

## NTM Infection Risk and Trace Metals in Surface Water: A Population-Based Ecologic Epidemiologic Study in Oregon.

Ettie M. Lipner, Ph.D., M.P.H.<sup>1,2</sup>, Joshua P. French, Ph.D.<sup>3</sup>, Joseph O. Falkinham III, Ph.D.<sup>4</sup>, James L. Crooks, Ph.D., M.S.<sup>2,5</sup>, Rachel A. Mercaldo, Ph.D.<sup>6</sup>, Emily Henkle, Ph.D., M.P.H.<sup>7</sup>, D. Rebecca. Prevots<sup>8</sup>, Ph.D., M.P.H.

<sup>1</sup>Center for Genes, Environment and Health, National Jewish Health, Denver, CO USA;

<sup>2</sup>Department of Epidemiology, Colorado School of Public Health, Aurora, CO USA; <sup>3</sup>Department of Mathematical and Statistical Sciences, University of Colorado Denver, Denver, CO USA;

<sup>10</sup> <sup>4</sup>Virginia Tech, Blacksburg, VA, USA; <sup>5</sup>Division of Biostatistics and Bioinformatics, National

11 Jewish Health, Denver, CO USA; <sup>6</sup>Department of Epidemiology and Biostatistics, University of  
12 Georgia, Atlanta, GA USA; <sup>7</sup>OHSU-PSU School of Public Health, Oregon Health & Science  
13 University, Portland, OR, USA; <sup>8</sup>National Institute of Allergy and Infectious Diseases, National  
14 Institutes of Health, Bethesda, MD USA.

15

16 ORCID ID: 0000-0002-3805-8270 (EML); 0000-0002-9708-3353 (JPF); 000-0002-4391-9012  
17 (JOF); 000-0002-0021-5701 (JLC); 0000-0003-20216020 (RAM); 0000-0003-0339-9873 (DRP).

18

#### 19 Address for correspondence:

20 Ettie M. Lipner, Ph.D., M.P.H.; Center for Genes, Environment and Health, National Jewish  
21 Health, 1400 Jackson Street, Denver, CO 80602. Tel: 303-398-1861. Email:

22 LipnerE@NJHealth.org

23

24 Authors' Contributions: EML conceived of the study. EML, JLC, and DRP designed the study.  
25 EML, RAM, and EH acquired the data. EML and JPF analyzed the data. EML, JOF and DRP  
26 interpreted the data and drafted the manuscript. EML, JPF, JOF, JLC, RAM, EH, and DRP  
27 provided intellectual input into the manuscript revisions.

28

29 **FUNDING SOURCES:** EML was supported by the Cystic Fibrosis Foundation, Clinical Pilot and  
30 Feasibility Award. DRP was supported by the Division of Intramural Research, NIAID. JPF was  
31 supported by NSF awards 1463642 and 1915277. JLC was supported by NSF award 1743597.  
32 RAM was supported by NSF award DGE-1545433.

33

34 All authors report no conflict of interest.

35

36 **Running title:** NTM infection and trace metals in Oregon.

37 **Descriptor Number:** 11.5 Non-Tuberculous Mycobacterial Infection

38

39 Total word count: 2,998

40

41 "This article has an online data supplement, which is accessible from article's home page."

42

43 **ABSTRACT**

44 **Rationale:** Nontuberculous mycobacteria (NTM) are ubiquitous environmental bacteria, and  
45 some pathogenic species cause lung disease. Environmental factors contribute to increased  
46 NTM abundance, with higher potential for exposure and infection.

47 **Objective:** To identify water-quality constituents that influence the risk of NTM infection in  
48 Oregon.

49 **Methods:** We conducted a population-based cohort study using patient incidence data from  
50 the Oregon statewide NTM laboratory data collected as part of a public health surveillance  
51 project from 2007 through 2012. To estimate the risk of NTM Pulmonary Infection (PI) from  
52 exposure to water constituents, we extracted water-quality data from the Water Quality Portal  
53 and associated these data with corresponding patient county of residence. Using generalized  
54 linear models, we modeled two outcomes: *Mycobacterium avium* complex species PI and  
55 *Mycobacterium abscessus* group species PI.

56 **Results:** For every 1-unit increase in the log concentration of vanadium in surface water,  
57 infection risk increased by 49% among persons with *Mycobacterium avium* complex PI. Among  
58 those with *Mycobacterium abscessus* PI, we observed that for every 1-unit increase in the log  
59 concentration of molybdenum in surface water, infection risk increased by 41%. The highest  
60 risk of infection due to *Mycobacterium abscessus* group infection was concentrated in counties  
61 within the Northwestern region of Oregon. High infection risk associated with *Mycobacterium*  
62 *avium* complex species did not show any geographic pattern.

63 **Conclusions:** Concentrations of the trace metals molybdenum and vanadium in surface water  
64 sources were associated with NTM infection in Oregon. These findings may help identify  
65 regions at higher risk of NTM infection to guide risk reduction strategies.

66

67 **Abstract word count:** 252

68 **Keywords:** nontuberculous mycobacteria; molybdenum; vanadium; surface water;  
69 Environmental Epidemiology.

70 **1. INTRODUCTION**

71 The incidence and prevalence of nontuberculous mycobacterial pulmonary infection  
72 (NTM PI) have increased over the past decades (1), with an increasing burden of lung disease in  
73 the United States (U.S.) (2-4). NTM are widespread in natural and engineered environments,  
74 such as soil, natural water, water distribution systems, and biofilms in municipal water supplies.  
75 However, the distribution of NTM disease across the U.S varies by geographic region for both  
76 the general and high-risk populations (2, 5). Certain environmental conditions likely contribute  
77 to increased NTM abundance, leading to increased exposure with higher potential for NTM  
78 infection and disease. One study (6) found that NTM abundance in showerheads, as measured  
79 by 16S rRNA gene sequencing, was significantly correlated with higher NTM disease prevalence  
80 in those same areas.

81 Analysis of environmental risks within a single geographic area such as a state allow for  
82 more precise data regarding environmental risk. In prior studies, we identified high-risk regions  
83 for NTM infection in Colorado (7) and found that molybdenum in surface water was  
84 significantly associated with a higher likelihood of NTM infection in both a hospital-based  
85 cohort (8) and in a cystic fibrosis patient population (9). Here, we extend our inquiries into the  
86 state of Oregon to identify water-quality constituents associated with NTM infection in a  
87 different geographic region. We associated water-quality data from the Water Quality Portal  
88 (10), with Oregon statewide NTM microbiology data from a public health surveillance project.

89 **2. METHODS**

90 Population-based NTM patient data for January 1, 2007 through December 31, 2012 were  
91 provided by the Oregon Health Authority and the Oregon Health & Science University (OHSU)

92 (11). NTM PI cases were defined using the ATS microbiologic definition of NTM PI (12). This  
93 study was approved by the NJH Institutional Review Board (HS-3410). We used 2010 U.S.  
94 Census data from Oregon (13) for total population per county as well as age, sex, and  
95 racial/ethnic categories, and population density.

96 Oregon surface water-quality data were extracted from the Water Quality Portal (WQP)  
97 (10) for the period January 1, 1997 through December 31, 2012. Surface water describes all the  
98 water on the Earth's surface, such as in a stream, river, lake, or reservoir (14). The cleaned  
99 dataset included 33 water-quality constituents from 78,141 total samples collected from 1,373  
100 unique sampling sites. Following data curation steps (see online supplement), twenty water-  
101 quality constituents remained for analysis (Supplementary Table 1). We obtained precipitation  
102 data from the National Centers for Environmental Information at the National Oceanic and  
103 Atmospheric Administration (15) and calculated the median value for each county in Oregon in  
104 2010. Data were analyzed using R packages (see Methods Supplement). We calculated the  
105 median value of each water-quality constituent for each county (see Methods Supplement).  
106 Water-quality constituents were eliminated if data were not available for more than 50 percent  
107 of counties, leaving twenty constituents for analysis (Supplementary Table 1, Supplementary  
108 Table 2), which were then natural log transformed and standardized; missing values were  
109 imputed (see Methods Supplement). Principal Component Analysis (PCA) was performed on the  
110 county-level dataset using the PCA function. We retained the top four principal components,  
111 which explained 64.9% of the variability in the water-quality dataset. We identified the most  
112 important variables in explaining variability of the top four principal components (online  
113 Supplement). Any constituent with a contribution above the reference line (red dashed line in

114      Supplementary Figure E1) was considered important in contributing to the principal  
115      components (16, 17).

116            We used negative binomial regression models to model infection risk as a function of  
117      water-quality constituents. Infection risk was modelled in R through negative binomial  
118      regression models with the observed number of cases in a given county during the study period  
119      as the numerator, and the annual county population as the denominator (modeled using the  
120      log of the population as the offset). County-level median values of each water-quality  
121      constituent as well as county-level mean age, race, sex, and precipitation were included as  
122      predictors. We estimated NTM PI incidence given exposure to water-quality constituents in  
123      surface water sources, with significance assessed at  $p<0.05$ . We modeled two separate  
124      outcomes: NTM PI incidence associated with *Mycobacterium avium* complex (MAC) species,  
125      and NTM PI incidence associated with *Mycobacterium abscessus* species, as a function of  
126      water-quality constituents and other covariates (Supplementary Table 3). We calculated the  
127      variance inflation factor (VIF) for each water-quality constituent in each model, and included  
128      only those water-quality constituents with VIFs less than 10 (Table 1; Model 1). We constructed  
129      separate single-constituent regression models (Models 2 & 3) for the metals that demonstrated  
130      statistical significance from Model 1 ( $p<0.05$ ). Lastly, to create Figures E1 & E2, we used the  
131      best-fit estimates of the county-specific risks from the negative binomial models.

132      **3. RESULTS**

133      **3.1 Study Population Characteristics**

134      Our study population comprised 1,138 persons with incident microbiologically confirmed NTM  
135      pulmonary infection (NTM PI) at any point during 2007 through 2012 and resident in Oregon.

136 The mean age of pulmonary NTM patients was 66.5 years (range, 0.9 to 97 years). The  
137 proportion female was 55.9%. Of the 1,138 NTM PI patients, 1015 (89.2%) had slowly growing  
138 species, including 980 (86.1%) with MAC species. An additional 93 (8.2%) had rapidly growing  
139 species, including 80 (7.0%) with *M. abscessus*. Because MAC and *M. abscessus* comprised the  
140 majority of the slowly growing and rapidly growing species isolated from patients, respectively,  
141 we focused our analysis on two main outcomes: NTM PI associated with MAC species, and NTM  
142 PI associated with *M. abscessus* species.

### 143 **3.2 Regression Models with Individual Metals from Top 4 Principal Components**

144 Based on a predefined threshold (see Methods Supplement), we identified 13 out of 20  
145 constituents that were important contributors to the top four principal components  
146 (Supplementary Figure E1): aluminum, arsenic, boron, calcium, copper, iron, magnesium,  
147 manganese, molybdenum, nickel, potassium, sodium, and vanadium. We modeled the risk of  
148 NTM PI as a function of these 13 water-quality constituents (Supplementary Table 3). To build  
149 Model 1 (Table 1), we selected water-quality constituents (Supplementary Table 3) whose  
150 variance inflation factors (VIF) were below 10 to mitigate the potential impact of collinear  
151 covariate constituents. In each model, we sequentially removed the constituent with the  
152 highest VIF and reran the model until all constituents had VIFs less than 10. In Table 1, sodium,  
153 magnesium, and copper were omitted from each final model. When modeling NTM PI  
154 associated with *M. abscessus* complex, aluminum was also omitted. The correlation matrix for  
155 water-quality constituents is available in Supplementary Table 4.

156 In Model 1 (Table 1) for NTM PI associated with MAC, vanadium was positively  
157 associated with infection. For NTM PI associated with *M. abscessus* complex, molybdenum was

158 significantly positively associated with infection and nickel had borderline significance. We then  
159 modeled the risk of NTM PI as a function of each significant metal from Model 1 in separate  
160 single-constituent models (Models 2 & 3) ( $p < 0.05$ ). When we modeled the risk of MAC  
161 infection (Table 2; Model 2) as a function of each significant metal from Model 1, vanadium  
162 remained statistically significant. For every 1-log unit increase in vanadium concentrations in  
163 surface water at the county level, the risk of infection associated with MAC increased by 49%.  
164 When we modeled the risk of *M. abscessus* infection as a function of each significant metal in  
165 Model 1, molybdenum remained significant, while nickel did not (Table 3; Model 3). For every  
166 1-log unit increase in molybdenum concentrations in surface water at the county level, the risk  
167 of infection increased by 41%. In all models, we controlled for age, sex, race, and precipitation.  
168 Precipitation was included as a covariate because it has been shown to be related to infection  
169 risk (18) as well as being significantly associated with many individual water-quality  
170 constituents in our dataset. When adjusting for multiple comparisons using the Bonferroni  
171 method (5 models, new p-value=0.01), vanadium remained significant in Model 1 (p-value =  
172 0.005), but did not exceed significance in Model 2 (p-value = 0.015). Molybdenum did not retain  
173 significance in either Model 1 (p-value = 0.047) or Model 3 (p-value = 0.027).  
174 When examining model fit for *M. abscessus*, we noticed that counties with small population  
175 size often exhibited evidence of poor fit by the model. To further study this effect, we  
176 performed a sensitivity analysis by including only counties with populations of  $\geq 30,000$ . The  
177 effect of molybdenum on NTM risk for *M. abscessus* infection remained significant  
178 (Supplementary Table 5). We also included population density as a variable in our final single-  
179 constituent models to determine whether this variable contributed to NTM infection risk. When

180 we included population density (Supplementary Table 6), the association between vanadium  
181 and risk of MAC infection remained significant; however, population density was also  
182 statistically significant. When we included population density (Supplementary Table 7), the  
183 association observed between molybdenum and risk of *M. abscessus* infection remained  
184 significant, and population density was not statistically significant.

185 We estimated NTM PI incidence by county for MAC and *M. abscessus* infections using  
186 models adjusted for demographic covariates. Figure E1 shows the adjusted model for MAC  
187 infection with vanadium included as an independent predictor (Model 2; Table 2). We observed  
188 the highest risk counties dispersed throughout the state (Crook, Wallowa, Polk, Wasco, Lane,  
189 Jackson, and Linn counties). Figure E2 is based on the adjusted regression model for those with  
190 *M. abscessus* infection and included molybdenum as an independent predictor (Model 3; Table  
191 3). We observed the highest risk counties for *M. abscessus* infection in the Northwestern region  
192 of the state, while the remaining counties were at lower risk.

193

#### 194 **4. DISCUSSION**

195 We found that for MAC and *M. abscessus* infection, increasing concentrations of  
196 vanadium and molybdenum in surface water, respectively, were associated with an increased  
197 risk of NTM PI. Counties with a high risk of *M. abscessus* were concentrated in the  
198 Northwestern region of the state and in Deschutes county in the center of the state, whereas  
199 counties with high risk of MAC showed no discernable pattern. Interestingly, while Multnomah  
200 county demonstrated the highest risk of *M. abscessus* infection, the risk estimate for MAC  
201 infection represented the average compared to all counties. This finding from Oregon residents

202 with pulmonary NTM infections confirms our previous findings from the Colorado residents  
203 with NTM infections, that molybdenum was significantly associated with an increased risk of  
204 NTM infection (8). In addition, in a separate case-control study with a population-based sample  
205 of CF patients in Colorado, molybdenum in the surface waters of the county of residence  
206 significantly increased the odds of having an *M. abscessus* infection. We found that among CF  
207 patients, for every 1-unit increase in the molybdenum concentration in surface water, the odds  
208 of *M. abscessus* infection increased by 79% compared with those who were NTM-negative (9).  
209 This finding from an independent patient population in a separate geographic area of the U.S.  
210 lends validity to our current results.

211 Our study is the first to report that increased risk of MAC infection is associated with  
212 vanadium concentrations in surface water. Experimental evidence demonstrating the  
213 relationship between vanadium concentrations and environmental MAC abundance is not  
214 currently available. Several mechanisms are plausible. Vanadium could stimulate or inhibit  
215 growth of MAC depending on the concentration. Dose-dependent inhibition has been observed  
216 with other metals. For example, zinc (Zn) concentrations were correlated with NTM numbers in  
217 acidic, brown water coastal swamps of the southeastern US (19), yet high zinc concentrations  
218 are toxic. Vanadate (VO<sub>4</sub>) substitutes for phosphate (PO<sub>4</sub>) and has been shown to be an  
219 inhibitor of membrane-bound ATPase in vesicles of *Mycobacterium phlei* (20), suggesting that  
220 mycobacteria might be sensitive to high vanadium concentrations. However, the ATPase  
221 inhibition was measured using membrane vesicles of *M. phlei*, not whole cells where the  
222 ATPase would likely be protected by the thick, lipid-rich outer membrane of mycobacteria (21).  
223 As MAC are resistant to heavy metals (22), high vanadium concentrations might not inhibit

224 energy generation in MAC as much as it would in other microbes. That would provide a  
225 competitive advantage to MAC in natural soils and waters. Other demonstrated activities of  
226 vanadium as cofactors for nitrogenases and haloperoxidases (23) might be operative in MAC to  
227 provide them with reduced nitrogen ( $\text{NH}_4$ ) or protect them from toxic halides (respectively). As  
228 molybdenum (Mo) is a known cofactor of nitrogen and nitrate-reduction (24), the presence of  
229 vanadium in Oregon soils and waters might provide an alternative source of reduced nitrogen  
230 for mycobacterial growth. The growth of mycobacteria in natural, low nutrient waters (25)  
231 suggests that the mycobacteria can obtain nitrogen via  $\text{N}_2$  fixation. Current data from U.S.  
232 Geological Surveys (26), demonstrate that Oregon has elevated concentrations of vanadium in  
233 soil throughout the state (Supplementary Figure E2). Although our reported association is  
234 based on vanadium concentrations in surface water, vanadium soil content may be a proxy for  
235 vanadium concentrations in surface water (direct communication with U.S. Geological Survey  
236 scientist, Dr. Katherine Walton-Day). Further studies in other geographic regions are necessary  
237 to confirm or refute this association.

238 The risk of *M. abscessus* infection from environmental molybdenum in water sources  
239 could be related to either the mycobacteria or humans independently. Molybdenum enzymes  
240 in mycobacteria exert important physiological functions, and other research suggests a  
241 physiological connection linking molybdenum and essential metabolism of *Mycobacterium*  
242 *tuberculosis*, potentially affecting survival, pathogenesis, and persistence. *Mycobacteria*  
243 *tuberculosis* as well as NTM contain proteins for the importation and utilization of  
244 molybdenum, including the molybdate ATP-binding cassette (ABC) importer genes *modA*,  
245 *modB*, and *modC* (27-30). Several studies on *M. tuberculosis* have shown that ABC importers

246 are associated with physiology and pathogenicity (31-33), implying that this pathogen cannot  
247 grow in the host without specific nutrients. It has been reported for *M. tuberculosis* that a  
248 mutant of molybdate transport protein, pModA, contributed to decreased survival in mice  
249 lungs, suggesting that the uptake of molybdenum was required for the survival of this pathogen  
250 (34). In a recent study (35) that explored the role of ABC importers for potential drug and  
251 vaccine targets in *M. tuberculosis*, the authors indicated that a lack of molybdenum importation  
252 may affect the biosynthesis of molybdenum cofactor (MoCo), which has been suggested to be  
253 associated with pathogenesis (29) and persistence (28) of *M. tuberculosis*. Because *M.*  
254 *tuberculosis* and NTM are phylogenetically related organisms, this connection offers biological  
255 plausibility that molybdenum in water sources influences growth and persistence of NTM as  
256 well.

257 Our study has some limitations. First, we are estimating infections and not disease,  
258 because detailed patient clinical and radiographic data for patients with these infections were  
259 not available. However, the presence of these infections is a marker for NTM in the  
260 environment. In addition, the positive predictive value (PPV) for of 2 cultures for predictive  
261 disease is high. As stated in the current NTM diagnostic guidelines, “Clinically significant MAC  
262 pulmonary disease is unlikely in patients who have a single positive sputum culture during the  
263 initial evaluation [5-7], but can be as high as 98% in those with at least 2 positive cultures [5]”  
264 (12). In addition, the ATS microbiologic criteria have been found to have a predictive value for  
265 true disease of 86% (36). Second, because this is an observational study, we cannot infer  
266 causation from these findings alone. However, the association between molybdenum and risk  
267 of *M. abscessus* infection has now been upheld in three studies using different study designs,

268 patient populations and geographic locations (8, 9). These findings strengthen the possible  
269 causal relationship between the presence of molybdenum in surface water and the risk of NTM  
270 infection. In our study, we used infection incidence as a proxy for NTM abundance in the  
271 environment. Again, the effects of molybdenum could be influencing the bacteria, the humans  
272 or both. For example, molybdenum could increase *M. abscessus* numbers in waters, increasing  
273 the probability of infection. Alternatively, or in conjunction, molybdenum could be influencing  
274 human susceptibility of *M. abscessus* infection. In a Korean study, Oh *et al.* (37) reported that  
275 pulmonary NTM patients had significantly higher molybdenum concentrations in their blood  
276 serum (1.70 µg/L) compared with healthy controls (0.96 µg/L) and patients with pulmonary  
277 tuberculosis (0.67 µg/L). Our study used an ecologic design, which is both a strength and a  
278 limitation: by definition, an ecologic study measures exposure at the group level, in this case  
279 county, and not the individual. Thus, water-quality constituent exposure may vary for each  
280 patient even within the same county. However, measurement of exposure to water quality  
281 constituents at the population level may capture exposures in a population more fully than is  
282 feasible at the individual level. In addition, both host and environmental factors each contribute  
283 to infection risk, with host susceptibility playing an important role. For these reasons we should  
284 not be extrapolating population risk to individual probability of infection (38).

285 Our approach assumes that areas with high infection incidence correlate with regions of  
286 high NTM abundance (6), where regional environmental factors create a favorable environment  
287 for NTM to persist, thereby increasing the risk of infection. Our causal inferences were  
288 strengthened by obtaining water quality data for a period prior to the incidence of NTM  
289 infections. Although we did not have information on the duration of residence in a given

290 county, one study from Oregon showed a relatively long residence duration, mean 13.6 years,  
291 in Multnomah county, Oregon, the most highly populated county in the state (39). While the  
292 incubation period for NTM infection has not been defined, our findings are further  
293 strengthened by the fact that the trace metals analyzed did not show much fluctuation over the  
294 fifteen-year period (1997-2012) (data not shown), such that measured concentrations of these  
295 surface metals likely represent an average exposure of the population in that area.

296 We hypothesize that some environmental water sources present a higher abundance or  
297 risk of exposure to NTM due to the presence of certain trace metals in surface water sources,  
298 particularly molybdenum or vanadium, that may alter the metabolism and pathogenicity of  
299 these organisms. Ongoing *in vitro* studies as well as population-based studies conducted in  
300 other geographic regions will help to confirm this hypothesis and further assess the evidence  
301 for causality. Whether molybdenum or vanadium in the human host alters the ability to  
302 respond to or contain infection is also the subject of future research.

303   **ACKNOWLEDGEMENTS:** The authors thank Dr. Daniel Wise (USGS Oregon) and Dr. Katherine  
304   Walton-Day (USGS Colorado) for their expertise and consultation on our water-quality  
305   constituent dataset.

306 **References**

307 1. Prevots DR, Marras TK. Epidemiology of human pulmonary infection with  
308 nontuberculous mycobacteria: a review. *Clin Chest Med.* 2015;36(1):13-34.

309 2. Adjemian J, Olivier KN, Seitz AE, Holland SM, Prevots DR. Prevalence of  
310 nontuberculous mycobacterial lung disease in U.S. Medicare beneficiaries. *Am J Respir Crit*  
311 *Care Med.* 2012;185(8):881-6.

312 3. Strollo SE, Adjemian J, Adjemian MK, Prevots DR. The Burden of Pulmonary  
313 Nontuberculous Mycobacterial Disease in the United States. *Ann Am Thorac Soc.*  
314 2015;12(10):1458-64.

315 4. Winthrop KL, Marras TK, Adjemian J, Zhang H, Wang P, Zhang Q. Incidence and  
316 Prevalence of Nontuberculous Mycobacterial Lung Disease in a Large U.S. Managed Care  
317 Health Plan, 2008-2015. *Ann Am Thorac Soc.* 2020;17(2):178-85.

318 5. Adjemian J, Olivier KN, Prevots DR. Nontuberculous mycobacteria among patients with  
319 cystic fibrosis in the United States: screening practices and environmental risk. *Am J Respir Crit*  
320 *Care Med.* 2014;190(5):581-6.

321 6. Gebert MJ, Delgado-Baquerizo M, Oliverio AM, Webster TM, Nichols LM, Honda JR,  
322 et al. Ecological Analyses of Mycobacteria in Showerhead Biofilms and Their Relevance to  
323 Human Health. *mBio.* 2018;9(5).

324 7. Lipner EM, Knox D, French J, Rudman J, Strong M, Crooks JL. A Geospatial  
325 Epidemiologic Analysis of Nontuberculous Mycobacterial Infection: An Ecological Study in  
326 Colorado. *Ann Am Thorac Soc.* 2017;14(10):1523-32.

327 8. Lipner EM, French J, Bern CR, Walton-Day K, Knox D, Strong M, et al. Nontuberculous  
328 Mycobacterial Disease and Molybdenum in Colorado Watersheds. *Int J Environ Res Public*  
329 *Health.* 2020;17(11).

330 9. Lipner EM, Crooks JL, French J, Strong M, Nick JA, Prevots DR. Nontuberculous  
331 mycobacterial infection and environmental molybdenum in persons with cystic fibrosis: a case–  
332 control study in Colorado. *Journal of Exposure Science & Environmental Epidemiology.* 2021.

333 10. U.S. Geological Survey NWQMC. Water Quality Portal 2012 [Available from:  
334 <https://www.waterqualitydata.us/portal/>.

335 11. Henkle E, Hedberg K, Schafer S, Novosad S, Winthrop KL. Population-based Incidence  
336 of Pulmonary Nontuberculous Mycobacterial Disease in Oregon 2007 to 2012. *Ann Am Thorac*  
337 *Soc.* 2015;12(5):642-7.

338 12. Daley CL, Iaccarino JM, Lange C, Cambau E, Wallace RJ, Jr., Andrejak C, et al.  
339 Treatment of Nontuberculous Mycobacterial Pulmonary Disease: An Official  
340 ATS/ERS/ESCMID/IDSA Clinical Practice Guideline. *Clin Infect Dis.* 2020;71(4):e1-e36.

341 13. Bureau USC. 2008-2015 American Community Survey-5 Year Data. 2016.

342 14. Survey USG. Dictionary of Water Terms  
343 . In: Interior Dot, editor.

344 15. National Centers for Environmental Information NOaAA. Precipitation. September,  
345 2020.

346 16. A. K. Practical Guide To Principal Component Methods in R: PCA, M(CA), FAMD,  
347 MFA, HCPC, factoextra: STHDA (<http://www.sthda.com>); 2017.

348 17. analysis SSth-tpd. Articles - Principal Component Methods in R: Practical Guide. CA -  
349 Correspondence Analysis in R: Essentials [Available from:  
350 [http://www.sthda.com/english/articles/31-principal-component-methods-in-r-practical-](http://www.sthda.com/english/articles/31-principal-component-methods-in-r-practical-guide/113-ca-correspondence-analysis-in-r-essentials/)  
351 [guide/113-ca-correspondence-analysis-in-r-essentials/](http://www.sthda.com/english/articles/31-principal-component-methods-in-r-practical-guide/113-ca-correspondence-analysis-in-r-essentials/).

352 18. Winthrop KL, Varley CD, Ory J, Cassidy PM, Hedberg K. Pulmonary disease associated  
353 with nontuberculous mycobacteria, Oregon, USA. *Emerg Infect Dis.* 2011;17(9):1760-1.

354 19. Kirschner RA, Jr., Parker BC, Falkinham JO, 3rd. Epidemiology of infection by  
355 nontuberculous mycobacteria. *Mycobacterium avium, Mycobacterium intracellulare, and*  
356 *Mycobacterium scrofulaceum* in acid, brown-water swamps of the southeastern United States  
357 and their association with environmental variables. *Am Rev Respir Dis.* 1992;145(2 Pt 1):271-5.

358 20. Yoshimura F, Brodie AF. Interaction of vanadate with membrane-bound ATPase from  
359 *Mycobacterium phlei*. *J Biol Chem.* 1981;256(23):12239-42.

360 21. Brennan PJ, Nikaido H. The envelope of mycobacteria. *Annu Rev Biochem.* 1995;64:29-  
361 63.

362 22. Falkinham JO, 3rd, George KL, Parker BC, Gruft H. In vitro susceptibility of human and  
363 environmental isolates of *Mycobacterium avium*, *M. intracellulare*, and *M. scrofulaceum* to  
364 heavy-metal salts and oxyanions. *Antimicrob Agents Chemother.* 1984;25(1):137-9.

365 23. Rehder D. The role of vanadium in biology. *Metalomics.* 2015;7(5):730-42.

366 24. Glass JB, Axler RP, Chandra S, Goldman CR. Molybdenum limitation of microbial  
367 nitrogen assimilation in aquatic ecosystems and pure cultures. *Front Microbiol.* 2012;3:331.

368 25. George KL, Parker BC, Gruft H, Falkinham JO, 3rd. Epidemiology of infection by  
369 nontuberculous mycobacteria. II. Growth and survival in natural waters. *Am Rev Respir Dis.*  
370 1980;122(1):89-94.

371 26. Smith DB, Solano, Federico, Woodruff, L.G., Cannon, W.F., and Ellefsen, K.J.  
372 Geochemical and mineralogical maps, with interpretation, for soils of the conterminous United  
373 States: U.S. Geological Survey Scientific Investigations Report 2017-5118. Denver, CO:  
374 U.S. Department of the Interior, U.S. Geological Survey; 2019 [Available from:  
375 [https://pubs.usgs.gov/sir/2017/5118/sir20175118\\_element.php?el=23](https://pubs.usgs.gov/sir/2017/5118/sir20175118_element.php?el=23).

376 27. Levillain F, Poquet Y, Mallet L, Mazeres S, Marceau M, Brosch R, et al. Horizontal  
377 acquisition of a hypoxia-responsive molybdenum cofactor biosynthesis pathway contributed to  
378 *Mycobacterium tuberculosis* pathoadaptation. *PLoS Pathog.* 2017;13(11):e1006752.

379 28. Williams MJ, Kana BD, Mizrahi V. Functional analysis of molybdopterin biosynthesis in  
380 mycobacteria identifies a fused molybdopterin synthase in *Mycobacterium tuberculosis*. *J*  
381 *Bacteriol.* 2011;193(1):98-106.

382 29. McGuire AM, Weiner B, Park ST, Wapinski I, Raman S, Dolganov G, et al. Comparative  
383 analysis of *Mycobacterium* and related *Actinomycetes* yields insight into the evolution of  
384 *Mycobacterium tuberculosis* pathogenesis. *BMC Genomics.* 2012;13:120.

385 30. Braibant M, Gilot P, Content J. The ATP binding cassette (ABC) transport systems of  
386 *Mycobacterium tuberculosis*. *FEMS Microbiol Rev.* 2000;24(4):449-67.

387 31. Sassetti CM, Boyd DH, Rubin EJ. Comprehensive identification of conditionally  
388 essential genes in mycobacteria. *Proc Natl Acad Sci U S A.* 2001;98(22):12712-7.

389 32. Sassetti CM, Rubin EJ. Genetic requirements for mycobacterial survival during infection.  
390 *Proc Natl Acad Sci U S A.* 2003;100(22):12989-94.

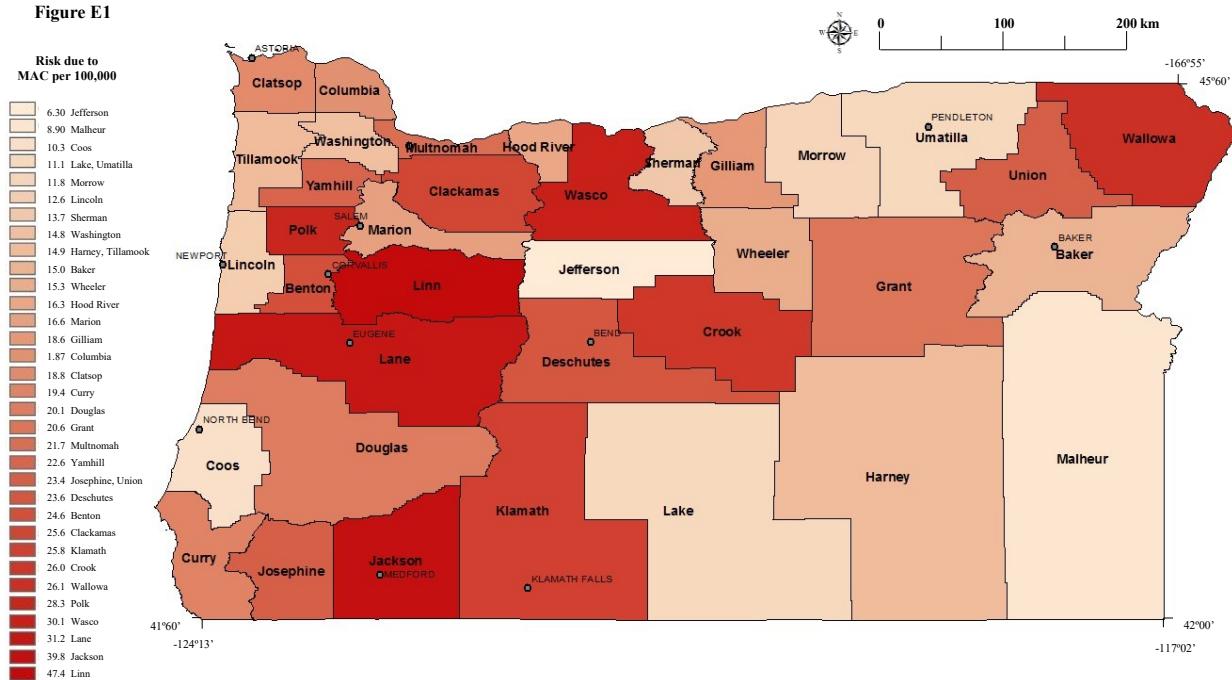
391 33. Price CT, Bukka A, Cynamon M, Graham JE. Glycine betaine uptake by the ProXVWZ  
392 ABC transporter contributes to the ability of *Mycobacterium tuberculosis* to initiate growth in  
393 human macrophages. *J Bacteriol.* 2008;190(11):3955-61.

394 34. Camacho LR, Ensergueix D, Perez E, Gicquel B, Guilhot C. Identification of a virulence  
395 gene cluster of *Mycobacterium tuberculosis* by signature-tagged transposon mutagenesis. *Mol*  
396 *Microbiol.* 1999;34(2):257-67.

397 35. Soni DK, Dubey SK, Bhatnagar R. ATP-binding cassette (ABC) import systems of  
398 Mycobacterium tuberculosis: target for drug and vaccine development. *Emerg Microbes Infect.*  
399 2020;9(1):207-20.

400 36. Winthrop KL, McNelley E, Kendall B, Marshall-Olson A, Morris C, Cassidy M, et al.  
401 Pulmonary nontuberculous mycobacterial disease prevalence and clinical features: an emerging  
402 public health disease. *Am J Respir Crit Care Med.* 2010;182(7):977-82.

403 37. Oh J, Shin SH, Choi R, Kim S, Park HD, Kim SY, et al. Assessment of 7 trace elements  
404 in serum of patients with nontuberculous mycobacterial lung disease. *J Trace Elem Med Biol.*  
405 2019;53:84-90.


406 38. Szklo M. *Epidemiology Beyond the Basics*. 2nd ed. Sudbury, MA: Jones and  
407 Bartlett Publishers; 2007. 489 p.

408 39. Sedman R, Funk LM, Fountain R. Distribution of residence duration in owner occupied  
409 housing. *J Expo Anal Environ Epidemiol.* 1998;8(1):51-8.

410

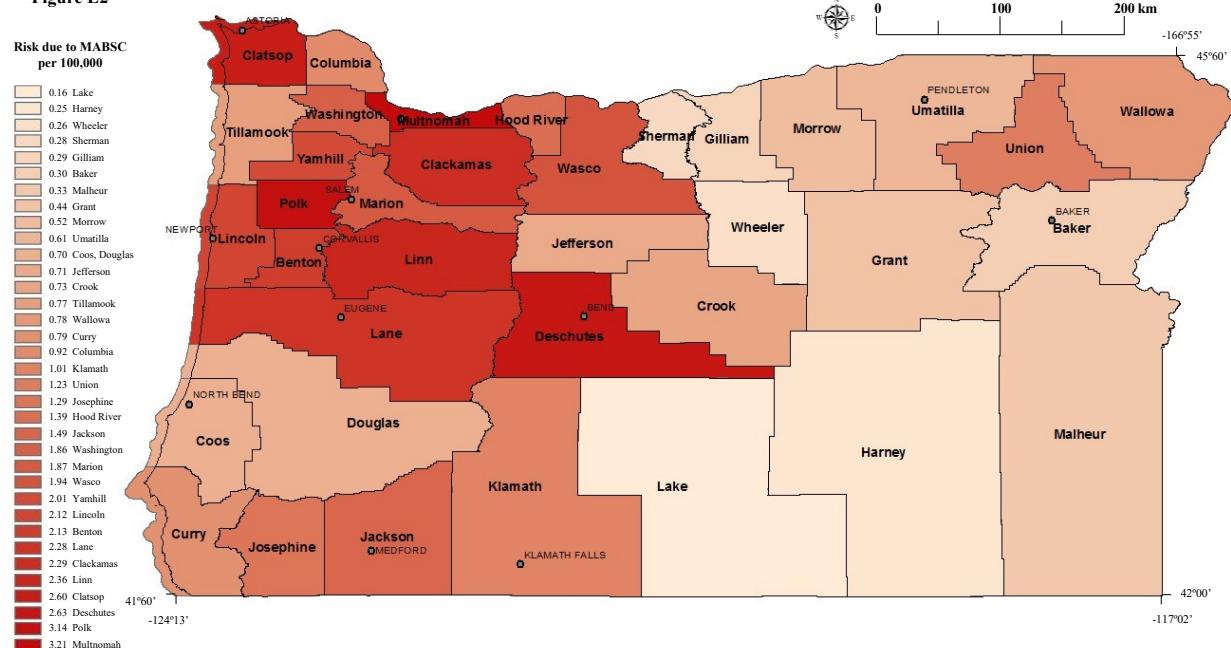

411 **Figure Legend.**  
412

Figure E1



413  
414  
415 Figure E1. Risk of MAC infection for counties where NTM patients resided based on a vanadium  
416 regression model (Model 2; Table 2). Gray lines represent county line boundaries in Oregon.  
417 County names are printed in boldface type, city names are printed in capital font.  
418

Figure E2



419

420 Figure E2. Risk of *M. abscessus* infection for counties where NTM patients resided based on a  
 421 molybdenum regression model (Model 3; Table 3). Gray lines represent county line boundaries  
 422 in Oregon. County names are printed in boldface type, city names are printed in capital font.  
 423

424 Table 1. Model 1. Negative binomial regression model examining water-quality constituents  
 425 (with VIF values less than 10) associated with NTM infection risk in Oregon. Bolded estimates  
 426 are statistically significant ( $p < 0.05$ ). CI = Confidence Interval.

| MAC species                |                                      | <i>M. abcessus</i> complex species |                                                    |
|----------------------------|--------------------------------------|------------------------------------|----------------------------------------------------|
| Variable                   | Relative Risk<br>(95% CI)<br>p-value | Variable                           | Relative Risk<br>(95% CI)<br>p-value               |
| Age:<br>(1 Year)           | 0.99<br>(0.91, 1.07)<br>0.841        | Age:<br>(1 Year)                   | 0.99<br>(0.82, 1.17)<br>0.943                      |
| Sex:<br>Female             | 1.10<br>(0.83, 1.46)<br>0.503        | Sex:<br>Female                     | 1.81<br>(0.94, 3.91)<br>0.100                      |
| Race:<br>Non-White*        | 0.96<br>(0.89, 1.02)<br>0.159        | Race:<br>Non-White*                | 1.04<br>(0.92, 1.17)<br>0.503                      |
| Precipitation<br>(inches)  | 1.01<br>(0.99, 1.03)<br>0.135        | Precipitation<br>(inches)          | 1.01<br>(0.97, 1.04)<br>0.777                      |
| Aluminum<br>(1-log unit)   | 0.84<br>(0.59, 1.21)<br>0.354        | Arsenic<br>(1-log unit)            | 1.11<br>(0.55, 2.24)<br>0.758                      |
| Arsenic<br>(1-log unit)    | 1.10<br>(0.84, 1.44)<br>0.492        | Boron<br>(1-log unit)              | 1.19<br>(0.67, 2.21)<br>0.563                      |
| Boron<br>(1-log unit)      | 1.10<br>(0.79, 1.52)<br>0.568        | Calcium<br>(1-log unit)            | 1.36<br>(0.48, 3.80)<br>0.553                      |
| Calcium<br>(1-log unit)    | 1.34<br>(0.80, 2.23)<br>0.248        | Iron<br>(1-log unit)               | 1.13<br>(0.66, 1.88)<br>0.641                      |
| Iron<br>(1-log unit)       | 0.87<br>(0.61, 1.24)<br>0.430        | Manganese<br>(1-log unit)          | 1.27<br>(0.77, 2.10)<br>0.356                      |
| Manganese<br>(1-log unit)  | 1.02<br>(0.76, 1.38)<br>0.892        | Molybdenum<br>(1-log unit)         | <b>2.08</b><br><b>(1.02, 4.49)</b><br><b>0.047</b> |
| Molybdenum<br>(1-log unit) | 0.93<br>(0.63, 1.37)<br>0.721        | Nickel<br>(1-log unit)             | <b>0.61</b><br><b>(0.37, 1.03)</b><br><b>0.054</b> |
| Nickel<br>(1-log unit)     | 1.23<br>(0.89, 1.71)<br>0.232        | Potassium<br>(1-log unit)          | 0.73<br>(0.32, 1.71)<br>0.459                      |
| Potassium<br>(1-log unit)  | 0.92<br>(0.60, 1.409)<br>0.679       | Vanadium<br>(1-log unit)           | 1.16<br>(0.64, 2.06)<br>0.616                      |

|                          |                                                    |  |  |
|--------------------------|----------------------------------------------------|--|--|
| Vanadium<br>(1-log unit) | <b>1.66</b><br><b>(1.12, 2.50)</b><br><b>0.005</b> |  |  |
|--------------------------|----------------------------------------------------|--|--|

430

431 \*Reference group is White Alone

432 Table 2. Model 2. Negative binomial regression model examining significant metals from Model  
433 1 and other covariates associated with NTM infection risk for MAC species in Oregon. Bolded  
434 estimates are statistically significant ( $p < 0.05$ ). CI = Confidence Interval

435 \*Reference group is White Alone

436

| Characteristic            | Relative Risk<br>95% CI<br>p-value                 |
|---------------------------|----------------------------------------------------|
| Age:<br>(1 Year)          | 0.99<br>(0.92, 1.08)<br>0.953                      |
| Sex:<br>Female            | 1.18<br>(0.92, 1.53)<br>0.207                      |
| Race:<br>Non-White*       | 0.97<br>(0.92, 1.02)<br>0.239                      |
| Precipitation<br>(inches) | 1.01<br>(0.99, 1.02)<br>0.273                      |
| Vanadium<br>(1-log unit)  | <b>1.49</b><br><b>(1.06, 2.10)</b><br><b>0.015</b> |

437 Table 3. Model 3. Negative binomial regression model examining significant metals from  
438 Model 1 and other covariates associated with NTM infection risk for *M. abscessus* species in  
439 Oregon.

440 Bolded estimates are statistically significant ( $p < 0.05$ ). CI = Confidence Interval

441 \*Reference group is White Alone

442

| Characteristic             | Relative Risk<br>95% CI<br>p-value                 | Characteristic            | Relative Risk<br>95% CI<br>p-value |
|----------------------------|----------------------------------------------------|---------------------------|------------------------------------|
| Age:<br>(1 Year)           | 0.92<br>(0.80, 1.03)<br>0.189                      | Age:<br>(1 Year)          | 0.91<br>(0.79, 1.02)<br>0.123      |
| Sex:<br>Female             | 1.60<br>(0.98, 2.95)<br>0.092                      | Sex:<br>Female            | 1.30<br>(0.84, 2.21)<br>0.293      |
| Race:<br>Non-White*        | 1.03<br>(0.96, 1.11)<br>0.420                      | Race:<br>Non-White*       | 0.98<br>(0.93, 1.05)<br>0.624      |
| Precipitation<br>(inches)  | 1.01<br>(0.99, 1.03)<br>0.181                      | Precipitation<br>(inches) | 1.01<br>(0.99, 1.02)<br>0.372      |
| Molybdenum<br>(1-log unit) | <b>1.41</b><br><b>(1.05, 1.93)</b><br><b>0.027</b> | Nickel<br>(1-log unit)    | 1.04<br>(0.74, 1.45)<br>0.812      |