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Abstract. We establish sharp bounds for the second moment of symmetric-square L-
functions attached to Hecke Maass cusp forms uj with spectral parameter tj , where the
second moment is a sum over tj in a short interval. At the central point s = 1/2 of the
L-function, our interval is smaller than previous known results. More specifically, for |tj |
of size T , our interval is of size T 1/5, while the previous best was T 1/3 from work of Lam.
A little higher up on the critical line, our second moment yields a subconvexity bound for
the symmetric-square L-function. More specifically, we get subconvexity at s = 1/2 + it
provided |tj |6/7+δ ≤ |t| ≤ (2− δ)|tj | for any fixed δ > 0. Since |t| can be taken significantly
smaller than |tj |, this may be viewed as an approximation to the notorious subconvexity
problem for the symmetric-square L-function in the spectral aspect at s = 1/2.

1. Introduction

1.1. Background. The widely studied subconvexity problem for automorphic L-functions
is completely resolved for degree ≤ 2. For uniform bounds, over arbitrary number fields,
this is due to Michel and Venkatesh [MV]; for superior quality bounds in various special
cases, this is due to many authors, of which a small sample is [JM, BH, Bo, BHKM, PY].
The next frontier is degree 3, but here the subconvexity problem remains a great challenge,
save for a few spectacular successes. The first breakthrough is due to Xiaoqing Li [Li], who
established subconvexity for L(f, 1/2 + it) on the critical line (t-aspect), where f is a fixed
self-dual Hecke-Maass cusp form for SL3(Z). This result was generalized by Munshi [M1],
by a very different method, to forms f that are not necessarily self-dual. Munshi [M2] also
established subconvexity for twists L(f × χ, 1/2) in the p-aspect, where χ is a primitive
Dirichlet character of prime modulus p. Subconvexity in the spectral aspect of f itself is
much harder, and even more so when f is self-dual due to a conductor-dropping phenomenon.
Blomer and Buttcane [BB], Kumar, Mallesham, and Singh [KMS], and Sharma [Sh] have
established subconvexity for L(1/2, f) in the spectral aspect of f in many cases, but excluding
the self-dual forms.

A self-dual GL3 Hecke-Maass cusp form is known to be a symmetric-square lift from
GL2 [Soud]. Let uj be a Hecke-Maass cusp form for the full modular group SL2(Z), with
Laplace eigenvalue 1/4 + t2j . It is an outstanding open problem to prove subconvexity for

the associated symmetric-square L-function L(sym2uj, 1/2) in the tj-aspect. Such a bound
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would represent major progress in the problem of obtaining a power-saving rate of decay in
the Quantum Unique Ergodicity problem [IS]. A related problem is that of establishing the
Lindelöf-on-average bound ∑

T≤tj≤T+∆

|L(sym2uj, 1/2 + it)|2 � ∆T 1+ε(1.1)

where we assume throughout that T ε ≤ ∆ ≤ T 1−ε, and we generally aim to take ∆ as small
as possible. Such an estimate is interesting in its own right, and also yields by positivity a
bound for each L-value in the sum. At the central point (t = 0), if (1.1) can be established
for ∆ = T ε, it would give the convexity bound for L(sym2uj, 1/2); the hope would then
be to insert an amplifier in order to prove subconvexity. While a second moment bound
which implies convexity at the central point is known in the level aspect by the work of
Iwaniec and Michel [IM], in the spectral aspect the problem is much more difficult. The
best known result until now for (1.1) was ∆ = T 1/3+ε by Lam [La]. (Lam’s work actually
involves symmetric-square L-functions attached to holomorphic Hecke eigenforms, but his
method should apply equally well to Hecke-Maass forms.) Other works involving moments
of symmetric square L-functions include [Bl1,K,J,KD,BF,Ba,N].

1.2. Main results. One of the main results of this paper is an approximate version of the
subconvexity bound for L(sym2uj, 1/2). Namely, we establish subconvexity for L(sym2uj, 1/2+
it) for t small, but not too small, compared to 2tj. This hybrid bound (stated precisely be-
low) seems to be the first subconvexity bound for symmetric-square L-functions in which the
dominant aspect is the spectral parameter tj. For comparison, note that bookkeeping the
proofs of Li [Li] or Munshi [M1] would yield hybrid subconvexity bounds for tj (very) small
compared to t. Our method also yields a hybrid subconvexity bound for L(sym2uj, 1/2 + it)
when t is larger (but not too much larger) than 2tj, but for simplicity we refrain from making
precise statements. We do not prove anything when t is close to 2tj, for in this case the
analytic conductor of the L-function drops. In fact it is then the same size as the analytic
conductor at t = 0, where the subconvexity problem is the hardest.

Our approach is to establish a sharp estimate for the second moment as in (1.1), which is
strong enough to yield subconvexity in certain ranges.

Theorem 1.1. Let 0 < δ < 2 be fixed, and let U, T,∆ > 1 be such that

(1.2)
T 3/2+δ

∆3/2
≤ U ≤ (2− δ)T.

We have

(1.3)
∑

T<tj<T+∆

|L(sym2uj, 1/2 + iU)|2 � ∆T 1+ε.

Corollary 1.2. Let 0 < δ < 2 be fixed. For |tj|6/7+δ ≤ U ≤ (2 − δ)|tj|, we have the hybrid
subconvexity bound

(1.4) L(sym2uj, 1/2 + iU)� |tj|1+εU−1/3.

Proof. The bound follows by taking ∆ = T 1+δU−2/3 in Theorem 1.1 with δ chosen small
enough. When U ≥ T 6/7+δ, this bound is subconvex. �
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Note that in Theorem 1.1, we are able to take ∆ as small as T 1/3 at best. This requires
T � U ≤ (2 − δ)T and for instance yields the subconvexity bound L(sym2uj, 1/2 + itj) �
|tj|2/3+ε.

We might also speculate that the lower bound in (1.2) could plausibly be relaxed to
∆U � T 1+δ (possibly with an additional term on the right hand side of (1.3), as in (12.10))
which would give subconvexity in the wider range T 2/3+δ ≤ U ≤ (2−δ)T . For some reasoning
on this, see the remark following (9.16).

For the central values we do not get subconvexity but we are able to improve the state of
the art for the second moment. This is the other main result of this paper: we establish a
Lindelöf-on-average estimate for the second moment with ∆ as small as T 1/5+ε.

Theorem 1.3. For ∆ ≥ T 1/5+ε and 0 ≤ U � T ε we have

(1.5)
∑

T<tj<T+∆

|L(sym2uj, 1/2 + iU)|2 � ∆T 1+ε.

It is a standing challenge to prove a Lindelöf-on-average bound in (1.5) with ∆ = 1.
Theorem 1.3 also has implications for the quantum variance problem. To explain this,

recall that Quantum Unique Ergodicity [Lin,Soun] says that for any smooth, bounded func-
tion ψ on Γ\H, we have that 〈|uj|2, ψ〉 → 3

π
〈1, ψ〉 as tj →∞. By spectrally decomposing ψ,

this is equivalent to demonstrating the decay of 〈|uj|2, ϕ〉 and 〈|uj|2, EU〉, where ϕ is a fixed
Hecke-Maass cusp form and EU = E(·, 1

2
+ iU) is the standard Eisenstein series with U fixed.

The quantum variance problem is the problem of understanding the variance of these crucial
quantitites. More precisely, the quantum variance problem asks for non-trivial bounds on

(1.6)
∑

T<tj<T+∆

|〈u2
j , ϕ〉|2,

as well as the Eisenstein contribution

(1.7)
∑

T<tj<T+∆

|〈u2
j , EU〉|2.

Our Theorem 1.3 gives, by classical Rankin-Selberg theory, a sharp bound on (1.7) for
∆ ≥ T 1/5+ε. In turn, by Watson’s formula [W], a sharp estimate for (1.6) boils down to
establishing

(1.8)
∑

T<tj<T+∆

L(sym2uj ⊗ ϕ, 1/2)� ∆T 1+ε.

It is plausible that the methods used to prove Theorem 1.3 should also generalize to show
(1.8) for ∆ ≥ T 1/5+ε, which would improve [J], but this requires a rigorous proof. For
quantum variance in the level aspect, see [N].

1.3. Overview. We now give a rough sketch of our ideas for Theorems 1.1 and 1.3, both
of which consider the second moment of the symmetric-square L-function. Let h(t) be a
smooth function supported essentially on T < |t| < T + ∆, such as the one given in (6.2).
For 0 ≤ U ≤ (2 − δ)T , the analytic conductor of L(sym2uj, 1/2 + iU) is of size T 2(U + 1),
so using an approximate functional equation, we have roughly∑

j≥1

|L(sym2uj, 1/2 + iU)|2h(tj) =
∑
j≥1

∑
m,n≤T 1+ε(U+1)1/2

λj(m
2)λj(n

2)

m1/2+iUn1/2−iU h(tj),
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which we need to show is bounded by T 1+ε∆. Applying the Kuznetsov formula, the diagonal
contribution is of size O(T 1+ε∆), while the off-diagonal contribution is roughly∑

m,n≤T 1+ε(U+1)1/2

1

m1/2+iUn1/2−iU

∑
c≥1

S(m2, n2, c)

c
H
(4πmn

c

)
for some transform H of h, given in (6.6). We have by developing (6.12) that H(x) is

essentially supported on x ≥ T 1−ε∆ and roughly has the shape H(x) = T∆
x1/2

ei(x−T
2/x). Thus

in the generic ranges m,n ∼ T (U + 1)1/2 and c ∼ mn
T∆

, writing (n/m)iU = e(U log(n/m)/2π)
and not being very careful about factors of π and such, the off-diagonal is

∆3/2

U3/2T 3/2

∑
m,n∼T (U+1)1/2

∑
c∼T (U+1)/∆

S(m2, n2, c)e
(2mn

c

)
e
(
− T 2c

mn
+ U log(n/m)

)
.(1.9)

The oscillatory factor e(−T 2c
nm

+ U log(n/m)) behaves differently according to whether U is
large or small. When U is large, the dominant phase is U log(n/m), while when U is small,

the dominant phase is −T 2c
nm
∼ − T

∆
.

Consider one extreme end of our problem: the case U = T (covered by Theorem 1.1), so
that the convexity bound is T 3/4+ε. Since the diagonal after Kuznetsov is O(T 1+ε∆), the
largest we can take ∆ to establish subconvexity is ∆ = T 1/2−δ for some δ > 0. Thus for the
off-diagonal, what we need to prove is roughly (specializing (1.9) to U = T,∆ = T 1/2 and
retaining only the dominant phase)

1

T 9/4

∑
m,n∼T 3/2

∑
c∼T 3/2

S(m2, n2, c)e
(2mn

c

)
e(T log(n/m))� T 3/2.(1.10)

We split the n and m sums into residue classes modulo c and apply Poisson summation to
each. The off-diagonal then equals

1

T 9/4

∑
c∼T 3/2

∑
k,`∈Z

1

c2
T (k, `, c)I(k, `, c),

where

I(k, `, c) =

∫∫
e
(−kx− `y

c
+ T log x− T log y

)
w
( x

T 3/2
,
y

T 3/2

)
dxdy

for some smooth weight function w which restricts support to x ∼ T 3/2, y ∼ T 3/2, and

T (k, `, c) =
∑

a,b mod c

S(a2, b2, c)e
(2ab+ ak + b`

c

)
.

We compute this arithmetic sum in section 5 and roughly get T (k, `, c) = c3/2(k`
c

)e(−k`
4c

).
The integral is computed using stationary phase (see Sections 4 and 8). We see that it is
negligibly small unless k, ` ∼ T , in which case we get roughly I(k, `, c) = T 2e(k`

c
)(k/`)iT (see

Lemma 9.3 for the rigorous statement). Thus we need to show

1

T

∑
k,`∼T

∑
c∼T 3/2

(k
`

)iT
e
(3k`

4c

)(k`
c

)
� T 3/2.

At this point we go beyond previous approaches to the second moment problem [IM,La] by
finding cancellation in the c sum. We split the c sum into arithmetic progresssions modulo k`
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by quadratic reciprocity and apply Poisson summation, getting that the off-diagonal equals

(1.11)
1

T

∑
k,`∼T

(k
`

)iT∑
q∈Z

1

k`

∑
a mod k`

( a
k`

)
e
(−aq
k`

)∫
e
(3k`

4x
+
qx

k`

)
w
( x

T 3/2

)
dx.

This Poisson summation step may be viewed as the key new ingredient in our paper. It
leads to a simpler expression in two ways. Firstly, an integration by parts argument shows
that the q-sum can be restricted to q ∼ T , which is significantly shorter than the earlier
c-sum of length T 3/2. A more elaborate stationary phase analysis of the integral shows that
the integral is essentially independent of k and `, which can be seen in rough form by the
substitution x→ xk` in (1.11). The reader will not actually find an expression like (1.11) in
the paper because we execute Poisson summation in c in the language of Dirichlet series and
functional equations. This allows us to more effectively deal with some of the more delicate
features of this step. For example, see Remark 11.5.

Evaluating the arithmetic sum and using stationary phase to compute the integral in
(1.11), we get that the off-diagonal equals

1

T 3/4

∑
k,`∼T

∑
q∼T

e(
√
q)
( q
k`

)(k
`

)iT
=

1

T 3/4

∑
q∼T

e(
√
q)
∣∣∣∑
k∼T

( q
k

)
kiT
∣∣∣2.(1.12)

Finally, applying Heath-Brown’s [H-B] large sieve for quadratic characters, we get that the
off-diagonal is O(T 5/4+ε), which is better than the required bound in (1.10).

Now consider Theorem 1.3, which deals with the other extreme end of our problem where
U is small. The treatment of this follows the same plan as sketched above for large values of
U , but the details are changed a bit because the oscillatory factor in (1.9) behaves differently.
Consider the case U = 0 (the central point) and ∆ = T 1/5, which is the best we can do in
Theorem 1.3. In the end, instead of (1.12), one arrives roughly at an expression of the form

(1.13)
∑

q∼T 6/5

e(T 1/2q1/4)
∣∣∣ ∑
k∼T 3/5

(k
q
)
√
k

∣∣∣2.
Again, Heath-Brown’s quadratic large sieve is the end-game, giving a bound of ∆T 1+ε =
T 6/5+ε. It is a curious difference that the q-sum in (1.13) is now actually longer than the
c-sum from which it arose via Poisson summation, in contrast to the situation with U = T
presented earlier. However, the gain is that the variables q and k become separated in the
exponential phase factor (indeed, k is completely removed from the phase in (1.13)).

1.4. Notational Conventions. Throughout, we will follow the epsilon convention, in which
ε always denotes an arbitrarily small positive constant, but not necessarily the same one from
one occurrence to another. As usual, we will write e(x) = e2πix, and ec(x) = e(x/c). For
n a positive odd integer, we let χn(m) = (m

n
) denote the Jacobi symbol. If s is complex,

an expression of the form O(p−s) should be interpreted to mean O(p−Re(s)). This abuse of
notation will only be used on occasion with Euler products. We may also write O(p−min(s,u))
in place of O(p−min(Re(s),Re(u))).

Upper bounds in terms of the size of U are usually expressed, since U may be 0, in terms
of 1 + U . However to save clutter, such upper bounds will be written in terms of U only.
This is justified at the start of section 6.

Acknowledgement. We are grateful to the anonymous referee for an exceptionally thor-
ough and helpful review.
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2. Automorphic forms

2.1. Symmetric-square L-functions. Let uj be a Hecke-Maass cusp form for the modular
group SL2(Z) with Laplace eigenvalue 1/4 + t2j , and n-th Hecke eigenvalue λj(n). It has

an associated symmetric-square L-function defined by L(sym2uj, s) =
∑

n≥1 λsym2uj(n)n−s,

with λsym2uj(n) =
∑

a2b=n λj(b
2). Let ΓR(s) = π−s/2Γ(s/2) and γ(sym2uj, s) = ΓR(s)ΓR(s +

2itj)ΓR(s − 2itj). Then L(sym2uj, s) has an analytic continuation to C and satisfies the
functional equation γ(sym2uj, s)L(sym2uj, s) = γ(sym2uj, 1− s)L(sym2uj, 1− s), where the
notation for γ(f, s) agrees with [IK, Chapter 5]. In particular, the analytic conductor of
L(sym2uj, 1/2 + it) equals

(2.1) (1 + |t|)(1 + |t+ 2tj|)(1 + |2tj − t|).

2.2. The Kuznetsov formula. Let h(z) be an even, holomorphic function on |=(z)| < 1
2
+δ,

with decay |h(z)| � (1 + |z|)2−δ, for some δ > 0. Let {uj : j ≥ 1} denote an orthonormal
basis of Maass cusp forms of level q with Laplace eigenvalue 1

4
+ t2j and Fourier expansion

uj(z) = y
1
2

∑
n 6=0

ρj(n)Kitj(2π|n|y)e(nx),

where z = x + iy and Kitj is the K-Bessel function. At each inequivalent cusp a of Γ0(q),

let Ea(·, 1
2

+ it) be the associated Eisenstein series with Fourier expansion

Ea(z,
1
2

+ it) = δa=∞y
1
2

+it + ϕa(
1
2

+ it)y
1
2
−it + y

1
2

∑
n 6=0

τa(n, t)Kit(2π|n|y)e(nx),

where ϕa(s) is meromorphic on C. These expansions may be found in [IK, (16.19),(16.22)].

Lemma 2.1 (Kuznetsov’s formula [IK, Theorem 16.3]). For any n,m > 0 we have

∑
j≥1

ρj(n)ρj(m)
h(tj)

cosh(πtj)
+
∑
a

1

4π

∫ ∞
−∞

τa(n, t)τ a(m, t)
h(t)dt

cosh(πt)

= δ(n=m)

∫ ∞
−∞

h(t)t tanh(πt)
dt

π2
+
i

π

∑
c≡0 mod q

S(n,m, c)

c

∫ ∞
−∞

J
(4π
√
nm

c
, t
)
h(t)t tanh(πt)dt,

where J(x, t) =
J2it(x)− J−2it(x)

sinh(πt)
.

Later, we will need to use the Kuznetsov formula for level 24. We will choose our orthonor-
mal basis to include the level 1 Hecke-Maass forms, for which we may write

ρj(n)ρj(m)
h(tj)

cosh(πtj)
= λj(n)λj(m)

h(tj)|pj(1)|2

cosh(πtj)
,

and note that t−εj �
|ρj(1)|2

cosh(πtj)
� tεj by [HM, (30)] together with the fact that L2-normalization

in Γ0(24) and Γ0(1) is the same up to a constant factor.
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3. The quadratic large sieve

We will have need of Heath-Brown’s large sieve inequality for quadratic characters:

Theorem 3.1 (Heath-Brown [H-B]). Let M,N � 1. Then

(3.1)
∑∗

m≤M

∣∣∣∑∗

n≤N

an

( n
m

)∣∣∣2 � (M +N)(MN)ε
∑
n≤N

|an|2,

where the sums are restricted to odd square-free integers.

We will need a corollary of Heath-Brown’s result, namely

(3.2)
∑
m≤M

|L(1/2 + it, χm)|2 � (M +
√
M(1 + |t|))(M(1 + |t|))ε,

This follows from an approximate functional equation, and a simple observation that the
square parts of the inner and outer variables are harmless. Similarly, we obtain

(3.3)
∑
m≤M

m−1/2|L(1/2 + it, χm)|2 �
(
M1/2 + (1 + |t|)1/2

)
(M(1 + |t|))ε.

4. Oscillatory integrals

Throughout this paper we will make extensive use of estimates for oscillatory integrals.
We will largely rely on the results of [KPY] (built on [BKY]) which uses the language of
families of inert functions. This language gives a concise way to track bounds on derivatives
of weight functions. It also has the pleasant property that, loosely speaking, the class of inert
functions is closed under application of the stationary phase method (the precise statement
is in Lemma 4.3 below). We refer the reader to [KPY] for a more thorough discussion,
including examples of applying stationary phase using this language.

Let F be an index set and X = XT : F → R≥1 be a function of T ∈ F .

Definition 4.1. A family {wT}T∈F of smooth functions supported on a product of dyadic
intervals in Rd

>0 is called X-inert if for each j = (j1, . . . , jd) ∈ Zd≥0 we have

(4.1) CF(j1, . . . , jd) := sup
T∈F

sup
(x1,...,xd)∈Rd>0

X−j1−···−jdT

∣∣∣xj11 · · · xjdd w(j1,...,jd)
T (x1, . . . , xd)

∣∣∣ <∞.
As an abuse, we might say that a single function is 1-inert (or simply inert) by which we

should mean that it is a member of a family of 1-inert functions .

Lemma 4.2 (Integration by parts bound [BKY]). Suppose that w = wT (t) is a family of
X-inert functions, with compact support on [Z, 2Z], so that for all j = 0, 1, . . . we have
the bound w(j)(t) � (Z/X)−j. Also suppose that φ is smooth and satisfies for j = 2, 3, . . .
φ(j)(t)� Y

Zj
for some R ≥ 1 with Y/X ≥ R and all t in the support of w. Let

I =

∫ ∞
−∞

w(t)eiφ(t)dt.

If |φ′(t)| � Y
Z

for all t in the support of w, then I �A ZR
−A for A arbitrarily large.
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Lemma 4.3 (Stationary phase, [BKY] [KPY]). Suppose wT is X-inert in t1, . . . td, supported
on t1 � Z and ti � Xi for i = 2, . . . , d. Suppose that on the support of wT , φ = φT satisfies

(4.2)
∂a1+a2+···+ad

∂ta11 . . . ∂tadd
φ(t1, t2, . . . , td)�CF

Y

Za1

1

Xa2
2 . . . Xad

d

,

for all a1, . . . , ad ∈ N with a1 ≥ 1. Suppose φ′′(t1, t2, . . . , td) � Y
Z2 , (here and below, φ′ and

φ′′ denote the derivative with respect to t1) for all t1, t2, . . . , td in the support of wT , and for
each t2, . . . , td in the support of φ there exists t0 � Z such that φ′(t0, t2, . . . , td) = 0. Suppose
that Y/X2 ≥ R for some R ≥ 1. Then

(4.3) I =

∫
R
eiφ(t1,...,td)wT (t1, . . . , td)dt1 =

Z√
Y
eiφ(t0,t2,...,td)WT (t2, . . . , td) +OA(ZR−A),

for some X-inert family of functions WT , and where A > 0 may be taken to be arbitrarily
large. The implied constant in (4.3) depends only on A and on CF defined in (4.1).

The fact that WT is inert with respect to the same variables as wT (with the exception of
t1, of course) is highly convenient. In practice, we may often temporarily suppress certain
variables from the notation. This is justified provided that the functions satisfy the inertness
condition in terms of these variables. We also remark that if d = 1, then WT (t2, . . . td) is a
constant.

The following remark will be helpful for using Lemma 4.3 in an iterative fashion. First
note that t0 is the unique function of t2, . . . , td which solves φ′(t1, . . . , td) = 0 when viewed
as an equation in t1. In other words, t0 is defined implicitly by φ′(t0, . . . , td) = 0. In practice
it might be an unwelcome task to explicitly solve for t0, and the following discussion will aid
in avoiding this issue. Let

(4.4) Φ(t2, . . . , td) = φ(t0, t2, . . . , td),

so by the chain rule,

(4.5)
∂

∂tj
Φ(t2, . . . , td) = φ′(t0, t2, . . . , td)

∂t0
∂tj

+
∂

∂tj
φ(t0, . . . , tj) =

∂

∂tj
φ(t0, . . . , tj),

and so on for higher derivatives. Hence the derivatives of Φ have the same bounds as those
on φ (supposing uniformity with respect to the first variable t1).

As a simple yet useful consequence of this, if φ satisfies (4.2) (with Z replaced by X1, say)

as well as ∂2

∂t2j
φ(t1, . . . , td)� Y

X2
j
≥ R ≥ 1 for j = 1, 2, . . . , k, uniformly for all t1, . . . , td in the

support of wT , then

(4.6)

∫
Rk
eiφ(t1,...,td)wT (t1, . . . , td)dt1 . . . dtk =

X1 . . . Xk

Y k/2
eiφ(v0;tk+1,...,td)WT (tk+1, . . . , td)

+O
(X1 . . . Xk

RA

)
,

where v0 ∈ Rk is the solution to ∇φ(v0; tk+1, . . . , td) = 0, where the derivative is with respect
to the first k variables only (i.e. the first k entries of ∇φ are zero). Here we have trivially
integrated each error term over any remaining variables of integration; the arbitrarily large
power of R savings nicely allows for this crude treatment of the error terms.

The following is an archimedean analog of the well-known change of basis formula from
additive to multiplicative characters (compare with [IK, (3.11)])
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Lemma 4.4. Suppose that wT is 1-inert, supported on x � X where X � 1. Then

(4.7) e−ixwT (x) = X−1/2

∫
−t�X

v(t)xitdt+O(X−100),

where v(t) = vX(t) is some smooth function satisfying v(t)� 1. Moreover, v(t) = e−it log(|t|/e)W (t)
for some 1-inert function W supported on −t � X.

Proof. Let f(x) = e−ixwT (x). By Mellin inversion,

(4.8) f(x) =

∫
(σ)

f̃(−s)
2πi

xsds, where f̃(−s) =

∫ ∞
0

e−ixx−swT (x)
dx

x
.

Take σ = 0, so s = it. Lemma 4.2 implies that f̃(−it) is very small outside of the interval
−t � X. For −t � X, Lemma 4.3 gives that

(4.9) f̃(−it) = X−1/2e−it log(|t|/e)W (t) +O(X−200),

where W is a 1-inert function supported on −t � X. �

For later use, we record some simple consequences of the previous lemmas.

Lemma 4.5. Let v(t) = e−it log(|t|/e)W (t) for some 1-inert function W supported on −t � X
with X � 1. Let γ(s) = π−s/2Γ( s+κ

2
) for κ ∈ {0, 1}. Let D(s) =

∑∞
n=1 ann

−s be a Dirichlet
series absolutely convergent for Re(s) = 0 with maxt∈R |D(it)| ≤ A for some A ≥ 0. Let
c1, c2, c3 be some real numbers (which may vary with X) with 0 ≤ c1 � 1 and |c2|X3 + |c3| �
X1−δ for some δ > 0. For any Y > 0 we have

X−1/2

∫ ∞
−∞

v(t)e−c1it log |t|+c2it3Y itD(it)dt�v,A 1(4.10)

and

X−1/2

∫ ∞
−∞

v(t)e−c1it log |t|+c2it3 γ(1/2− i(t+ c3))

γ(1/2 + i(t+ c3))
Y itD(it)dt�v,A 1.(4.11)

The bounds depend only on v and A.

Proof. Expanding out the Dirichlet series, and exchanging summation and integration, it
suffices to prove the result with D(s) = 1. We first consider (4.10), which is an oscillatory
integral with phase

φ(t) = −(1 + c1)t log |t|+ t log(eY ) + c2t
3.

Note that the leading phase points in the direction −t log |t|. For |t| � X we have φ′(t) =
−(1 + c1) log |t|+ log(Y )− c1 +O(X−δ). Lemma 4.2 shows that the left hand side of (4.10)
is very small unless log Y = (1 + c1) logX + O(1), for a sufficiently large implied constant.
On the other hand, if log Y = (1 + c1) logX +O(1), then φ′(t) = −(1 + c1) log(|t|/X)− (1 +
c1) logX + log(Y ) +O(1) = O(1). We may then use Lemma 4.3 to show the claimed bound
(4.10).

For the second bound (4.11), we first observe that by Stirling’s formula we have we have

γ(1/2− i(t+ c3))

γ(1/2 + i(t+ c3))
= W (t)e−i(t+c3) log |t+c3|+cit +O(X−200),

for some 1-inert function W and some c ∈ R. With the phase of this gamma ratio pointing
in the same direction as −t log |t|, we can repeat the same argument as above to show square
root cancellation. �
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We end this section with some heuristic motivation for the bound in (4.11), and how it is
related to (1.11) from the sketch. Let w be a fixed inert function, C � 1 and P := A/C � 1.
By Poisson summation, we have

(4.12) S :=
∞∑
c=1

e
(
− A

c

)
w(c/C) =

∑
q

∫ ∞
−∞

e
(
− A

t
− qt

)
w(t/C)dt.

Integration by parts and stationary phase tells us that the sum is essentially supported on
q � A

C2 in which case the integral is bounded by C√
P

. An alternative (and admittedly more

roundabout!) way to accomplish this same goal is to use Lemma 4.4 with x = 2πA
c
, and

the functional equation of the Riemann zeta function (shifting contours appropriately). The
dual sum will have a test function of the form on the left hand side of (4.11) (with c3 = 0
in fact), and the bound in (4.11) is consistent with the simpler Fourier analysis presented in
this paragraph above. The reader may wonder, then, why we have proceeded in this more
complicated fashion if the Fourier approach is simpler. The answer is that the actual sums
we encounter in this paper are arithmetically much more intricate than the simplified one
presented in (4.12). The Mellin transform approach is better-suited to handling the more
complicated arithmetical features that are present in our problem, so on the whole, taking
into account both the analytic and arithmetic aspects of the problem, the Mellin transform
approach is simpler.

5. Character sum evaluations

We need the following elementary character sum calculations. Define the Gauss sum

(5.1) G
(a
c

)
=

∑
x (mod c)

ec(ax
2).

We need to evaluate G(a/c). It is well known (e.g. see [IK, (3.22), (3.38)]) that

(5.2) G
(a
c

)
=
(a
c

)
εc
√
c, εc =

{
1, c ≡ 1 (mod 4)

i, c ≡ 3 (mod 4),

provided (2a, c) = 1. The case with c even is treated as follows. Let δ ∈ {0, 1} indicate the
parity of the highest power of 2 dividing c, as follows: if 2v2‖c then let

(5.3) δ ≡ v2 (mod 2).

From the context, this should not be confused with usages where δ is a small positive constant
or the δ(P ) function which equals 1 when a statement P is true and 0 otherwise.

Lemma 5.1. Suppose c = 2kco with k ≥ 2, co odd, and δ is as in (5.3). Suppose also
(a, c) = 1. Then

(5.4) G
(a
c

)
= εcoc

1/2
(a2δ

co

){1 + e4(aco), δ = 0

21/2e8(aco), δ = 1.
.

Proof. First we note that if c = c1c2 with (c1, c2) = 1, then

(5.5) G
( a

c1c2

)
= G

(ac2

c1

)
G
(ac1

c2

)
.
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Suppose that c = 2k with k ≥ 2. Let j be an integer so that 2j ≥ k, and write x = u + 2jv
with u running modulo 2j and v running modulo 2k−j. Then

(5.6) G
( a

2k

)
=

∑
u (mod 2j)

e2k(au
2)

∑
v (mod 2k−j)

e2k−j−1(auv).

The inner sum over v vanishes unless u ≡ 0 (mod 2k−j−1), so we change variables u =
2k−j−1r, with r now running modulo 22j−k+1. This gives

(5.7) G
( a

2k

)
= 2k−j

∑
r (mod 22j−k+1)

e22j−k+2(ar2).

In the case that k is even, we make the choice j = k/2, giving

(5.8) G
( a

2k

)
= 2k/2

∑
r (mod 2)

e4(ar2) = 2k/2(1 + e4(a)).

If k is odd, we take j = k+1
2

, giving now

(5.9) G
( a

2k

)
= 2

k−1
2

∑
r (mod 22)

e23(ar
2) = 2

k+1
2 e8(a).

Assembling the above facts, and using (5.2), now completes the proof. �

Lemma 5.2. Let χ be a Dirichlet character modulo q, and suppose d|q and (a, d) = 1. Let

(5.10) Sχ(a, d, q) =
∑

n (mod q)
n≡a (mod d)

χ(n).

Suppose that χ is induced by the primitive character χ∗ modulo q∗, and write χ = χ∗χ0 where
χ0 is trivial modulo q0, with (q0, q

∗) = 1. Then Sχ(a, d, q) = 0 unless q∗|d in which case

(5.11) Sχ(a, d, q) =
q

d
χ∗(a)

∏
p|q0
p-d

(
1− 1

p

)
.

Proof. Suppose q = q1q2 with (q1, q2) = 1 and correspondingly factor d = d1d2 and χ = χ1χ2

with χi modulo qi. The Chinese remainder theorem gives Sχ(a, d, q) = Sχ1(a, d1, q1)Sχ2(a, d2, q2).
Writing d = d∗d0 where d∗|q∗ and d0|q0, we apply this with q1 = q∗, q2 = q0, χ1 = χ∗, χ2 = χ0,
d1 = d∗, and d2 = d0. By the multiplicativity of the right hand side of (5.11), it suffices to
prove it for χ∗ and χ0.

By [IK, (3.9)], Sχ∗(a, d
∗, q∗) = 0 unless q∗|d∗, in which case it is given by (5.11), so this

case is done.
For the χ0 part, we simply use Möbius inversion, giving

(5.12) Sχ0(a, d0, q0) =
∑
`|q0

µ(`)
∑

n (mod q0/`)
`n≡a (mod d0)

1.

Since (a, d0) = 1 by assumption, this means that we may assume (`, d0) = 1, and then n is
uniquely determined modulo d0, which divides q0/`, giving

�(5.13) Sχ0(a, d0, q0) =
q0

d0

∑
`|q0

(`,d0)=1

µ(`)

`
=
q0

d0

∏
p|q0
p-d0

(
1− 1

p

)
.
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For a, b, c ∈ Z with c ≥ 1, define

(5.14) T (a, b; c) =
∑

x,y (mod c)

S(x2, y2; c)ec(2xy + ax+ by).

For co odd, write its prime factorization as co =
∏

p p
ap
∏

q q
bq where each ap is odd and each

bq is even. Let c∗ =
∏

p p and c� =
∏

q q. Then c∗ is the conductor of the Jacobi symbol ( ·
co

).

Lemma 5.3. Let a, b, c ∈ Z, with c ≥ 1. Suppose c = 2jco with j ≥ 4 and co odd, with
δ defined as in (5.3). Define a′ = a

(a,c)
, b′ = b

(b,c)
. Then T (a, b; c) = 0 unless 4|(a, b) and

(a, c) = (b, c), in which case

(5.15) T (a, b; c) = (a,
c

22+δ
)c3/2ec(−ab/4)

(a′b′
c∗

)
gδ(a

′, b′, co)δ(c
∗| co

(a, co)
)

∏
p|c�, p- co

(a,co)

(1− p−1),

where gδ is some function depending on a′, b′, co modulo 22+δ that additionally depends on
( 2j

(a,2j)
, 22+δ). In particular, we have that T (0, b; c)� c5/2δ(c∗ = 1)δ(c|b).

Proof. We have

(5.16) T (a, b; c) =
∑∗

t (mod c)

∑
x,y (mod c)

ec(t(x+ ty)2 + ax+ by).

Changing variables x → x − ty and evaluating the resulting y-sum by orthogonality, we
deduce

(5.17) T (a, b; c) = c
∑∗

t (mod c)
bt≡a (mod c)

∑
x (mod c)

ec(tx
2 + ax).

The congruence in the sum implies that T (a, b; c) = 0 unless (a, c) = (b, c), a condition that
we henceforth assume. Changing variables x→ x+ c/2 also shows that T (a, b; c) = 0 unless
2|a, so we assume this condition also.

Write c uniquely as c = c1c2 where c|c2
1, c2|c1 and c1/c2 is square-free (another way to see

this factorization is by writing c uniquely as AB2 with A square-free; then c1 = AB and
c2 = B). Observe that 22|c2 from 24|c. Let x = x1 + c1x2, and let Q(x) = tx2 + ax. Note
that

(5.18) Q(x1 + c1x2) = Q(x1) +Q′(x1)c1x2 + Q′′(x1)
2

c2
1x

2
2 ≡ Q(x1) +Q′(x1)c1x2 (mod c).

Thus
(5.19)∑
x (mod c)

ec(Q(x)) =
∑

x1 (mod c1)

ec(Q(x1))
∑

x2 (mod c2)

ec2(Q
′(x1)x2) = c2

∑
x1 (mod c1)

Q′(x1)≡0 (mod c2)

ec(Q(x1)).

In our case, Q′(x1) = 2tx1 + a, so the congruence means 2x1 ≡ −ta (mod c2). Since 2|a and
2|c2, this is equivalent to x1 ≡ −ta2 (mod c2/2). Writing x1 = −ta

2
+ c2

2
v, with v running

modulo 2 c1
c2

, we obtain

(5.20)
∑

x (mod c)

ec(Q(x)) = c2ec(−ta2/4)
∑

v (mod 2
c1
c2

)

e
( tv2

4c1/c2

)
.
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While the exponential in the inner sum has modulus 4c1/c2, the sum is only over 0 ≤ v ≤
2(c1/c2)−1. However, observe that the exponential has the same values at 1 ≤ −v ≤ 2(c1/c2),
so that the inner sum above is half of a Gauss sum. Thus

(5.21) T (a, b; c) = c
c2

2

∑∗

t (mod c)
bt≡a (mod c)

ec(−ta2/4)G
( t

4c1/c2

)
.

By Lemma 5.1, we deduce

(5.22) T (a, b; c) = c3/2εco
∑∗

t (mod c)
bt≡a (mod c)

ec(−ta2/4)
(t2δ
co

){1 + e4(tco), δ = 0

21/2e8(tco), δ = 1.

This formulation contains a few additional observations. We have used that the Jacobi sym-
bol ( t

(c1/c2)o
) agrees with ( t

co
) for t coprime to c, where no is the odd part of an integer n.

We have also used that (c1/c2)o and co have the same values modulo 8. Thus we can replace
ε(c1/c2)o , e4(t(c1/c2)o), and e8(t(c1/c2)o) with εco , e4(tco), and e8(tco) respectively. These ob-
servations can easily be checked by using multiplicativity to reduce to the case when c is a
power of an odd prime. If c = pl, then c1/c2 = 1 when l is even, and c1/c2 = p when l is odd.

Next we turn to the t-sum in (5.22). Suppose first that 2||a. Let a′ = a
(a,c)

, b′ = b
(a,c)

. The

congruence bt ≡ a (mod c) uniquely determines t modulo c/(a, c), since it is equivalent to
t ≡ b′a′ (mod c/(a, c)). Now in the t-sum, one can pair up t with t+c/2 and observe that the
corresponding values of the exponential ec(−ta2/4) will cancel out since ec(−(c/2)a2/4) =

−1. Also, the values of ( t
co

) = ( t
co

), e4(tco) = e4(tco), and e8(tco) = e8(tco) remain the same

under t → t + c/2, since by assumption 24|c. Therefore, T (a, b, c) vanishes unless 4|a (and
hence 4|b), which we now assume to be the case. This allows the convenient simplification
ec(−ta2/4) = ec(−ab/4).

Breaking up the t-sum into congruence classes modulo 22+δ, to uniquely determine e22+δ(tco),
we obtain

(5.23) T (a, b; c) = c3/2εcoec(−ab/4)
∑∗

v (mod 22+δ)

{
1 + e4(vco)

21/2e8(vco)

} ∑∗

t (mod c)

t≡b′a′ (mod c
(a,c)

)

t≡v (mod 22+δ)

(t2δ
co

)
.

For the congruence t ≡ b′a′ (mod c
(a,c)

) to be consistent with t ≡ v (mod 22+δ), it is necessary

and sufficient that v ≡ b′a′ (mod ( c
(a,c)

, 22+δ)).

Recall that c = 2jco, where j ≥ 4. Factoring the moduli in the sum, we have

(5.24)
∑∗

t (mod c)

t≡b′a′ (mod c
(a,c)

)

t≡v (mod 22+δ)

( t
co

)
=
( ∑∗

t (mod co)

t≡b′a′ (mod co
(a,co)

)

( t
co

))( ∑∗

t (mod 2j)

t≡b′a′ (mod 2j

(a,2j)
)

t≡v (mod 22+δ)

1
)
.

The sum modulo 2j above equals, by the Chinese Remainder Theorem and the fact that the
condition (t, 2) = 1 is automatic because (v, 2) = 1,

2j

[ 2j

(a,2j)
, 22+δ]

=
2j( 2j

(a,2j)
, 22+δ)

2j

(a,2j)
22+δ

= (a, 2j−2−δ),
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provided of course that v ≡ b′a′ (mod ( 2j

(a,2j)
, 22+δ)). Therefore, we have that T (a, b; c) equals

(5.25) c3/2εcoec(−ab/4)(a, 2j−2−δ)
∑∗

v (mod 22+δ)

v≡b′a′ (mod ( 2j

(a,2j)
,22+δ))

{
1 + e4(vco)

21/2e8(vco)

} ∑∗

t (mod co)

t≡b′a′ (mod co
(a,co)

)

(t2δ
co

)
.

By Lemma 5.2 with q = co, d = co
(a,co)

, a = b′a′, q∗ = c∗, and q0 = c�, we have

(5.26)
∑∗

t (mod co)

t≡b′a′ (mod co
(a,co)

)

( t
co

)
= (a, co)

(a′b′
c∗

)
δ(c∗| co

(a, co)
)
∏
p|c�

p- co
(a,co)

(1− p−1).

Inserting (5.26) into (5.25) and simplifying a bit using (a, co)(a, 2
j−2−δ) = (a, c

22+δ
), we deduce

that T (a, b; c) equals

(5.27) c3/2εcoec(−ab/4)(a, c
22+δ

)
(a′b′2δ

c∗

) ∏
p|c�

p- co
(a,co)

(1− p−1)
∑∗

v (mod 22+δ)

v≡b′a′ (mod ( 2j

(a,2j)
,22+δ))

{
1 + e4(vco)

21/2e8(vco),

times the delta function that c∗ divides co
(a,co)

. The inner sum over v is a function of a′, b′, co

modulo 22+δ that additionally depends on ( 2j

(a,2j)
, 22+δ). In addition, (2δ

c∗
) is a function of co

modulo 22+δ. �

6. Start of proof

Let 0 ≤ U ≤ (2 − δ)T . By an approximate functional equation, dyadic decomposition of
unity, and Cauchy’s inequality, we have

(6.1) M :=
∑

T<tj<T+∆

|L(sym2uj, 1/2+iU)|2 � max
1�N�Nmax

T ε

N

∑
T<tj<T+∆

∣∣∣∑
n

λj(n
2)

niU
wN(n)

∣∣∣2,
where wN(x) is supported on x � N and satisfies w

(j)
N (x)�j N

−j and Nmax = (U+1)1/2T 1+ε.
To save some clutter in the notation, we want to simply write U instead of U + 1 in all
estimates involving U . The reader may accept this as a convention or, when 0 ≤ U ≤ 1, we
can write n−iUwN(n) = n−i(U+1)niwN(n) and absorb ni into wN(n) by redefining the weight
function. Thus we can henceforth assume that U ≥ 1.

Next we insert a weight

(6.2) h(t) =
t2 + 1

4

T 2

[
exp

(
− (t− T )2

∆2

)
+ exp

(
− (t+ T )2

∆2

)]
,

write λj(n
2) = ρj(n

2)/ρj(1) and over-extend (by positivity) the spectral sum to an orthonor-
mal basis of all cusp forms of level 24, embedding the level 1 forms. This embedding trick,
introduced for the purpose of simplifying the 2-part of the exponential sum in Lemma 5.3,
is motivated from [Bl2, p.4]. We also form the obvious Eisenstein series variant on the sum.
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This leads to the inequality (see the remarks following Lemma 2.1)

(6.3) M� max
1�N�Nmax

T ε

N

( ∑
uj level 24

h(tj)

cosh(πtj)

∣∣∣∑
n

ρj(n
2)

niU
wN(n)

∣∣∣2
+
∑
a

1

4π

∫ ∞
−∞

h(t)

cosh(πt)

∣∣∣∑
n

τa,it(n
2)

niU
wN(n)

∣∣∣2dt).
Opening the square and applying the Kuznetsov formula, we obtain

(6.4) M� ∆T 1+ε + max
1�N�Nmax

T ε|S(H)|,

where

(6.5) S(H) =
1

N

∑
c≡0 (mod 24)

∑
m,n

S(m2, n2; c)

cmiUn−iU
wN(m)wN(n)H

(4πmn

c

)
,

(6.6) H(x) = i

∫ ∞
−∞

J(x, t)t tanh(πt)h(t)dt,

and J(x, t) is as defined in Lemma 2.1.
By [JM, (3.10)] we get that H(x)� ∆

T
x2 for x ≤ 1. Using this with x = 4πmn/c, we can

truncate c at some large power of T , say c ≤ T 100, with an acceptable error term.
Using [GR, 8.411 11] and the fact that the integrand in (6.6) is an even function of t, one

can derive as in [JM, (3.13)] that H(x) = 2
π
Re(H0(x)), where

(6.7) H0(x) =

∫ ∞
−∞

eix cosh v

∫ ∞
−∞

e−2ivtt tanh(πt)h(t)dtdv.

The inner t-integral above is

(6.8)

∫ ∞
−∞

e−2ivtt tanh(πt)
t2 + 1

4

T 2

(
exp

(
− (t− T )2

∆2

)
+ exp

(
− (t+ T )2

∆2

))
dt

= ∆T (e−2ivT + e2ivT )g(∆v),

where g(y) = g∆,T (y) behaves like a fixed (even) Schwartz-class function; namely it satisfies
the derivative bounds g(j)(y)�j,A (1 + |y|)−A, for any j, A ∈ Z≥0. Hence

(6.9) H0(x) = 2∆T

∫ ∞
−∞

eix cosh ve−2ivT g(∆v)dv.

From this, we can write the real part of H0(x) as a linear combination of H±(x), where

(6.10) H±(x) = ∆T

∫ ∞
−∞

e±ix cosh v−2ivT g(∆v)dv = ∆Te±ix
∫ ∞
−∞

e±ix(cosh v−1)−2ivT g(∆v)dv.

Then (6.4) becomes

(6.11) M� ∆T 1+ε + max
1�N�Nmax

±

T ε|S(H±)|.
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It suffices to bound S(H+), as the argument for S(H−) is similar. For convenience, let us
write this as H+(x) = ∆TeixK+(x), where

(6.12) K+(x) =

∫ ∞
−∞

eix(cosh v−1)−2ivT g(∆v)dv.

Finally, we apply a dyadic partition of unity to the c-sum. To summarize, we have shown
(6.13)

S(H+) =
∆T

N

∑
C

∑
c≡0 (mod 24)

∑
m,n

S(m2, n2; c)ec(2mn)

cmiUn−iU
w(m,n, c)K+

(4πmn

c

)
+O(T−100),

where the first sum is a sum over integers C equal to 2j/2 for 0 ≤ j ≤ 300 log T and
w(x1, x2, x3) = wN,C(x1, x2, x3) is 1-inert and supported on x1 � x2 � N and c � C.

We may approximate H+(x) quite well by truncating the integral at |v| ≤ ∆−1T ε, and
then use an integration by parts argument to see that H+(x) is very small unless

(6.14) x� ∆T 1−ε.

For more details of an alternative approach, one may see [JM, pp.76-77]. In our situation

where x � N2

C
, we conclude that we may assume

(6.15) C � T ε
N2

∆T
� T ε

UT

∆
.

For our purposes it is inconvenient to develop the v-integral further at this early stage.
However, we do record the following slight refinement that is useful for large values of x.

Lemma 6.1. Suppose that

(6.16) x� T 2−ε.

Then

(6.17) K+(x) =

∫
|v|�x−1/2T ε

eix(cosh(v)−1)−2iTvg(∆v)η(v)dv +O((xT )−100),

where η is supported on |v| � x−1/2T ε and satisfies property (4.1) for a 1-inert function.

Proof. This follows from the integration by parts lemma. �

7. Double Poisson summation

Next we apply Poisson summation to the m and n sums in (6.13), giving

(7.1) S(H+) =
∆T

N

∑
C

∑
c≡0 (mod 24)

∑
k,`

T (−k, `; c)
c3

I(k, `, c) +O(T−100),

where

(7.2) I(k, `, c) =

∫ ∞
0

∫ ∞
0

x−iUyiUec(kx− `y)K+

(4πxy

c

)
w(x, y, c)dxdy.

By Lemma 5.3, T (−k, `; c) = 0 unless (k, c) = (`, c) and 4|(k, `), in which case

(7.3) T (−k, `, c) = c3/2(k, 2−2−δc)ec(k`/4)
(k′`′
c∗

)
gδ(k

′, `′, co)δ(c
∗| co

(k, co)
)

∏
p|c�, p- co

(k,co)

(1−p−1),
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where k′ = k
(k,c)

, `′ = `
(`,c)

, δ was defined in (5.3), and other notation is carried over from

Lemma 5.3 (here the function gδ has the same properties as the one appearing in Lemma
5.3, but may not agree with it).

Write

(7.4) c = 2λco, k = 2νko ` = 2γ`o,

with (ko`oco, 2) = 1. The condition (k, c) = (`, c) now becomes min(λ, ν) = min(λ, γ), and
(ko, co) = (`o, co). The condition 4|(k, `) now means ν, γ ≥ 2. We also write

(7.5) co = qr2
1r

2
2

where q is square-free, r1|q∞, and (q, r2) = 1. With this notation, c∗ = q and c� shares

the same prime factors as r2. Note co
(k,co)

=
qr21

(ko,qr21)

r22
(ko,r22)

. Thus the condition c∗| co
(k,co)

means

q| qr21
(ko,qr21)

, which is equivalent to (ko, qr
2
1)|r2

1. Then

(7.6) S(H+) =
∑
C

∆T

NC3/2

∑
ν,γ≥2, λ≥4

min(λ,ν)=min(λ,γ)

(2ν , 2λ−2−δ)
∑

(r1r2,2)=1

∑∗

q:r1|q∞
(q,2r2)=1

∑
(ko`o,2)=1

(ko,co)=(`o,co)
(ko,qr21)|r21( ∏

p|r2, p-
r22

(ko,r
2
2)

(1− p−1)
)(k′`′

c∗

)
(ko, co)ec(k`/4)gδ(k

′, `′, co)I(k, `, c) +O(T−100),

where in places to simplify the notation we did not display the substituted values such
as co = qr2

1r
2
2. We remark that the statement that gδ(k

′, `′, co) depends additionally on
( c

(a,c)
, 22+δ) means it depends on (2λ−min(λ,ν), 22+δ). In particular, gδ depends additionally on

λ, ν, but only lightly, in the sense that it falls in the four following cases:

(7.7) i) λ ≤ ν, ii) λ = ν + 1, iii) λ = ν + 2, iv) λ ≥ ν + 3.

Next we want to give a variable name to (ko, co), etc. We have (ko, co) = (ko, qr
2
1)(ko, r

2
2),

and similarly (`o, co) = (`o, qr
2
1)(ko, r

2
2). Let

(7.8) (ko, qr
2
1) = (`o, qr

2
1) = g1, and (ko, r

2
2) = (`o, r

2
2) = g2.

Here g1 runs over divisors of r2
1 and g2 runs over divisors of r2

2. Let

(7.9) ko = g1g2k
′
o, `o = g1g2`

′
o,

where (k′o`
′
o, q

r21
g1

) = 1 and (k′o`
′
o,
r22
g2

) = 1. In our context, the presence of the Jacobi symbol

(k
′`′

q
) means that we may automatically assume (k′o`

′
o, q) = 1 which implies (k′o`

′
o, q

r21
g1

) = 1.

Note that k′ = k′o2
ν−min(ν,λ) and `′ = `′o2

γ−min(γ,λ). We also apply quadratic reciprocity,

giving (k
′
o`
′
o

q
) = ( q

k′o`
′
o
) times a function depending on k′o, `

′
o, q
′ modulo 8 (which only alters
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the definition of g). Making these substitutions, we obtain

(7.10) S(H+) =
∑
C

∆T

NC3/2

∑
ν,γ≥2, λ≥4

min(λ,ν)=min(λ,γ)

(2ν , 2λ−2−δ)
∑

(r1r2,2)=1

∑
g1|r21
g2|r22

g1g2

∏
p|r2, p-

r22
g2

(1− p−1)

∑∗

q:r1|q∞
(q,2r2)=1

∑
(k′o`

′
o,2)=1

(k′o`
′
o,
r22
g2

)=1

( q

k′o`
′
o

)
ec(k`/4)gλ,ν,γ,δ(k

′
o, `
′
o, q)I(k, `, c) +O(T−100),

where gλ,ν,γ,δ is some new function modulo 8.
Finally, we decompose g into Dirichlet characters modulo 8, and break up the sum ac-

cording to the four cases in (7.7), leading to a formula of the form

(7.11) |S(H+)| � max
η1,η2,η3

cases in (7.7)

|Sη(H+)|,

where

(7.12) Sη(H+) =
∑
C

∆T

NC3/2

∑
ν,γ≥2, λ≥4

min(λ,ν)=min(λ,γ)
one of (7.7) holds

(2ν , 2λ−2−δ)
∑

(r1r2,2)=1

∑
g1|r21
g2|r22

g1g2

∏
p|r2, p-

r22
g2

(1− p−1)

∑∗

q:r1|q∞
(q,2r2)=1

∑
(k′o`

′
o,2)=1

(k′o`
′
o,
r22
g2

)=1

η1(k′o)η2(`′o)η3(q)
( q

k′o`
′
o

)
ec(k`/4)I(k, `, c) +O(T−100).

8. The behavior of I(k, `, c)

The purpose of this section is to develop the analytic properties of I(k, `, c). We begin
with a few reduction steps. Inserting (6.12) into (7.2), we have
(8.1)

I(k, `, c) =

∫ ∞
−∞

g(∆v)e−2ivT

∫ ∞
0

∫ ∞
0

x−iUyiUec(kx− `y + 2xy(cosh v − 1))w(x, y, c)dxdydv.

Let A,B > 0, ε ≥ 0 be real numbers and N and U as before, and consider the integral

(8.2) I(A,B, U, ε,N) =

∫
R2

eiφ(x,y)wN(x, y, ·)dxdy,

where wN is 1-inert, supported on x � y � N with N � 1, and

(8.3) φ(x, y) = −U log x+ U log y + Ax− By + εxy.

In our case,

(8.4) A =
2πk

c
, B =

2π`

c
, ε = ε(v) = 4π

cosh v − 1

c
,

and then

(8.5) I(k, `, c) =

∫ ∞
−∞

g(∆v)e−2ivT I(A,B, U, ε(v), N)dv.

Note that in our study of I(A,B, U, ε,N), we may assume throughout that ε > 0, because
ε(v) = 0 if an only if v = 0, a set of measure 0 for the v-integral of I(k, `, c).
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Moreover, we may wish to assume that wN(x, y) = wN(x, y, ·) depends on some unspecified
finite list of additional variables that are held suppressed in the notation. In this situation
we will assume that wN is 1-inert in terms of all the variables, not just x and y.

Lemma 8.1. Suppose that εN2 = o(U), with U →∞.
1. Then I(A,B, U, ε,N)�C NU

−C with C > 0 arbitrarily large, unless

(8.6) A � B � U

N
.

2. In the range (8.6), we have

(8.7) I =
N2

U
eiφ(x0,y0)W (·) +O(N2U−C),

where (x0, y0) is the unique solution to ∇φ(x0, y0) = 0, and W is 1-inert in terms of any
suppressed variables on which wN may depend.
3. Supposing (8.6) holds, φ(x0, y0) has the asymptotic expansion

(8.8) φ(x0, y0) = U log(A/B) +
J∑
j=0

cjU
( εU
AB

)1+2j

+O
(
U
( εU
AB

)3+2J)
,

for some absolute constants cj.

Note that (8.6) implies εU
AB
� εN2

U
= o(1), so that (8.8) is an asymptotic expansion. We

also remark that the assumption εN2 = o(U) means that the dominant part of φ comes from
−U log x+ U log y, and εxy is a smaller perturbation.

Proof. The integration by parts lemma (Lemma 4.2) shows the integral is small unless (8.6)
holds. Assuming (8.6) holds, then Lemma 4.3 may be iteratively applied (using the remarks
following Lemma 4.3) which gives the form (8.7), with a 1-inert function W .

It only remains to derive the Taylor expansion for φ(x0, y0). We have

(8.9) φ(Ux/A,Uy/B) = U log(A/B) + UΦ(x, y),

where

(8.10) Φ(x, y) = − log x+ log y + x− y + δxy, and δ =
εU

AB
= o(1).

By a simple calculation, we have that ∇Φ(x0, y0) = 0 if and only if x0 = 1 − δx0y0 and
y0 = 1 + δx0y0. Thus

(8.11) x0 + y0 = 2, and y0 − x0 = 2δx0y0.

Letting r0 = x0y0, we see that it satisfies the relation r0 = (1 − δr0)(1 + δr0) = 1 − δ2r2
0.

Solving this explicitly, we see that r0 is an even function of δ, analytic for |δ| < 1/2. Note
r0 = 1− δ2 +O(δ4). Then we have

(8.12) Φ(x0, y0) = log(y0/x0) + x0 − y0 + δx0y0 = log
(1 + δr0

1− δr0

)
− δr0,

which is an odd function of δ, with power series expansion of the form Φ(x0, y0) = δ− 1
3
δ3+. . . .

Translating back to the original notation gives (8.8). �
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Lemma 8.2. Suppose that U
εN2 = o(1).

1. Then I(A,B, U, ε,N)�C N
−C with C > 0 arbitrarily large, unless

(8.13) |A| � |B| � εN, A < 0, and B > 0.

2. Assuming (8.13), then

(8.14) I =
1

ε
eiφ(x0,y0)W (·) +O(N2U−C),

where (x0, y0) is the unique solution to ∇φ(x0, y0) = 0 and W is 1-inert in terms of any
suppressed variables on which wN may depend.
3. Finally, φ(x0, y0) has the following Taylor expansion

(8.15) φ(x0, y0) =
AB

ε

[ J∑
j=0

cj

( Uε
AB

)2j

+O
( Uε
AB

)2J+2)]
+ U log

(−A
B

)
,

with certain absolute constants cj.

The condition U = o(εN2) means that the dominant phase in φ is εxy, and the phase
−U log x+ U log y is a perturbation.

Proof. Considering the x-integral, Lemma 4.2 shows that I � N−C unless

(8.16)
∣∣∣ A
εN

+
y

N

∣∣∣� U

εN2
= o(1).

Since 1� y
N
� 1 (with certain absolute implied constants), this means that |A| � |ε|N with

A having the opposite sign of ε (i.e., A < 0). Similarly, considering the y-integral shows that
I is small unless |B| � εN with B having the same sign as ε (i.e., B > 0).

Next we wish to apply Lemma 4.3 to I. There is a minor technical issue from the fact
that the second derivative with respect to x (or y) of εxy vanishes, even though this should
be viewed as the dominant phase. This issue may be circumvented by a simple change of
variable to diagonalize this quadratic form. Precisely, if we let x = u+v and y = u−v, then

(8.17) ϕ(u, v) := φ(u+ v, u− v) = εu2 + αu− εv2 + βv + U log
(u− v
u+ v

)
,

for certain α, β whose values are immaterial. Then a simple calculation gives

(8.18)
∂2

∂u2
ϕ(u, v) = 2ε+ U

( −1

(u− v)2
+

1

(u+ v)2

)
= 2ε(1 + O(ε−1N−2U))� |ε|.

A similar calculation shows | ∂2
∂v2
ϕ(u, v)| � |ε|. Once we know that stationary phase can be

applied after this linear change of variables, we can then revert back to the original variables
x, y, giving

(8.19) I =
1

ε
eiφ(x0,y0)WT (·) +O(N−C),

where ∇φ(x0, y0) = 0. We have

(8.20) φ(Bx/ε,−Ay/ε) =
−AB
ε

Φ(x, y) + U log
(−A
B

)
,

where

(8.21) Φ(x, y) = xy − x− y + δ log(y/x), and δ =
Uε

AB
� U

εN2
= o(1).
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A simple calculation shows ∇Φ(x0, y0) = 0 if and only if

(8.22) x0 = 1− δ

y0

, y0 = 1 +
δ

x0

.

Solving these explicitly, we obtain

(8.23) x0 =
1− 2δ +

√
1 + 4δ2

2
, y0 =

1 + 2δ +
√

1 + 4δ2

2
,

and thus

(8.24) Φ(x0, y0) = −1 +
√

1 + 4δ2

2
− δ log

(1 + 2δ +
√

1 + 4δ2

1− 2δ +
√

1 + 4δ2

)
= −

∞∑
j=0

cjδ
j,

which is analytic in δ for |δ| < 1/2, and also even with respect to δ. �

Remark. Lemmas 8.1 and 8.2 have some close similarities. In both cases, the stationary
phase method may be applied, and the stationary point can be explicitly found by solving
a quadratic equation. In each case, only one of the two roots is relevant, and the other is
outside the support of the test function. We expect, but did not confirm rigorously, that
when U � εN2, which is a range that is not needed in this paper, then both roots of the
quadratic equation are relevant. This situation is more complicated because the two roots
may approach each other in which case a cubic Taylor approximation to the phase function
is more applicable (as with the Airy function, for instance).

9. Cleaning up some terms

In this section we take the opportunity to deal with some ranges of parameters for which
relatively easy methods suffice. This will simplify our exposition for the more difficult cases.

With the aid of the analysis from Section 8 we can now treat some ranges of c.

Lemma 9.1. The contribution to S(H+) from C � N2

T 2 T
ε is bounded by ∆T 1+ε.

Proof. Let S be the contribution to S(H+) from C � N2

T 2 T
ε. Since x � N2

C
, the assumed

upper bound on C means x� T 2−ε, so that the conditions to apply Lemma 6.1 are in effect.
Applying Lemma (6.17) to (7.2), we deduce

(9.1) I(k, `, c) =

∫
|v|�x−1/2T ε

e−2iTvg(∆v)η(v)I(A,B, U, ε(v), N)dv +O(T−50),

with parameters as given in (8.4). Under the present assumptions, we have ε� v2

c
� T 2ε

xc
�

T 2ε

N2 . Therefore, in the notation of (8.4), we have εN2 � T 2ε.
First consider the case where U � T 3ε. In this case, εN2 = o(U), and so Lemma 8.1 implies

I(A,B, U, ε,N) � U−1N2 and is very small unless A � B � U
N

. Translating notation, we

may assume |k| � |`| � CU
N

, and in particular, k and ` are nonzero. Integrating trivially over
v, we deduce

(9.2) I(k, `, c)� NC1/2T ε

U

(
1 +
|k|N
CU

)−100(
1 +
|`|N
CU

)−100

.
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Inserting this bound into (7.10), we obtain

(9.3) |S| � ∆TT ε

UC

∑
ν,γ≥2, λ≥4

min(λ,ν)=min(λ,γ)

(2ν , 2λ−2−δ)

∑
k′o,`
′
o 6=0

∑
r1,r2

∑
g1|r21
g2|r22

g1g2

∑
q∞≡0 (mod r1)

q� C

2λr21r
2
2

(
1 +
|k′o2νg1g2|N

CU

)−100(
1 +
|`′o2γg1g2|N

CU

)−100

.

Estimating the sum trivially, and simplifying using C � N2

T 2 T
ε and N � Nmax � U1/2T 1+ε,

we deduce

(9.4) |S| � ∆T

N

C2U

N
T ε � ∆UN2

T 3
T ε � ∆T

U2

T 2
T ε,

which is acceptable since U � T .
Next we indicate the changes needed to handle the case U � T 3ε. Integration by parts

(Lemma (4.2)) shows that I(A,B, U, ε,N) is very small unless A,B � T 3ε

N
, equivalently,

|k|, |`| � C
N
T 3ε. Using C � N2

T 2 T
ε and N � Nmax � T 1+3ε, this means that we only need

to consider k = ` = 0. A trivial bound implies I(0, 0, c)� NC1/2T ε.
Using the final sentence of Lemma 5.3, we see that the contribution to S from k = ` = 0

is bounded by

�(9.5)
∆T

NC3/2

NC1/2T ε

U

∑
r2�C1/2

C � ∆T

U
T εC1/2 � ∆N

U
T ε � ∆T 1+ε.

In light of Lemma 9.1, for the rest of the paper we can assume that

(9.6) C � N2

T 2
T ε.

Lemma 9.2. Suppose (9.6) holds, and let

(9.7) V0 =
TC

N2
.

Then with x = 4πmn
c
� N2

C
, we have

(9.8) K+(x) =

∫
v�V0

eix(cosh(v)−1)−2iTvg(∆v)η(v)dv +O((xT )−100),

where η is a 1-inert function supported on v � V0.

Before proving Lemma 9.2, we record a simple consequence of it which follows from in-
serting (9.8) into (7.2) (valid under the assumption (9.6), which is in effect):

(9.9) I(k, `, c) =

∫
v�V0

eix(cosh(v)−1)−2iTvg(∆v)η(v)I(A,B, U, ε(v), N)dv +O(T−50).

Proof. In the definition of K+(x) given by (6.12), we first apply a smooth dyadic partition
of unity to the region 100V0 ≤ |v| � ∆−1T ε = o(1). Consider a piece of this partition, with
say Z ≤ |v| ≤ 2Z. We may apply Lemma 4.2 with both Y and R taking the value xZ2 (and

x � N2

C
). Note xZ2 � N2V 2

0

C
� T ε, so any such dyadic piece is very small.
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Next we consider the portion of the integral with |v| ≤ V0
100

. The version of the integration
by parts bound stated in Lemma 4.2 is a simplified variant of [BKY, Lemma 8.1] (localized
to a dyadic interval, etc.) which does not directly apply. However, the more general [BKY,
Lemma 8.1] can be used to show that this portion of the integral is also small. The statement
of [BKY, Lemma 8.1] contains a list of parameters (not to be confused with the notation from
this paper) (X,U,R, Y,Q) which in our present context take the values (1, V0, T,N

2/C, 1).
Lemma 8.1 from [BKY] is sufficient to show the integral is very small provided QR√

Y
→ ∞

and RU →∞. Here QR/
√
Y takes the form T

√
C

N
� T ε/2, and RU = V0T � T ε, using the

assumption (9.6). The remaining part of the integral is displayed in (9.8).
�

Lemma 9.3. Suppose that the conditions of Theorem 1.1 hold, as well as (6.15). Then

(9.10) I(k, `, c) =
NC1/2

U

(k
`

)iU
exp

(
− 2πiT 2k`

U2c

)
W (·) +O(T−100),

where W is 1-inert (in k, `, and c, as well as all suppressed variables), and supported on

(9.11) k � ` � CU

N
.

Proof. We begin by making some simple deductions from the conditions of Theorem 1.1.
First we note that (1.2) directly implies U∆ ≥ T 1+δ. Since (6.15) holds, we additionally
deduce

(9.12) C � UN2

T 2
T−δ,

for some δ > 0. Another consequence of (1.2) is that

(9.13)
T 3

U2∆3
� T−2δ.

From the fact that U � T , we also deduce that (for some δ > 0)

(9.14) ∆� T 1/3+δ.

Now we pick up with (9.9). Using (9.7), the condition (9.12) means that εN2

U
� V 2

0 N
2

CU
�

T 2C
UN2 � T−δ, so that the conditions of Lemma 8.1 are met. This gives an asymptotic formula
for the inner integral I(A,B, U, ε(v), N) for all v � V0. In particular, we deduce that I(k, `, c)
is very small unless (9.11) holds, a condition that we henceforth assume is in place. Note
that by (8.6)

(9.15)
εU

AB
=

(cosh v − 1)Uc

πk`
� UCV 2

0

k`
� UC(TC/N 2)2

(CU/N)2
=
T 2C

UN2
� T

U∆
T ε,

since k � ` � CU
N

, v � V0, and C � N2

∆T
T ε (recalling (6.15)). Therefore,

(9.16) U
( εU
AB

)3

� U
( T

U∆

)3

T ε � T 3

U2∆3
T ε � T−δ

′
,

for some δ′ > 0. This calculation shows that in (8.8), the terms with j ≥ 1 can be absorbed
into the inert weight function. This is where we use the condition (1.2) which can likely
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be relaxed to U∆ � T 1+δ, since this condition is sufficient to show that (8.8) is a good
asymptotic expansion. Therefore,

(9.17) I(k, `, c) =
N2

U

(k
`

)iU ∫
v�V0

exp
(
− 2iTv + i

U2c(cosh v − 1)

πk`

)
W (v, ·)dv,

plus a small error term, whereW (v, ·) is 1-inert with respect to k, `, c, and all other suppressed
variables. Next we can apply cosh(v) − 1 = v2/2 + O(v4) and absorb the v4 terms into the
inert weight function, using (6.15) and (9.14) as follows:

(9.18)
U2CV 4

0

k`
� C3T 4

N6
� T

∆3
T 3ε � T−δ

′
.

Finally, by stationary phase we obtain the desired estimate. �

Next we simplify our expression for I(k, `, c) under the conditions of Theorem 1.3, when
U is small.

Lemma 9.4. Suppose that the conditions of Theorem 1.3 hold, as well as (9.6). Then
I(k, `, c) is very small unless

(9.19) −k � ` � C2T 2

N3
,

in which case

(9.20) I(k, `, c) =
N4

CT 2
(−k/`)iUec(−k`/12)

∫
v�V0

e−2ivT+ 2πik`
cv2 W (v, ·)dv +O(T−100),

for some function W (v, ·) that is 1-inert with respect to k, `, c, and all other suppressed
variables.

Remark. Although it is possible to also evaluate the asymptotic of the v-integral in (9.20),
we prefer to save this step for later, in Section 10.

Proof. We again pick up with (9.9) (recall also the definition (8.2)), which takes the form

(9.21) I(k, `, c) =

∫
v�V0

η(v)g(∆v)e−2ivT I
(2πk

c
,
2π`

c
, U, ε,N

)
dv,

with ε = ε(v) = 4π cosh(v)−1
c

� V 2
0

C
� CT 2

N4 , for all v � V0. Since (9.6) holds, this means that
U
εN2 � UN2

T 2C
� T−ε, so that the conditions of Lemma 8.2 are met. This directly implies that

I(k, `, c) is very small unless (9.19) holds. Note that

(9.22)
AB

ε
=

πk`

c(cosh v − 1)
, and

∣∣∣AB
ε

∣∣∣( Uε
AB

)2

=
∣∣∣U2ε

AB

∣∣∣ � U2N2

CT 2
� T−ε.

The latter calculation shows that the terms with j ≥ 1 in (8.15) may be absorbed into the
inert weight function. We thus conclude that

(9.23) I(k, `, c) =
N4

CT 2
(−k/`)iU

∫
v�V0

e−2ivT+ πik`
c(cosh v−1)W (v, ·)dv +O(T−100).

Finally we observe the Taylor/Laurent approximation

(9.24)
1

cosh v − 1
=

2

v2
− 1

6
+O(v2),
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and that

(9.25)
k`

c
v2 � C5T 6

N10
� T

∆5
T ε � T−δ

′
,

for some δ′ > 0, where we have used C � N2

∆T
T ε from (6.15). This lets us absorb the

lower-order terms in the Taylor expansion into the inert weight function. Therefore, (9.20)
holds. �

10. Mellin inversion

We recall that we have the expression (7.10), in which is contained a smooth (yet oscilla-
tory) weight function of the form

(10.1) f(k, `, c) = ec(k`/4)I(k, `, c).

In the conditions of Theorem 1.1, we have that I is given by Lemma 9.3, while in the
conditions of Theorem 1.3, we have that I is given by Lemma 9.4. In both cases, the function
f is very small except when k and ` are fixed into dyadic intervals. We may therefore freely
insert an inert weight function that enforces this condition.

First consider the setting relevant for Theorem 1.1. The function f has phase as given
in Lemma 9.3, modified to include ec(k`/4) which is strictly smaller in size due to the
assumption U ≤ (2 − δ)T . We apply Lemma 4.4 to the phase function, and apply Mellin
inversion to the inert part. We therefore obtain

(10.2)

f(k, `, c) =
Φ√
P

(2νk′o
2γ`′o

)iU ∫
−t�P

∫ ∫ ∫ ( T 2g2
1g

2
2k
′
o`
′
o

U2qr2
1r

2
22λ−ν−γ

)s(
1− U2

4T 2

)s
v(t)w̃(u1, u2, u3)( C

qr2
1r

2
22λ

)u1( K

k′og1g22ν

)u2( K

`′og1g22γ

)u3
du1du2du3ds,

plus a small error term, where s = it, and where

(10.3) Φ =
N
√
C

U
, P =

CT 2

N2
, K =

CU

N
.

By standard Mellin inversion of an inert function, the function w̃ is entire and has rapid decay
on any vertical line. However we do not specify the vertical contour in the integral above
(and in several instances below). Also we have absorbed constants such as 1

2πi
and the like

into the weight functions. We recall that k = 2νg1g2k
′
o, ` = 2γg1g2`

′
o, and c = 2λqr2

1r
2
2. We

recall from Lemma 4.4 that v(t) is supported on −t � P , is O(1), and has phase e−it log(|t|/e).
We can also apply these steps to I given by Lemma 9.4, which will have a similar structure

but with an extra v-integral. We obtain

(10.4)

f(k, `, c) =
Φ0√
P

∫
v�V0

e−2ivT
(−2νk′o

2γ`′o

)iU ∫
−t�P

∫ ∫ ∫ ( g2
1g

2
2|k′o|`′o

qr2
1r

2
22λ−ν−γ

)s( 1

v2
+

1

6

)s
v(t)w̃(u1, u2, u3)( C

qr2
1r

2
22λ

)u1( K

|k′o|g1g22ν

)u2( K

`′og1g22γ

)u3
du1du2du3dsdv,
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plus a small error term, where this time

(10.5) Φ0 =
N4

CT 2
, P =

CT 2

N2
, K =

C2T 2

N3
, V0 =

CT

N2
.

Here, w̃(u1, u2, u3) is implicitly an inert function of v. It is the Mellin transform (in the
suppressed variables, but not in v) of the function W (v, ·) which was introduced in Lemma
9.4.

At this point, we finally asymptotically evaluate the v-integral. We are considering

(10.6)

∫
v�V0

e−2ivT−2s log v+s log(1+ v2

6
)W (v, ·)dv,

where we recall s = it, −t � P . We first observe that s log(1 + v2

6
) = sv2/6 + O(sv4), and

note

(10.7) |sv4| � PV 4
0 �

T 1+ε

∆5
� T−δ,

by the assumption ∆� T 1/5+ε. Therefore, the term with sv4 can be absorbed into the inert
weight function at no cost. We are therefore considering an oscillatory integral with phase
φ(v) = −2vT − 2t log v + tv2/6. It is easy to see that |φ′′(v)| � P

V 2
0

throughout the support

of the test function, and that there exists a stationary point at v0 satisfying

(10.8) −2T − 2t

v0

+
tv0

3
= 0.

We explicitly calculate

(10.9) v0 =
2T − 2T

√
1 + 2t2

3T 2

2t/3
=
−t
T

+ a′
t3

T 3
+O

(P 5

T 5

)
,

for some constant a′. We observe that P 5

T 4 � T 1+ε

∆5 � T−δ, so quantities of this size (or

smaller) may be safely discarded. For later use, we note in passing that P 2

T 2 � T ε

∆2 � T−δ.
We conclude

(10.10) φ(v0) = −2t log(|s|/T ) + 2t+ a
t3

T 2
+O

(P 5

T 4

)
,

for some new constant a. Therefore,

(10.11)

∫
v�V0

e−2ivT−2it log v+it log(1+ v2

6
)w(v, ·)dv =

V0√
P
e−2it log(

|t|
eT

)eia
t3

T2W (·),

for some inert function W and constant a. Therefore, we deduce a formula for f in the form

(10.12)

f(k, `, c) =
Φ√
P

(−k′o
`′o

)iU ∫
−t�P

∫ ∫ ∫ ( g2
1g

2
2|k′o|`′o

qr2
1r

2
22λ−ν−γ

)s
v(t)e−2it log(

|t|
eT

)+ia t
3

T2 w̃(u1, u2, u3)( C

qr2
1r

2
22λ

)u1( K

|k′o|g1g22ν

)u2( K

`′og1g22γ

)u3
du1du2du3dsdv,

where now

(10.13) Φ =
N4V0

CT 2P 1/2
=

N3

C1/2T 2
, P =

CT 2

N2
, K =

C2T 2

N3
, V0 =

CT

N2
.
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This expression for f(k, `, c) is similar enough to (10.2) that we can proceed in parallel. We
mainly focus on the proof of Theorem 1.1.

Inserting (10.2) into (7.12), we obtain

(10.14) Sη(H+) =
∑
C

∆T

NC3/2

Φ√
P

∫
−t�P

∫ ∫ ∫ (T 2

U2
− 1

4

)s
v(t)w̃(u1, u2, u3)

Cu1Ku2+u3Z(s, u1, u2, u3)du1du2du3ds,

where Z = Zη is defined by

(10.15) Z(s, u1, u2, u3) =
∑

ν,γ≥2, λ≥4
min(λ,ν)=min(λ,γ)
one of (7.7) holds

(2ν , 2λ−2−δ)

2λ(u1+s)+ν(u2−iU−s)+γ(u3+iU−s)

∑
(r1r2,2)=1

∑
g1|r21
g2|r22

∑∗

q:r1|q∞
(q,2r2)=1

∑
(k′o`

′
o,2)=1

(k′o`
′
o,
r22
g2

)=1

(
q

k′o`
′
o

)
η1(k′o)η2(`′o)η3(q)

∏
p|r2, p-

r22
g2

(1− p−1)

(k′o)
u2−iU−s(`′o)

u3+iU−squ1+s(r2
1r

2
2)u1+s(g1g2)u2+u3−2s−1

.

We initially suppose that Re(s) = 0 and Re(ui) = 2 for each i, securing absolute convergence
of the sum. An obvious modification, using (10.12) in place of (10.4), gives the corresponding
formula for U small, namely

(10.16) Sη(H+) =
∑
C

∆T

NC3/2

Φ√
P

∫
−t�P

∫ ∫ ∫
e−2it log(

|t|
eT

)+ia t
3

T2 v(t)w̃(u1, u2, u3)

Cu1Ku2+u3Z(s, u1, u2, u3)du1du2du3ds,

where the parameters correspond with (10.13), and the formula for Z is slightly different
(multiplied by η1(−1) to account for changing variables k′o → −k, with k ≥ 1).

11. Properties of the Dirichlet series Z

In this section, we pause the development of Sη(H+) and entirely focus on the Dirichlet
series Z.

11.1. Initial factorization. Throughout this section we assume that Re(s) = 0. For sim-
plicity of notation only, we also take η = (η1, η2, η3) to be trivial, as the same proof works in
the general case.

Definition 11.1. Let D0 be the set of (s, u1, u2, u3) ∈ C4 with Re(s) = 0, and

(11.1) Re(u1) > 1, Re(u2) > 1, Re(u3) > 1.

It is easy to see that the multiple sum (10.15) defining Z converges absolutely on D0.
We will work initially in D0, and progressively develop analytic properties (meromorphic
continuation, bounds, etc.) to larger regions. The largest domain in which we work is the
following

Definition 11.2. Let D∞ be the set of (s, u1, u2, u3) ∈ C4 with Re(s) = 0, and

(11.2) Re(u2) > 1/2, Re(u3) > 1/2, Re(u1) + min(Re(u2),Re(u3)) > 1.
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Obviously, D0 ⊂ D∞.
The following notation will be useful throughout this section. Suppose that D is a subset

of (s, u1, u2, u3) ∈ C4 defined by Re(s) = 0 and by finitely many equations of the form
L(Re(u1),Re(u2),Re(u3)) > c where c ∈ R and L is linear with nonnegative coefficients. For
σ > 0, define Dσ by replacing each such equation by L(Re(u1),Re(u2),Re(u3)) ≥ c+σ. The
nonnegativity condition means Dσ ⊆ D for any σ > 0.

As a notational convenience, we write k and ` instead of k′0 and `′0 in (10.15) (since there
should be no danger of confusion with the original k and ` variables). In the domain D0, we
may take the sums over k and ` to the outside, giving

(11.3) Z(s, u1, u2, u3) = Z(2)(s, u1, u2, u3)
∑

(k`,2)=1

Zk,`(s, u1, u2, u3)

ku2−iU−s`u3+iU−s ,

where

(11.4) Zk,`(s, u1, u2, u3) =
∑

(r1r2,2)=1

∑
g1|r21
g2|r22

(
r22
g2
,k`)=1

∑∗

q:r1|q∞
(q,2r2)=1

(
q
k`

)∏
p|r2, p-

r22
g2

(1− p−1)

qu1+s(r2
1r

2
2)u1+s(g1g2)u2+u3−2s−1

,

and

(11.5) Z(2)(s, u1, u2, u3) =
∑

ν,γ≥2, λ≥4
min(λ,ν)=min(λ,γ)
one of (7.7) holds

(2ν , 2λ−2−δ)

2λ(u1+s)+ν(u2−iU−s)+γ(u3+iU−s) .

We first focus on properties of Zk,`, and then turn to Z(2).

11.2. Continuation of Zk,`. Note that Zk,` has an Euler product, say Zk,` =
∏

p 6=2 Z
(p)
k,` . It

is convenient to define

(11.6) α = u2 + u3 − 2s− 1, β = u1 + s.

Note that (11.1) implies Re(α) > 1 and Re(β) > 1. It is also convenient to observe that

(11.7) (s, u1, u2, u3) ∈ D∞ =⇒ Re(2α + 2β) > 1 and Re(α + 2β) > 1.

We evaluate Z
(p)
k,` explicitly as follows.

Lemma 11.3. Suppose that Re(β) > 0 and Re(α + β) > 0. For p - 2k`, we have

(11.8) Z
(p)
k,` (s, u1, u2, u3) =

1 + p−α−2β − p−1−2α−2β + χ(p)p−1−2α−3β

(1− χ(p)p−β)(1− p−2α−2β)
,

where χ(n) = χk`(n) = ( n
k`

). For p|k`, we have

(11.9) Z
(p)
k,` (s, u1, u2, u3) =

1− p−1−2α−2β

1− p−2α−2β
.

Proof. For (p, 2k`) = 1, we have, using the convention ∞ · 0 = 0,

(11.10) Z(p)(α, β) =
∑

min(r1,r2)=0

∑
0≤g1≤2r1
0≤g2≤2r2

(1− p−1)δg2=2r2>0

∑
0≤q≤1
∞·q≥r1

min(q,r2)=0

χ(pq)

pβ(q+2r1+2r2)+α(g1+g2)
.
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We write this as
∑

r2=0 +
∑

r2≥1, where the latter terms force q = r1 = 0. We have
(11.11)∑
r2≥1

=
∞∑
r2=1

p−2βr2
( ∑

0≤g2≤2r2−1

p−αg2+(1−p−1)p−2αr2
)

=
∞∑
r2=1

p−2βr2
(1− p−2αr2

1− p−α
+(1−p−1)p−2αr2

)
.

This evaluates as

(11.12) (1− p−α)−1
( p−2β

1− p−2β
− p−2β−2α

1− p−2α−2β

)
+ (1− p−1)

p−2α−2β

1− p−2α−2β
,

which simplifies as

(11.13) p−2β 1 + p−α

(1− p−2β)(1− p−2α−2β)
+ (1− p−1)

p−2α−2β(1− p−2β)

(1− p−2α−2β)(1− p−2β)
.

In turn this becomes

(11.14)
p−2β

(1− p−2α−2β)(1− p−2β)

[
1 + p−α + (1− p−1)p−2α(1− p−2β)

]
.

Likewise, we compute

(11.15)
∑
r2=0

=
∞∑
r1=0

∑
0≤g1≤2r1

∑
0≤q≤1
∞·q≥r1

χ(pq)

pβ(q+2r1)+αg1
= 1 +

∞∑
r1=0

∑
0≤g1≤2r1

χ(p)

pβ(1+2r1)+αg1
,

by separating out the cases q = 0 and q = 1. We calculate this as

(11.16) 1 + χ(p)p−β
∞∑
r1=0

p−2βr1
1− p−α(2r1+1)

1− p−α
,

which can be expressed as

(11.17) 1 +
χ(p)p−β

1− p−α
( 1

1− p−2β
− p−α

1− p−2α−2β

)
= 1 +

χ(p)p−β(1 + p−α−2β)

(1− p−2β)(1− p−2α−2β)
.

Putting the two calculations together, we obtain

Z(p)(α, β) =

(1− p−2β)(1− p−2α−2β) + χ(p)p−β(1 + p−α−2β) + p−2β(1 + p−α + (1− p−1)(p−2α − p−2α−2β))

(1− p−2β)(1− p−2α−2β)
.

Distributing out the numerator and canceling like terms, we obtain

Z(p)(α, β) =
(1 + χ(p)p−β)(1 + p−α−2β)− p−1−2α−2β(1− p−2β)

(1− p−2β)(1− p−2α−2β)
.(11.18)

Simplifying gives (11.8).
Next, we need to consider the primes p|k`. At such a prime we must have (q, p) = 1 (or

else ( q
k`

) = 0) which implies r1 = 1 and g2 = r2
2. Thus

�(11.19) Z(p)(s, u1, u2, u3) =
∑
r2≥0

(1− p−1)δr2>0

pr2(2β+2α)
=

1− p−1−2α−2β

1− p−2α−2β
.
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Define the Dirichlet series

(11.20) D(α, β, χk`) =
∑

(n,2)=1

µ2(n)

nα+2β

∑
abc=n

µ(b)χk`(c)

b1+αc1+α+β
,

which is absolutely convergent for Re(α+2β) > 1 and Re(α+β) > 0 (observe these conditions
hold on D∞, by (11.7)). Note the Euler product formula

(11.21) D(α, β, χk`) =
∏
p 6=2

(1 + p−α−2β(1− p−1−α + χk`(p)p
−1−α−β)).

Putting together (11.8) and (11.9), we deduce (initially) in the region D0

(11.22) Zk,`(s, u1, u2, u3) = L(β, χk`)
ζ(2α + 2β)

(1− 2−2α−2β)−1
D(α, β, χk`)(1− χk`(2)2−β)

∏
p|k`

ap,

where

(11.23) ap =
1− p−1−2α−2β

1 + p−α−2β − p−1−2α−2β
.

Note that in D∞, we have

(11.24) ap = 1 +O(p−1).

Lemma 11.4. The series Zk,`(s, u1, u2, u3) has meromorphic continuation to the domain
D∞. In this region, Zk,` has a polar line only at β = 1 which occurs if and only if χk` is
trivial.

Proof. This follows from (11.22), using (11.7). �

Remark 11.5. Observe the nice simplification in the passage from (11.18) to (11.8), in which
a factor of of (1− p−2β) is canceled from the numerator and denominator. This reveals that
there is no ζ(2β)−1 type factor in (11.22), which would have infinitely many poles in the
domain D∞.

11.3. Evaluation of Z(2). Recall that Z(2) has four cases, corresponding to (7.7).

Lemma 11.6. In cases (i)–(iii) of (7.7), the function Z(2) initially defined by (11.5) in the
region (11.1) extends to a bounded analytic function on D∞.

Proof. This follows from brute force computation with geometric series. For case (i), we have

(11.25) Z(2) =
(1− 2−(u2−iU−s))−1(1− 2−(u3+iU−s))−1

22+δ24(α+β)(1− 2−α−β)
,

which satisfies the claimed properties by inspection. Cases (ii) and (iii) are easier, and give
Z(2) = 2−1−δ−3α−4β(1 − 2−α−β)−1 and Z(2) = 2−δ−2α−4β(1 − 2−α−β)−1, respectively. In case
(ii), to see the boundedness on D∞, note 2−3α−4β = 2−2α−2β2−α−2β, and recall (11.7). �

When Z(2) is given by case (iv), which recall restricts the summation to λ ≥ ν + 3, it is
convenient to split the sum into two pieces according to the size of λ − ν. For any integer

L ≥ 3, write Z(2) = Z
(2)
≤L + Z

(2)
>L, where Z

(2)
≤L restricts to λ − ν ≤ L, and Z

(2)
>L restricts to

λ− ν > L.



MOMENTS AND HYBRID SUBCONVEXITY FOR SYMMETRIC-SQUARE L-FUNCTIONS 31

Lemma 11.7. In case (iv), Z
(2)
≤L extends to an analytic function on D∞, wherein it satisfies

the bound

(11.26) |Z(2)
≤L| � L(2−Lβ + 1).

The tail Z
(2)
>L is analytic on D0 wherein it satisfies the bound

(11.27) |Z(2)
>L| � 2−Lβ.

Proof. Since λ ≥ ν + 3, then min(λ, ν) = ν, and the condition min(λ, ν) = min(λ, γ) means
γ = ν. Therefore,

(11.28) Z
(2)
≤L =

∑
ν≥2

∑
ν+3≤λ≤ν+L

2ν

2λβ+ν(α+1)
=
∑
ν≥2

∑
3≤µ≤L

1

2(ν+µ)β+να
=

2−2α−2β

(1− 2−α−β)

∑
3≤µ≤L

2−µβ.

From this representation we easily read off its analytic continuation and the bound (11.26).
For the tail, we may modify the previous calculation to give

(11.29) Z
(2)
>L =

2−2α−2β

(1− 2−α−β)

∑
µ≥L+1

2−µβ =
2−2α−2β

(1− 2−α−β)

2−β(L+1)

(1− 2−β)
,

from which we immediately read off the desired properties. �

Remark. Note that Z
(2)
>L does not analytically continue to D∞ since (11.29) has poles on

the line Re(β) = 0. This explains the reason for splitting Z(2) into these two pieces.

To unify the notation, in cases (i)–(iii), we define Z
(2)
>L = 0 and Z

(2)
≤L = Z(2). Corresponding

to this decomposition of Z(2), we likewise write

(11.30) Z = Z≤L + Z>L.

With this definition, then the statement of Lemma 11.7 holds in cases (i)–(iii) as well. In
this way we may henceforth unify the exposition for the four cases (i)–(iv).

11.4. Continuation of Z≤L. It is now useful to define another domain.

Definition 11.8. Let D1 be the set of (s, u1, u2, u3) ∈ C4 with Re(s) = 0, Re(u2) > 1,
Re(u3) > 1, and satisfying

(11.31)

{
Re(u1) + min(Re(u2),Re(u3)) > 3/2

Re(u1) + 2 min(Re(u2),Re(u3))) > 3.

Note that D0 ⊂ D1 ⊂ D∞.

Lemma 11.9. The series (11.3) converges absolutely on D1 ∩ {β 6= 1} (and uniformly on
compact subsets), which furnishes meromorphic continuation of the function Z≤L to this
domain. Moreoever, the residue at β = 1 of Z≤L is bounded for Re(u2),Re(u3) > 1.

Proof. We return to (11.3) and use the representation (11.22), valid in D0. The results from

Section 11.3 give the analytic continuation of Z
(2)
≤L to D∞ (and hence, D1). Since L(β, χk`)

has a pole at β = 1 when χk` is trivial, we suppose |β − 1| ≥ σ > 0, and will claim
bounds with an implied constant that may depend on σ. For 0 ≤ Re(β) = Re(u1) ≤ 1,

we have the convexity bound |L(β, χk`)| �Im(β),σ,ε (kl)
1−Re(β)

2
+ε (with an implied constant

depending at most polynomially on β). One easily checks that (11.3) converges absolutely for
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min(Re(u2),Re(u3)) + Re(β)
2

> 3
2
, which is one of the inequalities stated in (11.31). Similarly,

for Re(β) ≤ 0 we use the convexity bound |L(β, χk`)| � (k`)
1
2
−Re(β)+ε to see the absolute

convergence for Re(u1) + min(Re(u2),Re(u3)) > 3/2. The uniform convergence on compact
subsets is immediate, and so the meromorphic continuation follows.

Finally, to see the size of the residue, we simply note from (11.22) that Resβ=1Zk,` � (k`)ε

for Re(u2),Re(u3) ≥ 1. In addition, the pole only exists if k` is a square. Moreover, Z
(2)
≤L is

bounded at this point. From (11.3) we may then easily see the absolute convergence of the
sum of these residues over k, `. �

11.5. Functional equation. Next we investigate how Zk,` and Z≤L behave after an appli-
cation of the functional equation of L(β, χk`). Suppose that χk` is induced by the primitive
character χ∗ of conductor (k`)∗. We have

(11.32) Λ(s, χ∗) = ((k`)∗)s/2γ(s)L(s, χ∗) = Λ(1− s, χ∗),
where γ(s) = π−s/2Γ( s+κ

2
), where κ ∈ {0, 1} reflects the parity of χ. We therefore deduce

the asymmetric form of the functional equation:

(11.33) L(s, χk`) = ((k`)∗)
1
2
−sγ(1− s)

γ(s)
L(1− s, χk`)

∏
p|k`

(1− χ∗(p)p−s)
(1− χ∗(p)ps−1)

.

Lemma 11.10. In D∞ ∩ {Re(β) < 0}, we have

(11.34) Zk,` = ((k`)∗)
1
2
−β γ(1− β)

γ(β)
D(α, β, χk`)

ζ(2α + 2β)

(1− 2−2α−2β)−1
(1− 2−βχk`(2))

∞∑
q=1

( q
k`

)

q1−β

∏
p|k`

(1− χ∗(p)p−β)

(1− χ∗(p)pβ−1)

∏
p|k`

ap.

Proof. Lemma 11.4 implies that the expression (11.22) for Zk,` is analytic on D∞ ∩ {β 6=
1}. With the assumption Re(β) < 0, we may apply the functional equation and express
L(1− β, χk`) in terms of its absolutely convergent Dirichlet series, which is (11.34). �

Having applied the functional equation to Zk,`, the plan of action is to now insert this
expression into the definition of Z≤L and reverse the orders of summation, bringing k and `
to the inside. The outcome of this step is recorded with the following.

Lemma 11.11. On D1 ∩ {Re(β) < 0}, Z≤L is a finite linear combination of absolutely
convergent expressions of the form

(11.35) Z
(2)
≤L
γ(1− β)

γ(β)

ζ(2α + 2β)

(1− 2−2α−2β)−1

(1± 2−β)

(1± 2β−1)

∑
(q,2)=1

qβ−1ν1(q)Aq,

with Aq = Aq(s, u1, u2, u3, U, ν2, . . . , ν6) defined by

(11.36) Aq =
∑

(abc,2)=1

µ2(abc)ν2(c)

(abc)α+2β

µ(b)

b1+αc1+α+β

∑
(k`,2)=1

(k`
cq

)ν3(k)ν4(`)((k`)∗)
1
2
−β

ku2−iU−s`u3+iU−s

∏
p|k`

(1− χp((k`)∗)ν5(p)p−β)

(1− χp((k`)∗ν6(p))pβ−1)

∏
p|k`

ap,

and where the νi run over Dirichlet characters modulo 8.
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Observe that (11.36) converges absolutely on D1.

Proof. Applying Lemma 11.10 into (11.3), which is valid on D1 ∩ {Re(β) < 0} by Lemma
11.9, and applying the Dirichlet series expansion of D(α, β, χk`) given in (11.20), we deduce

(11.37) Z≤L(s, u1, u2, u3) = Z
(2)
≤L

ζ(2α + 2β)

(1− 2−2α−2β)−1

∑
(k`,2)=1

((k`)∗)
1
2
−β

ku2−iU−s`u3+iU−s
γ(1− β)

γ(β)

(1− χk`(2)2−β)
∑

(abc,2)=1

µ2(abc)

(abc)α+2β

µ(b)

b1+αc1+α+β

∞∑
q=1

( qc
k`

)

q1−β

∏
p|k`

(1− χ∗(p)p−β)

(1− χ∗(p)pβ−1)

∏
p|k`

ap,

where recall ap = 1 + O(p−1) on D∞, and χ∗ = χ∗k` is the primitive character induced by
χk`(n) = ( n

k`
) (so χ∗(n) = ( n

(k`)∗
)).

We next wish to focus on the sums over k and `. One small issue is that the parity of the
character χk` (and hence the formula for γ(s)) may vary. However, the parity only depends
on k and ` modulo 8. Also, q may be even, but we can factor out the 2-part of q and directly
evaluate its summation. Likewise, we can apply quadratic reciprocity (again!) to give that
( qc
k`

) equals (k`
qc

) times a function that depends only on q, c, k, ` modulo 4. Similarly, we have

that χ∗k`(p) equals χp((k`)
∗) up to a function modulo 4. We can then use multiplicative

Fourier/Mellin decomposition modulo 8 to express Z≤L as a finite linear combination, with
bounded coefficients, of sums of the form claimed in the statement of the lemma. �

Next we develop some of the analytic properties of Aq. For notational convenience, we
consider the case with all νi = 1, as the general case is no more difficult. We expand the Euler
product over p|k` involving χ∗ into its Dirichlet series and reverse the orders of summation
(taking k, ` to the inside), giving

(11.38) Aq =
∑

(abcde,2)=1

µ2(abc)µ(b)µ(d)

(abc)α+2βb1+αc1+α+βdβe1−βAq,c,d,e,

where

(11.39) Aq,c,d,e =
∑

k`≡0 (mod d)
(k`)∞≡0 (mod e)

(k`,2)=1

(k`
cq

)( (k`)∗

de
)((k`)∗)

1
2
−β

ku2−iU−s`u3+iU−s

∏
p|k`

ap.

Lemma 11.12. The function Aq,c,d,e has meromorphic continuation to D∞, in the form

(11.40) Aq,c,d,e = L(u1 + u2 − iU − 1
2
, χqcde)L(u1 + u3 − iU − 1

2
, χqcde)C(·)

where C = Cq(c, d, e, s, u1, u2, u3, U) is a Dirichlet series analytic on D∞ and satisfying the
bound C � ((de)′)−2 min Re(u2,u3)+ε on D∞.

Proof. We initially work on D1 where the sum defining Aq,c,d,e converges absolutely. Now

Aq,c,d,e has an Euler product, taking the form Aq,c,d,e =
∏

(p,2)=1 A
(p)
q,c,d,e, say, where

(11.41) A
(p)
q,c,d,e =

∑
k+`≥vp(d)

∞·(k+`)≥vp(e)

(p
k+`

cq
)( (pk+`)∗

de
)((pk+`)∗)

1
2
−β

pk(u2−iU−s)+`(u3+iU−s) apk+` ,

where vp is the p-adic valuation, and where we set ap0 = 1 and apj = ap for j ≥ 1.
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For the forthcoming estimates, we recall our convention from Section 1.4 that an expression
of the form O(p−s) should be interpreted to mean O(p−Re(s)). If p - de, then by separating
the cases with k + ` odd and k + ` even, we obtain

A
(p)
q,c,d,e = 1 +

( p

qcde

)[ 1

pu1+u2−iU− 1
2

+
1

pu1+u3+iU− 1
2

]
ap +O(p−min(2u2,2u3)))

= 1 +
( p

qcde

)[ 1

pu1+u2−iU− 1
2

+
1

pu1+u3+iU− 1
2

]
+O(p−min(2u2,2u3)) +O(

p−1

pu1+min(u2,u3)− 1
2

)

=
1 +O(p−min(2u2,2u3)) +O( p−1

pu1+min(u2,u3)−
1
2

) +O(p−2(u1+min(u2,u3)− 1
2

))

(1− χqcde(p)p−u1−u2+iU+ 1
2 )(1− χqcde(p)p−u1−u3−iU+ 1

2 )
.

Note that on Dσ∞, the O-term is of size O(p−1−σ), and hence

(11.42)
∏
p-de

A
(p)
q,c,d,e = L(u1 + u2 − iU − 1

2
, χqcde)L(u1 + u3 − iU − 1

2
, χqcde)B

where B = B(q, c, d, e, s, u1, u2, u3, U) is an Euler product that is absolutely convergent and
bounded on Dσ∞.

If p|de, then ( (pk+`)∗

de
) = 0 unless (pk+`)∗ = 1, so we can assume that k + ` is even (and

positive, hence ≥ 2). From such primes we obtain A
(p)
q,c,d,e = O(p−min(2u2,2u3)), and hence

(11.43)
∏
p|de

A
(p)
q,c,d,e � ((de)′)−2 min Re(u2,u3)+ε,

where (de)′ =
∏

p|de p. Putting the estimates together, we deduce (initially in D1) the

representation (11.40), where C is analytic on D∞. Thus Aq,c,d,e inherits the meromorphic
continuation to D∞ as well. �

Definition 11.13. Let D2 be the set of (s, u1, u2, u3) ∈ C4 with Re(s) = 0, Re(u2) > 1/2,
Re(u3) > 1/2, and satisfying

(11.44) Re(u1) + min(Re(u2),Re(u3)) > 3/2.

One easily checks that D1 ⊂ D2 ⊂ D∞.

Lemma 11.14. The function Aq has meromorphic continuation to D2 ∩ {Re(u1) < 1/2}.

Proof. We (initially) work in the domain D1, where the absolute convergence is ensured.
Substituting (11.40) into (11.36), and letting cde = r, we obtain

(11.45) Aq =
∑

(r,2)=1

L(u1 + u2 − iU − 1
2
, χqr)L(u1 + u3 + iU − 1

2
, χqr)D(q, r),

where

(11.46) D(q, r) =
∑

(ab,2)=1
cde=r

µ2(abc)µ(b)µ(d)

(abc)α+2βb1+αc1+α+βdβe1−βCq(·).

We claim that D(q, r) is analytic on D∞ ∩ {Re(u1) < 1/2} and therein satisfies the bound

(11.47) D(q, r)� qεrβ−1+ε
∏
p|r

p−2u1−2 min(u2,u3)+1.
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We now prove this claim. Recall (11.7), which in particular immediately shows the absolute
convergence in D∞ of the free sum over a, b in (11.46). Hence
(11.48)

|D(q, r)| � rε
∑
cde=r

µ2(c)µ2(d)((de)′)−2 min(u2,u3)

c1+2α+3βdβe1−β =
∑
cd|r

µ2(c)µ2(d)((r/c)′)−2 min(u2,u3)

c1+2α+3βdβ( r
cd

)1−β .

One may now check (11.47) by brute force, prime-by-prime (by multiplicativity).
A consequence of (11.47) is that on D∞ ∩ {Re(u1) < 1/2} we have the bound D(q, pk)�

pkεp−1− k
2 , for p prime and k ≥ 1, which extends multiplicatively. Therefore,

∑
r |D(q, r)| <

∞ on D∞ ∩ {Re(u1) < 1/2}. The Dirichlet L-functions appearing in (11.45) are at most
O((qr)ε) on D2. Therefore, (11.45) gives the meromorphic continuation of Aq as stated in
the lemma. �

Lemma 11.15. On D2∩{Re(u1) < 0}, the function Z≤L extends to a meromorphic function,
on which it is a finite linear combination of absolutely convergent sums of the form

(11.49) Z
(2)
≤L
γ(1− β)

γ(β)

∑∗

(r,2)=1

∑∗

(q,2)=1

cq,r
q1−βL(u1 + u2 − iU − 1

2
, χqrν)L(u1 + u3 − iU − 1

2
, χqrν

′),

where ν, ν ′ are Dirichlet characters modulo 8, and
∑∗ means that the sum runs only over

square-free integers. Here cq,r is a Dirichlet series depending on s, u1, u2, u3, U that is analytic
on D∞ ∩ {Re(u1) < 1/2}, wherein it satisfies the bound

(11.50) cq,r � r−u1−2 min(u2,u3)(qr)ε.

Proof. We work initially on the domain D1 ∩ {Re(u1) < 0} so that Lemma 11.11 may be
applied, giving (11.35). Now Lemma 11.14 may be invoked to give that Z≤L is a linear
combination of terms of the form

(11.51) Z
(2)
≤L
γ(1− β)

γ(β)

ζ(2α + 2β)

(1− 2−2α−2β)−1

(1± 2−β)

(1± 2β−1)∑
(q,2)=1

qβ−1
∑

(r,2)=1

L(u1 + u2 − iU − 1
2
, χqrν)L(u1 + u3 + iU − 1

2
, χqrν

′)D(q, r),

which converges absolutely on D2 ∩ {Re(β) < 0}. This gives the claimed meromorphic
continuation of Z≤L.

Next we show the claimed form (11.49), which resembles closely the expression (11.51)
except that we need to restrict q and r to be square-free. Towards this end, replace q by
qq2

2 and r by rr2
2 where the new q and r are square-free. Note that L(s, χqrq22r22) agrees with

L(s, χqr) up to finitely many Euler factors that are bounded by O((qr)ε) for Re(s) > 1/2.
These finite Euler products can be incorporated into the definition of D(q, r), which still
satisfies (11.47) on D∞∩{Re(u1) < 1/2}. Then we need to check the convergence in the sums

over q2 and r2. To this end, we first note simply that
∑

(q2,2)=1 q
2(β−1)
2 = ζ(2−2β)(1−2−2+2β),

which is analytic and bounded for Re(u1) ≤ 1/2− σ. For r2, we have from (11.47) that

(11.52)
∑
r2

|D(q, rr2
2)| �

∑
r2

qε(rr2
2)β−1+ε

∏
p|r

p−2u1−2 min(u2,u3)+1 � (qr)εr−u1−2 min(u2,u3).

Finally, this gives the meromorphic continuation of Z≤L to D2 ∩ {Re(u1) < 0} with the
coefficients cq,r analytic on D∞ ∩ {Re(u1) < 1/2} and satisfying (11.50). �
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12. Completion of the proof of Theorem 1.1

Recall that the off-diagonal of
∑

T<tj<T+∆ |L(sym2uj, 1/2 + iU)|2 is a sum which we have

been studying in dyadic intervals n � m � N and c � C . Recall that N � U1/2T 1+ε,
C � N2T ε

∆T
, and C � N2T ε

T 2 , originating from (6.1), (6.15), and (9.6). We also defined certain

parameters Φ, P,K which can be found in (10.3), but for convenience we recall here Φ = N
√
C

U
,

P = CT 2

N2 , K = CU
N

. Aided by the properties of Z developed in the previous section, we are
now ready to finish the proof of Theorem 1.1. We pick up from the expression (10.14), where
we begin with Re(u1) = Re(u2) = Re(u3) = 2. Next we write Z = Z≤L + Z>L, and choose
L so that 2L � CT ε. To bound the contribution from Z>L, we shift u1 far to the right, and
use the bound (11.27). In terms of u1, we get a bound of size O((C/2L)Re(u1) � T−εRe(u1)

which is negligible. Next we focus on Z≤L.
We begin by shifting u1 to the line −ε, which is allowed by Lemma 11.9. There is a pole

of Z≤L at β = u1 + s = 1, with bounded residue. However, since Im(s) � P and P � T ε,
the weight function is very small at this height and the contribution from such poles are
negligible. Thus we obtain

(12.1)

S(H+) =
∑
C

∆T

NC3/2

Φ√
P

∫
−t�P

∫ ∫ ∫ (T 2

U2
−1

4

)s
v(t)w̃(u1, u2, u3)Cu1Ku2+u3

γ(1− u1 − s)
γ(u1 + s)

Z
(2)
≤L

∑∗

r

∑∗

q

qu1+s−1cq,rL(u1 + u2 − iU − 1
2
, χqr)L(u1 + u3 − iU − 1

2
, χqr)du1du2du3ds,

plus a small error term, as well as additional terms with the characters twisted modulo 8.
Since all our estimates hold verbatim for these additional twists, we suppress this from the
notation. Next we want to truncate the sums over q and r. To do so, we move u1 far to the
left, keeping Re(u2) = Re(u3) = −Re(u1) + 100. Note that this remains in the domain D′2
and that Re(u1) < 0 so that the conditions of Lemma 11.15 remain in place to apply (11.49).
Also, note that the coefficients cq,r are O(r−100) here. Moreover, we observe by Stirling that

(12.2)
∣∣∣γ(1− u1 − s)

γ(u1 + s)

∣∣∣� P
1
2
−Re(u1).

In terms of the u1-variable, the integrand in (12.1) is bounded by some fixed polynomial in
T times

(12.3)
( Cq

PK2

)Re(u1)

.

Therefore, we may truncate q at q ≤ Q where

(12.4) Q =
PK2

C
T ε.

After enforcing this condition, and reversing the orders of summation (taking r, q to the
outside of the integrals), we shift the contours of integration so that Re(u1) = 1/2 − ε and
Re(u2) = Re(u3) = 1/2 + ε; this is allowed by Lemma 11.15 as these contours shifts may
be done in such a way that we remain in the domain D∞ ∩ {Re(u1) < 1/2} on which cq,r is

analytic. Moreover, we observe from (11.26) that Z
(2)
≤L � L� T ε on this contour. We then
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bound everything with absolute values, obtaining

(12.5) S(H+)� T ε max
C

∆T

NC3/2

Φ√
P

∫ ∫ ∫
max
x>0
q,r�Q

∣∣∣ ∫
−t�P

xit
γ(1− u1 − it)
γ(u1 + it)

v(t)cq,rdt
∣∣∣

|w̃(u1, u2, u3)|C1/2K
∑∗

q≤Q

q−1/2|L(u1 + u2 − iU − 1
2
, χq)|2du1du2du3.

By Lemma 4.5, keeping in mind that cq,r is given by a Dirichlet series, uniformly bounded
in t by (11.50), we have

(12.6) max
x>0

∣∣∣P−1/2

∫
xit
γ(1− u1 − it)
γ(u1 + it)

v(t)cq,rdt
∣∣∣� 1.

Applying (3.3), we then obtain

(12.7) S(H+)� T ε max
C

∆T

NC
ΦK(Q1/2 + U1/2), Q =

PK2

C
T ε.

Therefore, we obtain
(12.8)

S(H+)� T ε max
C

∆T

NC
ΦK

(P 1/2K

C1/2
+ U1/2

)
� T ε max

C

∆T

NC

N
√
C

U

CU

N

(TCU
N2

+ U1/2
)
.

Using C � N2

∆T
T ε, this simplifies as

(12.9) S(H+)� T ε max
C

∆T

N

√
C
(TCU
N2

+ U1/2
)
� T ε(

T 1/2U

∆1/2
+ (∆TU)1/2).

By (6.11) and the remark following it, this implies

(12.10)
∑

T<tj<T+∆

|L(sym2uj, 1/2 + iU)|2 � T ε(∆T +
T 1/2U

∆1/2
).

We have ∆T � T 1/2U
∆1/2 if and only if ∆ � U2/3

T 1/3 . This inequality holds because one of the

conditions of Theorem 1.1 requires ∆� T
U2/3 , and T

U2/3 � U2/3

T 1/3 because T � U .

13. Proving Theorem 1.3

For the proof of Theorem 1.3, the parameters Φ, P,K are given in (10.13), which for

convenience we recall take the form Φ = N3
√
CT 2 , P = CT 2

N2 , K = C2T 2

N3 . The bounds on N and

C are the same as recollected in Section 12. The overall idea is to follow the same steps as in
Section 12, though picking up with (10.16) instead of (10.14). The only structural difference
between the two formulas is the additional phase of the form

(13.1) e−2it log(
|t|
eT

)+ia t
3

T2 .

Here the cubic term is of size O(PT−δ), as mentioned following (10.9). This only affects
the argument in bounding (12.6), but Lemma 4.5 is applicable (using the above remark that
the cubic term is of lower-order) and gives the same bound with the above additional phase.
Referring to (12.7), we thus obtain

(13.2) S(H+)� T ε max
C

∆T

NC
ΦK

(P 1/2K

C1/2
+U1/2

)
� T ε max

C

∆T

NC

N3

C1/2T 2

C2T 2

N3

(T 3C2

N4
+1
)
.
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Using C � N2

∆T
T ε, this simplifies as

(13.3) S(H+)� T ε max
C

∆T

N
C1/2

(T 3C2

N4
+ 1
)
� T ε

(T 3/2

∆3/2
+ (∆T )1/2

)
Thus in all, by (6.11) and the remark following it, we obtain

(13.4)
∑

T<tj<T+∆

|L(sym2uj, 1/2)|2 � T ε
(

∆T +
T 3/2

∆3/2

)
.

The second term is smaller than the first term if and only if ∆� T 1/5.
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