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ABSTRACT 

In this work, complementary formulas are presented to compute free-energy differences via perturbation 

(FEP) methods and thermodynamic integration (TI). These formulas are derived by selecting only the most 

statistically significant data from the information extractable from the simulated points involved. On the 

one hand, commonly used FEP techniques based on overlap sampling leverage the full information 

contained in the overlapping macrostate probability distributions. On the other hand, conventional TI 

methods only use information on the first moments of those distributions, as embodied by the first 

derivatives of the free-energy. Since the accuracy of simulation data degrades considerably for high-order 

moments (for FEP) or free-energy derivatives (for TI), it is proposed to consider, consistently for both 

methods, data up to second order moments/derivatives. This provides a compromise between the limiting 

strategies embodied by common FEP and TI and leads to simple, optimized expressions to evaluate free-

energy differences. The proposed formulas are validated with an analytically solvable harmonic 

Hamiltonian (for assessing systematic errors), an atomistic system (for computing a potential of mean force 

with coordinate dependent order parameter), and a binary-component coarse-grained model (for tracing a 

solid-liquid phase diagram in an ensemble sampled through alchemical transformations). It is shown that 

the proposed FEP and TI formulas are straightforward to implement, perform similarly well, and allow 

robust estimation of free-energy differences even when the spacing of successive points does not guarantee 

them to have proper overlapping in phase space. 
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I. INTRODUCTION 

Numerous studies, book chapters, and monographs have been reported on the methodology for 

free-energy calculations via molecular simulations,1-7 a research area that can be considered 

mature, with well-established formulas extensively and successfully deployed. Nonetheless, 

improvement of such methods is still an active area of research, as the effectiveness and ease of 

use of a given method tends to strongly depend on the characteristics of the system at hand.2-14 

Two widely used methods to obtain free-energy differences between two states, and by extension 

over an arbitrary multi-state thermodynamic path, are the free-energy perturbation (FEP) and 

thermodynamic integration (TI)2-4 methods. FEP encompasses such methods as simple 

perturbations,1.2 overlap sampling like Bennett’s acceptance ratio method (BAR),15 weighed 

histogram analysis (or multihistogram reweighting) WHAM16-19 and multistate BAR (MBAR) 

methods,20 and the closely related transition matrix methods.21-23 The conceptual and practical 

connections between FEP and TI are well known and while they can successfully be deployed 

interchangeably for many systems, one of them is often the method of choice for specific classes 

of problems.2,5,6 For example, in simulating the free-energy of ordered assemblies, overlap 

sampling and TI were found to have roughly equivalent  efficiency, while the MBAR method 

offered no advantage,14 while in the simulation of benchmark systems involving insertion/deletion 

of atomic sites and changing partial charges, the BAR and MBAR methods were found to be 

consistently among the top performers.24 For concreteness, we will not consider non-equilibrium 

work based methods25-30 despite their connection to FEP and TI methods.  

Free-energy calculations can also be classified based on the type of independent variable(s) 

“” used to define the different states. These variables can be either (i) Hamiltonian and state 

parameters (HPs) if they appear as parameters in the ensemble Boltzmann’s factor and hence are 

trivial to set, or (ii) order parameters (OPs) or “reaction coordinates” if they depend on (a subset 

of) the coordinates (or phase space) of the system and are generally more difficult to fix.2 In 
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general, free-energy calculations based on HPs are more straightforward to implement with both 

TI and FEP, while those using OPs often require specialized methods or combination of methods, 

such as umbrella sampling31 with WHAM when obtaining free-energy profiles or surfaces.18,19  

The most effective FEP methods rely on overlap sampling between neighboring states; i.e., 

if states A and B are simulated, then important regions of the phase space of state A are also 

sampled by state B and vice versa.9,10,32 It is well-known that FEP overlap methods can fail if the 

target and reference states do not share a sufficiently large set of relevant configurations; i.e., for 

large systems.13 When simulating along multiple state points, it is customary to employ statistics 

of all such points leveraging the collected distribution of microstates or of “work” (virtual 

transitions to neighboring states) henceforth to be denoted as the “ distribution”. The best-known 

and widely used method to implement this calculation is BAR for the two-state case,15 and 

MBAR20 or equivalently, WHAM,16-19 for the many-states case. However, if states A and B are 

nearest neighbors in phase space, then in computing the free-energy difference between them, 

using statistics from more distant states may not be worth the extra effort, especially if those other 

states only overlap on the less relevant and noisier “outer” tails of the A and B -distributions.33-

36 

Likewise, when using TI it has been customary to use data from multiple points, but from 

first-order derivatives of the free-energy only, to evaluate the integrand. Indeed, as per typical 

formulas like the Simpson’s rule or Gaussian quadratures,37 polynomial functions are fitted to such 

first-derivative data. More than 2 points are needed to capture the curvature of the integrand 

function which helps not only with the integration (and interpolation process involved) but also 

with any needed extrapolation,7 which is crucial when advancing  in a particular direction as in 

TI intended to stepwise trace a phase coexistence line,38-42 referred to as Gibbs-Duhem integrations 

“GDI”. However, fitting numerous points to a function is not beneficial for stiff integrands, and it 

may place too much weight on points distant from the interval of interest, or unduly smooth-out 
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local features of the free-energy function, thus reducing the nimbleness of the extrapolating 

function to adapt to quick changes of slope. In this work, we advocate the use of simulation data 

from only those two points, say A and B, constituting the bounds of a single TI step, when 

evaluating the integral between them, with the tenet that unless one is using very narrowly spaced 

 values, then other distant points are unlikely to provide essential information that is not already 

contained in points A and B. To compensate for the lack of integrand curvature information when 

using only such two points, it is proposed to use simulation data on second derivatives of the free 

energy,42 which are typically as readily accessible as first derivatives with no or minimal 

computation overhead.41-43 We show that using such 2nd order TI brings the two-point integration 

formula closer to FEP overlap methods. We disregard higher than 2nd order derivatives since in 

practice the accuracy of the simulated data degrades for such high order effects. While this strategy 

has been already embodied by the FENEX method42 – a variant of GDI - here we present additional 

optimized formulas for polynomial fitting and in a general context for broader applicability. 

We also show that FEP formulas that only employ up to 2nd -moments data (related to 

2nd order free-energy derivatives) are easier to use than, e.g., BAR, which requires significantly 

more bookkeeping and a numerical procedure to solve an integral equation (with numerical issues 

compounding for WHAM44). Further, such 2nd-order FEP methods do not rely on overlapping 

neighboring ’s to work as intended nor in properly sampling the  distribution tails. Indeed, 

considering that even first moment  data can exhibit significant statistical and systematic errors 

(i.e., due to ergodic issues), it would seem unwarranted to assume that using the full  distribution 

will invariably lead to a significant gain in robustness or accuracy in the calculated free-energies.  

Cumulant expansions of the free-energy, which when truncated to second order correspond to an 

underlying Gaussian , have been successfully used in the past to derive perturbation 

approximations,2 e.g., the Born’s formula for the free-energy of an ion in a liquid.45 Most recently, 

2nd order expansions of Jarzynski’s equality have been deployed for non-equilibrium simulation 
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methods;27-29 e.g., for steering simulations where it was shown that for stiff springs, the work is 

Gaussian-distributed regardless of the speed of the process simulated.27 

It is important to keep in mind that in optimizing the statistical efficiency of free-energy 

estimations (e.g., see Sec. A of Appendix), one should consider the interplay between a “breadth” 

strategy that uses more points and finer staging, and a “depth” strategy that uses fewer points but 

leverages as much information from each point as possible. Indeed, a fixed computational budget 

could be equally allocated by either shorter but more numerous runs using the most accurate first-

order data only, or by longer but fewer runs using higher order data. Regardless of number of 

points, however, the most elementary calculation involves two “successive” points and hence 

optimizing such calculations should always pay off, help strike a balance between breadth and 

depth, and provide a cornerstone to complement multi-state or higher-order methods.   

Machine Learning (ML) methods46 have been used to aid countless problems seeking to 

unveil complex correlations between variables, including the construction and prediction of free-

energy surfaces from simulation data.47-52 Indeed, ML models can be trained on datasets generated 

by molecular simulations such as those obtained from TI, FEP, WHAM and other similar 

approaches, as a means to create “black-box” correlations that can be used to efficiently interpolate 

data or extrapolate results to unexplored conditions. Such data-driven methods, however, are 

arguably most indicated in data-rich situations,53 i.e., once extensive free-energy data has already 

been generated. In contrast, the strategies discussed here focus on making the most out of limited 

data; they are relevant in cases where little is known about the free-energy landscape of a system 

and where only a limited cross-section is of interest. Hence, while ML could still be used in such 

data-scarce situations, it would be a most fruitful complement at later stages in the analysis. 

The rest of paper is organized as follows. In Section II we summarize the main definitions and 

overarching strategy to be followed. In Sections III and IV (plus the Appendix) we describe the 

proposed formulas developed for FEP and TI, respectively. In Section V we present three sample 
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applications of the proposed FEP and TI formulas and in Section VI we provide concluding 

remarks.  

 

II. BASIC DEFINITIONS 

 The independent variable defining the path over which free-energy calculations are performed can 

be classified as being either: (i) An explicit parameter in the ensembles Boltzmann’s factor, which 

may be a thermodynamic field or a force-field parameter and (ii) a collective property that depends 

on (a subset of) the atomic coordinates. Henceforth we will refer to the former variables as 

“Hamiltonian parameters” or HPs and the latter variables as “order parameters” or OPs. The value 

of a HP or its change can be specified and enacted in a straightforward way and is associated with 

a change in either the thermodynamic state of the system or alchemical transformations. In 

contrast, OPs can only be indirectly controlled (e.g., by a biasing potential) and their changes 

typically occur within the same thermodynamic state. We will use symbol X to denote an OP and 

f for a HP. The boldfaced symbols f and X indicate “vectors” containing multiple parameters; i.e., 

f = {f1,f2, …} and X = {X1,X2, …}.  

We stress that our usage of the term Hamiltonian in HPs is broader than simply referring 

to the total energy of a system and pertains to a generalized Hamiltonian function appearing inside 

the exponential terms of the partition function [as per Eq. (1) below]. Examples of HPs include 

state parameters like temperature, pressure, chemical potentials, chemical potential differences 

between species, volume, and number of particles (changes in the latter often used to compute 

chemical potentials), but also parameters of the “force field” like energy well depths, site 

diameters, charges, force constants, etc., whose changes effectively enact alchemical 

transformations or mutations. Examples of OPs include the distances between atoms or multiatom 

groups (often used to compute binding free energies and potentials of mean force), torsional 

angles, potential energy or subcomponents thereof, root mean square deviations from reference 
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structures, and structural metrics of local order such the largest cluster of an incipient phase 

(appropriate for computing free-energy nucleation barriers). 

The configurational part of the partition function for an isothermal ensemble can be written as: 

    𝑄(𝐟) = ∑ exp[−ℋ(𝐗|𝐟)]     (1) 

where the sum is over configurations, and ℋ is a dimensionless Hamiltonian, e.g., with energy 

units reduced by kT (where T is temperature and k is Boltzmann’s constant). The associated 

dimensionless free energy  (also reduced by kT) is related to the partition function via  

    Φ(𝐟) = − ln 𝑄(𝐟) .     (2) 

The generalized Hamiltonian corresponding to a particular point p will be denoted thus: 

   ℋ𝑝(𝐗) = ℋ(𝐗|𝐟𝑝) 

For future reference, we write the special but important case of a “linear” Hamiltonian 

corresponding to: 

   ℋ(𝐟, 𝐗) = ℋ0 + 𝐟 ∙ 𝐗 = ℋ0 + ∑ 𝑓𝑘𝑋𝑘𝑘     (3) 

where the sum is over all relevant coupling parameters. Here the f’s would typically represent 

reduced thermodynamic fields or TI coupling parameters as in Einstein integrations3 for solids 

[where the modified Hamiltonian is often expressed as ℋ = ∑ 𝑓𝑘ℋ𝑘𝑘  so that ℋ𝑘   would 

essentially be 𝑋𝑘 in Eq. (3)], the X’s correspond to extensive fluctuating quantities in the ensemble, 

and changes in  relate to changes in f1 and f2 through the fundamental thermodynamic equation: 

    𝑑Φ = ∑ 𝑋𝑖𝑑𝑓𝑖𝑖       (4) 

where: 

(
𝜕Φ

𝜕𝑓𝑖
)

𝑓𝑗

= 𝑋𝑖       (5) 



8 
 

(
𝜕2Φ

𝜕𝑓𝑖
2 )

𝑓𝑗

= −cov(𝑋𝑖 , 𝑋𝑖), 
𝜕2Φ

𝜕𝑓𝑖𝜕𝑓𝑗
= −cov(𝑋𝑖 , 𝑋𝑗)    (6) 

where:    〈𝑋𝑖〉 ≡ 𝑋𝑖,    cov(𝑋𝑖, 𝑋𝑗) ≡ 𝜎𝑖𝑗
2 = ⟨𝑋𝑖𝑋𝑗⟩ − ⟨𝑋𝑖⟩⟨𝑋𝑗⟩   (7) 

where  denote ensemble averages. 

In general (not just for linear Hamiltonians), a probability density function associated with point 

‘p’ having field fp = {f1p, f2p, …} (in general a vector) is 

     Π𝑝(𝐗) = Π(𝐗|𝐟𝑝)     (8) 

 p is often plotted as a normalized histogram of collected X data, but any discretization is 

immaterial.  Such a p can be characterized by its moments; in particular, the first two moments 

are the averages 𝑋𝑖𝑝 and covariances 𝜎𝑖𝑗𝑝
2  as defined in relations (7). 

A “Landau” free energy can also be associated with microstates corresponding to macrostate X, so 

that for fixed f and within an additive constant: 

     Φ(𝐗|𝐟) = −ln Π(𝐗|𝐟)     (9) 

Or simply Φ(𝐗) = −ln Π(𝐗) where (X) is the probability of observing configurations where X 

has a particular value. Note that  from Eq. (9) is not the same as that in Eq. (2), being 

distinguishable by the variable they are function of (f or X), and are related, e.g., as: 

  Φ(𝐟𝐵) − Φ(𝐟𝐴) = Φ(𝐗|𝐟𝐵) − Φ(𝐗|𝐟𝐴) + ℋ(𝐗|𝐟𝐵) − ℋ(𝐗|𝐟𝐴)  (10) 

As stated in the Introduction, the formulas to be derived in the following sections exploit the fact 

that the information content of the  functions, if assumed to be Gaussian-like, can be suitably 

distilled into its first two moments which are also the data that are most accurately estimated in 

simulations and circumvent the need for bookkeeping histogram or transition data. As equations 
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(5)-(6) illustrate, the first two moments typically translate into information about the first and 

second derivatives of (f). If the  functions are Gaussians, then for a single X: 

                    Π𝑝(𝑋) ≈
1

(2𝜋 𝜎𝑝
2)

1 2⁄ exp (−
(𝑋−𝑋𝑝)

2

2𝜎𝑝
2 

)              (11) 

where 𝜎𝑝
2 = 𝑋2𝑝 − 𝑋𝑝

2
; and for a two-dimensional function  Π𝑝(𝐗) = Π(𝑋1, 𝑋2|𝑓1𝑝, 𝑓2𝑝) is a 

bivariate Gaussian, i.e.,  

 Π𝑝(𝐗) ≈
1

2𝜋(𝜎11𝑝
2 𝜎22𝑝

2 𝜃)
1 2⁄ exp (−

1

𝜃
[

(𝑋1−𝑋1𝑝)2

2𝜎11𝑝
2 +

(𝑋2−𝑋2𝑝)2

2𝜎22𝑝
2 −

(𝑋1−𝑋1𝑝)(𝑋2−𝑋2𝑝)

𝜎11𝑝
2 𝜎22𝑝

2 𝜎12𝑝
2⁄

]) (11’)
 

where 𝜎𝑖𝑗𝑝
2  are covariances at point p [as defined in Eq. (7)] and 𝜃 = 1 − (𝜎12𝑝

2 )
2

(𝜎11𝑝
2 𝜎22𝑝

2 )⁄ . 

In the following sections we will consider formulas to obtain free-energy differences AB 

between two states A and B using FEP and TI methods when both states are simulated. In these 

two methods the integration step is conducted in different order: in FEP one finds the finite 

difference of  (between states A and B) by directly evaluating an integrated form which entails 

instantaneous “switching” between the A and B Hamiltonians, while in TI one first considers the 

infinitesimal difference in  which is then integrated to “gradually” get the finite difference 

between A and B. Their connection can be made even more apparent by describing them as limiting 

cases of Non-Equilibrium Work “NEW” methods.2,25-27 In FEP we will exploit knowledge of the 

first two moments of the underlying  distributions while in TI we will exploit the (largely 

equivalent) knowledge of the first and second order derivatives of .  

Figure 1 illustrates some of the connections between , f, X and (X) for the case of a one-

dimensional linear Hamiltonian. 
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Fig. 1. Depiction of the connection between changes in free-energy , Hamiltonian Parameter (HP) shown 

as the variable f (horizontal axis), and Order Parameter (OP) shown as the X variable (vertical axis) in the 

case of a linear Hamiltonian. (X) distributions, whose variances are related to the slopes of the free-energy 

derivative curve, are also illustrated. AB appears here as the hatched area under the curve. Because of the 

different slopes marked by red dashed lines, the area of rectangle (fB-fA)XB is closer than (fB-fA)XA to the 

correct hatched area representing AB. 

 

III. FEP-BASED FORMULAS  

3.1 Free energies over HPs 

3.1.1 Optimized Simple Overlap Sampling (OSOS).  

While there are multiple FEP-based working expressions for AB = B-A, we consider first a 

basic formula that combines forward and reverse perturbations, related to the simple overlap 

sampling (SOS),1,2 wherein virtual perturbations do not occur between A and B but through an 

intermediate state with Hamiltonian:   

ℋ𝑀 = (1 − α)ℋ𝐴 + αℋ𝐵,      (12) 
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where  is an interpolating factor; in such a case it can be shown that the free-energy difference 

can be found from: 

𝑒−∆Φ𝐴𝐵 =
𝑄𝐵

𝑄𝐴
=

〈𝑒−[ℋ𝑀−ℋ(𝐗,𝐟𝐴)]〉𝐴

〈𝑒−[ℋ𝑀−ℋ(𝐗,𝐟𝐵)]〉𝐵

=
∫ 𝑑𝐗 Π𝐴(𝐗)𝑒−𝛼[ℋ(𝐗,𝐟𝐵)−ℋ(𝐗,𝐟𝐴)]

∫ d𝐗 Π𝐵(𝐗)𝑒(1−𝛼)[ℋ(𝐗,𝐟𝐵)−ℋ(𝐗,𝐟𝐴)]
  (13) 

where the brackets denote ensemble average at the subscripted state. Equation (13) reduces to the 

standard SOS for a constant  = ½. The variance in the free-energy estimation can be obtained 

from:3,15 

𝜎∆Φ
2 =

1

𝑙𝐴
[

〈𝑒−2𝛼[ℋ(𝐗,𝐟𝐵)−ℋ(𝐗,𝐟𝐴)]〉𝐴

〈𝑒−𝛼[ℋ(𝐗,𝐟𝐵)−ℋ(𝐗,𝐟𝐴)]〉𝐴
2

− 1] +
1

𝑙𝐵
[

〈𝑒2(1−𝛼)[ℋ(𝐗,𝐟𝐵)−ℋ(𝐗,𝐟𝐴)]〉𝐵

〈𝑒(1−𝛼)[ℋ(𝐗,𝐟𝐵)−ℋ(𝐗,𝐟𝐴)]〉𝐵
2

− 1]  (14) 

where lp is the number of statistically independent samples taken in state p; we will henceforth 

assume that lA = lB l. 

If  in Eqs. (13)-(14) is assumed to be a function of X [i.e.,  =(X)], then it can be shown 

that minimizing the variance with respect to  leads to the same result obtained by Bennett15 (the 

BAR formula shown later in Eq. (32) for lA = lB). We will consider instead the case that parameter 

 in Eqs. (12)-(14) is a constant (independent of X); finding then the  value (0  1) that 

minimizes 𝜎∆Φ
2  in Eq. (14) is workable through numerical methods akin to those needed to 

implement BAR. The math simplifies greatly if the  functions needed for the estimation of 𝜎∆Φ
2  

can be approximated by Gaussian distributions and ℋ is a polynomial function of X; in such a 

case the integrals in Eq. (14) are analytically solvable. Of course that Gaussian s will also 

simplify the evaluation of AB in Eq. (13), a trait that we also exploit. We will denote this 

approach as the “optimized SOS” or “OSOS” and will be exemplified in subsections 3.1.2 and 

3.1.3. 

3.1.2 Linear Hamiltonian 
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For the single-HP case Eq. (3) is ℋ=ℋ0+fX and the variance in the estimation of AB from Eq. 

(14) [with Gaussian  as in Eq. (11)] simplifies to: 

𝜎∆Φ
2 =

1

𝑙
[𝑒𝜎𝐴

2𝛼2∆𝑓2
+ 𝑒𝜎𝐵

2(1−𝛼)2∆𝑓2
− 2]    (15) 

where f = fB − fA, and ∆𝑓2 = (∆𝑓)2and the optimal value of  found by setting 𝑑𝜎∆Φ
2 /𝑑𝛼 = 0 

satisfies: 

   (𝜎𝐴
2𝛼2 − 𝜎𝐵

2(1 − 𝛼)2)∆𝑓2 =    ln
(1−𝛼)𝜎𝐵

2

𝛼𝜎𝐴
2     (16) 

which can be simply solved for  via a numerical procedure.  

If the Gaussian  approximation is also used in Eq. (13), then after taking logarithms the result 

can be expressed as: 

ΔΦ𝐴𝐵 = [𝛼𝑋𝐴 + (1 − 𝛼)𝑋𝐵]Δ𝑓 +
1

2
[(1 − 𝛼)2𝜎𝐵

2 − 𝛼2𝜎𝐴
2]∆𝑓2  (17) 

which can be interpreted as a TI polynomial formula, with the 1st and 2nd terms providing weighed 

contributions from the 1st and 2nd derivatives to  as per Eqs. (5) and (6), respectively. An 

alternative approach to find an optimal  value is to consider that the truncation error in AB can 

be (over) estimated as the second order term in Eq. (17). Indeed, based on the similarity of this 

result to the Euler-Maclaurin series expansion to be discussed later [see Eq. (58)], one can 

conjecture that more accurate estimates of AB would produce a polynomial with additional 

higher order terms of the form: prefactor [(1 − 𝛼)2𝑛𝜎𝐵
2𝑛 − 𝛼2𝑛𝜎𝐴

2𝑛]Δ𝑓2𝑛 with n1 (and  

Gaussian central moments proportional to powers of 2). In such a case, higher order corrections 

are rendered negligible by setting (1 − 𝛼)𝑛𝜎𝐵
𝑛 = 𝛼𝑛𝜎𝐴

𝑛, resulting in: 

     𝛼 = 𝜎𝐵 (𝜎𝐴 + 𝜎𝐵)⁄      (18)     
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which, as a bonus, simplifies formula (17) by dropping the 2nd order term leading to the remarkably 

simple expression: 

     ΔΦ𝐴𝐵 =
𝜎𝐵𝑋𝐴+𝜎𝐴𝑋𝐵

𝜎𝐵+𝜎𝐴
Δ𝑓    (19) 

Equations (16)-(19) embody the intuitive idea that since 𝜎∆Φ
2  increases with the magnitude of the 

distribution variances, the intermediate Hamiltonian between points A and B should be apportioned 

weighing more conservatively the point with larger standard deviation/variance or, leveraging the 

relation (6), larger curvature. Figure 1 also illustrated this point geometrically, interpreting 

relations (17) and (19) as TI formulas. In our numerical tests, very little difference was found in 

the quality of the AB results when computing  from either (16)-(17) or (18)-(19), likely 

reflecting the presence of a broad minimum in the 𝜎∆Φ
2 (𝛼) function. Our results are reminiscent 

but different from a formula suggested in Ref. [7] to optimally combine exponential (free-energy) 

averages from forward (A→B) and backward (B→A) FEP simulations.  

The analysis above can be readily extended to the multidimensional linear Hamiltonian of 

Eq. (3); i.e., for the case of two X properties: ℋ = ℋ0 + f1X1 + f2X2. Here we choose as intermediate 

Hamiltonian 

 ℋ𝑀 = ℋ0 + ∑ [(1 − 𝛼𝑖)𝑓𝑖𝐴 + 𝛼𝑖𝑓𝑖𝐵]𝑋𝑖
2
𝑖=1 ,    (20) 

where the 's are adjustable factors (noting that we could choose 1=2). Hence, 

𝑒−∆Φ𝐴𝐵 =
〈𝑒−(ℋ𝑀−ℋ𝐴)〉𝐴

〈𝑒−(ℋ𝑀−ℋ𝐵)〉𝐵

=
∫ 𝑑𝐗 Π𝐴(𝐗)𝑒−𝛼1∆𝑓1𝑋1−∆𝑓2𝑋2

∫ d𝐗 Π𝐵(𝐗)𝑒(1−𝛼1)∆𝑓1𝑋1+(1−𝛼2)∆𝑓2𝑋2
  (21) 

where fi = fiB-fiA, Adopting the bivariate Gaussian of Eq. (11’) for the ’s, the integrals in Eq. 

(21) are solved analytically to yield: 
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ΔΦ𝐴𝐵 = [𝛼1𝑋1𝐴 + (1 − 𝛼1)𝑋1𝐵]Δ𝑓1 + [𝛼2𝑋2𝐴 + (1 − 𝛼2)𝑋2𝐵]Δ𝑓2 +
1

2
[(1 − 𝛼1)2𝜎11𝐵

2 −

𝛼1
2𝜎11𝐴

2 ]Δ𝑓1
2 +

1

2
[(1 − 𝛼2)2𝜎22𝐵

2 − 𝛼2
2𝜎22𝐴

2 ]Δ𝑓2
2 + [(1 − 𝛼1)(1 − 𝛼2)𝜎12𝐵

2 − 𝛼1𝛼2𝜎12𝐴
2 ]Δ𝑓1Δ𝑓2 

            (22) 

Likewise, the associated variance in ΔΦ𝐴𝐵 can be estimated from: 

𝑙𝜎∆Φ
2 = exp(𝛼1

2𝜎11𝐴
2 Δ𝑓1

2 + 𝛼2
2𝜎22𝐴

2 Δ𝑓2
2 + 2𝛼1𝛼2𝜎12𝐴

2 Δ𝑓1Δ𝑓2) + exp[(1 − 𝛼1)2𝜎11𝐵
2 Δ𝑓1

2 + (1 −

𝛼2)2𝜎22𝐵
2 Δ𝑓2

2 + 2(1 − 𝛼1)(1 − 𝛼2)𝜎12𝐵
2 Δ𝑓1Δ𝑓2] − 2     (23) 

which could be minimized to find the optimal values of 1 and 2 using any suitable numerical 

procedure.37 (This would simplify somewhat if 1 = 2 =  were appropriate, albeit having two 

parameters allows greater flexibility for minimizing 𝜎∆Φ
2 ). As in the single-X case, an approximate 

solution for the ’s could be chosen so that the second order terms associated with Δ𝑓1
2 and Δ𝑓2

2 

in Eq. (22) vanish: 

  𝛼1 = 𝜎11𝐵 (𝜎11𝐴 + 𝜎11𝐵)⁄ ,      𝛼2 = 𝜎22𝐵 (𝜎22𝐴 + 𝜎22𝐵)⁄    (24) 

ΔΦ𝐴𝐵 =
𝜎11𝐵𝑋1𝐴+𝜎11𝐴𝑋1𝐵

𝜎11𝐵+𝜎11𝐴
Δ𝑓1 +

𝜎22𝐵𝑋2𝐴+𝜎22𝐴𝑋2𝐵

𝜎22𝐵+𝜎22𝐴
Δ𝑓2 +

𝜎11𝐴𝜎22𝐴𝜎12𝐵
2 +𝜎11𝐵𝜎22𝐵𝜎12𝐴

2

(𝜎11𝐵+𝜎11𝐴)(𝜎22𝐵+𝜎22𝐴)
Δ𝑓1Δ𝑓2 (22’) 

The above equations can be straightforwardly extended to systems with more than 2 X variables. 

 

3.1.3 Non-linear Hamiltonians 

As illustration, we present results for a Hamiltonian of the form: 

    ℋ(𝑋, 𝑓) = ℋ0(𝑋) +
𝑓1

2
(𝑋 − 𝑓2)2    (25) 

For which the exact solution to Eqs. (13)-(14) can be expressed as: 

∆Φ𝐴𝐵 =
1

2
(

𝑋𝐴
2

𝜎𝐴
2 −

𝑋𝐵
2

𝜎𝐵
2 + 𝑓1𝐵𝑓2𝐵

2 − 𝑓1𝐴𝑓2𝐴
2 + ln

𝜌𝐴

𝜌𝐵
+ 𝑤𝐵 − 𝑤𝐴)  (26) 



15 
 

where: 

   𝑤𝐴 =
1

𝜌𝐴
(

𝑋𝐴

𝜎𝐴
+ 𝛼𝜎𝐴(𝑓1𝐵𝑓2𝐵 − 𝑓1𝐴𝑓2𝐴))

2

    (27) 

   𝑤𝐵 =
1

𝜌𝐵
(

𝑋𝐵

𝜎𝐵
+ (1 − 𝛼)𝜎𝐵(𝑓1𝐴𝑓2𝐴 − 𝑓1𝐵𝑓2𝐵))

2

   (28) 

   𝜌𝐴 = 1 + 𝛼𝜎𝐴
2∆𝑓1,   𝜌𝐵 = 1 − (1 − 𝛼)𝜎𝐵

2∆𝑓1    (29) 

Unlike the linear Hamiltonian case, a simple relation to find the optimal  is not generally 

accessible, but this simplifies greatly for two limiting cases:  

(i) If f2A = f2B = f2, then this case could be mapped onto a linear Hamiltonian by redefining 

(X−f2)
2 in Eq. (25) as X and henceforth using the solution of Sec. 3.1.2, and  

(ii) If f1A = f1B = f1 then Eq. (26) simplifies to: 

ΔΦ𝐴𝐵 = [
𝑓2𝐴+𝑓2𝐵

2
− 𝛼𝑋𝐴 − (1 − 𝛼)𝑋𝐵] 𝑓1Δ𝑓2 +

1

2
[(1 − 𝛼)2𝜎𝐵

2 − 𝛼2𝜎𝐴
2]𝑓1

2Δ𝑓2
2 (30) 

and expression (14) becomes:  

   𝜎∆Φ
2 =

1

𝑙
[𝑒𝜎𝐴

2𝛼2𝑓1
2Δ𝑓2

2
+ 𝑒𝜎𝐵

2(1−𝛼)2𝑓1
2Δ𝑓2

2
− 2]    (31) 

We should point out the similarity between Eqs. (17)+(15) (for linear Hamiltonian) and Eqs. 

(30)+(31) and that Eq. (30) would also be obtained for choices of the intermediate Hamiltonian 

other than Eq. (12), e.g., for ℋ𝑀 =
1

2
𝑓1[𝑋 − (1 − 𝛼)𝑓2𝐴 − 𝛼𝑓2𝐵]2. The optimal  can be found 

either as the value that minimizes the function in Eq. (31): 

   (𝜎𝐴
2𝛼2 − 𝜎𝐵

2(1 − 𝛼)2)𝑓1
2Δ𝑓2

2 = ln
(1−𝛼)𝜎𝐵

2

𝛼𝜎𝐴
2  ,   (31’) 

or, as in Sec. 3.1.2, by choosing  to vanish the 2nd order term in Eq. (30), which again results in 

formula (18) and simplifies Eq. (30) to: 
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   ΔΦ𝐴𝐵 = [
𝑓2𝐴+𝑓2𝐵

2
−

𝜎𝐵𝑋𝐴+𝜎𝐴𝑋𝐵

𝜎𝐵+𝜎𝐴
] 𝑓1Δ𝑓2    (30’) 

 

3.1.4 Other perturbation methods 

The Gaussian approximation for  deployed for OSOS in 3.1.1-3.1.3 can also be deployed for 

other free-energy methods including WHAM and MBAR methods16-20 for multiple points or for 

BAR15 for the two-point situation; in the latter case, this requires solution of    

  ∫ 𝑑𝐗
 Π𝐴(𝐗)

𝟏+𝑒ℋ(𝐗,𝐟𝐵)−ℋ(𝐗,𝐟𝐴)−∆Φ𝐴𝐵
= ∫ 𝑑𝐗 

Π𝐵(𝐗)

1+𝑒−ℋ(𝐗,𝐟𝐵)+ℋ(𝐗,𝐟𝐴)+∆Φ𝐴𝐵
   (32) 

Unfortunately, there is no analytical solution for the definite integral in Eq. (32) for Gaussian  

functions and hence finding AB requires the use of either: (i) numerical integration coupled to a 

root find method – a combination that will be henceforth referred as BAR-G = BAR-Gaussian 

method, or (ii)  approximate expressions and series expansions that have been proposed for the 

related problem of Gauss-Fermi integrals for charge carrier problems54 which also require 

numerical root finding. In our preliminary numerical tests, however, we found no distinct 

advantage of the latter formulas, in terms of precision or ease of use, relative to the equations 

presented in Sections 3.1.2-3.1.3 and henceforth will not be considered any further. 

   

3.2 Free energies over OPs  

 changes are significantly more involved when evaluated with respect to coordinate-dependent 

OPs. While different approaches can be followed, often involving the evaluation of forces,2,55 here 

we only consider umbrella sampling with harmonic potentials, a widely used and easy-to-

implement method.18-20,33 The key idea is to introduce a (harmonic) bias in the Hamiltonian so that 

OP values are not fixed but targeted in an average sense. The formulas presented in Sec. 3.1.3 were 

precisely for a Hamiltonian having such a harmonic term, but now we make explicit that such a 
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term is an add-on to the original Hamiltonian and hence represents the biasing function. Formulas 

(25)-(31) still apply to obtain  for this case with 3 caveats: 

1) The probability function  to be used in FEP formulas like (13) should be the biased 

distributions since these are the ones expected to be approximately Gaussian, stemming from 

the strength of the harmonic bias. This is unlike what is customary with HP-based simulations 

discussed in Section 3.1 where the unbiased s were relevant and states A and B represented 

different thermodynamic states or chemistries, sampling of relevant microstates was assumed 

unconstrained, and the Gaussian nature of  was associated with large system sizes. In the 

present case, however, we are typically simulating the same thermodynamic state, each 

simulation focusing the sampling over a particular region of the OP given that the unbiased 

simulation would not be able to sample all microstates of interest (e.g., due to the presence of 

regions with vastly different probability of occurrence). 

2) Even though AB in formula (26) is associated with changes in HPs (i.e., f1 and f2), the 

physically relevant OP is the X variable in the harmonic function; hence AB must now be 

associated with changes of the average values of X (i.e., XA and XB). 

3) Equation (26) must now be interpreted as a biased free-energy, , the unbiased value  is 

obtained by subtracting the biasing functions associated with the average values of XA and XB, 

namely: 

 ∆Φ𝐴𝐵 ≡ Φ(𝑋𝐵) − Φ(𝑋𝐴) = ∆Φ𝐴𝐵
′ −

1

2
𝑓2,𝐵(𝑋𝐵 − 𝑓1,𝐵)

2
+

1

2
𝑓2,𝐴(𝑋𝐴 − 𝑓1,𝐴)

2
  (33) 

 

IV. Thermodynamic Integration 

We will consider the possibility of integrating over multiple HPs or OPs and using  as a general 

symbol for the integration variable (either f or X), the standard TI formula for an specified A → B 

integration path is: 
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    ∆Φ𝐴𝐵 = Φ𝐵 − Φ𝐴 = ∫ ∑
𝜕Φ

𝜕𝜆𝑖
𝑑𝜆𝑖𝑖

𝐵

𝐴
    (34) 

where for simplicity of notation it is implicit that the partial derivative with respect to i is while 

keeping constant all other fj property and any other ensemble field, and for multiple s (as in Sec. 

V). Numerical integration of Eq. (34) requires knowledge of at least  𝜕Φ 𝜕𝜆𝑖⁄  data but, following 

the guiding strategy of Section III, 2nd derivative data will be leveraged as well. In the following 

subsections we first describe how those derivatives can be obtained for HP and OP as TI variables. 

 

4.1 TI: Derivatives with respect to Hamiltonian-dependent HP 

From Eqs. (1) and (2), any first and second order partial derivative with respect to any HP can be 

written as: 

    
𝜕Φ

𝜕𝑓𝑖
= 〈

𝜕ℋ

𝜕𝑓𝑖
〉       (35) 

     
𝜕2Φ

𝜕𝑓𝑖
2 = 〈

𝜕2ℋ

𝜕𝑓𝑖
2 〉 − cov (

𝜕ℋ

𝜕𝑓𝑖
,

𝜕ℋ

𝜕𝑓𝑖
)     (36) 

    
𝜕2Φ

𝜕𝑓𝑖𝑓𝑗
= 〈

𝜕2ℋ

𝜕𝑓𝑖𝑓𝑗
〉 − cov (

𝜕ℋ

𝜕𝑓𝑖
,

𝜕ℋ

𝜕𝑓𝑗
),    (37) 

where it is implicit that the derivative with respect to any fi is made for all other fj kept constant 

with j  i,  indicate ensemble averages, and covariances defined as in Eq. (7). Higher order 

derivatives can be similarly obtained. Equations (35)-(37) are indicated when the averages in their 

right-hand sides are measurable in simulation, i.e., the ℋ derivatives are continuous functions, 

involving elementary operations over readily accessible microscopic quantities. Equations (35)-

(37) simplify into formulas (5)-(6) in the case of the linear Hamiltonian of Eq. (3) where the f’s 

would typically represent dimensionless thermodynamic fields.  
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In some situations, however, the sought-after ℋ derivative is not a continuous function, as 

is the case when the fi parameter describes hard-core interactions67 or it is difficult to evaluate 

analytically, as when rigid or Holonomic constraints are involved or if fi is a property convoluted 

in the Hamiltonian (like volume) or an integer (like number of particles). In such cases, finite-size 

approximations are suitable, which can be derived by starting with the well-known expression for 

a simple FEP: 

∆Φ = − ln {
𝑄(𝑓𝑖+Δ𝑓𝑖)

𝑄(𝑓𝑖)
} ≈ − ln〈𝑒−∆ℋ𝑖〉   (38) 

where Δℋ𝑖 = ℋ(𝑓𝑖 + Δ𝑓𝑖) − ℋ(𝑓𝑖) and the  brackets indicate ensemble average evaluated at fi. 

For an infinitesimal change in fi, i.e., fi → fi, then: 

𝜕Φ

𝜕𝑓𝑖
≈

𝛿Φ

𝛿𝑓𝑖
= −

1

𝛿𝑓𝑖
 ln〈𝑒−𝛿ℋ𝑖〉     (39) 

with  δℋ𝑖 = ℋ(𝑓𝑖 + 𝛿𝑓𝑖) − ℋ(𝑓𝑖). Likewise, we can derive: 

𝜕2Φ

𝜕𝑓𝑖
2 ≈

1

𝛿𝑓𝑖
[

𝛿Φ

𝛿𝑓𝑖
|

 𝑓𝑖+𝛿𝑓𝑖 
−

𝛿𝜙

𝛿𝑓𝑖
|

 𝑓𝑖

] = −
1

(𝛿𝑓𝑖)2  ln
〈𝑒−𝛿2ℋ𝑖〉

〈𝑒−𝛿ℋ𝑖〉2
  (40) 

where δ2ℋ𝑖 = ℋ(𝑓𝑖 + 2𝛿𝑓𝑖) − ℋ(𝑓𝑖). Note that in principle one could estimate perturbations of 

ℋ by either increasing or decreasing fi (fi >0 or <0) or a combination of both, but we assume that 

one direction leads to more accurate estimation of . Cross 2nd derivatives can be similarly 

evaluated, e.g., if finite differences are to be used for derivatives of fi and fj: 

𝜕2Φ

𝜕𝑓𝑖𝜕𝑓𝑗
≈ −

1

𝛿𝑓𝑖𝛿𝑓𝑗
 ln {

〈𝑒
−𝛿ℋ𝑖𝑗〉

〈𝑒−𝛿ℋ𝑖〉〈𝑒
−𝛿ℋ𝑗〉

}    (41) 

where δℋ𝑖𝑗 = ℋ(𝑓𝑖 + 𝛿𝑓𝑖 , 𝑓𝑗 + δ𝑓𝑗) − ℋ(𝑓𝑖, 𝑓𝑗),  δℋ𝑖 = ℋ(𝑓𝑖 + 𝛿𝑓𝑖 , 𝑓𝑗) − ℋ(𝑓𝑖, 𝑓𝑗), and δℋ𝑗 =

ℋ(𝑓𝑖 , 𝑓𝑗 + δ𝑓𝑗) − ℋ(𝑓𝑖, 𝑓𝑗). If now we assume that the derivative of ℋ with respect to fj is 

analytical but that with respect to fi should be done by finite difference, then it is easy to show that: 
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𝜕2Φ

𝜕𝑓𝑖𝜕𝑓𝑗
≈ −

1

𝛿𝑓𝑖
[

1

〈𝑒−𝛿ℋ𝑖〉
〈

𝜕ℋ(𝑓𝑖+𝛿𝑓𝑖,𝑓𝑗)

𝜕𝑓𝑗
𝑒−𝛿𝐻𝑖〉 − 〈

𝜕ℋ(𝑓𝑖,𝑓𝑗)

𝜕𝑓𝑗
〉]   (42) 

while perturbation formulas like (39)-(42) entail an additional cost relative to evaluating simple 

averages and covariances like (5)-(6), they all can readily computed on-the-fly during a given 

simulation. Note that chemical potentials, which could be evaluated using Eq. (38) for fi = Ni=1, 

more commonly require more gradual coupling and specialized approaches.3,11 

4.2 Derivatives with respect to Coordinate-dependent OP. 

Evaluating first and second order derivatives of  with respect to coordinate-dependent OPs is 

more involved. Again, here we only consider the case when harmonic potentials are used to bias 

the sampling to allow targeting specific OP values on an average sense. In this way, the TI can be 

performed over the distinct average OP values. Recalling our definition of (X) in Eq. (9), we can 

write:  

    
𝑑Φ

𝑑𝑋
= −

1

 Π(𝑋)

𝑑

𝑑𝑋
Π(𝑋)      (43) 

Assuming that the simulation was conducted by adding a biasing function −𝜓(𝑋, 𝐟) to the 

Hamiltonian, then, the probability of observing different X-macrostates is, within a constant 

prefactor: 

    Π(𝑋) ∝ Π𝜓(𝑋)𝑒𝜓(𝑋,𝐟)      (44) 

Substituting Eq. (44) into Eq. (43) and simplifying: 

    
𝑑Φ

𝑑𝑋
= −

𝑑𝜓(𝑋,𝐟)

𝑑𝑋
−

1

 Π𝜓(𝑋)

𝑑

𝑑𝑋
Π𝜓(𝑋)    (45) 

The second derivative is then: 

   
𝑑2Φ

𝑑𝑋2 = −
𝑑2𝜓(𝑋,𝐟)

𝑑X2 −
1

 Π𝜓(𝑋)

𝑑2

𝑑𝑋2 Π𝜓(X) + [
1

 Π𝜓(𝑋)

𝑑

𝑑𝑋
Π𝜓(𝑋)]

2

  (46) 
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Equations (45) and (46) are henceforth specialized for the choice: 

    𝜓(𝑋, 𝐟) = 1

2
𝑓1𝑝(𝑋−𝑓2𝑝)

2
      (47) 

where f1p and f2p are specified HPs, designed to bias the sampling of X to values near f2p. For large 

enough f1p, the Πψ distribution will be unimodal with a well-defined peak. Assuming Πψ to be 

approximately Gaussian, introducing Eq. (47) into Eqs. (45) and (46) evaluating them at  𝑋 =

〈𝑋〉𝑝 = 𝑋𝑝: 

    
𝑑Φ

𝑑𝑋
|

𝑋𝑝

= −𝑓1𝑝(𝑋𝑝 − 𝑓2𝑝)     (48) 

   
𝑑2Φ

𝑑X2
|

𝑋𝑝

≈ −𝑓1𝑝 +
1

𝜎𝑋𝑝
2 = −𝑓1𝑝 + (〈𝑋2〉𝑝 − 〈𝑋〉𝑝

2)
−1

   (49) 

Equations (48) and (49) show how the required derivatives of  at a given point can be estimated 

from a biased simulation. The same results can be alternatively obtained if one assumes that within 

the relevant sampling region, the local free energy profile can be approximated by a 2nd order 

polynomial in X, say, Φ = 𝑎 + 𝑏𝑋 + 1

2
𝑐𝑋2. In such a case and with both  and  being quadratic 

functions of X, we have that  Πψ(𝑋) ∝ exp(−Φ(𝑋) − 𝜓(𝑋, 𝐟)) will be Gaussian whose mean X 

and variance 𝜎𝑋
2 as measured in the biased simulation can be related to the 1st and 2nd derivatives 

of  (i.e., to b+cX and c according to the local model) to give Eqs. (48) and (49), respectively. 

Note that while one cannot precisely specify the value of X at which the derivatives are evaluated 

since X is not known a-priori, it will be rather close to the chosen f2p value for large f1p.  

Formulas (48) and (49) are consistent with the so-called umbrella integration approach,33-36 but 

in such a case the free energy is reconstructed differently; i.e., by (i) describing first the free-energy 

derivatives as linear functions around each simulated point, (ii) combining these results using a 

weighing scheme that takes into account the sampling frequencies of X values (registered in binned 

histograms) from all simulated points, and (iii) using a suitable quadrature method to integrate the 
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weighed derivative averages from (ii). In contrast, the approach outlined here and in Section 4.3 

directly uses first and second derivative data at each point to form piece-wise polynomial fits to 

extract free-energy differences. 

  

4.3 Polynomial Approximations for TI 

Polynomial approximations are particularly convenient to use for interpolations and extrapolations 

of free-energies. While data from numerous simulation points can be considered, in the following 

we restrict the analysis to computing the free-energy difference between points A and B given 

solely data from those two points, so that the formulas thus derived are a TI counterpart to those 

presented in Section III for FEP methods.  

In the following we present the case of a single TI variable which can be a HP (f) or an OP (X) and 

we will hence use the symbol  as a generalized integration variable. For brevity of notation, we 

define:  

𝜙1 ≡
𝜕Φ

𝜕λ
 , 𝜙2 ≡

𝜕2Φ

𝜕λ2      (50) 

where derivatives are evaluated for any (other) ensemble field held constant. Figure 1 can be used 

as a guide letting  → f. 

Matching polynomial. 

Enforcing that values of 1 and 2 match at both ends of the integration step {𝜙1𝐴, 𝜙1𝐵, 𝜙2𝐴, 𝜙2𝐵}  

requires a polynomial with 4 coefficients: 

𝜙1 = 𝑐1 + 2𝑐2λ + 3𝑐3λ2 + 4𝑐4λ3     (51) 
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where, consistent with our convention in a related paper,42 the coefficients are written as “ncn” 

so that the prefactors “n” go away when Eq. (51) is integrated to get AB.  The 4 coefficients are 

readily found as: 

𝑐1 = 𝜙1,𝐴,   𝑐2 =
𝜙2𝐴

2
 ,  𝑐3 =

Δ𝜙1

Δλ2 −
Δ𝜙2+3𝜙2𝐴

3Δλ
,       𝑐4 = −

Δ𝜙1

2Δλ3 +
Δ𝜙2+2𝜙2𝐴

4Δλ2  , (52) 

where  = B−A.  

 

Best-Fitting Polynomial. 

Two disadvantages of the exact polynomial match are that: (i) it disregards that 2 data typically 

have significantly larger statistical error than 1 data, and (ii) any extrapolation becomes more 

unwieldy the higher the polynomial order. While fewer coefficients imply fewer assumptions 

about the true model, a linear extrapolation based on 1 data at A and B could be too conservative 

and would disregard the effect of any curvature in the 1 function (see Fig. 1). We hence propose 

a compromise where a 1 quadratic model is constructed (the minimal polynomial able to capture 

curvature in 1), so that its 3-coefficients are found by matching exactly the more accurate 1 data 

and by “fitting”, in a least-square deviation sense, the 2 data. In such a case 

Φ = 𝑐0 + 𝑐1λ + 𝑐2λ2 + 𝑐3λ3     (53) 

so that: 

𝜙1 = 𝑐1 + 2𝑐2λ + 3𝑐3λ2,  𝜙2 = 2𝑐2 + 6𝑐3λ   (54) 

and besides matching the 1A and 1B data, we minimize the function: 

𝑅 = 𝑏𝐴(𝜙2𝐴 − 𝜙2𝐴
∗ )2 + 𝑏𝐵(𝜙2𝐵 − 𝜙2𝐵

∗ )2    (55) 
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where 𝜙2  and 𝜙2
∗ represent the actual and model (54) predicted values, respectively, and the b’s 

are error-dependent coefficients here assumed equal bA  bB. The solution is: 

𝑐1 = 𝜙1𝐴,      𝑐2 =
Δ𝜙1

2Δ𝜆
−

Δ𝜙2

4
,       𝑐3 =

Δ𝜙2

6Δ𝜆
 ,    (56) 

The free-energy difference between point A and B is then given by: 

ΔΦ𝐴𝐵 =
1

2
(𝜙1𝐴 + 𝜙1𝐵)Δ𝜆 −

1

12
(𝜙2𝐵 − 𝜙2𝐴)Δ𝜆2       (57) 

If we evaluate AB for model (51)-(52), we surprisingly find that the resulting expression is again 

Eq. (57), despite the differences in polynomial order and parameters. This suggests that Eq. (57) 

is a robust formula to estimate  based on data of 1 and 2 at points A and B, somewhat 

independent of the underlying  model assumed, and is rooted in a more general mathematical 

framework. Indeed, the Euler-Maclaurin summation formula37,59 can be expressed as: 

∆Φ𝐴𝐵 = ∫ 𝜙1(𝜆)𝑑𝜆
λ𝐵

λ𝐴
=

Δ𝜆

2
(𝜙1𝐴 + 𝜙1𝐵) −

(Δ𝜆)2

12
(𝜙2𝐵 − 𝜙2𝐴) +

(Δ𝜆)4

720
(𝜙4𝐵 − 𝜙4𝐴) + ⋯ −

𝐵2𝑘

(2𝑘)!
(Δ𝜆)2𝑘(𝜙(2𝑘−1)𝐵 − 𝜙(2𝑘−1)𝐴) − ⋯       (58) 

where B2k is a Bernoulli number of order 2k. Our proposed polynomials are consistent with this 

series truncated up to the 2nd order term and, with vanishing 3rd (and higher odd) order terms, 

showing that the error in our numerical integrations is less than twice the 4th order term. Equation 

(58) also shows how simulation data on 3rd order derivatives would not improve the free-energy 

estimation, but data on 4th order derivatives would, albeit with harder-to-get and less accurate data. 

Due to this connection, henceforth will refer to Eq. (57) as the TI Euler Maclaurin 2nd order 

formula or “TI-EM2”. 

It is also informative to rewrite the linear Hamiltonian OSOS, Eq. (17), for the SOS case, i.e.,  = 

½, and upon replacing the moments of the distribution by the 1st and 2nd derivatives of  [as per 

Eq. (5) and (6)] and letting   f: 
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ΔΦ𝐴𝐵 =
1

2
(𝜙1𝐴 + 𝜙1𝐵)Δ𝜆 −

1

8
(𝜙2𝐵 − 𝜙2𝐴)Δ𝜆2    (59) 

Equation (59) is very similar to Eq. (57), except that the 2nd order term prefactor in the former is 

50% larger [1/8 vs. 1/12]. Equations (57)-(59) highlight the connection between FEP and TI 

methods (at least for linear Hamiltonians), albeit it is also meaningful that Eq. (57) cannot be 

recovered from Eq. (17) for any choice of , showing that the Gaussian approximation in the 

OSOS formulation is not equivalent to using 2nd derivative data in constructing polynomials for 

. To first order, Eqs. (57) and (59) do coincide, becoming the trapezoidal rule which, we 

write down for future reference: 

   ΔΦ𝐴𝐵 =
1

2
(𝜙1𝐴 + 𝜙1𝐵)Δ𝜆      (60) 

In Sec. A of the Appendix we further leverage Eq. (58) to outline an error analysis when using the 

TI-EM2 formula for TI. 

Similar formulas can be developed for the multiple TI variables; the case of two HPs is described 

in Sec. B of the Appendix. Free energy changes over multiple HPs are in order when mapping the 

properties of phases over various thermodynamic fields or alchemical variables, and particularly 

when mapping phase coexistence conditions as shown next. 

 

V. Tracing coexistence lines via TI: FENEX method 

A TI intended to trace a coexistence curve is typically denoted as a Gibbs-Duhem integration 

(GDI) method.3,38-42 The formulas described in Sections III and IV give free-energy differences 

between discrete points, but extrapolations of free-energy are also needed (or implied) in a number 

of methods for advancing GDI along a phase coexistence line where the conditions defining the 

next coexistence state on the line, i.e., the integration path, are not known a-priori. Furthermore, 
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when extrapolating, it is uncertain when GDI will break down; e.g., brought about by one of the 

original phases becoming unstable or by the proximity of a critical point.  

Approaches such as WHAM16-19,56-58 and MBAR20 have the advantage that the same 

formulas used to obtain free-energy differences between simulated states can be used to interpolate 

or even extrapolate free-energies to other conditions, so long as those conditions are within the 

scope of the simulated s. For a typical GDI stepwise extrapolation along a coexistence line, 

however, it is unclear if approaches (like WHAM and MBAR) that leverage multistate simulation 

data provides any distinct advantage over methods that only leverage the nearest two data points. 

Likewise, higher order polynomial forms or Gaussian process regression46,48 models that 

include/fit many points are not needed to capture the curvature of the free-energy function as it is 

projected into new territory, as long as information about 2nd order derivatives in the nearest points 

is available. In this context, the simple polynomial forms described in Sec. B of the Appendix are 

particularly well-suited to the extrapolations needed in GDI, a strategy denoted as FENEX in Ref. 

[42] and is outlined in the Appendix, Sec. C.   

 

VI. RESULTS 

 

5.1 Independent Harmonic Oscillator(s). 

A model system that has been used to test and understand phase space overlap and biases in FEP 

methods,4,7-9 entails two Hamiltonians A and B defined by 

ℋ𝐴 = ∑ 𝜔𝐴𝑥𝑖
2𝑁

𝑖=1 ,     ℋ𝐵 = ∑ 𝜔𝐵(𝑥𝑖 − 𝑥0)2𝑁
𝑖=1     (61) 

where xi is the coordinate of particle i, N is number of particles, and B/A and x0 are preset 

parameters. The free-energy change is analytically solvable: 
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1

𝑁
∆Φ𝐴𝐵 =

1

2
𝑘𝑇 ln(𝜔𝐵 𝜔𝐴⁄ )     (62) 

Increasing the ratio B/A narrows the phase space of system B relative to A, which makes less 

likely to sample in system B configurations relevant to system A (asymmetric bias). Increasing 

parameter x0 shifts the phase space of both systems apart and increasing N exacerbates this effect 

and the asymmetric bias.8-10 Limited sampling of the  distribution tails in finite-length simulation 

runs is detrimental to the accuracy of FEP methods. For the FEP and TI considered in this work, 

however, since only the first two moments of  are used, we simplify the analysis by assuming 

they are well sampled regardless of N, and hence we will just consider the limiting case that those 

first two moments and associated  derivatives are known exactly and set N = 1. In such a case, 

we no longer need to conduct actual simulations and can probe the intrinsic accuracy of the 

methods on this system, decoupled from statistical errors and associated overlap sampling. We 

further set x0 = 0 (which has no effect on  as calculated by the analytical formulas to be 

compared here) and simply consider changes in the Hamiltonian  

ℋ = x2       (63) 

where  goes from A to B. Taking  to be the HP variable  (= f) it follows that: 

  𝜙1 = 𝜎2 = 1 2𝜔⁄ ,       𝜙2 = −2𝜎4 = −1 2𝜔2⁄     (64) 

which can be readily used with the TI formula (57). To implement OSOS, however, one must first 

decide what the X variable is in the Hamiltonian: 

(a) If we assume that X = x in Eq. (63), then we are dealing with a non-linear, harmonic 

Hamiltonian akin to that described in Sec. 3.1.3 with f1 =  , f2 = 0 and ℋ0 = 0. In such a case, 

Eq. (26) gives the exact solution for  (regardless of  which drops out). This is to be expected 

since Eq. (26) was derived assuming (X) to be Gaussian which is precisely the case here. 
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(b) If we assume that X = x2 in Eq. (63), then we are dealing with a single-X linear Hamiltonian 

akin to that described in Sec. 3.1.2 with f =  and ℋ0 = 0. Unlike case (a), this is a non-trivial and 

more challenging case, since the (X) is not Gaussian at all (as assumed to derive the OSOS 

formulas) but rather an exponential decay function and hence this case can test the ability of 

different methods to handle underlying s which strongly depart from normality. To apply Eq. 

(17) for this case, for a point p: 

    𝑋𝑝 = 1 4𝜔𝑝⁄ ,  𝜎𝑝
2 = 1 8𝜔𝑝

2⁄      (65) 

Such that the mean values (in X = x2) in the  distribution for Hamiltonians A and B no longer 

coincide (even though they did in x). Figure 2 shows a comparison of the AB predicted by 

different methods using a single step from A to B. Up to B/A = 1.5 all methods perform similarly 

well, with the TI and SOS equations, being identical when truncated to first order, always 

overestimate AB while most other methods underestimate it. The TI-EM2 Eq. (57) is the most 

accurate and significantly better than the closely related  = 0.5 SOS formula (59), but only up to 

about B/A = 3.6, at which point it starts to diverge drastically. The OSOS formula (19) is the 2nd 

best performer, closely followed by OSOS (16)-(17), with both being significantly better than SOS 

Eq. (59), and less divergent than the TI-EM2 (57) formula. Interestingly, the BAR-G (11), (32) 

and OSOS formulas (19), (16) give comparable absolute deviations from AB, the former always 

overestimating and the latter underestimating it, which suggest that the main source of error here 

is not the optimization recipe but the incorrect assumption of Gaussian s. While these relative 

performances are system-dependent, some of these trends could extend to other systems as well. 
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Fig. 2. Single step free energy change for the harmonic potential Hamiltonian model for different methods 

as marked in the legend: TI-1 = SOS-1 is Eq. (60), TI-EM2 is Eq. (57), SOS is Eq. (59), OSOS-1 is Eq. 

(19), OSOS-2 is Eq. (17)+(16), and BAR-G is Eq. (32)+(11). 

 

In the context of TI, an integration step that doubles the coupling parameter can be considered 

as quite large (e.g., envision doubling the temperature) and it is significant that the TI-EM2 (57) 

and OSOS (19), for example, incur in less than 1% and 4% deviations, respectively, rather small 

errors, despite the very non-Gaussian nature of (X). 

5.2 Potential of mean force of cation-anion dissociation 

We consider a fully atomistic polymeric system where a salt is dissolved to allow ionic conduction. 

The force field is based on those of Refs. [60]-[63]. The specific polymer is poly(3-

(butoxybutyl)thiophene) [P3APAT] which is assumed to assemble into a bilayer ordered structure 

where the thiophenes crystallize into planes sandwiching amorphous layers of side chains whose 

oxygen groups solvate ionic species. As described in Ref. [63], molecular dynamic simulations64 

for different side-chain chemistries were performed using 16 decamers; here we only reproduce 
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simulation data for the dissociation free energy, often referred to as potential of mean force (PMF) 

of lithium bistrifluoromethanesulfonimide (LiTFSI) in the specific P3APAT polymer. The 

procedure consists of first equilibrating a salt molecule into the side-chain regions of the polymer 

and then separating the Li+ and TFSI- ions step wisely using as OP the distance X = rsep between 

Li+ and the center of mass of TFSI-. The range of interest of rsep was sampled in a series of umbrella 

sampling windows, each having the harmonic bias potential of Eq. (47) with f1 = 16 kcal/mol·Å2, 

and changing the separation setpoint f2 from f2 =3.0 Å to 15.0 Å with 0.5 Å increments. The 

resulting histograms from each window were combined with WHAM16-19 and the PMF extracted 

therein.65 In each window, four random initial configurations were used to get better sampling, and 

each simulated for 1 ns in a canonical ensemble at 400 K to collect the (X) data. 

Since in this case the coupling parameter is an OP (as opposed to a HP), we need to use the 

formulas we developed having a harmonic biasing function to indirectly constrain simulations 

around target OP values. Specifically, for TI we use Eqs. (48) and (49) to get required first and 

second derivatives of the unbiased  [for application in formulas (57), (59) or (60)]. For OSOS 

we use Eq. (30’) or Eqs. (30)-(31’) to get the biased ΔΦ𝐴𝐵
′  values, which we then unbiased using 

the correction of Eq. (33).   

To implement the OSOS and TI formulas described in Sections III and IV we only used 

average and variance data from every-other (non-successive windows; i.e., for f2 values separated 

by ~1 Å rather than 0.5 Å; in this way we also test the ability of those formulas to estimate free 

energy differences when minimal or no overlap between histograms exists. These selected data are 

depicted as Gaussians in Fig. 3. We note that using data from all windows would lead to negligible 

differences of results across methods relative to statistical error bars. The inset in Fig. 3 shows the 

complete set of simulated histograms collected at the different US windows, confirming that 

successive histograms duly overlap as required by WHAM. 
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Fig. 3. Depiction of the implied Gaussians that match the mean and variance of selected simulated 

histograms from different umbrella sampling windows for various target separations between Li+ and TFSI- 

ions in P3APAT polymer at 400 K. Inset shows the complete set of actual simulated histograms, colored as 

in main figure. Inset adapted from data generated for Ref. [63]. 

 

Figure 4 shows that the PMF curve changes quickly across the ion separation range, with 

one minimum and 4 inflexion points and a large overall free-energy change spanning a barrier of 

over 56 kT. It hence constitutes a challenging curve to describe via global fit models given the 

multiple localized curvature changes and stiffer regions. 

The inset of Fig. 4 shows the deviations, relative to the reference results from WHAM for 

0.5 Å f2-intervals, for free-energy difference over the 1 Å f2-intervals at which the TI and OSOS 

calculations were performed. These mean square deviations are about 0.31 kT per Å which, being 

comparable to the corresponding errorbar for the WHAM results, indicate that any of the proposed 

methods produces the PMF with largely comparable accuracy. Deviations with respect to the 

WHAM results are expectedly not uniform over the X range, reflecting the characteristics of the 

PMF curve; i.e., deviations tend to be larger around inflexion points. The dissociation free energies 

thus computed (i.e., the difference between the minimum and maximum in the curves) are 

0

1

2

3

4

2 4 6 8 10 12 14 16


(X

)

X = rsep (Å)



32 
 

consistent within errorbars: 56.5 2.5 kT. This comparison illustrates that the proposed methods 

can get free-energy results with similar accuracy but higher computational efficiency than 

conventional WHAM as we can use half the number of US windows (i.e., have them more spaced 

out).  

While this comparison does not favor a particular method amongst those tested, given that 

they all use the same input data, it is suggested that at least two of them be implemented to check 

for consistency in their predictions, the lack of which could signal deeper issues with the sampling 

or staging. In particular, we suggest using TI-EM2 which does not assume Gaussian s, and 

OSOS-1 which does, as these do not require any iterative calculation of weights and are hence the 

simplest to implement. 

 

Fig. 4. Potential of mean force (PMF) calculated through 3 different methods. Inset shows the difference 

between the free-energy difference computed via different methods in successive intervals and the WHAM 

results. TI-EM2 refers to Eq. (57), SOS to Eq. (59), OSOS-1 to Eq. (30’) and OSOS-2 to Eq. (30)+(31’), 

with Eq. (33) correction used for SOS and OSOS formulas. 

 

5.3 TI of phase diagram for mixture of spheres and cubes 
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A coarse-grained representation of selective inter-species interactions was used where like-species 

interactions are hard-core and the cube (1) and sphere (2) potential energy is given by:66,67 

    𝑈12 = {
∞

−𝜀
0

,
,
,

if overlap
 𝑟 ≤ 𝑟𝑐 ,  𝛿 ≤ 𝛿𝑐

otherwise

      (66) 

where r is the distance between the particle centers of mass, and  is the distance between the 

sphere center and the vector normal from the center of the cube’s facet closest to the sphere. Unless 

otherwise stated, a particle size-ratio of  = /a = 1.23 was adopted, where  is the sphere core 

diameter and a is the cube side edge. The attractive well for cube-facet/sphere alignment has a 

depth , a radial length of 0.15a, and a (lateral) -width of 0.4a. Accordingly, the relevant cutoff 

distances are rc = 0.5 + 0.65a, and c = 0.4a.  

Monte Carlo (MC) simulations were performed in a semigrand isobaric ensemble39,41-42 

(NPT) to obtain the equilibrium compositions of coexisting solid-liquid phases for given 

pressure (P), temperature (T), chemical potential difference between components (), and fixed 

total number of particles (N). In reporting simulation results, the following dimensionless 

quantities are used:   = kT, p = Pa3, (2−1) =  (chemical potential difference between 

species), and x is the mole fraction of cubes.  

Simulations were performed in a cubic box with N = 1728 for cube-rich cubic phases and 

N = 864 for sphere-rich fcc phases, with any isotropic phase having the same N as its coexisting 

ordered phase. At or near each coexistence state of interest, both phases are simulated for at least 

106 MC cycles for equilibration and 2×106 MC cycles for production. Each MC cycle consisted of 

N translational, N rotational (for the cubes), N/5 swap, 3 volume move attempts, and N/2 mutations. 

The mutations change one species into the other and cause composition fluctuations in accord to 

the specified . All attempted moves were accepted using the Metropolis criterion.3 Overlap 



34 
 

detection involved the separating axes theorem68 for two cubes and Arvo’s algorithm69 for cube-

sphere pairs.  

To map out the pressure composition phase diagram for this system with the TI formulas 

described in Sec. B of the Appendix, the NPT ensemble is first cast into a two-field linear 

Hamiltonian: 

   𝑁𝛽𝜇2 = −ln 𝑄 = − ln{∑ exp[−𝛽𝑈 − 𝛽𝑃𝑉 − 𝛽𝑁1∆𝜇]}  (67) 

where N1 is the number of cubes in the system. By comparing to Eqs. (1)-(3), we can let H0 = U, 

Φ = 𝑁𝛽𝜇2 and either choose: (a)
 

pf =1 , 𝑋1 = 𝑉 and 𝑓2 = 𝛽Δ𝜇, 𝑋2 = 𝑁1 or (b) 𝑓1 = 𝛽𝛥𝜇, 𝑋1 =

𝑁1 and 𝑓2 = 𝑝, 𝑋2 = 𝑉. Choice (a)/(b) is indicated if driving steps in p/ are prescribed. For 

most points either choice gives consistent results, with the preferred choice being the one making 

the differential equation less stiff, i.e., leading to smaller changes of f2. Note that the first and 

second derivatives of  are simply given by averages and covariances as per Eqs. (5) and (6). The 

integrations were started from both ends of the composition spectrum: the pure sphere and pure 

cube systems whose hard-core isotropic-solid phase coexistence conditions are known70,71 (noting 

that thermal attractions only ensue across species). Step sizes were chosen, one at a time, such that 

anticipated changes in the coexistence composition of any one phase did not change by more than 

0.05. The estimated errors in the estimation of free-energy steps based on Eq. (A6) was ~ 0.05 kT. 

Figure 5(a) is the simulated pressure-composition phase diagram which shows that for near 

equimolar compositions a compound state (C*) is favored where cubes and spheres form a NaCl 

lattice. Sphere-rich states (with cube compositions < 0.5) exhibit a first order phase transition to 

the C* phase from either the isotropic (I) phase or the fcc solid phase (S). Indeed, the spheres and 

the compound form a eutectic at x  0.2 and p  7.6. It is at this eutectic point that integrations 

started from the left (pure spheres) and from the right (pure cubes) intersected, with the former 

process using prescribed steps in pf =1  (with 𝑓2 = 𝛽Δ𝜇 computed to target phase coexistence) 
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and the latter using prescribed steps in  𝑓1 = 𝛽Δ𝜇 (with 𝑓2 = 𝑝 computed to stay at phase 

coexistence). In contrast, the C* compound is approached continuously from the cube solid 

solution (C), at least for the range of pressures near the simulated phase-coexistence conditions. In 

the C solid solution, however, while the spheres are spatially distributed at random, the 6 nearest 

neighbors of any given sphere are exclusively cubes, as is the case in the compound (see Fig. 5(b)). 

The continuous nature of the (C-to-C*) solution-to-compound transition depends on the system’s 

characteristics, e.g., for a size ratio of /a = 1 (results not shown) a discontinuous transition is 

observed instead.  

As shown in Fig. 6, there is very little difference in the s obtained via either the TI-EM2 

formula (B5) or the OSOS formula (22’) (which is appropriate here given the linear Hamiltonian). 

The absolute average deviations in  per molecule per integration step () between these 2 

methods was ~ 0.0002kT which is much smaller than the statistical errorbars of 0.065 of Eq. (B6) 

which reflect the neglected 2nd order terms in Eq. (B5) and, as can be seen in Fig. 6, can vary 

widely over the integration range. By accounting for the 1 curvature and integrand stiffness 

effects, the 2nd order terms provide a particularly significant correction for the I-S phase 

coexistence results, as can be seen by the large deviations in the 1st-order formula (open red circles 

in Fig. 6). Either set of free-energies (from TI-EM2 or OSOS) essentially generated 

indistinguishable phase coexistence curves.  
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Fig. 5. (a) Pressure (p) vs. composition (x = cube mole fraction) phase diagram for the sphere+cube system 

with size ratio /a =1.23 and  = 1.0. Gray regions indicate two-phase domains. C = Cubic phase, S = fcc 

solid, I = Isotropic phase, C* = cubic compound. (b) Snapshots of C phase for 3 points along the I-C 

coexistence line as marked inside of diagram (a). 
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Fig. 6. Absolute departure in free-energy change per integration step (and per molecule) of OSOS Eq.  (22’) 

(filled circles) and of Eq. (B6) (open circles), relative to the full TI-EM2 formula (B5) results. Blue/red 

symbols correspond to the I-C/I-S coexistence points in Fig. 5(a). Inset shows values of  =  /N =2 

of I phase along the integration path. 

 

One of the advantages of accessing free-energy data associated with a phase diagram is 

that it allows to assess the relative thermodynamic stability of different systems and conditions. 

From the /N=2 and  data we computed the corresponding 1 and 2 values at any point 

and therefrom find, within an additive constant, the Gibbs free energy for any coexistence phase 

as G = x 1 + (1-x)2 where x is the mole fraction of cubes. Figure 7 shows the results for the 

range of conditions at which the isotropic phase (I) coexists with the cubic phase (C) for two cases, 

the /a = 1.23 system discussed in Fig. 5, and an additional /a = 1.0 case. Starting from the pure 

cube state (x = 1), the addition of spheres lowers G due to the energy reduction afforded by the 

inter-species thermal attractions; this trend continues until the I phase encounters the compound 

solid C* (at x = 0.5) where favorable energetic interactions in the C phase are maximized. For /a 

= 1.23, G of the C* phase coexisting with the I phase with x = 0.5 is also the lowest achievable G, 

but for /a = 1.0 the I phase can lower its G even further (until x  0.38). However, for congruent 
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crystallization (i.e., from I phase at x = 0.5) the /a = 1.0 C* phase has a lower G than the /a = 

1.23 C* phase, indicating that the former system has a more optimal geometry for C* phase 

stability, as formerly ascertained with a different TI over /a values in Ref. [67]. 

 

 

Fig. 7. Gibbs free energy of the I phase (open circles) and C phase (filled circles) at coexistence for systems 

at  = 1 with /a = 1.23 (blue) and /a = 1.0 (orange). Dashed traces are tie lines. Phase diagram for /a = 

1.23 is shown in Fig. 5(a). 

 

VI. FINAL REMARKS AND OUTLOOK 

In this work a general framework is outlined to cast FEP and TI methods in a unified manner and 

derive specialized, optimized formulas to obtain free-energy changes between two states AB, 

that make use of simulation data from first and second moments of the order parameter distribution 

 in FEP, or equivalently, first and second derivatives of the free-energy in TI. Using such 

simulation data only up to 2nd order, is seen as a sensible compromise between typical TI, that 

only use first order derivatives, and FEP overlap methods which use complete  data (whose 
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higher moments become rapidly more inaccurate). The resulting formulas are found to have some 

similarities in form (e.g., for linear Hamiltonians) and in performance with our testbeds comprising 

an analytically solvable harmonic Hamiltonian (for assessing error progression with step size), an 

atomistic system (for computing a potential of mean force with coordinate-dependent OP), and a 

binary-component coarse-grained model (for computing a phase diagram in system whose 

compositional space is sampled through two HPs driving alchemical transformations).  

 Table 1 summarizing the main formulas developed in this work. Equations (12)-(14) 

provide the general FEP template for the advocated OSOS approach, applicable regardless of  

being Gaussian or the Hamiltonian being linear. The OSOS free-energy formulas adopt 

particularly simple, analytical forms for Gaussian  and linear Hamiltonians, but examples are 

shown of how non-linear Hamiltonians can also be processed that potentially lead to simple 

analytical expressions like Eqs. (30)-(31’). The OSOS optimization approach could also be 

deployed when AB is computed from the simulated (X) data (i.e., using Eq. (13) rather than 

Eqs. like (17) or (26) derived from leveraging the Gaussian approximation), which would represent 

a simpler alternative to the conventional BAR method.15 Such considerations do not apply to the 

TI formulas presented, as they do not make any explicit assumption on the form of  (Gaussian 

or not) or of the Hamiltonian (linear or not), notwithstanding the similarities with OSOS formulas 

that use such assumptions [like between Eq. (57) and (17)→(59)]. The key requirement in TI is 

the ability to find the needed derivatives of the free-energy with respect of the integration HP or 

OP, which is detailed in Secs. 4.1-4.2 through Eqs. (35)-(42) and (48)-(49). 
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Table 1. List of main free-energy formulas and key features from this work. SOS = Simple Overlap 

Sampling, OSOS = Optimized Simple Overlap Sampling, TI-EM2 = Euler-Maclaurin 2nd order, 

BAR-G = Bennett’s Acceptance Ration Method with Gaussian . 

Type of method/ 

collective variable 

Formula & key features Equation number(s) 

FEP/HP OSOS (general, non Gaussian ) (12)-(14) 

 OSOS-1 (Gaussian  linear ℋ) (19) 

 OSOS-2 (Gaussian  linear ℋ) (16)-(17) 

 OSOS-2 two HPs (Gaussian  linear ℋ ) (22’) 

 BAR-G (Gaussian ) (32),(11) 

 SOS (Gaussian  linear ℋ) (59) 

 SOS-1 (delta function  linear ℋ) (60) 

   

FEP/HP or OP OSOS-1 (Gaussian  non-linear ℋ) (30’)+(33) if OP 

 OSOS-2 (Gaussian  non-linear ℋ) (30), (31’)+(33) if OP 

   

TI/HP or OP TI-EM2 (57) [(53) & (56)] 

 Trapezoidal rule (= SOS-1) (60) 

 TI-EM2, two HPs (B5) [(B3) & Table 2] 

 Trapezoidal rule, 2HPs (B6) 

   

TI/HP Derivatives (35)-(37), (39)-(42) 

TI/OP Derivatives (harmonic bias) (48)-(49) 

 

In the case of FEP, the closed-form formulas presented to optimize the simple overlap 

sampling (OSOS) are based on the strategy of sampling (from states A and B) to a virtual 

intermediate state defined by a parameter . The resulting prescriptions for  embody the 

physically intuitive idea that the optimal intermediate Hamiltonian need not be exactly halfway 

between A and B as in SOS but depend on the intrinsic variances of the  distributions at those 

points. This was best illustrated by casting the problem from the perspective of TI: step sizes 

should be shorter around points where the integrand is fast varying or “stiff”. Since larger  

variances imply steeper slopes [d2/df2 as per Eqs. (6), (36) and (37)], it follows that given two 

points of different slopes, the intermediate state should be closer to that having the steeper slope, 

as also illustrated in Fig. 1.   
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A Gaussian  embodies a 2nd order approximation for how X varies around its average 

value, and hence is not expected to be generally applicable. While the quality of this approximation 

will strongly depend on the property X, it is expected to improve the more degrees of freedom 

contribute to X, e.g., for an OP associated with numerous molecular interactions. The example of 

Sec. 5.1 illustrates, however, that even for a single degree of freedom and a very non-Gaussian  

the Gaussian OSOS formulas can still be accurate for a fairly wide range of step sizes. 

Among the GDI variants that have been used to trace phase coexistence lines of single and 

multicomponent systems, the free-energy extrapolation method42 (FENEX) had been put forward 

as a means to combine the ability histogram reweighting methods to interpolate/extrapolate free 

energy values and operate without the need to collecting overlapping histograms between 

successive simulation step points. While polynomial extrapolation formulas have been presented 

in previous studies,42,67 the new formulas proposed here (Appendix) take into account the larger 

statistical errors of 2nd order derivative data to give more robust local extrapolations for estimating 

free-energy differences.  

Although the main purpose of this work was to propose new, easy-to-use formulas to 

compute AB, it is also hoped that the framework provided also has some pedagogical value. The 

new formulas were developed in the context of a systematic organization and categorization of 

FEP and TI methods, showing how these methods are connected and how they can be used with 

either HPs or OPs as coupling parameters. 

In developing the proposed formulas, we have only optimized the methods at the most 

basic level, e.g., to minimize the variance in the estimation of AB or the contribution of higher 

order terms relative to 1st order contributions. There are many other well-known tricks that can be 

used to optimize the integration processes underlying FEP and TI. For example, one common 

strategy to reduce integration error is to transform the coupling (integration path) variable  → 

*() so that the integrand is a slowly varying function of  *. Indeed “stiff” integrals are difficult 
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to resolve accurately and often require a judicious on-the-fly reduction of stepsizes. For the case 

of sufficiently smooth integrands, choosing integration points/steps a priori could also be used to 

maximize the order (and often) the precision of the underlying integration polynomial, as in the 

case of Gaussian quadrature schemes.37 Also, we only considered a single step and the case of 

equal sampling of points A and B. For multiple steps one could consider optimizing their sampling 

using, e.g., serial or parallel expanded ensemble wherein the frequency or biasing weight applied 

to each state be tunable.11,72-74  

Finally, the approaches presented in this work could also be extended to other types of free-

energy calculations, for example to non-isothermal ensembles75,76 and to non-equilibrium work 

methods,25-30 which share a fundamental structure with FEP and TI methods described here, with 

some variants already exploiting Gaussian approximations for the work distributions.27-29 We also 

expect some of the formulas presented here to be beneficially deployed in specialized TI 

implementations77 and approaches where specific values of free-energies differences or derivatives 

thereof are sought-after, e.g., in methods targeting phase coexistence conditions and the critical 

nucleus size in interfacial pinning methods.78,79 
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APPENDIX 

A. Model for TI Error Estimation 

Previous studies have already addressed the question of estimating errors from FEP and TI 

calculations (see, e.g., Ref. [7]). Here we provide a simple analysis for TI tailored to the EM2 

formula (57)-(58). For simplicity we assume a single integration path variable . Let us assume 

that L denotes the total range of integration,  be the step length (assumed to be uniform), t the 

length (in MD steps of MC cycles) used at each  point,  be the statistical error associated the 

evaluation of 1 at any simulation point. The total error can be seen as arising primarily from: (i) 

the statistical uncertainties in the calculation of f1 values, and (ii) the discretization of the integral. 

It is known that the former error is inversely proportional to the square root of the simulation 

length,3,4 while the latter can be estimated, according to the Euler-Maclaurin formula (58), as a 

fourth order power of  for the integration formulas we adopt.  Hence the error in free-energy in 

a particular step i of size  can be approximately expressed as: 

    𝜀𝑖 ≈ 𝜀𝜙1,𝑖
∆𝜆 +

|𝜙4,𝑖+1−𝜙4,𝑖|

720
(Δ𝜆)4     (A1) 

where 𝜀ϕ1
 is the error in the estimation of 1 average values in a simulation run. If we assume an 

average i value as representative of the error for each step and that step sizes are equal, then the 

total error in the estimation of  over the entire integration path tot would be: 

  𝜀𝑡𝑜𝑡 = ∑ 𝜀𝑖 ≈
∆𝜆𝑡𝑜𝑡

∆𝜆

𝑁𝑠𝑡𝑒𝑝𝑠

𝑖
𝜀𝑖 = ∆𝜆𝑡𝑜𝑡 [𝜀𝜙1

+
|∆𝜙4|

720
(Δ𝜆)3]   (A2) 

where n is an average value of 𝜙𝑛,𝑖+1 − 𝜙𝑛,𝑖 over steps. In practice, it will be difficult to have 

accurate estimates of 4 and so, alternatively we overestimate the integration error as half of the 

2nd order term in Eq. (58), thus: 

   𝜀𝑖 ≤ 𝜀𝜙1
|∆𝜆| +

|∆𝜙2|

24
(Δ𝜆)2,    𝜀𝑡𝑜𝑡 ≤

∆𝜆𝑡𝑜𝑡

∆𝜆
𝜀𝑖    (A3) 
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Formulas (A2) or (A3) could form the basis for optimizing the stepsize ; e.g., by maximizing 

the statistical efficiency. The latter is often taken to be inversely proportional to the product of the 

computational cost and the statistical error tot. The optimization can be performed under different 

constraints; here we illustrate just one such scenario. If the length per simulation run is preset to 

guarantee suitable sampling, then 𝜀𝜙1
 will be approximately constant and the computational cost 

will be proportional to the number of steps, so that the function to minimize is (tot/)tot. 

Using tot from Eq. (A2), the final result can be written as: 

     𝜀𝜙1
|∆𝜆𝑜𝑝𝑡| = 2

|∆𝜙4|

720
∆𝜆𝑜𝑝𝑡

4     (A4) 

which simply states that the optimal  occurs when the error associated with the uncertainty in 

1 values (left hand side) is about twice the error associated with the quadrature discretization 

(right hand side). This shows that it would not make sense to increase the computational cost by 

reducing  and the integration error when the total error and 𝜀𝜙1
 are unaffected. If our means to 

estimate the quadrature error is via a second order term as in relation (A3), then (A4) would 

translate to: 

      𝜀𝜙1
|∆𝜆𝑜𝑝𝑡|  ≈

|∆𝜙2|

12
∆𝜆𝑜𝑝𝑡

2      (A5) 

Thus, if the 2nd order quadrature correction is larger (smaller) than the 1-statistical error, then  

could be made smaller (larger). A similar analysis could be put forward for TI over multiple 

variables; e.g., i from relation (A3) for the two-variable TI-EM2 of Eq. (B5) could be written as: 

 𝜀𝑖 ≤ 𝜀𝜙10
|∆𝑓1| + 𝜀𝜙01

|∆𝑓2| + |−
∆𝜙20

24
(Δ𝑓1)2 −

∆𝜙02

24
(Δ𝑓2)2 +

∆𝜙11

12
Δ𝑓1Δ𝑓2|  (A6) 

where  𝜀ϕ10
, 𝜀ϕ01

 are the errors in the estimation of 10, 01 average values in a simulation run of a 

preset length. 
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B. TI with Best-Fit Polynomials for Multiple HPs   

For concreteness, only formulas for the two-variable case are presented. While the formulas to be 

derived here can be applied to integrations over either HPs or OPs, they were only applied (in Sec. 

5.3) to the case of HPs, and hence we specialized them using the symbol f (rather than the generic 

 used in Sec. 4.3.1). For brevity of notation, we define:   

𝜙10 ≡ (
𝜕Φ

𝜕𝑓1
)

𝑓2

 ,  𝜙01 ≡ (
𝜕Φ

𝜕𝑓2
)

𝑓1

 ,    (B1) 

  

𝜙20 ≡ (
𝜕2Φ

𝜕𝑓1
2 )

𝑓2

,    𝜙02 ≡ (
𝜕2Φ

𝜕𝑓2
2 )

𝑓1

,     𝜙11 ≡
𝜕2Φ

𝜕𝑓1𝜕𝑓2
    (B2) 

so that φij denotes a partial derivative that is order i with respect to f1 and order j with respect to 

f2 (other ensemble properties are implicitly held constant). These derivatives can be obtained at 

any simulation point "p" (i.e., φijp) using the formulas derived in Sec. 4.1.  

Following the strategy of Section 4.3, we favor the lowest order polynomials capable of 

capturing the variations of 1st and 2nd derivatives of ; i.e., a maximum order of 3 over individual 

fields. A key difference between the one-field -model described before and multi-field models is 

that cross-interaction terms should now be included as the effect of each field on  need not be 

independent of other fields. Indeed, capturing such inter-field coupling is essential to model . 

Here we propose: 

Φ = 𝑐00 + 𝑐10𝑓1 + 𝑐20𝑓1
2 + 𝑐30𝑓1

3 + 𝑐01𝑓2 + 𝑐02𝑓2
2 + 𝑐03𝑓2

3 + 𝑐11𝑓1𝑓2 + 𝑐22𝑓1
2𝑓2

2        (B3) 

The c11𝑓1𝑓2 cross term embodies the leading (first-order) effect of the cross interaction of 𝑓1 and 

𝑓2 on  By itself however, it implies that 11 is a constant which need not be true. To allow a 

greater flexibility, at least an additional higher-order cross term is needed. While 3rd order terms 
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c21𝑓1
2𝑓2  and 𝑐12𝑓1𝑓2

2 could be used, the three coefficients c11, c21, and c12 would be underspecified 

by only two 11 data (11A and 11B). We hence favor instead a single  𝑓1
2𝑓2

2 term, which can be 

seen as the quadratic version of the basic cross variable (𝑓1𝑓2) to help describe positive and inverse 

correlation effects.  

In model (B3) we have 8 c-parameters (disregarding c00 which is irrelevant since only free-

energy differences are needed), while the points A and B provide 10 simulation data. Following 

Sec. 4.3, we can find 4 of those c-parameters by matching the most accurate data 10A, 01A, 10B 

and 01B. Since the 11 data is crucial in capturing the coupling of 1 and 2 that shape the free-

energy surface, we also choose to match the 11A and 11B data. This leaves 2 c-parameters that 

can be found by fitting the 4 data 20A, 02A, 20B and 02B, and minimizing the function: 

𝑅 = (𝜙20𝐴 − 𝜙20𝐴
∗ )2 + (𝜙20𝐵 − 𝜙20𝐵

∗ )2 + (𝜙02𝐴 − 𝜙02𝐴
∗ )2 + (𝜙02𝐵 − 𝜙02𝐵

∗ )2   (B4) 

The resulting coefficients are listed in Table 2.  

Table 2. Constants of model (B3). ∆𝑓𝑖 = 𝑓𝑖𝐵 − 𝑓𝑖𝐴,   ∆𝜙𝑖𝑗 = 𝜙𝑖𝑗𝐵−𝜙𝑖𝑗𝐴 

𝑐10 = 𝜙10𝐵 

𝑐01 = 𝜙01𝐵 

𝑐11 = 𝜙11𝐵 

𝑐22 =
∆𝜙11

4Δ𝑓1Δ𝑓2
 

𝑐20 =
1

8Δ𝑓1

(4∆𝜙10 − 2∆𝑓1∆𝜙20 − ∆𝑓2∆𝜙11 − 4∆𝑓2𝜙11𝐴) 

𝑐02 =
1

8Δ𝑓2
(4∆𝜙01 − 2∆𝑓2∆𝜙02 − ∆𝑓1∆𝜙11 − 4∆𝑓1𝜙11𝐴) 

𝑐30 =
1

12∆𝑓1
2 (2∆𝑓1∆𝜙20 − ∆𝑓2∆𝜙11) 

𝑐03 =
1

12∆𝑓2
2 (2∆𝑓2∆𝜙02 − ∆𝑓1∆𝜙11) 

 

With these c’s, the free-energy difference can be expressed as: 
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∆Φ𝐴𝐵 =
1

2
(𝜙10𝐴 + 𝜙10𝐵)Δ𝑓1 +

1

2
(𝜙01𝐴 + 𝜙01𝐵)Δ𝑓2 −

∆𝜙20

12
Δ𝑓1

2 −
∆𝜙02

12
Δ𝑓2

2 +

∆𝜙11

6
Δ𝑓1Δ𝑓2           (B5) 

It can be shown that this expression is the 2-variable, 2nd order generalization of the TI-EM2 

formulas (57)-(58). A fourth-order model akin to Eq. (B3) but including two extra terms  𝑐40Δ𝑓1
4 

and 𝑐04Δ𝑓2
4 was presented in Ref. [42] whose 10-parameters allowed to exactly match all 10 

simulation data at points A and B and, remarkably, gives an expression for AB which is identical 

to Eq. (B5). This outcome is similar to what we observed in comparing the best-fit 3rd order model 

and the exact-match 4th order model for the single-field case described in Sec. 4.3. It should be 

pointed out that while multiple matching-polynomials and best-fitting-polynomials were proposed 

in Ref. [42], model (B3) was not considered. 

     For reference, we also list the trapezoidal rule by neglecting the 2nd order terms in Eq. (B5): 

∆Φ𝐴𝐵 =
1

2
(𝜙10𝐴 + 𝜙10𝐵)Δ𝑓1 +

1

2
(𝜙01𝐴 + 𝜙01𝐵)Δ𝑓2     (B6) 

In the context of extrapolation, Eq. (B3) is most indicated for “lateral” extrapolation; i.e., when 

trying to estimate free-energies beyond one of the boundaries (say point B). One can also consider 

cases when “central” extrapolations are needed; e.g., to explore a new point (f1, f2) such that f1A < 

f1 < f1B (say) but f2 is not bracketed between f2A and f2B but f2B < f2 < f2A  where A is another 

simulated point proximal to B. In such a case, rather than only using one point (B) or two points to 

construct the polynomial (say A and B with the former being the closest to B in fl space) one could 

advantageously use data from A, B and A. In particular, it would be sensible to use all 1st an 2nd 

derivative data at point B while only 1st order derivative data from points A and A: those 9 total 

data could then be fitted to match the 9 c-constants in a full 3rd order polynomial (i.e., one similar 

to Eq. (B3) but replacing the single  𝑐22𝑓1
2𝑓2

2 term by terms c21𝑓1
2𝑓2  and 𝑐12𝑓1𝑓2

2 ); this case was 
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in fact already considered in Ref. [42] and expressions for the c-constants given therein [Eqs. 

(A12)-(A17)].  

 

C. FENEX IMPLEMENTATION 

For concreteness, we consider here a common situation where GDI is used to map the 

coexistence between two phases to be denoted by superscripts I and II, and where two fields f1 and 

f2 are used to determine the thermodynamic state. Any Hamiltonian parameters constraining the 

system size of each phase are also assumed fixed throughout and be the same for both phases. The 

phase diagram in the f1−f2 plane is mapped by stepping over prescribed values of f1 = f1,new and 

calculating the corresponding coexistence values of f2= f2,new which should satisfy the equation: 

   Γ(𝑓2,𝑛𝑒𝑤) = ΦI(𝑓2,𝑛𝑒𝑤) − ΦII(𝑓2,𝑛𝑒𝑤) = 0    (C1) 

whose solution implies that at f2,new ΦI = ΦII = Φnew. 

The stepwise mapping proceeds as follows:  

1) Initialization. At the outset it is assumed that at point “A” the values of 𝑓1𝐴
J

 and  𝑓2𝐴
J

 that lead to 

(near) coexistence of phases J = I and II are known (i.e., the free-energy difference Φ𝐴
II − Φ𝐴

I   is 

zero or known), and simulations were conducted so that 10A,  01A, 20A,  02A,  and  11A are known 

for each phase. Note that the value of, Φ𝐴
I  say, can be set arbitrarily to zero. Given Δ𝑓1

J = 𝑓1,𝑛𝑒𝑤 −

𝑓1𝐴
J

, the value of f2,new that complies with phase coexistence is found by solving Eq. (C1). Since 

only point A has been simulated at this point, one can use a 2nd order Taylor expansion to estimate 

the free-energy of any phase; i.e.: 

Φ𝑛𝑒𝑤 − Φ𝐴 = 𝜙10𝐴∆𝑓1 + 𝜙01𝐴∆𝑓2 +
1

2
𝜙20𝐴Δ𝑓1

2 +
1

2
𝜙02𝐴Δ𝑓2

2 + 𝜙11𝐴∆𝑓1∆𝑓2  (C2) 
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where ∆𝑓𝑖 = 𝑓𝑖,𝑛𝑒𝑤 − 𝑓𝑖𝐴, and is applied separately to each phase (I and II) to get ΦI and ΦII to use 

in Eq. (C1) to solve for f2,new. Specialized formulas may be needed if point A represent an infinitely 

dilute state in a mixture.39,42 

2) Reset & simulate. Redefine point B by letting (f1B, f2B, ΦB) be (f1,new, f2,new, Φnew) from the 

previous step, perform simulations at these conditions for the two phases I and II and obtain the 

corresponding values for the 1st and 2nd derivatives (10B,  01B, 20B,  02B,  and  11B) at this state 

B. 

3) Free-energy calculation. Calculate the free-energy differences between the last two states 

simulated for each phase, and hence estimate Φ𝐵
I  and Φ𝐵

II for Δ𝑓𝑖
J = 𝑓𝑖𝐵

J − 𝑓𝑖𝐴
J
. For these 

calculations we can use either relevant polynomial fits like (B5) or, depending on the Hamiltonian, 

OSOS formulas like (22)-(22’) by leveraging the connection between  distribution moments and 

derivatives’ data [i.e., Eqs. (5)-(6)].  

4) Step forward/extrapolation. At this stage, all relevant properties of (at least) the previous two 

points A and B and for both phases I and II are known.  If Δ𝑓1
J = 𝑓1,𝑛𝑒𝑤 − 𝑓1𝐴

J
 is given for a new 

point (f1,new, f2,new), then the value of f2,new for which coexistence is expected is estimated by solving 

Eq. (C1) where now J(f2,new) for each phase J is found by via Eq. (B3) using properties appropriate 

to the corresponding phase and ∆𝑓1 → Δ𝑓1
J = 𝑓1,𝑛𝑒𝑤 − 𝑓1𝐴

J
, and ∆𝑓2 → Δ𝑓2

J = 𝑓2,𝑛𝑒𝑤 − 𝑓2𝐴
J

. 

At this point relabel point B of each phase (and all properties thereof) as point A, go back to step 

2 and iterate steps 2-4 until a final target state has been reached. 

5) Post processing. Coexistence properties are refined from the “near coexistence” simulated data; 

improved estimates (marked with the superscript “coex”) for any state A can be obtained by 

extrapolating the results obtained at (𝑓1𝐴
J , 𝑓2𝐴

J ) to (𝑓1𝐴
𝑐𝑜𝑒𝑥 = 𝑓1𝐴

I , 𝑓2𝐴
𝑐𝑜𝑒𝑥) by first finding 𝑓2𝐴

𝑐𝑜𝑒𝑥 as the 

root of Γ(𝑓2𝐴
𝑐𝑜𝑒𝑥) = 0 from Eq. (C1); the extrapolating polynomial model for ΦJ (as a function of 
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Δ𝑓1
J = 𝑓1𝐴

𝑐𝑜𝑒𝑥 − 𝑓1𝐴
J

 and Δ𝑓2
J = 𝑓2𝐴

𝑐𝑜𝑒𝑥 − 𝑓2𝐴
J

) could be based on single-point A data as in Eq. (C2), 

or on points A and B data as with Eq. (B3) (point B being the closest to A in f1 space), or on three-

point A-B-A data (f1A<f1A<f1B) as with the central extrapolation discussed at the end of Sec. B of 

the Appendix. The ΦJ values found this way (with 𝑓2𝐴
J = 𝑓2𝐴

𝑐𝑜𝑒𝑥) correspond to Φ𝑐𝑜𝑒𝑥 (at point A).  

For steps 1, 4, and 5, the sought-after root of Eq. (C1) can be found via Newton’s method using as 

first guess the first-order solution:  

𝑓2,𝑛𝑒𝑤 = (Φ𝐴
I − Φ𝐴

II + 𝜙10𝐴
I Δ𝑓1

I − 𝜙10𝐴
II Δ𝑓1

II − 𝜙01𝐴
I 𝑓2𝐴

I + 𝜙01A
II 𝑓2𝐴

II ) (𝜙01𝐴
II − 𝜙01𝐴

I )⁄  (C3) 
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