 Non-linear Hamiltonians

As illustration, we present results for a Hamiltonian of the form:
HX, f) = Ho(X) + 2 (X - £,)? (25)

For which the exact solution to Egs. (13)-(14) can be expressed as:

1/X2 X2
ADyp =E(U_g_a_g'f‘fwfzzg—f1Afz%4+1nz_:+WB _WA) (26)

14



where:

2

Wy = i (ﬁ_j + aoy(fipfap — flAfZA)) (27)
2

Wp = i(% + (1 - a)og(fiafon — lefZB)> (28)

pa=1+adiAfi, pp=1—(1-a)siAf; (29)

Unlike the linear Hamiltonian case, a simple relation to find the optimal « is not generally

accessible, but this simplifies greatly for two limiting cases:

(1) If f24 = f2 = f>, then this case could be mapped onto a linear Hamiltonian by redefining
(X—£2)? in Eq. (25) as X and henceforth using the solution of Sec. 3.1.2, and

(1)  Iffi1=fip=f1 then Eq. (26) simplifies to:

_ |f2atfeB 1 1 o222 21F2A F2
Ay = |BAL2E — gy, — (1— @)X | fildf, +3[(1 — @)20h — a?aF1fPAf; (30)
and expression (14) becomes:

0%y = L]echa 0 1 goBC-0Ti0RE 3] 31)

We should point out the similarity between Eqs. (17)+(15) (for linear Hamiltonian) and Egs.

(30)+(31) and that Eq. (30) would also be obtained for choices of the intermediate Hamiltonian
other than Eq. (12), e.g., for }); = %fl [X — (1 — a)fou — afo5)2. The optimal « can be found

either as the value that minimizes the function in Eq. (31):

(1-a)od

> (317

aoy

(ofa? —a5(1 — a)®)fAf7 =In

or, as in Sec. 3.1.2, by choosing « to vanish the 2™ order term in Eq. (30), which again results in

formula (18) and simplifies Eq. (30) to:

15



faa+f XpatoaX ,
Ad,p = [ 2A2 2B 0pXatos B] fiAf, 30”)

optoy

3.1.4 Other perturbation methods

The Gaussian approximation for IT deployed for OSOS in 3.1.1-3.1.3 can also be deployed for
other free-energy methods including WHAM and MBAR methods'¢2° for multiple points or for

BARY for the two-point situation; in the latter case, this requires solution of

1+eH (XfR)-H(Xf4)-AP 45 +e~H(Xfp)+H(Xf4)+AD 45

Unfortunately, there is no analytical solution for the definite integral in Eq. (32) for Gaussian IT
functions and hence finding A® 45 requires the use of either: (i) numerical integration coupled to a
root find method — a combination that will be henceforth referred as BAR-G = BAR-Gaussian
method, or (ii) approximate expressions and series expansions that have been proposed for the
related problem of Gauss-Fermi integrals for charge carrier problems®® which also require
numerical root finding. In our preliminary numerical tests, however, we found no distinct
advantage of the latter formulas, in terms of precision or ease of use, relative to the equations

presented in Sections 3.1.2-3.1.3 and henceforth will not be considered any further.

3.2 Free energies over OPs

@ changes are significantly more involved when evaluated with respect to coordinate-dependent
OPs. While different approaches can be followed, often involving the evaluation of forces,*> here
we only consider umbrella sampling with harmonic potentials, a widely used and easy-to-
implement method.'®2%33 The key idea is to introduce a (harmonic) bias in the Hamiltonian so that
OP values are not fixed but targeted in an average sense. The formulas presented in Sec. 3.1.3 were

precisely for a Hamiltonian having such a harmonic term, but now we make explicit that such a

16



term is an add-on to the original Hamiltonian and hence represents the biasing function. Formulas

(25)-(31) still apply to obtain AD for this case with 3 caveats:

1)

2)

3)

The probability function IT to be used in FEP formulas like (13) should be the biased
distributions since these are the ones expected to be approximately Gaussian, stemming from
the strength of the harmonic bias. This is unlike what is customary with HP-based simulations
discussed in Section 3.1 where the unbiased Ils were relevant and states 4 and B represented
different thermodynamic states or chemistries, sampling of relevant microstates was assumed
unconstrained, and the Gaussian nature of I'T was associated with large system sizes. In the
present case, however, we are typically simulating the same thermodynamic state, each
simulation focusing the sampling over a particular region of the OP given that the unbiased
simulation would not be able to sample all microstates of interest (e.g., due to the presence of
regions with vastly different probability of occurrence).

Even though A®,3 in formula (26) is associated with changes in HPs (i.e., fi and f5), the
physically relevant OP is the X variable in the harmonic function; hence A®,z must now be
associated with changes of the average values of X (i.e., X4 and X3).

Equation (26) must now be interpreted as a biased free-energy, A®’, the unbiased value A® is
obtained by subtracting the biasing functions associated with the average values of X, and X3,

namely:

Adyp = P(Xp) — P(Xy) = Adyp — %fZ,B(XB - f1,B)2 + %fZ,A(XA - fl,A)2 (33)

IV. Thermodynamic Integration

We will consider the possibility of integrating over multiple HPs or OPs and using A as a general

symbol for the integration variable (either f or X), the standard TI formula for an specified 4 — B

integration path is:

17



B P
ADyp = Pp — Py = fA Z"a_zidlli (34)

where for simplicity of notation it is implicit that the partial derivative with respect to A; is while
keeping constant all other f; property and any other ensemble field, and for multiple As (as in Sec.
V). Numerical integration of Eq. (34) requires knowledge of at least d®/dA; data but, following
the guiding strategy of Section III, 2™ derivative data will be leveraged as well. In the following

subsections we first describe how those derivatives can be obtained for HP and OP as TI variables.

4.1 TI: Derivatives with respect to Hamiltonian-dependent HP

From Eqgs. (1) and (2), any first and second order partial derivative with respect to any HP can be

written as:

Lo oOH
a. = o) (35)
%d 2H OH OH
a7 = (o) —eov (5757, (36)
9% 02K OH OH

= _ cov (2L ) 37
or = Sor C°V<afi af,-) (37)

where it is implicit that the derivative with respect to any f; is made for all other f; kept constant
with j # i, () indicate ensemble averages, and covariances defined as in Eq. (7). Higher order
derivatives can be similarly obtained. Equations (35)-(37) are indicated when the averages in their
right-hand sides are measurable in simulation, i.e., the J{ derivatives are continuous functions,
involving elementary operations over readily accessible microscopic quantities. Equations (35)-
(37) simplify into formulas (5)-(6) in the case of the linear Hamiltonian of Eq. (3) where the /s

would typically represent dimensionless thermodynamic fields.
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In some situations, however, the sought-after H derivative is not a continuous function, as
is the case when the f; parameter describes hard-core interactions®’ or it is difficult to evaluate
analytically, as when rigid or Holonomic constraints are involved or if f; is a property convoluted
in the Hamiltonian (like volume) or an integer (like number of particles). In such cases, finite-size
approximations are suitable, which can be derived by starting with the well-known expression for

a simple FEP:

_ QUi+Af . —AT;
Ad = —In{ L } = = Ine=2%s) (38)

where AH; = H(f; + Af;) — H (f;) and the () brackets indicate ensemble average evaluated at f;.

For an infinitesimal change in f;, i.e., Afi = 9of;, then:

ofi  8fi  8fi Ine ) (39)

with 8H; = H (f; + 6f;) — H(f;). Likewise, we can derive:

2d 1 I5¢| 5 l_ 1 (e=8°%1) (40)

~— | — =— n

off — 8fi|ofil pusp, Sl g, (6f)% " (e~i)2
where 82H; = H (f; + 26f;) — H (f;). Note that in principle one could estimate perturbations of
H by either increasing or decreasing f; (f; >0 or <0) or a combination of both, but we assume that
one direction leads to more accurate estimation of 5®. Cross 2™ derivatives can be similarly
evaluated, e.g., if finite differences are to be used for derivatives of f; and f;:

920 1 (e %%ijy }
~ — 1 { 41
afidfj 8fi8f; n (e~ iy(e %)) (41)

where 8H;; = H(f; + 6fi, f; + 8f;)) — H(fi, f;), 8H; = H (fi + 6fi, fj) — H (fi, fj), and 8H; =
H(fi, fj + 6f;)) — H(fi, fj). If now we assume that the derivative of H with respect to f; is

analytical but that with respect to f; should be done by finite difference, then it is easy to show that:
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32d 1 1 OH(F+6fuf) _sh. 0H(fif})
( L2 e~0Hiy — (—="1)

~_ L 42
ofidf 8fi [(e=%%1) afj afj (42)

while perturbation formulas like (39)-(42) entail an additional cost relative to evaluating simple
averages and covariances like (5)-(6), they all can readily computed on-the-fly during a given
simulation. Note that chemical potentials, which could be evaluated using Eq. (38) for Afi=AN~=1,

more commonly require more gradual coupling and specialized approaches.>!!
4.2 Derivatives with respect to Coordinate-dependent OP.

Evaluating first and second order derivatives of @ with respect to coordinate-dependent OPs is
more involved. Again, here we only consider the case when harmonic potentials are used to bias
the sampling to allow targeting specific OP values on an average sense. In this way, the TI can be
performed over the distinct average OP values. Recalling our definition of ®(X) in Eq. (9), we can

write:

Ao 1 d
ax H(X)d_XH(X) (43)

Assuming that the simulation was conducted by adding a biasing function —y(X,f) to the
Hamiltonian, then, the probability of observing different X-macrostates is, within a constant

prefactor:
M(X) o My (X)e¥ ™D (44)

Substituting Eq. (44) into Eq. (43) and simplifying:

e ap(xf) 1 d
ax dx My (X) dX Hll’(X) (45)

The second derivative is then:

2
acde Ay 1 d* 1 d
daxz ~ ax? My, (X) dX? My (X) + My (X) dX Iy (X) (46)
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Equations (45) and (46) are henceforth specialized for the choice:
WX, ) = 2fip(x-r2p)” (47)

where f1, and f, are specified HPs, designed to bias the sampling of X to values near f>,. For large

enough fip, the Ty, distribution will be unimodal with a well-defined peak. Assuming IIy, to be

approximately Gaussian, introducing Eq. (47) into Eqgs. (45) and (46) evaluating them at X =

(X)p =Xp:
% X, = _flp(Xp - fZP) %)
el = ot o=t (0 = 03) )

Equations (48) and (49) show how the required derivatives of @ at a given point can be estimated
from a biased simulation. The same results can be alternatively obtained if one assumes that within
the relevant sampling region, the local free energy profile can be approximated by a 2™ order

polynomial in X, say, ® = a + bX + 2cX 2. In such a case and with both ® and y being quadratic
functions of X, we have that ITy,(X) o exp(—d)(X ) —yY(X, f)) will be Gaussian whose mean (X)

and variance g as measured in the biased simulation can be related to the 1% and 2™ derivatives
of @ (i.e., to b+cX and c according to the local model) to give Egs. (48) and (49), respectively.
Note that while one cannot precisely specify the value of X at which the derivatives are evaluated

since (X) is not known a-priori, it will be rather close to the chosen f>, value for large fi,.

Formulas (48) and (49) are consistent with the so-called umbrella integration approach,**-3¢ but
in such a case the free energy is reconstructed differently; i.e., by (i) describing first the free-energy
derivatives as linear functions around each simulated point, (ii) combining these results using a
weighing scheme that takes into account the sampling frequencies of X values (registered in binned

histograms) from all simulated points, and (iii) using a suitable quadrature method to integrate the
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weighed derivative averages from (ii). In contrast, the approach outlined here and in Section 4.3
directly uses first and second derivative data at each point to form piece-wise polynomial fits to

extract free-energy differences.

4.3 Polynomial Approximations for TI

Polynomial approximations are particularly convenient to use for interpolations and extrapolations
of free-energies. While data from numerous simulation points can be considered, in the following
we restrict the analysis to computing the free-energy difference between points 4 and B given
solely data from those two points, so that the formulas thus derived are a TI counterpart to those

presented in Section III for FEP methods.

In the following we present the case of a single TI variable which can be a HP (f) or an OP (X) and
we will hence use the symbol A as a generalized integration variable. For brevity of notation, we

define:

b1 = T ¢, = 2 (50)

where derivatives are evaluated for any (other) ensemble field held constant. Figure 1 can be used

as a guide letting 4 — f.
Matching polynomial.

Enforcing that values of ¢ and ¢ match at both ends of the integration step {¢14, P15, P24, P25}

requires a polynomial with 4 coefficients:

¢1 =C + ZCZ}\ + 3C3}\2 + 4‘C4_}\3 (51)
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where, consistent with our convention in a related paper,** the coefficients are written as “nxc,”
so that the prefactors “n”” go away when Eq. (51) is integrated to get A®4p. The 4 coefficients are

readily found as:

_ _ %24 _ APy APy+3¢2gs _ Ady | Apat2¢a4y
€1 = ¢1,A9 Cy = 5 0 C3 = ANZ - 3AL 0 4 — _2A7x3 + 4A)2 D (52)

where AA= Az—14.

Best-Fitting Polynomial.

Two disadvantages of the exact polynomial match are that: (i) it disregards that ¢ data typically
have significantly larger statistical error than ¢ data, and (ii) any extrapolation becomes more
unwieldy the higher the polynomial order. While fewer coefficients imply fewer assumptions
about the true model, a linear extrapolation based on ¢ data at 4 and B could be too conservative
and would disregard the effect of any curvature in the ¢ function (see Fig. 1). We hence propose
a compromise where a ¢ quadratic model is constructed (the minimal polynomial able to capture
curvature in ¢), so that its 3-coefficients are found by matching exactly the more accurate ¢ data

and by “fitting”, in a least-square deviation sense, the ¢ data. In such a case
® = ¢y + ;A + A% + 323 (53)
so that:
P1 =1+ 20,0+ 3c30%, ¢, = 2¢, + 6c3A (54)
and besides matching the ¢ia and ¢ data, we minimize the function:

R = by(¢2a — P34)* + bp(2p — ¢35)° (55)
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where ¢, and ¢; represent the actual and model (54) predicted values, respectively, and the 5’s

are error-dependent coefficients here assumed equal b4 = bp. The solution is:

Ap Ap A¢p
€1 = ¢1Aa Cy = I;_TZ, 3= 6A/i s (56)

The free-energy difference between point 4 and B is then given by:
ADup = 2 (P1a + 15D — = (25 — P2a) AN (57)

If we evaluate Ad 5 for model (51)-(52), we surprisingly find that the resulting expression is again
Eq. (57), despite the differences in polynomial order and parameters. This suggests that Eq. (57)
is a robust formula to estimate A® based on data of ¢ and ¢ at points A and B, somewhat
independent of the underlying ® model assumed, and is rooted in a more general mathematical

37,59

framework. Indeed, the Euler-Maclaurin summation formula’’~” can be expressed as:

A AL (A%)? @an*
ADyp = ;\f ¢, (DdA = 7(¢1A + ¢18) — T((pZB — ¢24) + W(¢4B — aa) + o —

B
(ZL,S!(AA)Zk((l)(zk—nB - ¢(2k—1)A) - (58)

where By is a Bernoulli number of order 24. Our proposed polynomials are consistent with this
series truncated up to the 2™ order term and, with vanishing 3™ (and higher odd) order terms,
showing that the error in our numerical integrations is less than twice the 4™ order term. Equation
(58) also shows how simulation data on 3™ order derivatives would not improve the free-energy
estimation, but data on 4" order derivatives would, albeit with harder-to-get and less accurate data.
Due to this connection, henceforth will refer to Eq. (57) as the TI Euler Maclaurin 2nd order

formula or “TI-EM2”.

It is also informative to rewrite the linear Hamiltonian OSOS, Eq. (17), for the SOS case, i.e., =
%, and upon replacing the moments of the distribution by the 1% and 2™ derivatives of ® [as per

Eq. (5) and (6)] and letting 4 <> f:
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ADag =5 (P14 + $15)A — < (25 — P2a) AN (59)

Equation (59) is very similar to Eq. (57), except that the 2™ order term prefactor in the former is
50% larger [1/8 vs. 1/12]. Equations (57)-(59) highlight the connection between FEP and TI
methods (at least for linear Hamiltonians), albeit it is also meaningful that Eq. (57) cannot be
recovered from Eq. (17) for any choice of «, showing that the Gaussian approximation in the
OSOS formulation is not equivalent to using 2" derivative data in constructing polynomials for
AD 4p. To first order, Egs. (57) and (59) do coincide, becoming the trapezoidal rule which, we

write down for future reference:
1
ADyp = > (14 + P1p)AL (60)

In Sec. A of the Appendix we further leverage Eq. (58) to outline an error analysis when using the

TI-EM2 formula for TI.

Similar formulas can be developed for the multiple TI variables; the case of two HPs is described
in Sec. B of the Appendix. Free energy changes over multiple HPs are in order when mapping the
properties of phases over various thermodynamic fields or alchemical variables, and particularly

when mapping phase coexistence conditions as shown next.

V. Tracing coexistence lines via TI: FENEX method

A TI intended to trace a coexistence curve is typically denoted as a Gibbs-Duhem integration
(GDI) method.**%** The formulas described in Sections III and IV give free-energy differences
between discrete points, but extrapolations of free-energy are also needed (or implied) in a number
of methods for advancing GDI along a phase coexistence line where the conditions defining the

next coexistence state on the line, i.e., the integration path, are not known a-priori. Furthermore,
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when extrapolating, it is uncertain when GDI will break down; e.g., brought about by one of the

original phases becoming unstable or by the proximity of a critical point.

Approaches such as WHAM!®1936-38 and MBAR?® have the advantage that the same
formulas used to obtain free-energy differences between simulated states can be used to interpolate
or even extrapolate free-energies to other conditions, so long as those conditions are within the
scope of the simulated ITs. For a typical GDI stepwise extrapolation along a coexistence line,
however, it is unclear if approaches (like WHAM and MBAR) that leverage multistate simulation
data provides any distinct advantage over methods that only leverage the nearest two data points.
Likewise, higher order polynomial forms or Gaussian process regression*®*® models that
include/fit many points are not needed to capture the curvature of the free-energy function as it is
projected into new territory, as long as information about 2" order derivatives in the nearest points
is available. In this context, the simple polynomial forms described in Sec. B of the Appendix are
particularly well-suited to the extrapolations needed in GDI, a strategy denoted as FENEX in Ref.

[42] and is outlined in the Appendix, Sec. C.

VI. RESULTS

5.1 Independent Harmonic Oscillator(s).

A model system that has been used to test and understand phase space overlap and biases in FEP

methods,*”?

entails two Hamiltonians 4 and B defined by
Ha =Xl waxf, Hp =2 wp(x — x0)? (61)

where x; is the coordinate of particle 7, N is number of particles, and ws/wa and xo are preset

parameters. The free-energy change is analytically solvable:
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~Ad,p = kT In(wp/w,) (62)

Increasing the ratio wg/wa narrows the phase space of system B relative to 4, which makes less
likely to sample in system B configurations relevant to system A (asymmetric bias). Increasing
parameter xo shifts the phase space of both systems apart and increasing N exacerbates this effect
and the asymmetric bias.*!° Limited sampling of the IT distribution tails in finite-length simulation
runs is detrimental to the accuracy of FEP methods. For the FEP and TI considered in this work,
however, since only the first two moments of IT are used, we simplify the analysis by assuming
they are well sampled regardless of N, and hence we will just consider the limiting case that those
first two moments and associated @ derivatives are known exactly and set N = 1. In such a case,
we no longer need to conduct actual simulations and can probe the intrinsic accuracy of the
methods on this system, decoupled from statistical errors and associated overlap sampling. We
further set xo = 0 (which has no effect on A® as calculated by the analytical formulas to be

compared here) and simply consider changes in the Hamiltonian
I = ox* (63)
where @ goes from wa to ws. Taking @ to be the HP variable A (=) it follows that:
$p,=02=12w, ¢, =—-20*=-1/2w? (64)

which can be readily used with the TI formula (57). To implement OSOS, however, one must first

decide what the X variable is in the Hamiltonian:

(a) If we assume that X = x in Eq. (63), then we are dealing with a non-linear, harmonic
Hamiltonian akin to that described in Sec. 3.1.3 with fi = @, f2 = 0 and H = 0. In such a case,
Eq. (26) gives the exact solution for A® (regardless of & which drops out). This is to be expected

since Eq. (26) was derived assuming I1(X) to be Gaussian which is precisely the case here.
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(b) If we assume that X = x* in Eq. (63), then we are dealing with a single-X linear Hamiltonian
akin to that described in Sec. 3.1.2 with f= w and H, = 0. Unlike case (a), this is a non-trivial and
more challenging case, since the I'(X) is not Gaussian at all (as assumed to derive the OSOS
formulas) but rather an exponential decay function and hence this case can test the ability of
different methods to handle underlying Ils which strongly depart from normality. To apply Eq.

(17) for this case, for a point p:
X, = 1/4w,, 05 = 1/8w} (65)

Such that the mean values (in X = x?) in the IT distribution for Hamiltonians 4 and B no longer
coincide (even though they did in x). Figure 2 shows a comparison of the Ad,p predicted by
different methods using a single step from 4 to B. Up to ws/wa = 1.5 all methods perform similarly
well, with the TI and SOS equations, being identical when truncated to first order, always
overestimate A®4p while most other methods underestimate it. The TI-EM2 Eq. (57) is the most
accurate and significantly better than the closely related o= 0.5 SOS formula (59), but only up to
about wp/wa = 3.6, at which point it starts to diverge drastically. The OSOS formula (19) is the 2"
best performer, closely followed by OSOS (16)-(17), with both being significantly better than SOS
Eq. (59), and less divergent than the TI-EM2 (57) formula. Interestingly, the BAR-G (11), (32)
and OSOS formulas (19), (16) give comparable absolute deviations from Ad 3, the former always
overestimating and the latter underestimating it, which suggest that the main source of error here
is not the optimization recipe but the incorrect assumption of Gaussian I[1s. While these relative

performances are system-dependent, some of these trends could extend to other systems as well.
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Fig. 2. Single step free energy change for the harmonic potential Hamiltonian model for different methods
as marked in the legend: TI-1 = SOS-1 is Eq. (60), TI-EM2 is Eq. (57), SOS is Eq. (59), OSOS-1 is Eq.
(19), 0SOS-2 is Eq. (17)+(16), and BAR-G is Eq. (32)+(11).

In the context of T1, an integration step that doubles the coupling parameter can be considered
as quite large (e.g., envision doubling the temperature) and it is significant that the TI-EM2 (57)
and OSOS (19), for example, incur in less than 1% and 4% deviations, respectively, rather small

errors, despite the very non-Gaussian nature of I'1(X).
5.2 Potential of mean force of cation-anion dissociation

We consider a fully atomistic polymeric system where a salt is dissolved to allow ionic conduction.
The force field is based on those of Refs. [60]-[63]. The specific polymer is poly(3-
(butoxybutyl)thiophene) [P3APAT] which is assumed to assemble into a bilayer ordered structure
where the thiophenes crystallize into planes sandwiching amorphous layers of side chains whose
oxygen groups solvate ionic species. As described in Ref. [63], molecular dynamic simulations®*

for different side-chain chemistries were performed using 16 decamers; here we only reproduce
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simulation data for the dissociation free energy, often referred to as potential of mean force (PMF)
of lithium bistrifluoromethanesulfonimide (LiTFSI) in the specific P3APAT polymer. The
procedure consists of first equilibrating a salt molecule into the side-chain regions of the polymer
and then separating the Li+ and TFSI- ions step wisely using as OP the distance X = rsp between
Li" and the center of mass of TFSI". The range of interest of rsep was sampled in a series of umbrella
sampling windows, each having the harmonic bias potential of Eq. (47) with f; = 16 kcal/mol-A?,
and changing the separation setpoint f» from > =3.0 A to 15.0 A with 0.5 A increments. The
resulting histograms from each window were combined with WHAM!'¢!? and the PMF extracted
therein.® In each window, four random initial configurations were used to get better sampling, and

each simulated for 1 ns in a canonical ensemble at 400 K to collect the T1(.X) data.

Since in this case the coupling parameter is an OP (as opposed to a HP), we need to use the
formulas we developed having a harmonic biasing function to indirectly constrain simulations
around target OP values. Specifically, for TI we use Eqs. (48) and (49) to get required first and
second derivatives of the unbiased @ [for application in formulas (57), (59) or (60)]. For OSOS
we use Eq. (30”) or Egs. (30)-(31) to get the biased A®} 5 values, which we then unbiased using

the correction of Eq. (33).

To implement the OSOS and TI formulas described in Sections III and IV we only used
average and variance data from every-other (non-successive windows; i.e., for f> values separated
by ~1 A rather than 0.5 A; in this way we also test the ability of those formulas to estimate free
energy differences when minimal or no overlap between histograms exists. These selected data are
depicted as Gaussians in Fig. 3. We note that using data from all windows would lead to negligible
differences of results across methods relative to statistical error bars. The inset in Fig. 3 shows the
complete set of simulated histograms collected at the different US windows, confirming that

successive histograms duly overlap as required by WHAM.
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Fig. 3. Depiction of the implied Gaussians that match the mean and variance of selected simulated
histograms from different umbrella sampling windows for various target separations between Li* and TFSI-
ions in P3APAT polymer at 400 K. Inset shows the complete set of actual simulated histograms, colored as

in main figure. Inset adapted from data generated for Ref. [63].

Figure 4 shows that the PMF curve changes quickly across the ion separation range, with
one minimum and 4 inflexion points and a large overall free-energy change spanning a barrier of
over 56 kT. It hence constitutes a challenging curve to describe via global fit models given the

multiple localized curvature changes and stiffer regions.

The inset of Fig. 4 shows the deviations, relative to the reference results from WHAM for
0.5 A f>-intervals, for free-energy difference over the 1 A f>-intervals at which the TI and OSOS
calculations were performed. These mean square deviations are about +0.31 k7 per A which, being
comparable to the corresponding errorbar for the WHAM results, indicate that any of the proposed
methods produces the PMF with largely comparable accuracy. Deviations with respect to the
WHAM results are expectedly not uniform over the X range, reflecting the characteristics of the
PMF curve; i.e., deviations tend to be larger around inflexion points. The dissociation free energies

thus computed (i.e., the difference between the minimum and maximum in the curves) are
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consistent within errorbars: 56.5+ 2.5 kT. This comparison illustrates that the proposed methods
can get free-energy results with similar accuracy but higher computational efficiency than
conventional WHAM as we can use half the number of US windows (i.e., have them more spaced

out).

While this comparison does not favor a particular method amongst those tested, given that
they all use the same input data, it is suggested that at least two of them be implemented to check
for consistency in their predictions, the lack of which could signal deeper issues with the sampling
or staging. In particular, we suggest using TI-EM2 which does not assume Gaussian IIs, and

OSOS-1 which does, as these do not require any iterative calculation of weights and are hence the

simplest to implement.
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Fig. 4. Potential of mean force (PMF) calculated through 3 different methods. Inset shows the difference
between the free-energy difference computed via different methods in successive intervals and the WHAM
results. TI-EM2 refers to Eq. (57), SOS to Eq. (59), OSOS-1 to Eq. (30°) and OSOS-2 to Eq. (30)+(31°),
with Eq. (33) correction used for SOS and OSOS formulas.

5.3 TI of phase diagram for mixture of spheres and cubes
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A coarse-grained representation of selective inter-species interactions was used where like-species

interactions are hard-core and the cube (1) and sphere (2) potential energy is given by:%¢’

—er<r, 5<6, (66)

o if overlap
Uiz = {
0 »  otherwise

where 7 is the distance between the particle centers of mass, and o is the distance between the
sphere center and the vector normal from the center of the cube’s facet closest to the sphere. Unless
otherwise stated, a particle size-ratio of {= o/a = 1.23 was adopted, where o is the sphere core
diameter and a is the cube side edge. The attractive well for cube-facet/sphere alignment has a
depth ¢, a radial length of 0.154, and a (lateral) o~width of 0.4a. Accordingly, the relevant cutoff

distances are . = 0.50+ 0.65a, and 6. = 0.4q.

Monte Carlo (MC) simulations were performed in a semigrand isobaric ensemble®-*!-4?

(NAuPT) to obtain the equilibrium compositions of coexisting solid-liquid phases for given
pressure (P), temperature (7), chemical potential difference between components (Ax), and fixed
total number of particles (V). In reporting simulation results, the following dimensionless
quantities are used: B= gkT, p = BPa’, fuo—m1) = PAu (chemical potential difference between

species), and x is the mole fraction of cubes.

Simulations were performed in a cubic box with N = 1728 for cube-rich cubic phases and
N = 864 for sphere-rich fcc phases, with any isotropic phase having the same N as its coexisting
ordered phase. At or near each coexistence state of interest, both phases are simulated for at least
10% MC cycles for equilibration and 2x10° MC cycles for production. Each MC cycle consisted of
N translational, N rotational (for the cubes), N/5 swap, 3 volume move attempts, and /2 mutations.
The mutations change one species into the other and cause composition fluctuations in accord to

the specified SAx. All attempted moves were accepted using the Metropolis criterion.®> Overlap

33



detection involved the separating axes theorem® for two cubes and Arvo’s algorithm® for cube-

sphere pairs.

To map out the pressure composition phase diagram for this system with the TI formulas
described in Sec. B of the Appendix, the NAuPT ensemble is first cast into a two-field /inear

Hamiltonian:
NBu, = —In Q = —In{¥ exp[—BU — BPV — N, Aul} (67)

where N is the number of cubes in the system. By comparing to Eqgs. (1)-(3), we can let Hy = SU,
® = NPu, and either choose: (a) fy=p, X; =V and f, = BAu, X, = N, or (b) f; = BAu, X; =
N; and f, = p, X, = V. Choice (a)/(b) is indicated if driving steps in p/fSAu are prescribed. For
most points either choice gives consistent results, with the preferred choice being the one making
the differential equation less stiff, i.e., leading to smaller changes of f>. Note that the first and
second derivatives of @ are simply given by averages and covariances as per Egs. (5) and (6). The
integrations were started from both ends of the composition spectrum: the pure sphere and pure
cube systems whose hard-core isotropic-solid phase coexistence conditions are known’’! (noting
that thermal attractions only ensue across species). Step sizes were chosen, one at a time, such that
anticipated changes in the coexistence composition of any one phase did not change by more than

0.05. The estimated errors in the estimation of free-energy steps based on Eq. (A6) was ~ 0.05 kT.

Figure 5(a) is the simulated pressure-composition phase diagram which shows that for near
equimolar compositions a compound state (C*) is favored where cubes and spheres form a NaCl
lattice. Sphere-rich states (with cube compositions < 0.5) exhibit a first order phase transition to
the C* phase from either the isotropic (I) phase or the fcc solid phase (S). Indeed, the spheres and
the compound form a eutectic at x = 0.2 and p = 7.6. It is at this eutectic point that integrations

started from the left (pure spheres) and from the right (pure cubes) intersected, with the former

process using prescribed steps in f, = p (with f, = BAu computed to target phase coexistence)
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and the latter using prescribed steps in f; = fAu (with f, = p computed to stay at phase
coexistence). In contrast, the C* compound is approached continuously from the cube solid
solution (C), at least for the range of pressures near the simulated phase-coexistence conditions. In
the C solid solution, however, while the spheres are spatially distributed at random, the 6 nearest
neighbors of any given sphere are exclusively cubes, as is the case in the compound (see Fig. 5(b)).
The continuous nature of the (C-to-C*) solution-to-compound transition depends on the system’s
characteristics, e.g., for a size ratio of o/a = 1 (results not shown) a discontinuous transition is

observed instead.

As shown in Fig. 6, there is very little difference in the A®s obtained via either the TI-EM2
formula (B5) or the OSOS formula (22°) (which is appropriate here given the linear Hamiltonian).
The absolute average deviations in A® per molecule per integration step A(A¢) between these 2
methods was ~ 0.0002k7 which is much smaller than the statistical errorbars of 0.065 of Eq. (B6)
which reflect the neglected 2" order terms in Eq. (B5) and, as can be seen in Fig. 6, can vary
widely over the integration range. By accounting for the ¢ curvature and integrand stiffness
effects, the 2" order terms provide a particularly significant correction for the I-S phase
coexistence results, as can be seen by the large deviations in the 1%-order formula (open red circles
in Fig. 6). Either set of free-energies (from TI-EM2 or OSOS) essentially generated

indistinguishable phase coexistence curves.
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Fig. 5. (a) Pressure (p) vs. composition (x = cube mole fraction) phase diagram for the sphere+cube system
with size ratio o/a =1.23 and f= 1.0. Gray regions indicate two-phase domains. C = Cubic phase, S = fcc
solid, I = Isotropic phase, C* = cubic compound. (b) Snapshots of C phase for 3 points along the I-C

coexistence line as marked inside of diagram (a).
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Fig. 6. Absolute departure in free-energy change per integration step (and per molecule) of OSOS Eq. (227)
(filled circles) and of Eq. (B6) (open circles), relative to the full TI-EM2 formula (B5) results. Blue/red
symbols correspond to the I-C/I-S coexistence points in Fig. 5(a). Inset shows values of Ag=AD /N =L,
of I phase along the integration path.

One of the advantages of accessing free-energy data associated with a phase diagram is
that it allows to assess the relative thermodynamic stability of different systems and conditions.
From the AO/N=/u, and SAu data we computed the corresponding S and Sre values at any point
and therefrom find, within an additive constant, the Gibbs free energy for any coexistence phase
as G = x P + (1-x) B where x is the mole fraction of cubes. Figure 7 shows the results for the
range of conditions at which the isotropic phase (I) coexists with the cubic phase (C) for two cases,
the o/a = 1.23 system discussed in Fig. 5, and an additional o/a = 1.0 case. Starting from the pure
cube state (x = 1), the addition of spheres lowers G due to the energy reduction afforded by the
inter-species thermal attractions; this trend continues until the I phase encounters the compound
solid C* (at x = 0.5) where favorable energetic interactions in the C phase are maximized. For o/a
= 1.23, G of the C* phase coexisting with the I phase with x = 0.5 is also the lowest achievable G,

but for o/a = 1.0 the I phase can lower its G even further (until x = 0.38). However, for congruent
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crystallization (i.e., from I phase at x = 0.5) the o/a = 1.0 C* phase has a lower G than the o/a =
1.23 C* phase, indicating that the former system has a more optimal geometry for C* phase

stability, as formerly ascertained with a different T over o/a values in Ref. [67].

10 .
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X (Cube fraction)

Fig. 7. Gibbs free energy of the I phase (open circles) and C phase (filled circles) at coexistence for systems
at =1 with o/a = 1.23 (blue) and o/a = 1.0 (orange). Dashed traces are tie lines. Phase diagram for o/a =
1.23 is shown in Fig. 5(a).

VI. FINAL REMARKS AND OUTLOOK

In this work a general framework is outlined to cast FEP and TI methods in a unified manner and
derive specialized, optimized formulas to obtain free-energy changes between two states AD 3,
that make use of simulation data from first and second moments of the order parameter distribution
IT in FEP, or equivalently, first and second derivatives of the free-energy in TI. Using such
simulation data only up to 2nd order, is seen as a sensible compromise between typical TI, that

only use first order derivatives, and FEP overlap methods which use complete IT data (whose
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higher moments become rapidly more inaccurate). The resulting formulas are found to have some
similarities in form (e.g., for linear Hamiltonians) and in performance with our testbeds comprising
an analytically solvable harmonic Hamiltonian (for assessing error progression with step size), an
atomistic system (for computing a potential of mean force with coordinate-dependent OP), and a
binary-component coarse-grained model (for computing a phase diagram in system whose

compositional space is sampled through two HPs driving alchemical transformations).

Table 1 summarizing the main formulas developed in this work. Equations (12)-(14)
provide the general FEP template for the advocated OSOS approach, applicable regardless of I1
being Gaussian or the Hamiltonian being linear. The OSOS free-energy formulas adopt
particularly simple, analytical forms for Gaussian IT and linear Hamiltonians, but examples are
shown of how non-linear Hamiltonians can also be processed that potentially lead to simple
analytical expressions like Eqgs. (30)-(31°). The OSOS optimization approach could also be
deployed when Ad,p is computed from the simulated T1(X) data (i.e., using Eq. (13) rather than
Eqgs. like (17) or (26) derived from leveraging the Gaussian approximation), which would represent
a simpler alternative to the conventional BAR method.!> Such considerations do not apply to the
TI formulas presented, as they do not make any explicit assumption on the form of IT (Gaussian
or not) or of the Hamiltonian (linear or not), notwithstanding the similarities with OSOS formulas
that use such assumptions [like between Eq. (57) and (17)—(59)]. The key requirement in TI is
the ability to find the needed derivatives of the free-energy with respect of the integration HP or

OP, which is detailed in Secs. 4.1-4.2 through Egs. (35)-(42) and (48)-(49).
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Table 1. List of main free-energy formulas and key features from this work. SOS = Simple Overlap
Sampling, OSOS = Optimized Simple Overlap Sampling, TI-EM2 = Euler-Maclaurin 2™ order,

BAR-G = Bennett’s Acceptance Ration Method with Gaussian I1.

Type of method/
collective variable

FEP/HP

FEP/HP or OP

TI/HP or OP

TI/HP
TI/OP

Formula & key features

OSOS (general, non Gaussian IT)
OSOS-1 (Gaussian I1, linear H)
OSOS-2 (Gaussian IT, linear H')
OSOS-2 two HPs (Gaussian IT, linear H )

BAR-G (Gaussian IT)
SOS (Gaussian IT, linear H)

SOS-1 (delta function IT, linear H)

OSOS-1 (Gaussian IT, non-linear )
OSOS-2 (Gaussian IT, non-linear H)

TI-EM2

Trapezoidal rule (= SOS-1)
TI-EM2, two HPs
Trapezoidal rule, 2HPs

Derivatives
Derivatives (harmonic bias)

Equation number(s)

(12)-(14)
(19)
(16)-(17)
(22
(32),(11)
(59)

(60)

(30°)+(33) if OP
(30), (31°)+(33) if OP

(57) [(33) & (56)]
(60)

(B5) [(B3) & Table 2]
(B6)

(35)-(37), (39)-(42)
(48)-(49)

In the case of FEP, the closed-form formulas presented to optimize the simple overlap

sampling (OSOS) are based on the strategy of sampling (from states 4 and B) to a virtual

intermediate state defined by a parameter . The resulting prescriptions for « embody the

physically intuitive idea that the optimal intermediate Hamiltonian need not be exactly halfway

between A4 and B as in SOS but depend on the intrinsic variances of the IT distributions at those

points. This was best illustrated by casting the problem from the perspective of TI: step sizes

should be shorter around points where the integrand is fast varying or “stiff’. Since larger I1

variances imply steeper slopes [@*®/df* as per Egs. (6), (36) and (37)], it follows that given two

points of different slopes, the intermediate state should be closer to that having the steeper slope,

as also illustrated in Fig. 1.
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A Gaussian IT embodies a 2nd order approximation for how X varies around its average
value, and hence is not expected to be generally applicable. While the quality of this approximation
will strongly depend on the property X, it is expected to improve the more degrees of freedom
contribute to X, e.g., for an OP associated with numerous molecular interactions. The example of
Sec. 5.1 illustrates, however, that even for a single degree of freedom and a very non-Gaussian I1,

the Gaussian OSOS formulas can still be accurate for a fairly wide range of step sizes.

Among the GDI variants that have been used to trace phase coexistence lines of single and
multicomponent systems, the free-energy extrapolation method*? (FENEX) had been put forward
as a means to combine the ability histogram reweighting methods to interpolate/extrapolate free
energy values and operate without the need to collecting overlapping histograms between
successive simulation step points. While polynomial extrapolation formulas have been presented
in previous studies,**¢” the new formulas proposed here (Appendix) take into account the larger
statistical errors of 2™ order derivative data to give more robust local extrapolations for estimating

free-energy differences.

Although the main purpose of this work was to propose new, easy-to-use formulas to
compute AD 3, it is also hoped that the framework provided also has some pedagogical value. The
new formulas were developed in the context of a systematic organization and categorization of
FEP and TI methods, showing how these methods are connected and how they can be used with

either HPs or OPs as coupling parameters.

In developing the proposed formulas, we have only optimized the methods at the most
basic level, e.g., to minimize the variance in the estimation of Ad 43 or the contribution of higher
order terms relative to 1% order contributions. There are many other well-known tricks that can be
used to optimize the integration processes underlying FEP and TI. For example, one common
strategy to reduce integration error is to transform the coupling (integration path) variable 4 —

A*(A) so that the integrand is a slowly varying function of A*. Indeed “stiff” integrals are difficult
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to resolve accurately and often require a judicious on-the-fly reduction of stepsizes. For the case
of sufficiently smooth integrands, choosing integration points/steps a priori could also be used to
maximize the order (and often) the precision of the underlying integration polynomial, as in the
case of Gaussian quadrature schemes.?’ Also, we only considered a single step and the case of
equal sampling of points 4 and B. For multiple steps one could consider optimizing their sampling
using, e.g., serial or parallel expanded ensemble wherein the frequency or biasing weight applied

to each state be tunable.!’>74

Finally, the approaches presented in this work could also be extended to other types of free-

75,76

energy calculations, for example to non-isothermal ensembles and to non-equilibrium work

2530 which share a fundamental structure with FEP and TI methods described here, with

methods,
some variants already exploiting Gaussian approximations for the work distributions.*’* We also
expect some of the formulas presented here to be beneficially deployed in specialized TI
implementations’’ and approaches where specific values of free-energies differences or derivatives
thereof are sought-after, e.g., in methods targeting phase coexistence conditions and the critical

nucleus size in interfacial pinning methods.””’

Acknowledgments

Funding support from NSF awards CBET-1907369 and CHE-2101829 is gratefully
acknowledged. The author thanks Y. Sun for providing the data for inset of Fig. 3 and WHAM

results for Fig. 4 pertaining to Ref. [63].

Data Availability Statement: The data that support the findings of this study are available from

the corresponding author upon reasonable request.

42



APPENDIX
A. Model for TI Error Estimation

Previous studies have already addressed the question of estimating errors from FEP and TI
calculations (see, e.g., Ref. [7]). Here we provide a simple analysis for TI tailored to the EM2
formula (57)-(58). For simplicity we assume a single integration path variable A. Let us assume
that L denotes the total range of integration, AA be the step length (assumed to be uniform), ¢ the
length (in MD steps of MC cycles) used at each A point, ¢ be the statistical error associated the
evaluation of ¢ at any simulation point. The total error can be seen as arising primarily from: (i)
the statistical uncertainties in the calculation of f; values, and (i1) the discretization of the integral.
It is known that the former error is inversely proportional to the square root of the simulation
length,** while the latter can be estimated, according to the Euler-Maclaurin formula (58), as a
fourth order power of AA for the integration formulas we adopt. Hence the error in free-energy in

a particular step 7 of size A4 can be approximately expressed as:
& ~ £y, A+ 221 Puil (34 (A1)

where &4, 1s the error in the estimation of ¢ average values in a simulation run. If we assume an
average & value as representative of the error for each step and that step sizes are equal, then the

total error in the estimation of A® over the entire integration path A4, would be:

NS eps AA 0 |A¢ |
Etot = Zi tep & = ﬁgi = A/ltot [€¢1 + #(Al):{l (A2)

where Ag, is an average value of ¢, ;41 — ¢, ; over steps. In practice, it will be difficult to have

accurate estimates of A¢gs and so, alternatively we overestimate the integration error as half of the

2" order term in Eq. (58), thus:

Aot

|Ag,|
& < g4, |0 + 2—42(AA)2, Etot S 3

& (A3)

43



Formulas (A2) or (A3) could form the basis for optimizing the stepsize A4; e.g., by maximizing
the statistical efficiency. The latter is often taken to be inversely proportional to the product of the
computational cost and the statistical error &, The optimization can be performed under different
constraints; here we illustrate just one such scenario. If the length per simulation run is preset to
guarantee suitable sampling, then &4 will be approximately constant and the computational cost
will be proportional to the number of steps, so that the function to minimize is (AAw/AA)XEor.

Using &or from Eq. (A2), the final result can be written as:

|Ap, |
ol 0ope] = 222205, (a9

which simply states that the optimal A4 occurs when the error associated with the uncertainty in
¢ values (left hand side) is about twice the error associated with the quadrature discretization
(right hand side). This shows that it would not make sense to increase the computational cost by
reducing A4 and the integration error when the total error and €4, are unaffected. If our means to

estimate the quadrature error is via a second order term as in relation (A3), then (A4) would

translate to:

1A
L2l AXZ, (AS)

€¢1 |A/10pt| =

Thus, if the 2" order quadrature correction is larger (smaller) than the ¢-statistical error, then A4
could be made smaller (larger). A similar analysis could be put forward for TI over multiple

variables; e.g., & from relation (A3) for the two-variable TI-EM2 of Eq. (B5) could be written as:

A A A
& < e, IMil + £g, 0] + |- 222 (A£))2 — 222 (Af,)? + 222 Af A, (A6)

where &y, , €4, are the errors in the estimation of @io, go1 average values in a simulation run of a

preset length.
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B. TI with Best-Fit Polynomials for Multiple HPs

For concreteness, only formulas for the two-variable case are presented. While the formulas to be
derived here can be applied to integrations over either HPs or OPs, they were only applied (in Sec.
5.3) to the case of HPs, and hence we specialized them using the symbol f (rather than the generic

A used in Sec. 4.3.1). For brevity of notation, we define:

$10 = (S_Z)fz > $o1 = (g_Z)fl ) (BD)
$20 = (E:T;)fz’ $oz2 = (E:sz))fla $11 = % (B2)

so that & denotes a partial derivative that is order i with respect to fi and order j with respect to

f> (other ensemble properties are implicitly held constant). These derivatives can be obtained at

any simulation point "p" (i.e., &) using the formulas derived in Sec. 4.1.

Following the strategy of Section 4.3, we favor the lowest order polynomials capable of
capturing the variations of 1% and 2" derivatives of ®; i.e., a maximum order of 3 over individual
fields. A key difference between the one-field ®-model described before and multi-field models is
that cross-interaction terms should now be included as the effect of each field on ® need not be
independent of other fields. Indeed, capturing such inter-field coupling is essential to model ®.

Here we propose:

2 3 2 3 2 ;2
D = coo + C10f; + C20f] T C30f] F Co1f, + Co2f5 + Cosf, + craff, + C22f 1S5 (B3)

The ci1f1f2 cross term embodies the leading (first-order) effect of the cross interaction of f1 and
f2 on @. By itself however, it implies that ¢ is a constant which need not be true. To allow a

greater flexibility, at least an additional higher-order cross term is needed. While 3™ order terms
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of f f, and ciof, f g could be used, the three coefficients ci1, c21, and c12 would be underspecified
by only two ¢i1 data (f11a and ¢i118). We hence favor instead a single ff f% term, which can be

seen as the quadratic version of the basic cross variable (f1f2) to help describe positive and inverse

correlation effects.

In model (B3) we have 8 c-parameters (disregarding coo which is irrelevant since only free-
energy differences are needed), while the points 4 and B provide 10 simulation data. Following
Sec. 4.3, we can find 4 of those c-parameters by matching the most accurate data gioa, doia, dioB
and ¢ois. Since the ¢ data is crucial in capturing the coupling of A; and A, that shape the free-
energy surface, we also choose to match the ¢i1a and @18 data. This leaves 2 c-parameters that

can be found by fitting the 4 data ¢roa, @d2a, ¢ros and ¢z, and minimizing the function:

R = (204 — $304)* + (D208 — D208)* + (Po24 — P024)* + (D025 — Po25)° (B4)

The resulting coefficients are listed in Table 2.

Table 2. Constants of model (B3). Af; = fig — fia, A}ij = ijp—Pija

€10 = 108
Co1 = $o1B
€11 = P11p

Ad1y

22 T 4Af0f,

1
C20 = W(‘mfpm — 2A0f1Ado0 — Af2Apyy — 40 fr114)
1

Co2 = _8Af (40¢o1 — 2Af2A¢0, — Af1Adyq — 4Df1P114)
2
1
C30 = —12Af2 (2Af1A¢20 — Af,A¢414)
1

1
Coz = W(ZAsz(ﬁoz — Af1A¢11)

With these ¢’s, the free-energy difference can be expressed as:
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1 1 A A
ADyp = E(d)lOA + P108)A1 + E(¢01A + ¢h018)Af2 — %Aﬁz - %Afzz +

“uAfiAf (BS)

It can be shown that this expression is the 2-variable, 2" order generalization of the TI-EM2
formulas (57)-(58). A fourth-order model akin to Eq. (B3) but including two extra terms c,oAf;*
and co,Af," was presented in Ref. [42] whose 10-parameters allowed to exactly match all 10
simulation data at points A and B and, remarkably, gives an expression for Ad s which is identical
to Eq. (B5). This outcome is similar to what we observed in comparing the best-fit 3™ order model
and the exact-match 4™ order model for the single-field case described in Sec. 4.3. It should be

pointed out that while multiple matching-polynomials and best-fitting-polynomials were proposed

in Ref. [42], model (B3) was not considered.

For reference, we also list the trapezoidal rule by neglecting the 2" order terms in Eq. (B5):

Adyp = %(¢10A + ¢10p)Af1 + %(¢01A + ¢018)AS2 (B6)

In the context of extrapolation, Eq. (B3) is most indicated for “lateral” extrapolation; i.e., when
trying to estimate free-energies beyond one of the boundaries (say point B). One can also consider
cases when “central” extrapolations are needed; e.g., to explore a new point (f1, f2) such that fi4 <
f1 < fiz (say) but f> is not bracketed between f2a and fog but fop < f> < fo4- where A’ is another
simulated point proximal to B. In such a case, rather than only using one point (B) or two points to
construct the polynomial (say 4 and B with the former being the closest to B in fi space) one could
advantageously use data from 4, B and 4'. In particular, it would be sensible to use all 1% an 2™
derivative data at point B while only 1% order derivative data from points 4 and 4’: those 9 total

data could then be fitted to match the 9 c-constants in a full 3™ order polynomial (i.e., one similar

to Eq. (B3) but replacing the single c,,f2f? term by terms c21f2f, and ci,f;f# ); this case was
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in fact already considered in Ref. [42] and expressions for the c-constants given therein [Egs.

(A12)-(A17)].

C. FENEX IMPLEMENTATION

For concreteness, we consider here a common situation where GDI is used to map the
coexistence between two phases to be denoted by superscripts I and II, and where two fields /i and
/> are used to determine the thermodynamic state. Any Hamiltonian parameters constraining the
system size of each phase are also assumed fixed throughout and be the same for both phases. The
phase diagram in the fi—f> plane is mapped by stepping over prescribed values of fi = fi new and

calculating the corresponding coexistence values of 2= f> new Which should satisfy the equation:

1ﬂ(fz,new) = cI)I(fz,new) - cI)H(fz,new) =0 (C1)
whose solution implies that at f> pew: ®' = O = Dpeyy.

The stepwise mapping proceeds as follows:

1) Initialization. At the outset it is assumed that at point “4” the values of flI 4, and le , that lead to
(near) coexistence of phases J = I and II are known (i.e., the free-energy difference @4 — @} is

zero or known), and simulations were conducted so that gioa, @oia, ¢20a, P24, and @114 are known
for each phase. Note that the value of, @ say, can be set arbitrarily to zero. Given A flJ = finew —

fll 41» the value of fnew that complies with phase coexistence is found by solving Eq. (C1). Since
only point 4 has been simulated at this point, one can use a 2" order Taylor expansion to estimate

the free-energy of any phase; i.e.:

1 1
Dpew — Py = P10480f1 + Po14Lf2 + 5¢20AAf12 + E¢02AAf22 + P114011L 12 (C2)
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where Af; = f; new — fia» and is applied separately to each phase (I and II) to get @' and ®" to use

in Eq. (C1) to solve for f> new. Specialized formulas may be needed if point 4 represent an infinitely

dilute state in a mixture.**

2) Reset & simulate. Redefine point B by letting (fiB, f2B, PB) be (finew, f2.new, Prew) from the
previous step, perform simulations at these conditions for the two phases I and II and obtain the
corresponding values for the 1% and 2" derivatives (@ios, @018, ¢208, do2s, and ¢11g) at this state

B.

3) Free-energy calculation. Calculate the free-energy differences between the last two states
simulated for each phase, and hence estimate ®5 and ®Y for A fl-] = flL — fll]‘1 For these
calculations we can use either relevant polynomial fits like (BS) or, depending on the Hamiltonian,
OSOS formulas like (22)-(22) by leveraging the connection between I1 distribution moments and
derivatives’ data [i.e., Egs. (5)-(6)].

4) Step forward/extrapolation. At this stage, all relevant properties of (at least) the previous two
points 4 and B and for both phases I and II are known. If A fll = finew — fll 4 1s given for a new

point (f1 new, f2,new), then the value of /2 new for which coexistence is expected is estimated by solving

Eq. (C1) where now @’(f> new) for each phase J is found by via Eq. (B3) using properties appropriate
to the corresponding phase and Af; = A f1] = finew — flJ and Af, > A le = fonew — f2J 4

At this point relabel point B of each phase (and all properties thereof) as point 4, go back to step

2 and iterate steps 2-4 until a final target state has been reached.

5) Post processing. Coexistence properties are refined from the “near coexistence” simulated data;

improved estimates (marked with the superscript “coex”) for any state 4 can be obtained by
extrapolating the results obtained at ( fllA, f2I A) to ( feexr = £l fzcjl’ex) by first finding £ 7¢* as the

root of [(f£{¢*) = 0 from Eq. (C1); the extrapolating polynomial model for ®’ (as a function of
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Afll = f{A% — fllA and A fzI = fo ¢ — le ,) could be based on single-point 4 data as in Eq. (C2),
or on points A and B data as with Eq. (B3) (point B being the closest to 4 in fi space), or on three-

point A-B-A" data (fia<f1a<fiB) as with the central extrapolation discussed at the end of Sec. B of

the Appendix. The ®’ values found this way (with le L = f52¢%) correspond to ®°°* (at point 4).

For steps 1, 4, and 5, the sought-after root of Eq. (C1) can be found via Newton’s method using as

first guess the first-order solution:

fomew = (@h — O + PloaAf! — QAL — Phiafoa + Poiafan)/ (Pbia — Pbia)  (C3)

REFERENCES

[a—

. D. A. Kofke, Fluid Phase Equilibria 228-229, 41 (2005).

»

C. Chipot, A. Pohorille editors, Free Energy Calculations. Theory and application in
Chemistry and Biology, Study Edition, Springer-Verlag Berlin Heidelberg, 2007.

3. D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to
Applications. Academic, Sand Diego, 2002.

4. M. Allen and D. Tildesley, Molecular Simulation of Liquids, 2™ Ed. Oxford, 2017.
5. A. Pohorille, C. Jarzynski, and C Chipot, J. Phys. Chem. B 114, 10235 (2010).

6. J. D. Chodera, D. L. Mobley, M. R. Shirts, R. W. Dixon, K. Branson, and V. S. Pande,.
Curr. Opinion Struct. Bio. 21, 150 (2011).

7. M. R. Shirts and V. S. Pande, J. Chem. Phys. 122, 144107 (2005).

8. D. Wuand D. A. Kofke, Phys. Rev. E 70, 066702 (2004).

9. D. Wuand D. A. Kofke, J. Chem. Phys. 123, 054103 (2005).

10. D. Wu and D. A. Kofke, J. Chem. Phys. 123, 084109 (2005).

11. F.J. Martinez-Veracoechea and F.A. Escobedo, J. Phys. Chem. B. 112, 8120 (2008).

50



12

13.
14.
15.
16.
17.
18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33
34
35
36

. P. V. Klimovich, M. R. Shirts, and D. L. Mobley, J. Computer-Aided Molec. Design 29
397 (2015).

T. Boon, A. J. Schultz, and D. A. Kofke, J. Chem. Phys. 132, 214103 (2010).

S. G. Moustafa, A. J. Schultz, and D. A. Kofke, J. Chem. Phys. 139, 084105 (2013).
C. H. Bennett, J. Comput. Phys. 22, 245 (1976).

M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 63, 1195 (1989).

M. Ferrenberg and R. H. Swendsen, Phys Rev. Lett. 61, 2635 (1988).

S. Kumar, J. M. Rosenberg, D. Bouzida, R. H. Swendsen, P. A. Kollman, J. Comput.
Chem. 13, 1011 (1992).

M. Souaille and B. Roux, Computer Phys. Comm. 135, 40 (2001).

M. R. Shirts and J. D. Chodera, J. Chem. Phys. 129, 129105 (2008).

J. R. Errington, J. Chem. Phys. 118, 9915 (2003).

M. Fenwick and F.A. Escobedo, J. Chem. Phys., 120, 3066 (2004).
F.A. Escobedo and C.R.A. Abreu, J. Chem. Phys. 124, 104110 (2006).
H. Paliwal and M. R. Shirts, J. Chem. Theory Comput. 7, 4115 (2011).
C. Jarzynki. Phys. Rev. Lett. 78, 2690 (1997).

G. E. Crooks, Phys. Rev. E 60, 2721 (1999).

S. Park and K. Schulten, J. Chem. Phys. 120, 5946 (2004).

O. Perisic and H. Lu, PLOS ONE 9, 101810 (2014).

P. Procacci, J. Chem. Phys. 142, 154117 (2015).

C. Dellago and G. Hummer, Entropy 16, 41 (2014).

G. M. Torrie and J. P. Valleau, Chem. Phys. Lett. 28, 578 (1974).

N. D. Lu, T. B. Woolf, D. A. Kofke, J. Comput. Chem. 25, 29 (2004).

. J. Kastner and W. Thiel, J. Chem. Phys. 123, 144104 (2005).

. J. Kastner and W. Thiel, J. Chem. Phys. 124, 234106 (2006).

. J. Kastner, J. Chem. Phys. 131, 034109 (2009).

. L. Maragliano and E. Vanden-Eijnden, J. Chem. Phys. 128, 184110 (2008).

3

51



37.

38.
39.
40.
41.
42.

43.

44,

45.

46.

47.
48.
49.
50.
51.
52.
53.

54.
55.
56.
57.
58.

59.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in
Fortran 90. The Art of Scientific computing, 2" Ed. Cambridge Univ. press, New York
1996.

D. Kofke, J. Chem. Phys. 98, 4149 (1993).

M. Mehta and D Kotke, Chem. Eng. Sci. 49, 2633 (1994).

A. van 't Hof, C. J. Peters, and S. W. de Leeuw, J. Chem. Phys. 124, 054906 (2006).

F.A. Escobedo, J. Chem. Phys. 110, 11999 (1999).

F.A. Escobedo, J. Chem. Phys. 140, 094102 (2014).

F.A. Escobedo, J. Chem. Phys. 108, 8761 (1998).
Y. Meng and B. Roux, J. Chem. Theory Comput. 11, 3523 (2015).
G. Hummer, L. Pratt, and A. E. Garcia, J. Phys. Chem. 100, 1206 (1996).

T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. 2" Ed. Springer -Verlag, Berlin, 2009.

T. Stecher, N Bernstein, and G. Csanyi, J. Chem. Theory Comput. 10, 4079 (2014).
L. Mones, N. Bernstein, and G. Csanyi, J. Chem. Theory Comput. 12, 5100 (2016).
A. L. Ferguson, J. Phys.: Condens. Matter 30, 043002 (2017).

C. Dai and S. C. Glotzer, J. Phys. Chem. B 124, 1275 (2020).

H. Sidky and J. K. Whitmer, J. Chem. Phys. 148, 104111 (2018).

C. Desgranges and J. Delhommelle, Mol. Syst. Des. Eng. 6, 52 (2021).

N. A. Mahynski, H. W. Hatch, M. Witman, D. A. Sheen, J. R. Errington, and V. K. Shen,
Molecular Simulation 47, 395 (2021).

J. P. Selvaggi, J. Comput. Electron 17, 61 (2018).

E. Darve and A. Pohorille, J. Chem. Phys. 115, 9169 (2001).

N. B. Wilding, Phys. Rev. E 52, 602 (1995).

J. J. Potoft, A. Z. Panagiotopoulos, J. Chem. Phys. 109, 10914 (1998).

N. B. Wilding, Amer. J. of Phys. 69, 1147 (2001).

T. M. Apostol, The American Mathematical Monthly. Mathematical Association of
America. 106, 409 (1999). doi:10.2307/2589145.

52



60. B. X. Dong, C. Nowak, J. W. Onorato, J. Strzalka, F. A. Escobedo, C. K. Luscombe, P.
F. Nealey and S. N. Patel, Chem. Mater. 31, 1418 (2019).

61. D. M. Huang, R. Faller, K. Do and A. J. Moulé, J. Chem. Theory Comput. 6, 526 (2010).

62. W. L. Jorgensen, D. S. Maxwell and J. Tirado-Rives, J. Am. Chem. Soc. 118, 11225
(1996).

63.J. W. Onorato, Z. Wang, Y. Sun, C. Nowak, L. Q. Flagg, R. Li, B. X. Dong, L. J. Richter,
F. A. Escobedo, P. F. Nealey, S. N. Patel, and C. K. Luscombe. Side Chain Engineering
Control of Mixed Conduction in Oligoethylene Glycol-Substituted Polythiophenes, J.
Mat. Chem. A., under review (2021).

64. LAMMPS web page: https://www.lammps.org/

65. A. Grossfield, WHAM: the weighted histogram analysis method, version 2.0.10,

http://membrane.urmc.rochester.edu/wordpress/
66. F.A. Escobedo, J. Chem. Phys. 146, 134508 (2017).
67. F. A. Escobedo, J. Chem. Phys. 147, 214501 (2017).

68. S. Gottschalk, M.C. Lin, and D. Manocha, Computer Graphics 30, 171 (1996).

69.J. Arvo, Graphic Gems, Acad. Press, San Diego, CA, 1990.

70. D. Frenkel and A. J. C. Ladd, J. Chem. Phys. 81, 3188 (1984).

71. F. Smallenburg, L. Filion, M. Marechal, and M. Dijkstra, Proc. Natl. Acad. Sci. U.S.A.
109, 17886 (2012).

72.N. Lu, D. A. Kofke, and T. B. Woolf, J. Phys. Chem. B 107, 5598 (2003).

73. F.A. Escobedo and F.J. Martinez-Veracoechea, J. Chem. Phys. 129, 154107 (2008).

74. M. Lundborg, J. Lidmar, and B. Hess, J. Chem. Phys. 154, 204103 (2021).

75. F.A. Escobedo, J. Chem. Phys. 123, 044110 (2005).

76. F.A. Escobedo, Phys. Rev. E 73, 056701 (2006).

77. C. Nowak and F. A. Escobedo, J. Chem. Theor. & Comput. 14, 5984 (2018).
78. V. Thapar and F.A. Escobedo, J. Chem. Phys. 141, 124117 (2014).

79. A. K. Sharma and F. A. Escobedo, J. Chem. Phys. 148, 184104 (2018).

53


https://www.lammps.org/

54



