
OnSlicing: Online End-to-End Network Slicing with
Reinforcement Learning

Qiang Liu
University of Nebraska-Lincoln

qiang.liu@unl.edu

Nakjung Choi
Nokia Bell Labs

nakjung.choi@nokia-bell-labs.com

Tao Han
New Jersey Institute of Technology

tao.han@njit.edu

ABSTRACT

Network slicing allows mobile network operators to virtualize in-

frastructures and provide customized slices for supporting various

use cases with heterogeneous requirements. Online deep reinforce-

ment learning (DRL) has shown promising potential in solving

network problems and eliminating the simulation-to-reality dis-

crepancy. Optimizing cross-domain resources with online DRL

is, however, challenging, as the random exploration of DRL vi-

olates the service level agreement (SLA) of slices and resource

constraints of infrastructures. In this paper, we propose OnSlicing,

an online end-to-end network slicing system, to achieve minimal

resource usage while satisfying slices’ SLA. OnSlicing allows in-

dividualized learning for each slice and maintains its SLA by us-

ing a novel constraint-aware policy update method and proactive

baseline switching mechanism. OnSlicing complies with resource

constraints of infrastructures by using a unique design of action

modification in slices and parameter coordination in infrastructures.

OnSlicing further mitigates the poor performance of online learn-

ing during the early learning stage by offline imitating a rule-based

solution. Besides, we design four new domain managers to enable

dynamic resource configuration in radio access, transport, core, and

edge networks, respectively, at a timescale of subseconds. We im-

plement OnSlicing on an end-to-end slicing testbed designed based

on OpenAirInterface with both 4G LTE and 5G NR, OpenDayLight

SDN platform, and OpenAir-CN core network. The experimental

results show that OnSlicing achieves 61.3% usage reduction as com-

pared to the rule-based solution and maintains nearly zero violation

(0.06%) throughout the online learning phase. As online learning is

converged, OnSlicing reduces 12.5% usage without any violations

as compared to the state-of-the-art online DRL solution.

CCS CONCEPTS

•Networks→Network algorithms;Mobile networks; •Com-

puting methodologies → Machine learning;

KEYWORDS

End-to-End Network Slicing, Resource Orchestration, Online Deep

Reinforcement Learning

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9098-9/21/12. . . $15.00
https://doi.org/10.1145/3485983.3494850

ACM Reference Format:

Qiang Liu, Nakjung Choi, and Tao Han. 2021. OnSlicing: Online End-to-End

Network Slicing with Reinforcement Learning. In The 17th International

Conference on emerging Networking EXperiments and Technologies (CoNEXT

’21), December 7–10, 2021, Virtual Event, Germany. ACM, New York, NY,

USA, 13 pages. https://doi.org/10.1145/3485983.3494850

1 INTRODUCTION

The 5G scenarios, e.g., enhanced mobile broadband (eMBB), ultra-

reliable low-latency communications (URLLC), andmassivemachine-

type communication (mMTC), create new applications such as

mobile augmented reality (MAR) [29], 360-degree video streaming,

vehicle-to-everything (V2X), and Internet of things (IoT) [53]. These

emerging use cases have diverse requirements of quality of services

(QoS), e.g., delay, jitters, throughput, and reliability. Hence, there is

a pressing need for mobile network operators (MNOs) to customize

the provisioning of communication, networking, and computing

resources [1]. Network slicing enables these applications by virtu-

alizing physical infrastructures such as base stations and switches,

and providing logical networks (aka. network slices) with dedicated

virtual resources for slice tenants [16]. As the performances of slices

are correlated to cross-domain network resources, an end-to-end

slicing is necessary to create slices composed of resources in radio

access networks (RAN), transport networks (TN), core networks

(CN), and edge networks (EN).

Model-based methods model mobile networks with approxi-

mated mathematical models [12, 48], which cannot completely

represent complicated network dynamics and thus fail to fulfill

these distinct slice requirements. Data-driven approaches, espe-

cially deep reinforcement learning (DRL), emerge in recent years [5,

7, 30, 40, 54] to tackle the high-dim correlations in complex net-

works. These DRL solutions train their DRL policies within offline

environments such as network simulators and apply the offline

trained policy to control the real network directly. In practice, these

offline trained policies suffer from the discrepancy between simu-

lated environments and real networks [32, 57].

Online DRL [17, 57] addresses this problem by allowing the DRL

agent to directly learn from real networks. For example, OnRL [57]

employs online DRL to learn the video streaming policy within real

networks and optimize the video stalling rate. However, the intrin-

sic exploration mechanism of online DRL, which explores a large

action space containing all possible actions, can lead to violations

of service-level agreements (SLAs). It is necessary to maintain the

performance requirement of slices throughout the online learning

phase when managing real networks, where the random explored

actions may result in severe performance degradation.

In this work, we propose OnSlicing, an end-to-end network

slicing system, to enable online cross-domain resource orchestra-

tion with near-zero violations of slices’ SLA throughout the online

141

CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany Q. Liu, et al.

learning phase. OnSlicing is accomplished with the following novel

designs.

Learning with near-zero violations. On managing an end-

to-end network, MNO aims to minimize network resource usage

while satisfying the performance requirement of slices. The existing

online DRL approaches [17, 57] rely on the random exploration

mechanism to explore the action space and seek a better policy for

improving the cumulative rewards without considering any system

constraints. As a result, the performance requirement of slices can

be violated by either a sequence of undesired resource orchestra-

tion actions or a constraints-unaware policy update. To resolve this

issue, we design a constraint-aware policy update method, in which

the violation of slice’s SLA is adaptively incorporated as a penalty

into the reward function. Besides, we design a proactive baseline

switching mechanism, in which the DRL policy is truncated in ad-

vance and a baseline policy (rule-based) is invoked for handling the

rest of the episode if the predicted performance of the DRL policy

does not meet the slice requirements. In this way, OnSlicing can

online learn the resource orchestration policy within real networks

to minimize resource usage while maintaining near-zero violations

of slices’ SLA.

Learning in distributed networks. The physical infrastruc-

tures, e.g., base stations, are geographically distributed in large-scale

mobile networks. The existing individualized DRL solutions [11, 40,

57] generate actions independently and thus fail to meet resource

constraints of infrastructures such as the total number of physical

resource blocks (PRBs) in RAN. To handle this challenge, we design

a distributed coordination mechanism that coordinates the resource

orchestration between the individualized DRL agent of slices and

infrastructures in a distributed manner. In particular, we design

an action modifier in each DRL agent that modifies orchestration

actions to satisfy the resource constraints while maintaining the

instantaneous slice performance. Moreover, we design a parameter

coordinator in each infrastructure to coordinate specific coordinat-

ing parameters with action modifiers in DRL agents. In this way,

OnSlicing canmeet the resource constraints of infrastructures while

maintaining the instantaneous performance requirement of slices.

Learning from baseline. An online DRL policy usually per-

forms worse than the rule-based policy at the early learning stage

when an effective policy has not been learned yet [26, 46, 50]. Thus,

allowing the DRL agent to manage real networks at the early stage

could result in substantially poor performance and increase possi-

bilities of SLA violation. To address this issue, we design a learning

from baseline scheme, in which the DRL agent of slices are offline

trained to imitate the behavior of the rule-based policy. In this way,

OnSlicing allows the DRL agent of slices to start online learning

with a policy has a similar performance as the rule-based policy.

As a result, OnSlicing avoids excessive SLA violations at the early

learning stage.

Domainmanagers.The foundation of end-to-end slicing [4, 16]

lies in the infrastructure virtualization in multiple technical do-

mains. We design four new domain managers in RAN, TN, CN, and

EN, respectively, to efficiently virtualize physical infrastructures

and assure performance isolation among slices. In this way, On-

Slicing can dynamically manage multiple end-to-end slices such as

creation, deletion, and adjusting of a variety of network configura-

tions at the timescale of subseconds.

Figure 1: The OnSlicing system.

Contributions. To the best of our knowledge, OnSlicing is the

first end-to-end network slicing system that minimizes resource

usage with near-zero violations of slices’ SLA in mobile networks.

The specific contributions of OnSlicing are summarized as follows:

• We design novel methods (Sec. 3) to apply online DRL to manage

end-to-end slicing in real networks with near-zero violations of

slices’ SLA throughout the online learning phase.

• We design novel mechanisms (Sec. 4) to allow the individualized

DRL agent of slices to meet resource constraints in infrastruc-

tures, and develop a new learning scheme (Sec. 5) to mitigate the

poor performance of online learning during the early learning

stage.

• We develop four domain managers (Sec. 6) in RAN, TN, CN,

and EN, which enable dynamic resource configurations at the

timescale of subseconds.

• We implement OnSlicing on an end-to-end slicing testbed (Sec. 6)

and validate that OnSlicing significantly outperforms state-of-

the-art solutions in terms of resource usage and SLA violation

(Sec. 7).

2 SYSTEM OVERVIEW

End-to-End Slicing. An end-to-end network slice refers to a vir-

tual network with a collection of all needed network resources to

meet the performance of particular services or applications oper-

ated by slice tenants [4]. For example, an end-to-end slice tailored

for mobile AR/VRmay include radio transmission resources in RAN,

data transportation resources in TN, packet processing resources

in CN, and computation and storage resources in EN. As a slice

tenant creating its network slice, it makes a service level agreement

(SLA) with MNO, which specifies the performance requirement,

e.g., delay, throughput, and reliability.

To accomplish end-to-end slicing, MNO needs to provide two

essential attributes [16], i.e., performance isolation that assure the

performance of a slice is not influenced by any operations of the

other slices, and SLA assurance that satisfies the performance re-

quirement of slices. Meanwhile, MNO aims to serve these slices

with the minimum resource usage [48] and the total resources are

constrained by physical infrastructures.

Overview. As shown in Fig. 1, OnSlicing consists of two main

components, i.e., the manager and the orchestrator.

The OnSlicing manager virtualizes end-to-end infrastructures

to virtual resources and implements resource orchestration actions

142

OnSlicing CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

at runtime. It consists of a radio domain manager (RDM), trans-

port domain manager (TDM), core domain manager (CDM), and

edge domain manager (EDM) for managing eNBs/gNBs in RAN,

switches/routers in TN, virtual network functions (VNFs) in CN,

and servers in EN, respectively. We design these domain managers

to assure the performance isolation among slices and achieve low-

overhead virtualization.

TheOnSlicing orchestrator allocates end-to-end virtual resources

to various slices and satisfies their diverse performance require-

ments. It includes multiple OnSlicing agents, where each agent

allocates virtual resources for a slice. We design these agents to

online learn from the interactions with domain managers in real

networks, and maintain the slices’ SLA and resource constraints in

infrastructures throughout the online learning phase.

3 ONLINE LEARNINGWITH NEAR-ZERO
VIOLATIONS

Unsafe DRL exploration. Existing DRL approaches [38, 39] aim

to maximize the cumulative rewards without considering practical

constraints in networks. The performance requirement of slices

could be easily violated when applying these approaches to mini-

mize resource usage. Furthermore, the orchestration actions gen-

erated by a DRL policy could result in poor performance of slices,

due to the intrinsic exploration of DRL algorithms that randomly

explores different actions in the whole action space for a better

reward. In Fig. 3 (a), we show the average SLA violation of slices

under a baseline policy and a DRL agent whose reward function is

penalized with a fixed weight if the slice SLA is violated.We observe

the DRL agent could have more than 30% violation of the slice SLA

during the online learning phase, while the baseline policy has no

violation. Thus, it is unsafe to allow the DRL agent to online learn

from real networks without any safety mechanisms.

OnSlicing approach. OnSlicing applies online DRL to orches-

trate cross-domain resources while maintaining the performance

requirement of slices as shown in Fig. 2. First, instead of centrally

managing all slices, we design an OnSlicing agent for each slice,

which is more efficient to scale in dynamic network slicing and

incremental network deployment. Second, we design a constraint-

aware policy update method to adaptively incorporate the violation

of slices’ SLA into the reward function as a penalty, which updates

policy 𝜋𝜃 to avoid the actions that violate the slice SLA. Third, we

design a proactive baseline switching mechanism to switch to the

baseline policy 𝜋𝑏 for managing resource orchestration if policy 𝜋𝜃
is predicted to violate the slice SLA. Fourth, we realize the policy

update method based on the state-of-the-art proximal policy opti-

mization (PPO) [51] to ensure a smooth performance improvement

and prevent excessive policy update steps.

The problem.We aim to derive an optimal policy 𝜋∗
𝜃
that mini-

mizes the usage of virtual resources without violating the slice SLA.

Therefore, given a time period T , e.g., 24 hours, we formulate the

resource orchestration problem P0 as

P0 : max
𝜋𝜃

E𝜋𝜃

[∑
𝑡 ∈T

𝑟 (s𝑡 , a𝑡)
]

(1)

𝑠 .𝑡 . E𝜋𝜃

[
1

𝑇

∑
𝑡 ∈T

𝑐 (s𝑡 , a𝑡)

]
≤ 𝐶max, (2)

where s𝑡 , a𝑡 and 𝑟 (s𝑡 , a𝑡) are the network state, orchestration action
and reward of the slice at time slot 𝑡 . The resource orchestration
actions are made at the beginning of every time slot. The constraint

in Eq. 2 ensures the statistical performance of the slice is met, where

𝑐 (s𝑡 , a𝑡) and 𝐶max are the cost and SLA threshold, respectively.

Constraints-Aware Update. To make policy 𝜋𝜃 aware of the

slice SLA, we use the Lagrangian primal-dual method [10] to in-

corporate the constraints into the reward function. Specifically, we

build Lagrangian as

L = E𝜋𝜃

[∑
𝑡 ∈T

(
𝑟 (s𝑡 , a𝑡) −

𝜆

𝑇
𝑐 (s𝑡 , a𝑡)

)]
+ 𝜆𝐶max, (3)

where 𝜆 is the multiplier. The problem can be addressed by alterna-

tively solving the primal problem expressed as

𝜋∗
𝜃 = argmax

𝜋𝜃
L(𝜋𝜃 , 𝜆), (4)

and the dual problem 𝜆∗ = argmin
𝜆≥0

L(𝜋𝜃 , 𝜆). The dual problem is

solved by updating themultiplier with the sub-gradient descent [10]

as follows

𝜆 =

[
𝜆 + 𝜀

(
E𝜋𝜃

[
1

𝑇

∑
𝑡 ∈T

𝑐 (s𝑡 , a𝑡)

]
−𝐶max

)]+
, (5)

where [𝑥]+ = 𝑚𝑎𝑥 (𝑥, 0) and 𝜀 is the step size. In this way, the

multiplier 𝜆 is increased if the performance requirement of the slice

is violated.

Proactive Baseline Switching. Although the statistical perfor-

mance requirement (Eq. 2) of the slice could be satisfied eventually

using the constraint-aware policy update method, we find that the

slice SLA could be violated during the online learning phase due

to the intrinsic DRL exploration. To mitigate the SLA violation, we

design a proactive baseline switching mechanism. The fundamental

idea is to let the baseline policy take over the rest of the episode if the

cumulative cost at the current time slot plus the expected cost value

function of the baseline policy is larger than the SLA threshold𝐶max
1.

The cost value function is defined as𝐶 = E𝜋𝑏
[∑T

𝑡=𝑡𝑐 𝑐 (s𝑡 , 𝜋𝑏 (s𝑡))
]
,

in other words, the cumulative cost starts at current time slot 𝑡𝑐 if
we follow the baseline policy 𝜋𝑏 until the end of the episode.

The cost value function correlates to the high-dim network state,

which is very complicated and can not be mathematically repre-

sented. Thus, we create a neural network with policy 𝜋𝜙 to learn

the cost value function of the baseline policy under different states.

Although deterministic neural networks can be used to estimate

the cost value, they only generate a single estimation value and

overlook statistical information. For example, if the cost value has

a small mean value but a large deviation, switching to the baseline

merely based on the mean value could be too late and thus result

in a large probability of SLA violation. Therefore, we leverage the

variational inference technique [21, 55] to learn its probabilistic

model, e.g., mean and deviation.

The variational inference approximates unknown complex dis-

tributions with a cluster of tractable distributions, e.g., Gaussian

distributions. Here, the posterior distribution 𝑝 (𝜙 |D), where D

are the observed cost values, is approximated by minimizing the

KL-divergence 𝐷𝐾𝐿 [𝑞(𝜙) | |𝑝 (𝜙 |D)], where 𝑞(𝜙) is the Gaussian

1The estimation of the cost value function and the switching decision are made at
every time slot.

143

CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany Q. Liu, et al.

The OnSlicing AgentState Action

Coordination

Policy
(Learning)

Policy
(Baseline)

Policy
(Evaluation)

Policy
(Modifier)

Switch

Traffic

Load

Stats

Time RAN

TN

CN

Edge

Domain Managers

Figure 2: The orchestration agent.

distribution. Although the posterior distribution is unable to cal-

culate, the minimization of KL-divergence [25] corresponds to the

maximization of the evidence lower bound (ELBO) [49] based on

the following equation

log 𝑝 (D) = E
𝑞 (𝜙)

log
𝑝 (𝜙, D)

𝑞(𝜙)︸���������������︷︷���������������︸
ELBO

+𝐷𝐾𝐿 [𝑞(𝜙) | |𝑝 (𝜙 |D)] . (6)

Since the KL-divergence is always positive and log 𝑝 (D) is irrele-

vant to𝜙 , we can train policy 𝜋𝜙 by maximizing the ELBO rewritten

as

𝐸𝐿𝐵𝑂 = E
𝑞 (𝜙)

log 𝑝 (D|𝜙) − 𝐷𝐾𝐿 [𝑞(𝜙) | |𝑝 (𝜙)] . (7)

On the right side of Eq. 7, the first part is the likelihood, and the

second part is the KL-divergence between the priors. By assuming

that the priors are Gaussian distributions, both parts are tractable

and can be calculated effectively.

Therefore, we can use policy 𝜋𝜙 to estimate the cost value func-

tion under state s𝑡 and obtain the mean 𝜇 and standard deviation 𝜎 .
Then, we determine the policy switching between policy 𝜋𝜃 and

the baseline policy 𝜋𝑏 at time slot 𝑡 according to

a𝑡 =

{
𝜋𝑏 (s𝑡), 𝐸𝑡 ≥ 𝑇 ·𝐶max,
𝜋𝜃 (s𝑡), 𝐸𝑡 < 𝑇 ·𝐶max,

(8)

where 𝐸𝑡 =
∑𝑡
𝑚=0 𝑐 (s𝑚, a𝑚) + 𝜇 + 𝜂 · 𝜎 , and 𝜂 is a factor to con-

trol risk preferences. When 𝜂 is high, the switching decision is

more sensitive to the deviation of the cost value, i.e., the baseline

policy might be invoked earlier, and thus this baseline switching

mechanism becomes more conservative.

SmoothPolicy Improvement.Wedevelop the trainingmethod

for policy 𝜋𝜃 , which corresponds to solving the primal problem in

Eq. 4 [43]. We train policy 𝜋𝜃 based on the state-of-the-art PPO al-

gorithm [51] rather than deep deterministic policy gradient (DDPG)

algorithm [28]. Because the DDPG algorithm improves policies by

implicitly minimizing the mean square Bellman error (MSBE) [28],

which tends to have changing performance in practice [13] and thus

leads to excessive switching to the baseline policy. In contrast, the

PPO algorithm directly maximizes the expected return and enables

smooth performance improvement by using a clipped surrogate

objective to prevent too large policy update steps.

With the proactive baseline switching mechanism, an episode of

resource orchestration actions could be composed of both policy 𝜋𝜃
and the baseline policy 𝜋𝑏 . In this situation, updating policy 𝜋𝜃 with

the whole mixed episode diverges the training of the DRL agent,

because the partial episode run by the baseline policy does not

apply to policy 𝜋𝜃 . To address this issue, we only use the effective

transitions run by policy 𝜋𝜃 and discard the remaining episode run

by the baseline policy. Meanwhile, we estimate the reward value

function 𝑅 = E𝜋𝜃
[∑T

𝑡=𝑡𝑟 𝑟 (s𝑡 , 𝜋𝜃 (s𝑡)
]
at the truncated time slot

𝑡𝑟 , which helps in calculating accurate reward value function of

truncated episodes.

State: We define the state space as the combination of the current

time slot 𝑡 , the traffic of slice 𝑓𝑡−1, the average channel condition
of slice users ℎ𝑡−1, the average radio resource usage in RAN 𝑔𝑡−1,
the average workload of VNFs and edge server 𝑤𝑡−1, the last slice

performance and cost 𝑟𝑡−1, 𝑐𝑡−1, the slice SLA threshold 𝐶max and

cumulative cost at current time slot
∑𝑡
𝑚=0 𝑐 (s𝑚, a𝑚). The state is

designed to reveal the informative slice statistics and comprehen-

sive network status to policy networks in the OnSlicing agent. In

the state space, [𝑡, 𝑓𝑡−1] provide the information about the expected

traffic at time slot 𝑡 , [ℎ𝑡−1, 𝑔𝑡−1,𝑤𝑡−1] suggest the network status

about the resource usage, [𝑟𝑡−1, 𝑐𝑡−1] indicate the potential lasting
influence from time slot 𝑡 − 1, and [𝐶max,

∑𝑡
𝑚=0 𝑐 (s𝑚, a𝑚)] show

the slice status about the performance requirement.

Action: The action is designed to allow the OnSlicing agent to

orchestrate virtual resources to the slice in different domains. We

identify multiple key factors that could affect the performance of

slices (Sec. 6). We define the action space as the combination of

uplink radio bandwidth 𝑈𝑢 , uplink MCS offset 𝑈𝑚 , uplink schedul-

ing algorithm 𝑈𝑎 , downlink radio bandwidth 𝑈𝑑 , downlink MCS

offset𝑈𝑠 , downlink scheduling algorithm𝑈𝑔 , transport bandwidth

𝑈𝑏 and reserved path in TN 𝑈𝑙 , CPU allocation 𝑈𝑐 and RAM 𝑈𝑟

allocation for co-located SGPW-U and edge server.

Reward: We define the reward function as the negative total

virtual resource usage of the slice

𝑟 (s𝑡 , a𝑡) = − (𝑈𝑢 +𝑈𝑑 +𝑈𝑏 +𝑈𝑙 +𝑈𝑐 +𝑈𝑟) . (9)

Here, without loss of generality, we sum up all the used virtual

resources by using the same weights. The scheduling algorithm

and MCS offset in both uplink and downlink are not counted in

the reward function because their selections implicitly impact the

radio resource usage.

Cost: The cost indicates how much performance degradation

the slice experienced as compared to its performance requirement.

The cost is reported by the slice every time slot. Without loss of

generality, we define the cost function as

𝑐 (s𝑡 , a𝑡) = 1 − 𝑐𝑙𝑖𝑝 (𝑝𝑡 (s𝑡 , a𝑡)/𝑃, 0, 1) , (10)

where 𝑃 is the performance requirement of the slice, and 𝑐𝑙𝑖𝑝 (𝑥,𝑦, 𝑧)
means clipping 𝑥 between 𝑦 and 𝑧. For example, a video streaming

slice needs an FPS 𝑃 = 30, then a cost 0.33 can be observed if 𝑝𝑡 = 20

at the current time slot.

4 INDIVIDUALIZED LEARNING IN
DISTRIBUTED NETWORKS

Constraints in distributed infrastructures.The virtual resources

can be limited by physical infrastructures, e.g., the total number of

PRBs in RAN and the computing capacity in edge servers. As every

OnSlicing agent generates orchestration actions according to its net-

work state independently, some resources could be over-requested,

i.e., the total requested resources exceeds the resource capacity. As

144

OnSlicing CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

Figure 3: a) Avg. SLA violation under existing solutions. b) Avg. resource usage under existing solutions. c) An illustration of action modifi-

cation.

shown in Fig. 3 (c), an action is generated by the OnSlicing agent

with the minimum resource usage in the SLA safe space. The ac-

tions in the SLA safe space can meet the performance requirement

of the slice, and the actions in the constraint space can satisfy the

resource capacity. The existing method requires domain managers

to scale down all actions of slices, i.e., projection, if the summation

of requested resources surpluses the capacity of the infrastructure.

However, we find this method leads to substantial performance

degradation and possible SLA violation in long-term because the re-

quested resources of slices are under-provisioned. Thus, it is needed

to modify the orchestration action of slices within the SLA safe

space while maintaining their instantaneous performances, i.e., in

the constraint space.

OnSlicing approach.OnSlicing satisfies the resource constraints

and keeps the performance of slices, as shown in Fig. 2, by designing

a distributed coordination mechanism. On the one hand, we design

an action modifier in each OnSlicing agent to modify the original

action generated by policy 𝜋𝜃 according to the parameters from

domain managers. The modified action maintains the slice perfor-

mance with the minimum distance to the original action. On the

other hand, we design a parameter coordinator in each domain man-

ager to adaptively adjust the coordinating parameters exchanged

with action modifiers and coordinate the resource usage among

slices. Furthermore, we define the initialization method of the coor-

dinating parameters at every time slot to reduce the needed number

of interactions between OnSlicing agents and domain managers.

The problem. We aim to find modified actions for all slices

denoted as â𝑖𝑡 ,∀𝑖 ∈ I. The modified actions need to reduce their

distances to original actions a𝑖𝑡 ,∀𝑖 ∈ I and the cost of slices while

maintaining the resource constraints. On the one hand, we need

to stick to the original action generated by policy 𝜋𝜃 , which could

achieve the minimum long-term resource usage. On the other hand,

we need to reduce the instantaneous cost of slices, which helps

maintain the slice SLA in the long-term. Thus, we formulate the

action modification problem as

min
â𝑖

∑
𝑖∈I

{
|â𝑖𝑡 − a

𝑖
𝑡 |
2
2 + 𝑐 (s𝑖𝑡 , â

𝑖
𝑡)
}

(11)

𝑠 .𝑡 .
∑

𝑖∈I
â
𝑖,𝑘
𝑡 ≤ 𝐿𝑘max,∀𝑘 ∈ K, (12)

where the superscript 𝑖 denotes the slice 𝑖 , 𝐿𝑘max is the capacity of

the 𝑘th resource and | · |22 is the 𝑙2-norm operation.

This problem involves the resource orchestration of all slices

and resource capacity constraints in all domain managers in the

distributed network. A centralized approach could lead to excessive

communication overhead and delay between OnSlicing agents and

domain managers.

Action modification. We create an action modifier in each

OnSlicing agent to modify the action generated by policy 𝜋𝜃 and

maintain resource constraints in different domain managers. Specif-

ically, the action modifier generates an action â
𝑖
∗ to minimize the

following objective function

â
𝑖
∗ = argmin

â
𝑖
𝑡

{|â𝑖𝑡 − a
𝑖
𝑡 |
2
2 +

∑
𝑘∈K

𝛽𝑘𝑡 â
𝑖,𝑘
𝑡 + 𝑐 (s𝑖𝑡 , â

𝑖
𝑡)︸���︷︷���︸

H𝑡

}, (13)

where the resource constraints in Eq. 12 are incorporated into the

objective function with 𝛽𝑘𝑡 ,∀𝑘 ∈ K . Here, we define 𝛽𝑘𝑡 ,∀𝑘 ∈ K , as

the coordinating parameters for regulating the resource orchestra-

tion in OnSlicing agents, which are updated in domain managers.

Although a
𝑖
𝑡 and 𝛽𝑘𝑡 ,∀𝑘 ∈ K in Eq. 13 are known, the cost func-

tion of the slice, i.e., 𝑐 (s𝑖𝑡 , â
𝑖
𝑡),∀𝑖 ∈ I, is too complicated to be

mathematically modeled. To this end, we design a neural network

with policy 𝜋𝑎 in the action modifier to solve the problem in Eq. 13

and generate the modified action â
𝑖
𝑡 . The inputs of policy 𝜋𝑎 are

the combination of current state s𝑖𝑡 , original action a
𝑖
𝑡 generated by

policy 𝜋𝜃 , and coordinating parameters 𝛽𝑘𝑡 ,∀𝑘 ∈ K . This network

is offline trained with supervised learning by minimizing the objec-

tive function in Eq. 13. The training dataset includes the pairs of

[s𝑖𝑡 , a
𝑖
𝑡 , 𝛽

𝑘
𝑡 ,∀𝑘 ∈ K] andH𝑡 . We build the dataset by collecting state-

action-cost pairs [s𝑖𝑡 , a
𝑖
𝑡 , 𝑐 (s

𝑖
𝑡 , â

𝑖
𝑡)] from the real system, appending

randomly generated coordinating parameters to each state-action

pair, and calculating the objective function H𝑡 .

Parameter coordination. To comply with the resources con-

straints in Eq. 12, we design a parameter coordinator in each domain

manager for updating the coordinating parameters 𝛽𝑘𝑡 ,∀𝑘 ∈ K . The

coordinator of domain manager 𝑘 updates the coordinating param-

eters by using the sub-gradient descent method [10] as

𝛽𝑘 =
[
𝛽𝑘 + 𝜖 (

∑
𝑖∈I

â
𝑖,𝑘
𝑡 − 𝐿𝑘max)

]+
, (14)

where [𝑥]+ = 𝑚𝑎𝑥 (𝑥, 0) and 𝜖 is a positive step size. Here, the

coordinating parameters 𝛽𝑘 are increased when the resource in

this domain manager is over-requested, which consequently guides

policy 𝜋𝑎 in the action modifier of OnSlicing agents.

In this way, the action modifier in OnSlicing agents exchange

coordinating parameters 𝛽𝑘 ,∀𝑘 ∈ K and coordinate the resource

usage with domain managers until resource constraints are met.

However, the number of interactions between them could be large

if the coordinating parameters 𝛽𝑘 ,∀𝑘 ∈ K are initialized for every

145

CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany Q. Liu, et al.

Agent Transitions
()

Policy
(Baseline) Loss

imitate

Figure 4: Imitation from the baseline policy

time slot. To accelerate the convergence of the interactions, we use

the coordinating parameters 𝛽𝑘𝑡−1,∀𝑘 ∈ K at the last time slot as

the start point 𝛽𝑘𝑡 ,∀𝑘 ∈ K at current time slot.

5 OFFLINE LEARNING FROM BASELINE

Poor policy at early stage. It is inefficient to allow a DRL agent

to online learn from scratch within real networks because the agent

usually requires a large number of training steps to obtain a policy

with acceptable performances. As a result, the DRL agent does

not perform well, usually even worse than the baseline policy, at

the early learning stage. In Fig. 3 (a) and (b), we show the online

learning performance of the DRL agent and the baseline policy.

Although the DRL agent could explore a better policy than the

baseline policy eventually, it is outperformed by the baseline policy

in both resource usage and SLA violation at the early stage, i.e.,

until epoch 20.

OnSlicing approach.We design OnSlicing agents, as shown in

Fig. 4, to offline imitate the baseline policy based on the dataset

collected from the interactions between the baseline policy and

real networks. On the one hand, we train policy 𝜋𝜃 to imitate the

baseline policy, i.e., taking similar actions as the baseline policy does,

and to achieve similar performances such as resource usage and

SLA violation. On the other hand, we train policy 𝜋𝜙 to estimate

the cost value function of the baseline policy, which is used to

determine the proactive baseline switching in Sec. 3. In this way,

OnSlicing agents start their online learning in real networks with a

similar performance as the baseline policy.

Behavior cloning.We train policy𝜋𝜃 based on behavior cloning
(BC) to minimize the differences of generated actions by policy 𝜋𝜃
and the baseline policy 𝜋𝑏 with supervised learning. Specifically,

we collect the transitions, e.g., state-action pairs, of the baseline

policy when it interacts with real networks. Then, we train policy

𝜋𝜃 by minimizing the loss function

𝐿𝑜𝑠𝑠 =
1

|B|

∑
𝑛∈B

|𝜋𝑏 (s𝑛) − 𝜋𝜃 (s𝑛) |
2
2, (15)

where s𝑛 and B are the sampled state and batch of transitions,

respectively.

In addition, we offline train policy 𝜋𝜙 to predict the cost value

function of the baseline policy. Specifically, we first collect states

s𝑡 and costs 𝑐 (s𝑖𝑡 , â
𝑖
𝑡) run by the baseline policy 𝜋𝑏 , and calculate

the cost value function under different states. The policy 𝜋𝜙 is

then updated by maximizing the ELBO in Eq. 7. To adapt to new

states appearing during the online learning phase, policy 𝜋𝜙 is also

updated as more transitions are observed.

6 SYSTEM IMPLEMENTATION

In this section, we present the OnSlicing implementation, including

the domain managers and the hardware details of the testbed shown

Figure 5: The data rate of slices

with RDM

Figure 6: MCS offset vs.

Retransmission

in Fig. 8. The domain managers are developed to virtualize physical

infrastructures in RAN, TN, CN, and EN, into virtual resources, re-

spectively, and execute the resource orchestration actions generated

by OnSlicing agents. The design goal is to reduce the virtualiza-

tion overheads while maintaining the performance isolation among

slices. We create a unified interface based on the REST API [34] to

facilitate the interactions between OnSlicing agents and domain

managers.

Radio domainmanager.We design the radio domain manager

(RDM) to slice 4G LTE and 5G NR RAN with customized CQI-

MCS mapping tables for different slices. The performance isolation

among slices is guaranteed by exclusively assigning resource block

groups (RBGs) and physical resource blocks (PRBs) in the down-

link and uplink MAC layers, respectively. In Fig. 5, we show the

measured data rate of different slices that are assigned by the same

virtual radio resources. It can be seen that the total data rate of all

slices nearly equals that of the vanilla system (OAI [42]), which

verifies the low-overhead virtualization of RDM.

Besides, we introduce a new customized CQI-MCS mapping

table for different slices to further improve the link reliability of the

radio transmission. Specifically, a slice can request an MCS offset

in advance to counter the channel dynamics2. The used MCS by

the slice is the vanilla MCS derived from the current CQI minus

the MCS offset. For example, a uRLLC slice can map CQI index

15 to 16-QAM instead of standardized 64-QAM to achieve more

robust radio transmissions but lower link capacities. In Fig. 6, we

show the re-transmission probability under different MCS offsets,

which is calculated by the number of re-transmission PRBs over

the total used number of PRBs for a slice using the iperf tool. It

can be observed that the larger MCS offset the slice assigned, the

lower the re-transmission probability the slice achieved, especially

for the uplink transmission.

We develop the RDM based on OpenAirInterface (OAI) [42]

with FlexRAN [15]. We use two Intel i7 computers to run the eNB

and gNB that operate at 2.6 GHz (20MHz) and 3.5 GHz (40MHz),

respectively. Each computer is with a low-latency kernel of Ubuntu

18.04 and an Ettus USRP B210 as the RF front-end. We use three 5G

smartphones (POCO F2 Pro) that support both LTE and 5G NSA

(EN-DC) as mobile users. To eliminate external radio interferences,

we use a Faraday cage to contain smartphones and antennas of eNB

and gNB. An Ettus Octo-clock is used to provide external 10MHz

reference signals for both eNB and gNB.

Core domain manager.We design the core domain manager

(CDM), as shown in Fig. 7, to enable an isolated user plane for

2The bit error rate (BER) is reduced if adopting a lower modulation scheme under the
same power allocation [18].

146

OnSlicing CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

Control Plane

User Plane

CDM
API Slices

Virtualization

Sche. SPGW-USlice

M
in

-L
oa

d
R

R
R

R

User

SPGW-U

MME HSS

SPGW-C

S1
-M

M
E

S1
-U

Figure 7: The CN slicing with core domain manager

each slice, i.e., SPGW-U in EPC, by leveraging the CUPS-based core

network architecture. Each slice is associated with a set of SPGW-U

instances and a corresponding SPGW-U scheduling method. The

method determines the associated slice users based on their inter-

national mobile subscriber identities (IMSIs). It selects the desti-

nation SPGW-U from the SPGW-U pool of the slice based on the

round-robin scheduling during the initial attachment procedure

of users. We exclusively associate an SPGW-U instance to a slice,

which ensures performance isolation. We develop the CDM based

on OpenAir-CN [41] and deploy it on the workstation computer

with an Intel i7 CPU and Ubuntu 18.04 OS. In particular, these VNFs

of the CUPS-based CN, e.g., HSS, MME, SPGW-C, and SPGW-U,

are implemented with Docker-based computing virtualization that

enables dynamic instantiation and flexible resource provisioning.

Transport domain manager.We design the transport domain

manager (TDM) to dynamically create, modify, and delete the trans-

port slices by leveraging software-defined network (SDN) technol-

ogy [22]. We design the TDM based on SDN controllers [36, 58]

and use the meters API in OpenFlow protocol [35] to manage the

bandwidth for different slices. The meters API limits the maximum

data rate of associated flows. We develop the TDM based on Open-

DayLight (ODL) [36] with OpenFlow 1.30. We use a Ruckus ICX

7150-C12P as the SDN switch to connect the eNB/gNB and the CN,

where each port of the switch has 1Gbps capacity. For the sake of

simplicity, the ODL controller and the TDM are implemented in

the workstation computer.

Edge domain manager. On developing the edge domain man-

ager (EDM), we use Docker container technique [37] to virtualize

the computing resources and provide isolation for edge servers. The

EDM can manage the resources of edge servers, e.g., CPU, RAM,

Disk, and I/O, through Docker runtime configuration interfaces.

We deploy the EDM on the workstation computer and use docker

update command to update the CPU and RAM allocation. The edge

server of a slice is co-located in the slice’s SPGW-U containers for

the sake of simplicity.

The OnSlicing agents.We develop OnSlicing agents with Py-

Torch 1.5, where all policy networks use 3-layer fully connected

neural network with ReLU activation functions, i.e., 128x64x32. The

activation functions of actor networks are Sigmoid [19] to ensure

that the action is between 0 and 1. We deploy OnSlicing agents on

the workstation computer to interact with slice tenants and the

OnSlicing manager.

ext. clock

ODL / TDM

Faraday Cage

USRP B210

SDN

gNB

eNB

Workstation

HSS/MME/SPGW-C

USRP B210

SPGWU/Server

CDM / EDM

RDM 1

RDM 2 O
nS

lic
in

g
Ag

en
ts

Figure 8: The OnSlicing testbed.

7 PERFORMANCE EVALUATION

7.1 Evaluation Setups

Slice. We develop three slices, and each hosts a mobile applica-

tion with different resource demands and performance metrics. We

develop three mobile applications in Android and corresponded

server applications using Python3. The mobile applications can

asynchronously send user requests, and the server applications

serve user requests in parallel. Thus, we can use one smartphone

to emulate varying traffic with asynchronous user requests.

MAR App. The MAR application continuously sends frames

(540p) to the edge server and waits for the processing results. The

back-end server receives the frame, extracts the keypoint features

with a feature extraction algorithm (ORB [47]), matches the features

with a feature dataset, and returns the matched objects back to

the phone. The performance requirement of the MAR slice is the

average round-trip latency of frames (500 ms). It can be recognized

as a delay-sensitive application.

HVS App. For HD video streaming (HVS), the stream server

continuously streams 1080p video frames to mobile phones. The

performance requirement of the HVS slice is the average FPS of

the streaming video (30 FPS). It can be seen as a bandwidth-hungry

application.

RDC App. The reliable distant control (RDC) is developed to

enable the remote control of wireless connected IoT devices. The

control server periodically receives raw data from users and sends

the control message back to users. We consider the size of both raw

data and control message are 1 KBits for all users. The phone is

connected with a USB on-the-go (OTG) LED which indicates the

message is received. The performance requirement of the RDC slice

is the reliability of radio transmission (99.999%). It can be identified

as a reliability-sensitive application.

Traffic Traces. We use an open mobile traffic dataset, i.e., Tele-

com Italia [6], to generate the traffic of slices. The data set consists

of the Call, SMS, and Internet connections in thousands of base

stations with minimum 10 minutes intervals over the Province of

Trento, Italy. We use the traffic trace of base stations as the slice

traffic, where we scale the maximum traffic volume according to

the capability of the testbed (5 users/s for MAR, 2 users/s for HVS,

and 100 users/s for RDC). With the arrival rate derived from traffic

traces, we emulate the traffic of slices during the configuration

interval (i.e., generating all arrival timestamp of users) according

to the Poisson point process (PPP). For example, if a MAR slice has

average of 5 users/s traffic at the current time slot, the mobile ap-

plication sends the frames to the server asynchronously, where the

intervals of frames are sampled from an exponential distribution

3The mobile applications are designed to utilize end-to-end resources and report
diverse performance metrics periodically.

147

CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany Q. Liu, et al.

Metric Avg. res. usage (%) Avg. SLA violation (%)

OnSlicing 20.19 0.00

OnRL 23.08 15.40

Baseline 52.18 0.00

Model_Based 59.04 3.13

Table 1: Test performances of methods

with a rate 5. We compare the performance of different methods

using two metrics, i.e., the resource usage (average used resources

of all slices calculated in Eq. 9) and the SLA violation (if the cumu-

lative cost exceeds SLA threshold 𝐶max = 5%, i.e., lower than 95%

probability of SLA guarantee).

Training. We use the testbed to emulate the resource orches-

tration with the network configuration interval of 15 minutes4.

A transition, episode, and epoch are defined as the state-action-

reward-cost pairs, 96 transitions (24 hr), 1000 transitions, respec-

tively. In our experiments, with the subseconds action enforcement

in domain managers and fast performance reporting in mobile appli-

cations, the OnSlicing agents can complete a transition in 5 seconds

with the stable statistical performance of slices. OnSlicing agents

usually converge within less than 100 epochs (see Fig. 13).

Comparison Methods. We compare OnSlicing with the fol-

lowing methods: 1) Baseline: we develop the baseline method to

allocate end-to-end resources in three steps. First, each slice is of-

fline evaluated within a small-scale testbed to identify key action

factors, i.e., [𝑈𝑢 ,𝑈𝑏 ,𝑈𝑐], [𝑈𝑑 ,𝑈𝑏] and [𝑈𝑚,𝑈𝑠] are selected for the

MAR, HVS, and RDC slice, respectively. Second, a grid search with

scikit-learn [44] is conducted to seek the minimum resource usage

under different slice traffic to meet the slice’s performance require-

ment. Third, the over-requested resources in domain managers are

scaled with the projection method. 2) Model_Based: we develop a

model-based method by using approximated performance models

in each slice. The end-to-end latency and frame rate are formulated

as 𝑝𝑀𝐴𝑅 = (𝑓 · 𝑠)/𝑈𝑢 + 𝑙𝑠 [45] and 𝑝𝐻𝑉𝑆 = 𝑈𝑢/(𝑓 · 𝑠) [29], re-
spectively. Here, 𝑓 , 𝑠, 𝑙𝑠 ,𝑈𝑢 are the slice traffic, frame bitrate, static

latency and uplink radio bandwidth, respectively. The reliability

𝑝𝑅𝐷𝐶 depends on the retransmission probability [23] that varies

with multiple factors, e.g., radio channel quality and MCS. Accord-

ing to the measurement results in Fig. 6, we determine the MCS

offset 𝑈𝑚 = 6,𝑈𝑠 = 0 to meet the RDC slice’s performance re-

quirement. The problem of minimizing the overall resource usage

is solved by using the CVXPY tool [3]. 3) OnRL: OnRL [57] is an

online DRL solution to optimize the video telephony, which allows

DRL agents to learn from the real system and use a rule-based pol-

icy (refer to Baseline) as a backup policy. We implement OnRL with

modified reward, state, and action space for orchestrating cross-

domain resources. We find that the native OnRL fails to meet the

slices’ SLA during the online learning phase as it merely allocates

minimal resources to all slices. Thus, we adopt its fundamental

idea with extra improvements. We supplement the reward sharping

method to be aware of constraints and the projection method to

deal with resource over-requesting situations in OnRL.

4Existing operational mobile networks usually take 15 minutes or more to collect
network status and configure the network infrastructures.

Figure 9: Learning trajectory of methods

7.2 Results Analysis

Overall performance.We show the test performance of different

methods after the online learning phase completes in Table 1. We

observe that OnSlicing achieves the minimum average resource us-

age with 12.5%, 61.3%, and 65.8% fewer usages as compared to OnRL,

Baseline, and Model_Based, respectively. This verifies the effective-

ness of OnSlicing agents in handling real complex networks and

minimizing resource usages. Moreover, OnSlicing maintains zero

SLA violation on average, which attributes to the novel methods of

OnSlicing to guarantee slices’ SLA during the online learning phase.

In contrast, OnRL has a higher resource usage than OnSlicing, and

gets a worse performance on average SLA violation (15.40%). This

can be attributed to its ineffectiveness in constraint awareness, poor

distributed coordination among agents, and inefficiency of learn-

from-scratch. Furthermore, Model_Based uses more resources than

Baseline and shows a larger SLA violation, which can be attributed

to the inaccurate mathematical models that cannot fully represent

the complex end-to-end network.

Online learning performance. Fig. 9 shows the learning tra-

jectory of different methods throughout the online learning phase.

Here, we denote the start and end point of a method with a small

point marker and a large star marker, respectively. We observe

that OnRL starts with very high resource usage and SLA violation

because the DRL agent needs to learn from scratch, and its aver-

age SLA violations change dramatically during the online learning

phase. In contrast, the average resource usage of OnSlicing gradu-

ally decreases without noticeable violations of slices’ SLA.

The remarkable resource usage reduction of OnSlicing can be

attributed to, (i) the offline imitate learning scheme from Baseline,

and (ii) the individualized learning for each slice. Fig. 10 shows

the offline training curve of OnSlicing agents, where the average

resource usage obtained by the agents gradually approach that of

Baseline as they imitate the resource orchestration behaviors of

Baseline. Thus, OnSlicing agents can start online learning with a

policy approximating Baseline. Meanwhile, the OnSlicing agent

in each individual slice could efficiently learn the unique char-

acteristics of slice application, because of the low complexity of

the individualized problem as compared to the problem of joint

orchestration for all slices.

The low SLA violation of OnSlicing comes from, (i) the constraint-

aware policy update method, and (ii) the proactive baseline switch-

ingmechanism. Fig. 11 shows the online learning curve of OnSlicing

agents, where the average resource usage decreases gradually with

near-zero SLA violations. As OnSlicing incorporates the violation

of slices’ SLA into the reward function, the high-cost orchestration

actions can be avoided. As a result, OnSlicing achieves only several

148

OnSlicing CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

Figure 10: Offline imitate learning from

baseline

Figure 11: Online learning of OnSlicing

agents

Figure 12: A showcase of proactive baseline

switching

Method Avg. res. usage (%) Avg. SLA viol. (%)

OnSlicing 29.07 0.06

OnSlicing-NE 30.81 0.33

OnSlicing-NB 29.64 2.94

OnSlicing Est. Noise 52.91 1.03

Table 2: Avg. performance of baseline switching methods

spikes of violation (maximum 1%) throughout the online learning

phase. Besides, OnSlicing agents can switch to Baseline proactively,

which prevents SLA violations caused by the action exploration.

We illustrate the proactive baseline switching mechanism in Fig. 12,

where Baseline is triggered as an abnormal spike of violation hap-

pens in the HVS slice (at time slot 12), and thus the resource usage

increases from ∼20% to ∼35% consequently. The proactive baseline

switching mechanism relies on policy 𝜋𝜙 to predict the cost value

function of Baseline, where the predictions may be inaccurate due

to unseen states. In this situation, Baseline is invoked late and the

performance requirement of a slice could be violated slightly as

shown in Fig. 12.

Learning with near-zero violations. Fig. 13 shows the aver-

age SLA violation of OnSlicing with different baseline switching

mechanisms, i.e., OnSlicing-NB (non-baseline) and OnSlicing-NE

(non-estimator), during the online learning phase. Here, OnSlicing-

NB does not switch to Baseline while OnSlicing-NE switches to

Baseline only if the cumulative costs exceed the given SLA threshold

𝐶max without predicting the cost value function. The experimental

results show that OnSlicing-NB has the worst performance in terms

of the average SLA violation (2.94%) because no Baseline can be

switched to when the OnSlicing-NB agent violates the performance

requirement of slices. OnSlicing-NE obtains a less SLA violation

(0.33%) but a higher resource usage than OnSlicing-NB because

it switches to Baseline that has higher resource usages. Table 2

shows the average resource usage and SLA violation achieved by

these mechanisms throughout the online learning phase. Although

OnSlicing-NB and OnSlicing-NE achieve similar average resource

usage, their high average SLA violations suggest the necessity of

the proactive baseline switching mechanism in OnSlicing. Besides,

we manually add a large Gaussian noise with 1.0 variance on the

output of policy 𝜋𝜙 to emulate its prediction error of the cost value

function and evaluate the robustness of OnSlicing. The average

resource usage of OnSlicing Est. Noise is substantially worse than

that of OnSlicing but is similar as that of Baseline. This is because

the baseline switching mechanism reacts when the cumulative cost

Methods Usage (%) Viol. (%) Interact num.

OnSlicing 20.2 ± 0.23 0.00 ± 0.00 1.83 ± 0.61

OnSlicing-projection 18.2 ± 0.50 3.66 ± 2.49 1.00 ± 0.00

OnSlicing Md. Noise 23.8 ± 1.56 2.57 ± 1.66 2.16 ± 1.08

Table 3: Performance of action modifications

violates the SLA threshold (Eq. 8), even if the estimator generates

inaccurate predictions.

Learning in distributed networks. We compare the perfor-

mance of OnSlicing under different action modification methods

in Table 3. Although the OnSlicing-projection method obtains a

slightly lower resource usage than OnSlicing, it incurs a much

higher SLA violation because the over-request resources are scaled

down which results in an under-provisioned resource of slices. On-

Slicing only needs 1.83 times interactions between OnSlicing agents

and domain managers on average, which verifies the effectiveness

of the parameter initialization in consecutive time slots. Besides, we

manually add a large Gaussian noise with 1.0 variance on the output

of the action modifier to emulate its failure of action modification.

Although OnSlicing Md. Noise has an increment in both the re-

source usage and SLA violation, its SLA violation is still lower than

that of OnSlicing-projection method, which verifies the robustness

of OnSlicing. Meanwhile, we evaluate the performance of slices

under fixed coordinating parameters 𝛽𝑘𝑡 ,∀𝑘 ∈ K , on all resources

in Fig. 14. We find that the average resource usage decreases as the

increase of parameters on all resources, which validates that the

action modifier in OnSlicing can adjust the resource orchestration

according to the guide of domain managers.

Besides, we show that the average orchestrated resources gen-

erated by OnSlicing agents for different slices in Fig. 15. It can be

seen that OnSlicing agents learn the inherent characteristics of

different slices in terms of resource demands through the online

learning phase. For example, the MAR slice is allocated more uplink

radio resources 𝑈𝑢 and computing resources 𝑈𝑐 , the HVS slice is

allocated more downlink radio resources𝑈𝑑 , and the RDC slice is

allocated higher MCS offsets 𝑈𝑚,𝑈𝑠 for both uplink and downlink.

Performance in 5G.We evaluate the performance of OnSlicing

in a 5G NSA scenario, in which gNB uses 40MHz bandwidth with

total 106 PRBs (30kHz subcarrier spacing). The TDD configuration

is 5 slots and 6 symbols for downlink, and 4 slots and 4 symbols for

uplink. For stabilizing the 5G experiments, we set a fixed MCS 9

for both uplink and downlink. We apply the fixed MCS for 4G LTE

experiments for a fair comparison. Under this scenario, the average

149

CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany Q. Liu, et al.

Figure 13: Performance of baseline

switching methods

Figure 14: Resource usage under
coordinating parameters

Figure 15: The avg. used resource of slices

Figure 16: Ping delay in LTE

and NR

Figure 17: Individual slice
performance in LTE and NR

throughput measured by iperf3 are 6.71 Mbps UL and 14.3 Mbps

DL in 4G LTE, and 11.5 Mbps UL and 18.5 Mbps DL in 5G NR.

We compare the ping delay between smartphones and SPWG-

Us as shown in Fig. 16. We observe that 5G NR (avg. 11.99 ms)

achieves a substantial reduction of ping delay than 4G LTE (avg.

27.99 ms), which is attributed to RAN improvements as we use the

identical TN and CN for both 4G LTE and 5G NR. The significant

delay reduction as well as the higher data rate of 5G NR help to

improve the performance of various applications. We show CDF

of the slices’ performance, i.e., 𝑝𝑡 (s𝑡 , a𝑡)/𝑃 , in Fig. 17. We observe

that 5G NR achieves noticeable performance improvement on both

MAR slice (avg. latency) and RDC slice (reliability). Meanwhile, the

performance of the HVS slice under 4G LTE and 5G NR are similar

because the streaming server streams to users with a fixed frame

rate and does not saturate the downlink bandwidth. Furthermore,

we show the performance of OnSlicing in both 4G LTE and 5G NR

in Table 4. Considering the fixed MCS setting in the experiment,

more radio resources are needed to meet the requirements of slices,

and thus the average resource usage for both 4G LTE and 5G NR

are increased accordingly. Meanwhile, there is a slight average SLA

violation in 4G LTE since the limited uplink and downlink band-

width cannot handle peak traffic of slices. In contrast, OnSlicing in

5G NR achieves zero violation, which attributes to the high data

rate and low delay in RAN.

Learning in large-scale.We evaluate the performance of On-

Slicing in large-scale emulation, in which mobile users are emulated

with the OAI platform to connect LTE eNB with the L2 network-

FAPI (nFAPI) interface. In particular, the applications in emulated

users send the traffic to edge servers through the emulated Ethernet

ports (e.g., oai-ue1). The rest of the testbed, e.g., RAN, TN, CN, and

EN, are the same as compared to previous experiments. Although

the transmission and processing below layer 2 are omitted, the em-

ulation platform can emulate radio channel dynamics by varying

Figure 18: Performance under

varying user numbers

Figure 19: Performance under

varying slice numbers

Networks Avg. res. usage (%) Avg. SLA violation (%)

5G NR 43.5 ± 3.27 0.00 ± 0.00

4G LTE 45.9 ± 4.48 0.66 ± 1.42

Table 4: OnSlicing performance in 4G LTE and 5G NSA

the capacity per PRB in carrying user data5. As shown in Fig. 18,

the average resource usage of OnSlicing is increased when there are

more users in the MAR slice. Meanwhile, the average SLA violation

is maintained low until the system is overwhelmed by a massive

number of slice users. It is worth to mention that the slice agent

does not need to be retrained when dealing with varying slice traffic.

In addition, we show the average number of interactions between

OnSlicing agents and domain managers as the number of slices

increases in Fig. 19. It can be seen that the number of interactions

is kept low, e.g., 3 times, which verifies that OnSlicing can scale to

orchestrate cross-domain resources in large-scale networks.

8 RELATEDWORK

Network slicing management: Network slicing is the key tech-

nique to cost-efficiently support heterogeneous use cases and ser-

vices [7, 12, 15, 48]. Orion as the first RAN slicing solution [14]

enables dynamic on-the-fly virtualization of base stations, which is

developed based on the FlexRAN platform [15]. Marqueze et. al. [33]

showed the empirical study of resource management efficiency in

network slicing, which advocates the dynamic orchestration of

cross-domain resources. Salvat et. al. [48] proposed two resource

provisioning algorithms that maximize the revenue of MNO in

network slicing, where slices are identified by different PLMN-Ids

5We keep the radio channel quality constant in the emulation as 1) we evaluate the
large-scale performance regarding multi-agent interaction, 2) we keep the stability of
the emulation platform.

150

OnSlicing CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

which is not dynamic. Multiple slice admission and resource pro-

visioning algorithms [12, 20] are proposed to further improve the

efficiency and performance of network slicing systems. However,

these works cannot provide dynamic end-to-end slicing including

RAN, TN, CN, and EN. Also, they formulate problems with approx-

imated mathematical models, which suffer from the discrepancy

between these models and real networks. In contrast, OnSlicing is a

model-free approach and enables online learning to automatically

adapt to real networks.

Machine learning for networking: Machine learning tech-

niques have been increasingly studied to deal with complex and

time-correlated network systems [2, 27, 52, 54]. EdgeSlice [30] uses a

decentralized DRL approach to orchestrate cross-domain resources

in distributed networks to meet slices’ SLA. Bega et. al. [8] pro-

posed DeepCog with deep learning techniques to predict network

capacity within individual slices and balance the tradeoff between

resource over-provisioning and service request violations. Micro-

scope [56] enables efficient service demand estimation of slices by

proposing a deep learning-based decomposition technique to deal

with complex spatiotemporal features hidden in traffic aggregates.

Several works [24, 30, 31] used constrained DRL approaches to

satisfy the constraints in network management by using the re-

ward shaping and Lagrangian primal-dual methods. To bridge the

simulation-to-reality gap, OnRL [57] allows online DRL within real

networks, which improves the performance of the real-time mobile

video telephony by proposing an individualized hybrid learning

algorithm and a learning aggregation mechanism. However, these

works rely on learning algorithms with unconstrained exploration,

which cannot comply with system constraints in infrastructures

and could violate slices’ SLA during the online learning phase.

OnSlicing introduces the constraint-aware policy update method,

proactive baseline switching mechanism and distributed coordina-

tion among agents, which achieves near-zero violations of slices’

SLA and maintains distributed system limitations.

9 DISCUSSION

Scalability. OnSlicing is implemented and evaluated using a small-

scale system testbed, and its performances are verified using ex-

tensive experiments. We design OnSlicing with the consideration

of practical large-scale deployment in operational networks. For

example, we create an individualized agent for each slice, which

can seamlessly scale to support hundreds or thousands of slices in

future. In contrast, the centralization of resource orchestration with

a single agent fails to scale and adapt to network topology changes.

In addition, we develop the distributed coordination mechanism

to maintain resource constraints in infrastructures, which can be

applied to the different number of agents and domain managers.

The overheads incurred by OnSlicing is small, in terms of virtual-

ization of infrastructures, state collection and action enforcement,

and the execution of OnSlicing agents. As OnSlicing is deployed

in a large-scale network, a potential challenge may arise when the

state space is extended to be extremely large, and the action space

turns significantly heterogeneous in terms of enforcement delay.

As a result, the collection of states may aggregate the traffic burden

of transport networks and the enforcement of actions could lead to

imbalance delay by domain managers (e.g., PRB allocation in RAN

needs millisecs while server scaling in EN requires seconds).

Exploration.We design OnSlicing to stop exploration, i.e., base-

line switching, when we predict its failure in slices’ SLA assurance.

Although it might slow down the online learning progress of On-

Slicing agents toward the optimal policy, OnSlicing becomes safer

in the meantime (e.g., near-zero SLA violations). The exploration

of OnSlicing is mainly controlled by the factor 𝜂 in Eq. 8 and the

SLA threshold 𝐶max. With the larger 𝜂 and the smaller SLA thresh-

old, OnSlicing agents are more conservative and switch to baseline

earlier.

Dynamics. OnSlicing agents are trained under various network

dynamics, which allows them to make appropriate orchestration ac-

tions under different states. For example, although the positioning

of smartphones and base stations are stationary, moderate vari-

ations of radio channel conditions of slice users are observed in

experiments. Besides, we emulate traffic variations in slices during

the online learning phase, where each slice may have different traf-

fic patterns and volumes. As OnSlicing is deployed in operational

networks, we may see more dynamics such as new traffic pattern

of slices, and expect OnSlicing agents to adapt to new dynamics

via online learning.

Convergence. In general, DRL agents require a large number

of transitions to learn the optimal policy. This can arise an issue

because the network orchestration in existing operational networks

normally happens at the timescale of hours rather than seconds.

As a result, online learning could take weeks or even months to

achieve the optimal policy. In OnSlicing, the agents offline imitate

the rule-based policy, and then keep learning and improving the

policy performance smoothly during the online learning phase.

In other words, OnSlicing always performs better than the rule-

based policy, which helps mitigate this issue. Furthermore, several

promising techniques could accelerate the learning progress, e.g.,

policy aggregation [57] and federated learning [9], which can be

further incorporated into OnSlicing.

10 CONCLUSION

In this work, we have designed OnSlicing, an online end-to-end

network slicing system. We addressed multiple practical challenges

of online DRL-based resource orchestration including the perfor-

mance assurance of slices and scalability in distributed networks.

The experimental results validated that OnSlicing achieves the min-

imum cross-domain resource usage with near-zero violations of

slices’ SLA throughout the online learning phase. OnSlicing shed

the light on incorporating online DRL into network management

in next-generation mobile networks.

ACKNOWLEDGMENTS

This work is partially completed at Nokia Bell Labs. Dr. Tao Han’s

work is partially supported by the US National Science Founda-

tion under Grant No. 2147821, No. 2147623, No. 2047655, and No.

2049875.

We would like to thank the shepherd, Prof. Sangeetha Abdu

Jyothi for the guidance in refining this paper and anonymous re-

viewers for their insightful comments.

151

CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany Q. Liu, et al.

REFERENCES
[1] Ibrahim Afolabi, Tarik Taleb, et al. 2018. Network slicing and softwarization: A

survey on principles, enabling technologies, and solutions. IEEE Communications
Surveys & Tutorials 20, 3 (2018), 2429–2453.

[2] Shivang Aggarwal, Urjit Satish Sardesai, Viral Sinha, Deen Dayal Mohan, Moinak
Ghoshal, and Dimitrios Koutsonikolas. 2020. LiBRA: learning-based link adapta-
tion leveraging PHY layer information in 60 GHz WLANs. In Proceedings of the
16th International Conference on emerging Networking EXperiments and Technolo-
gies. 245–260.

[3] Akshay Agrawal, Robin Verschueren, Steven Diamond, and Stephen Boyd. 2018.
A rewriting system for convex optimization problems. Journal of Control and
Decision 5, 1 (2018), 42–60.

[4] NGMN Alliance. 2016. Description of network slicing concept. NGMN 5G P 1, 1
(2016).

[5] Jose A Ayala-Romero, Andres Garcia-Saavedra, et al. 2019. vrAIn: A Deep Learn-
ing Approach Tailoring Computing and Radio Resources in Virtualized RANs. In
The 25th Annual International Conference on Mobile Computing and Networking.
1–16.

[6] Gianni Barlacchi, Marco De Nadai, Roberto Larcher, Antonio Casella, Cristiana
Chitic, Giovanni Torrisi, Fabrizio Antonelli, Alessandro Vespignani, Alex Pent-
land, and Bruno Lepri. 2015. A multi-source dataset of urban life in the city of
Milan and the Province of Trentino. Scientific data 2, 1 (2015), 1–15.

[7] Dario Bega, Marco Gramaglia, et al. 2019. A Machine Learning approach to
5G Infrastructure Market optimization. IEEE Transactions on Mobile Computing
(2019).

[8] Dario Bega, Marco Gramaglia, Marco Fiore, Albert Banchs, and Xavier Costa-
Perez. 2019. DeepCog: Optimizing resource provisioning in network slicing with
AI-based capacity forecasting. IEEE Journal on Selected Areas in Communications
38, 2 (2019), 361–376.

[9] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex
Ingerman, Vladimir Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano Mazzocchi,
H Brendan McMahan, et al. 2019. Towards federated learning at scale: System
design. arXiv preprint arXiv:1902.01046 (2019).

[10] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. 2004. Convex opti-
mization. Cambridge university press.

[11] Tianshu Chu, Sandeep Chinchali, and Sachin Katti. 2020. Multi-agent reinforce-
ment learning for networked system control. arXiv preprint arXiv:2004.01339
(2020).

[12] Salvatore D’Oro, Leonardo Bonati, et al. 2020. Sl-EDGE: Network Slicing at the
Edge. arXiv preprint arXiv:2005.00886 (2020).

[13] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. 2016.
Benchmarking deep reinforcement learning for continuous control. In Interna-
tional conference on machine learning. PMLR, 1329–1338.

[14] Xenofon Foukas, Mahesh K Marina, and Kimon Kontovasilis. 2017. Orion: RAN
slicing for a flexible and cost-effective multi-service mobile network architecture.
In Proceedings of the 23rd annual international conference on mobile computing
and networking. 127–140.

[15] Xenofon Foukas, Navid Nikaein, Mohamed M Kassem, Mahesh K Marina, and
Kimon Kontovasilis. 2016. FlexRAN: A flexible and programmable platform for
software-defined radio access networks. In Proceedings of the 12th International
on Conference on emerging Networking EXperiments and Technologies. 427–441.

[16] Xenofon Foukas, Georgios Patounas, et al. 2017. Network slicing in 5G: Survey
and challenges. IEEE Communications Magazine 55, 5 (2017), 94–100.

[17] Tomer Gilad, Neta Rozen-Schiff, P Brighten Godfrey, Costin Raiciu, and Michael
Schapira. 2020. MPCC: online learning multipath transport. In Proceedings of the
16th International Conference on emerging Networking EXperiments and Technolo-
gies. 121–135.

[18] Andrea Goldsmith. 2005. Wireless communications. Cambridge university press.
[19] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep learning. MIT

press.
[20] Bin Han, Vincenzo Sciancalepore, et al. 2019. A utility-driven multi-queue

admission control solution for network slicing. In IEEE INFOCOM 2019-IEEE
Conference on Computer Communications. IEEE, 55–63.

[21] Matthew D Hoffman, David M Blei, Chong Wang, and John Paisley. 2013. Sto-
chastic variational inference. Journal of Machine Learning Research 14, 5 (2013).

[22] Fei Hu, Qi Hao, and Ke Bao. 2014. A survey on software-defined network and
openflow: From concept to implementation. IEEE Communications Surveys &
Tutorials 16, 4 (2014), 2181–2206.

[23] Ali Jemmali, Jean Conan, and Mohammad Torabi. 2013. Bit Error Rate Analysis
of MIMO Schemes in LTE Systems. In The Ninth International Conference on
Wireless and Mobile Communications. 190–194.

[24] Sami Khairy, Prasanna Balaprakash, Lin X Cai, and Yu Cheng. 2020. Constrained
deep reinforcement learning for energy sustainable multi-UAV based random ac-
cess IoT networks with NOMA. IEEE Journal on Selected Areas in Communications
39, 4 (2020), 1101–1115.

[25] Solomon Kullback. 1997. Information theory and statistics. Courier Corporation.

[26] Hoang Le, Nan Jiang, Alekh Agarwal, Miroslav Dudík, Yisong Yue, and Hal
Daumé. 2018. Hierarchical imitation and reinforcement learning. In International
Conference on Machine Learning. PMLR, 2917–2926.

[27] Jinsung Lee, Sungyong Lee, Jongyun Lee, Sandesh Dhawaskar Sathyanarayana,
Hyoyoung Lim, Jihoon Lee, Xiaoqing Zhu, Sangeeta Ramakrishnan, Dirk Grun-
wald, Kyunghan Lee, et al. 2020. PERCEIVE: deep learning-based cellular uplink
prediction using real-time scheduling patterns. In Proceedings of the 18th Interna-
tional Conference on Mobile Systems, Applications, and Services. 377–390.

[28] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. 2015. Continuous control with
deep reinforcement learning. arXiv preprint arXiv:1509.02971 (2015).

[29] Qiang Liu and Tao Han. 2018. Dare: Dynamic adaptive mobile augmented reality
with edge computing. In 2018 IEEE 26th International Conference on Network
Protocols (ICNP). IEEE, 1–11.

[30] Qiang Liu, Tao Han, and Ephraim Moges. 2020. EdgeSlice: Slicing Wireless Edge
Computing Network with Decentralized Deep Reinforcement Learning. arXiv
preprint arXiv:2003.12911 (2020).

[31] Yongshuai Liu, Jiaxin Ding, and Xin Liu. 2020. A Constrained Reinforcement
Learning Based Approach for Network Slicing. In 2020 IEEE 28th International
Conference on Network Protocols (ICNP). IEEE, 1–6.

[32] Hongzi Mao, Malte Schwarzkopf, et al. 2019. Learning scheduling algorithms
for data processing clusters. In Proceedings of the ACM Special Interest Group on
Data Communication. ACM, 270–288.

[33] Cristina Marquez, Marco Gramaglia, Marco Fiore, Albert Banchs, and Xavier
Costa-Perez. 2018. How should I slice my network? A multi-service empiri-
cal evaluation of resource sharing efficiency. In Proceedings of the 24th Annual
International Conference on Mobile Computing and Networking. 191–206.

[34] Mark Masse. 2011. REST API Design Rulebook: Designing Consistent RESTful Web
Service Interfaces. " O’Reilly Media, Inc.".

[35] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Pe-
terson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. 2008. OpenFlow:
enabling innovation in campus networks. ACM SIGCOMM computer communica-
tion review 38, 2 (2008), 69–74.

[36] Jan Medved, Robert Varga, et al. 2014. Opendaylight: Towards a model-driven
SDN controller architecture. In IEEE WoWMoM 2014. IEEE, 1–6.

[37] Dirk Merkel. 2014. Docker: lightweight linux containers for consistent develop-
ment and deployment. Linux journal 2014, 239 (2014), 2.

[38] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).

[39] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
nature 518, 7540 (2015), 529–533.

[40] Chaoyue Niu, FanWu, Shaojie Tang, Lifeng Hua, Rongfei Jia, Chengfei Lv, Zhihua
Wu, and Guihai Chen. 2020. Billion-scale federated learning on mobile clients: A
submodel design with tunable privacy. In Proceedings of the 26th Annual Interna-
tional Conference on Mobile Computing and Networking. 1–14.

[41] OpenAirInterface Software Alliance. Openair-cn repository.
https:gitlab.eurecom.fr/oai/openair-cn. 2017.

[42] OpenAirInterface Software Alliance. OpenAirInterface repository.
https:gitlab.eurecom.fr/oai/openairinterface5g. 2017.

[43] Santiago Paternain, Luiz Chamon, et al. 2019. Constrained Reinforcement Learn-
ing Has Zero Duality Gap. In Advances in Neural Information Processing Systems.
7553–7563.

[44] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. the
Journal of machine Learning research 12 (2011), 2825–2830.

[45] Xukan Ran, Haolianz Chen, Xiaodan Zhu, Zhenming Liu, and Jiasi Chen. 2018.
Deepdecision: Amobile deep learning framework for edge video analytics. In IEEE
INFOCOM 2018-IEEE Conference on Computer Communications. IEEE, 1421–1429.

[46] Harish Ravichandar, Athanasios S Polydoros, Sonia Chernova, and Aude Billard.
2020. Recent advances in robot learning from demonstration. Annual Review of
Control, Robotics, and Autonomous Systems 3 (2020), 297–330.

[47] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. 2011. ORB: An
efficient alternative to SIFT or SURF. In 2011 International conference on computer
vision. Ieee, 2564–2571.

[48] Josep Xavier Salvat, Lanfranco Zanzi, et al. 2018. Overbooking network slices
through yield-driven end-to-end orchestration. In ACM CoNEXT. ACM, 353–365.

[49] Lawrence K Saul, Tommi Jaakkola, and Michael I Jordan. 1996. Mean field theory
for sigmoid belief networks. Journal of artificial intelligence research 4 (1996),
61–76.

[50] William Saunders, Girish Sastry, Andreas Stuhlmueller, and Owain Evans. 2017.
Trial without error: Towards safe reinforcement learning via human intervention.
arXiv preprint arXiv:1707.05173 (2017).

[51] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347

152

OnSlicing CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

(2017).
[52] Haoyu Wang, Zetian Liu, and Haiying Shen. 2020. Job scheduling for large-scale

machine learning clusters. In Proceedings of the 16th International Conference on
emerging Networking EXperiments and Technologies. 108–120.

[53] ITUR WP5D. 2017. Minimum requirements related to technical performance for
IMT-2020 radio interface (s).

[54] Francis Y Yan, Hudson Ayers, Chenzhi Zhu, Sadjad Fouladi, James Hong, Keyi
Zhang, Philip Levis, and Keith Winstein. 2020. Learning in situ: a randomized
experiment in video streaming. In 17th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 20). 495–511.

[55] Cheng Zhang, Judith Bütepage, Hedvig Kjellström, and Stephan Mandt. 2018.
Advances in variational inference. IEEE transactions on pattern analysis and
machine intelligence 41, 8 (2018), 2008–2026.

[56] Chaoyun Zhang, Marco Fiore, Cezary Ziemlicki, and Paul Patras. 2020. Micro-
scope: mobile service traffic decomposition for network slicing as a service. In
Proceedings of the 26th Annual International Conference on Mobile Computing and
Networking. 1–14.

[57] Huanhuan Zhang, Anfu Zhou, Jiamin Lu, RuoxuanMa, Yuhan Hu, Cong Li, Xinyu
Zhang, Huadong Ma, and Xiaojiang Chen. 2020. OnRL: improving mobile video
telephony via online reinforcement learning. In Proceedings of the 26th Annual
International Conference on Mobile Computing and Networking. 1–14.

[58] Liehuang Zhu, Md Monjurul Karim, Kashif Sharif, Fan Li, Xiaojiang Du, and
MohsenGuizani. 2019. SDN controllers: Benchmarking& performance evaluation.
arXiv preprint arXiv:1902.04491 (2019).

153

