MOMENTS AND HYBRID SUBCONVEXITY FOR
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ABSTRACT. We establish sharp bounds for the second moment of symmetric-square L-
functions attached to Hecke Maass cusp forms u; with spectral parameter t;, where the
second moment is a sum over ¢; in a short interval. At the central point s = 1/2 of the
L-function, our interval is smaller than previous known results. More specifically, for |¢;]
of size T, our interval is of size T'/5, while the previous best was T/3 from work of Lam.
A little higher up on the critical line, our second moment yields a subconvexity bound for
the symmetric-square L-function. More specifically, we get subconvexity at s = 1/2 + it
provided [¢;]%/79 < [t| < (2 — §)|t;| for any fixed § > 0. Since |t| can be taken significantly
smaller than [¢;|, this may be viewed as an approximation to the notorious subconvexity
problem for the symmetric-square L-function in the spectral aspect at s = 1/2.

1. INTRODUCTION

1.1. Background. The widely studied subconvexity problem for automorphic L-functions
is completely resolved for degree < 2. For uniform bounds, over arbitrary number fields,
this is due to Michel and Venkatesh [MV]; for superior quality bounds in various special
cases, this is due to many authors, of which a small sample is [JM, BH, Bo, BHKM, PY].
The next frontier is degree 3, but here the subconvexity problem remains a great challenge,
save for a few spectacular successes. The first breakthrough is due to Xiaoqing Li [Li], who
established subconvexity for L(f,1/2 + it) on the critical line (t-aspect), where f is a fixed
self-dual Hecke-Maass cusp form for SL3(Z). This result was generalized by Munshi [M1],
by a very different method, to forms f that are not necessarily self-dual. Munshi [M2] also
established subconvexity for twists L(f x x,1/2) in the p-aspect, where x is a primitive
Dirichlet character of prime modulus p. Subconvexity in the spectral aspect of f itself is
much harder, and even more so when f is self-dual due to a conductor-dropping phenomenon.
Blomer and Buttcane [BB], Kumar, Mallesham, and Singh [KMS], and Sharma [Sh]| have
established subconvexity for L(1/2, f) in the spectral aspect of f in many cases, but excluding
the self-dual forms.

A self-dual GL3 Hecke-Maass cusp form is known to be a symmetric-square lift from
GL, [Soud]. Let u; be a Hecke-Maass cusp form for the full modular group SLs(Z), with
Laplace eigenvalue 1/4 + t?. It is an outstanding open problem to prove subconvexity for
the associated symmetric-square L-function L(sym?u;, 1/2) in the ¢;-aspect. Such a bound
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would represent major progress in the problem of obtaining a power-saving rate of decay in
the Quantum Unique Ergodicity problem [IS]. A related problem is that of establishing the
Lindelof-on-average bound

(1.1) > |L(sym®u;, 1/2 + it) | < AT
T<t;<T+A

where we assume throughout that 7¢ < A < T'~¢, and we generally aim to take A as small
as possible. Such an estimate is interesting in its own right, and also yields by positivity a
bound for each L-value in the sum. At the central point (¢ = 0), if (1.1) can be established
for A = T, it would give the convexity bound for L(sym?u;,1/2); the hope would then
be to insert an amplifier in order to prove subconvexity. While a second moment bound
which implies convexity at the central point is known in the level aspect by the work of
Iwaniec and Michel [IM], in the spectral aspect the problem is much more difficult. The
best known result until now for (1.1) was A = T3¢ by Lam [La]. (Lam’s work actually
involves symmetric-square L-functions attached to holomorphic Hecke eigenforms, but his
method should apply equally well to Hecke-Maass forms.) Other works involving moments
of symmetric square L-functions include [Bl1, K, J, KD, BF,Ba, N].

1.2. Main results. One of the main results of this paper is an approximate version of the
subconvexity bound for L(sym?u;, 1/2). Namely, we establish subconvexity for L(sym?u;, 1/2+
it) for ¢ small, but not too small, compared to 2¢;. This hybrid bound (stated precisely be-
low) seems to be the first subconvexity bound for symmetric-square L-functions in which the
dominant aspect is the spectral parameter ¢;. For comparison, note that bookkeeping the
proofs of Li [Li] or Munshi [M1] would yield hybrid subconvexity bounds for ¢; (very) small
compared to ¢. Our method also yields a hybrid subconvexity bound for L(sym?u;, 1/2 + it)
when ¢ is larger (but not too much larger) than 2t;, but for simplicity we refrain from making
precise statements. We do not prove anything when ¢ is close to 2¢;, for in this case the
analytic conductor of the L-function drops. In fact it is then the same size as the analytic
conductor at ¢ = 0, where the subconvexity problem is the hardest.

Our approach is to establish a sharp estimate for the second moment as in (1.1), which is
strong enough to yield subconvexity in certain ranges.

Theorem 1.1. Let 0 < § < 2 be fixed, and let U, T, A > 1 be such that

T3/2+6
(1.2) S SU<(@2-0T
We have
(1.3) > |Lsym®uy, 1/2 4 iU) P < AT

T<tj <T+A

Corollary 1.2. Let 0 < § < 2 be fived. For [t;|%™ < U < (2 — §)|t;], we have the hybrid
subconvexity bound

(1.4) L(sym®u;, 1/2 +4U) < |t;|" U3,

Proof. The bound follows by taking A = T'9U~2/3 in Theorem 1.1 with § chosen small
enough. When U > T5/7+% this bound is subconvex. d
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Note that in Theorem 1.1, we are able to take A as small as T'/? at best. This requires
T < U < (2—6)T and for instance yields the subconvexity bound L(sym?u;,1/2 + it;) <
|tj’2/3+e_

We might also speculate that the lower bound in (1.2) could plausibly be relaxed to
AU > T (possibly with an additional term on the right hand side of (1.3), as in (12.10))
which would give subconvexity in the wider range 7%/3+% < U < (2—6)T. For some reasoning
on this, see the remark following (9.16).

For the central values we do not get subconvexity but we are able to improve the state of
the art for the second moment. This is the other main result of this paper: we establish a
Lindel6f-on-average estimate for the second moment with A as small as T/5F¢,

Theorem 1.3. For A > T and 0 < U < T¢ we have
(1.5) > |Lsym®u;, 1/2 4 iU) ] < AT

T<tj <T+A

It is a standing challenge to prove a Lindel6f-on-average bound in (1.5) with A = 1.

Theorem 1.3 also has implications for the quantum variance problem. To explain this,
recall that Quantum Unique Ergodicity [Lin,Soun] says that for any smooth, bounded func-
tion ¢ on T'\H, we have that (Ju;[?, ) — 2(1,4) as t; — co. By spectrally decomposing 1,
this is equivalent to demonstrating the decay of (|u;|?, ) and (|u;|*, Ey), where ¢ is a fixed
Hecke-Maass cusp form and Ey = E(-, %—l—iU ) is the standard Eisenstein series with U fixed.
The quantum variance problem is the problem of understanding the variance of these crucial
quantitites. More precisely, the quantum variance problem asks for non-trivial bounds on

(1.6) > el
T<t;<T+A
as well as the Eisenstein contribution

1.7) S0 B

T<tj<T+A
Our Theorem 1.3 gives, by classical Rankin-Selberg theory, a sharp bound on (1.7) for

A > TY>*< In turn, by Watson’s formula [W], a sharp estimate for (1.6) boils down to
establishing

(1.8) > Lisym’u; @ ¢, 1/2) < AT,
T<tj<T+A

It is plausible that the methods used to prove Theorem 1.3 should also generalize to show
(1.8) for A > T'5+¢ which would improve [J], but this requires a rigorous proof. For
quantum variance in the level aspect, see [N].

1.3. Overview. We now give a rough sketch of our ideas for Theorems 1.1 and 1.3, both
of which consider the second moment of the symmetric-square L-function. Let h(t) be a
smooth function supported essentially on 7' < |[t| < T'+ A, such as the one given in (6.2).
For 0 < U < (2 —§)T, the analytic conductor of L(sym?u;,1/2 +iU) is of size T*(U + 1),
so using an approximate functional equation, we have roughly

;i (m?)\;(n?)
Z | L(sym? uj,1/2 +4U) )[2h(t Z Z mi/2+iUnJ1/27iU h(t;),

Jjz1 J21 mp<Ti+e(U+1)1/2
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which we need to show is bounded by T'*¢A. Applying the Kuznetsov formula, the diagonal
contribution is of size O(T'¢A), while the off-diagonal contribution is roughly

1 S(m? n?c) _rdrmn

Z mL/2+iU p1/2—iU Z c H( c )
m,n<Ti+e(U+1)1/2 c>1

for some transform H of h, given in (6.6). We have by developing (6.12) that H(x) is

essentially supported on x > T'¢A and roughly has the shape H(z) = T/A i(x=T%/7) Thuys

in the generic ranges m,n ~ T(U 4+ 1)"/? and ¢ ~ 22 writing (n/m)"V = e(U log(n/m)/2x)

and not being very careful about factors of 7 and such, the off-diagonal is
A3/2 2mn T?c
(1.9) T Z Z S(mZ,nQ,c)e< . )e(— m——{—Ulog(n/m))

mn~T(U+1)1/2 e~T(U+1)/A

The oscillatory factor 6(—2;—;6 + Ulog(n/m)) behaves differently according to whether U is
large or small. When U is large, the dominant phase is U log(n/m), while when U is small,
the dominant phase is —an ~ —%

Consider one extreme end of our problem: the case U = T (covered by Theorem 1.1), s
that the convexity bound is 7%/4*¢. Since the diagonal after Kuznetsov is O(T'+<A), the
largest we can take A to establish subconvexity is A = T/27% for some § > 0. Thus for the
off-diagonal, what we need to prove is roughly (specializing (1.9) to U = T, A = T"/? and
retaining only the dominant phase)

(1.10) % Z Z S(mQ,nZ,c)e(zmn

mn~T3/2 c~T3/2

>e(T log(n/m)) < T3/2.

We split the n and m sums into residue classes modulo ¢ and apply Poisson summation to
each. The off-diagonal then equals

1 1
o 2 D @l bk Lo

c~T3/2 kLEZ

—kx — Lty x
I(k, ¢ c) ://e<f+Tlogx—T10gy>w<T3/2,Tg/z)dxdy

for some smooth weight function w which restricts support to « ~ T%2 y ~ T%/2 and

T(k,l,c)= Z S(a2,b2,c)e<w>.

C

where

a,b mod ¢

We compute this arithmetic sum in section 5 and roughly get T'(k,/,c) = ¢*/?(E)e(=EL).
The integral is computed using stationary phase (see Sections 4 and 8). We see that it is
negligibly small unless k, ¢ ~ T, in which case we get roughly I(k, ¢, c) = T?e(E)(k /€)' (see

Lemma 9.3 for the rigorous statement). Thus we need to show

S URICIORE

k~T  cn13/

At this point we go beyond previous approaches to the second moment problem [IM, La] by
finding cancellation in the ¢ sum. We split the ¢ sum into arithmetic progresssions modulo k¢
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by quadratic reciprocity and apply Poisson summation, getting that the off-diagonal equals

1 G S (@) [ (e

This Poisson summation step may be viewed as the key new ingredient in our paper. It
leads to a simpler expression in two ways. Firstly, an integration by parts argument shows
that the g-sum can be restricted to ¢ ~ T, which is significantly shorter than the earlier
c-sum of length T%/2. A more elaborate stationary phase analysis of the integral shows that
the integral is essentially independent of k and ¢, which can be seen in rough form by the
substitution  — xkf in (1.11). The reader will not actually find an expression like (1.11) in
the paper because we execute Poisson summation in ¢ in the language of Dirichlet series and
functional equations. This allows us to more effectively deal with some of the more delicate
features of this step. For example, see Remark 11.5.

Evaluating the arithmetic sum and using stationary phase to compute the integral in
(1.11), we get that the off-diagonal equals

112 3 S e (p) (1) = ger e X ()]

k~T q~T

Finally, applying Heath-Brown’s [H-B] large sieve for quadratic characters, we get that the
off-diagonal is O(T%/**¢), which is better than the required bound in (1.10).

Now consider Theorem 1.3, which deals with the other extreme end of our problem where
U is small. The treatment of this follows the same plan as sketched above for large values of
U, but the details are changed a bit because the oscillatory factor in (1.9) behaves differently.
Consider the case U = 0 (the central point) and A = T'/°, which is the best we can do in
Theorem 1.3. In the end, instead of (1.12), one arrives roughly at an expression of the form

(1.13) 3 e(T1/2q1/4)‘ 3 %

q~T6/5 k:~T3/5

2

Again, Heath-Brown’s quadratic large sieve is the end-game, giving a bound of AT*¢ =
T6/5+¢ Tt is a curious difference that the g-sum in (1.13) is now actually longer than the
c-sum from which it arose via Poisson summation, in contrast to the situation with U =T
presented earlier. However, the gain is that the variables ¢ and k become separated in the
exponential phase factor (indeed, k is completely removed from the phase in (1.13)).

1.4. Notational Conventions. Throughout, we will follow the epsilon convention, in which
€ always denotes an arbitrarily small positive constant, but not necessarily the same one from
one occurrence to another. As usual, we will write e(z) = €*™®, and e.(z) = e(x/c). For
n a positive odd integer, we let x,(m) = (™) denote the Jacobi symbol. If s is complex,
an expression of the form O(p~*) should be interpreted to mean O(p~R°()). This abuse of
notation will only be used on occasion with Euler products. We may also write O(p~™in(sw))
in place of O(p~min(Re(s).Re(w))),

Upper bounds in terms of the size of U are usually expressed, since U may be 0, in terms
of 1 + U. However to save clutter, such upper bounds will be written in terms of U only.
This is justified at the start of section 6.

Acknowledgement. We are grateful to the anonymous referee for an exceptionally thor-
ough and helpful review.
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2. AUTOMORPHIC FORMS

2.1. Symmetric-square L-functions. Let u; be a Hecke-Maass cusp form for the modular
group SLy(Z) with Laplace eigenvalue 1/4 4 t7, and n-th Hecke eigenvalue \;(n). It has
an associated symmetric-square L-function defined by L(sym?u;,s) = > Asym?u, (1)107%,
With Agymzu, (n) = D25 Aj(b?). Let Pr(s) = 7*/*T(s/2) and y(sym?u;,s) = Tr(s)Ir(s +
2it;)T'r(s — 2it;). Then L(sym®u;,s) has an analytic continuation to C and satisfies the
functional equation y(sym?u;, s) L(sym?u;, s) = y(sym?u;, 1 — s) L(sym?u;, 1 — s), where the
notation for v(f,s) agrees with [IK, Chapter 5]. In particular, the analytic conductor of
L(sym?uj, 1/2 + it) equals

(2.1) (L4 )1+ ¢+ 2t5]) (1 + |2t — t]).
2.2. The Kuznetsov formula. Let A(z) be an even, holomorphic function on [¥(z)| < 3+,

with decay |h(2)] < (1 + |2])%79, for some § > 0. Let {u; : 5 > 1} denote an orthonormal
basis of Maass cusp forms of level ¢ with Laplace eigenvalue }L + t? and Fourier expansion

(2) =y2 > pi(n) K, (2x|nly)e(na),
n#0

where z = z + iy and Kj, is the K-Bessel function. At each inequivalent cusp a of I'y(q),
let Eq(-, 3 + it) be the associated Eisenstein series with Fourier expansion

Eo(z, % +it) = Sooot? ™ + a(L + i)y +y2 Y ma(n, 1) K2 |nly)e(na),
n#0
where ,(s) is meromorphic on C. These expansions may be found in [IK, (16.19),(16.22)].
Lemma 2.1 (Kuznetsov’s formula [IK, Theorem 16.3]). For any n,m > 0 we have

> pi(n)p; (m)—cogg;) i zﬂ: % / Z Ta(n, t)Ta(m, t) —Cgs(ﬁ)(ft)

j21

= S(nem) /_ h(t)mﬂ(m)%% S M / J(‘”VC”m,t)h(t)ttanh(m)dt,

[e.9] —00

¢=0 mod q

Jzit(ﬂf) - szit(ﬂi)
sinh(7t) '

where J(x,t) =

Later, we will need to use the Kuznetsov formula for level 2¢. We will choose our orthonor-
mal basis to include the level 1 Hecke-Maass forms, for which we may write

pj(?’b)ﬁj(m)M A (n)X(m )M

cosh(t;) cosh(mt;)

and note that t;“ < Clti’h((i j < 15 by [HM, (30)] together with the fact that L?-normalization

in ['y(2%) and FO( ) is the same up to a constant factor.
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3. THE QUADRATIC LARGE SIEVE
We will have need of Heath-Brown’s large sieve inequality for quadratic characters:
Theorem 3.1 (Heath-Brown [H-B]). Let M, N > 1. Then
* * n 2
3.1 n(-)‘ M + N)(MN) 2
(3.1) Zzam<<(+)( )Y lanl

m<M n<N n<N

where the sums are restricted to odd square-free integers.

We will need a corollary of Heath-Brown’s result, namely

(3.2) D L(/2 + ity Xon) [P < (M A+ / ML+ [t]) (M (1 +|t]))°

m<M

This follows from an approximate functional equation, and a simple observation that the
square parts of the inner and outer variables are harmless. Similarly, we obtain

(3.3) > m VL2 + it )P < (MY (L H)Y2) (ML )

m<M

4. OSCILLATORY INTEGRALS

Throughout this paper we will make extensive use of estimates for oscillatory integrals.
We will largely rely on the results of [KPY] (built on [BKY]) which uses the language of
families of inert functions. This language gives a concise way to track bounds on derivatives
of weight functions. It also has the pleasant property that, loosely speaking, the class of inert
functions is closed under application of the stationary phase method (the precise statement
is in Lemma 4.3 below). We refer the reader to [KPY] for a more thorough discussion,
including examples of applying stationary phase using this language.

Let F be an index set and X = Xy : F — R>q be a function of 7" € F.

Definition 4.1. A family {wr}recr of smooth functions supported on a product of dyadic

intervals in R% is called X -inert if for each j = (j1,...,ja) € Z%, we have
(41)  Cr(j1,...,Ja):==sup  sup X/t I gl g wgl’ ’]d)(atl, CeTg)| < 00.

TeF (zl,...,xd)eRiO

As an abuse, we might say that a single function is 1-inert (or simply inert) by which we
should mean that it is a member of a family of 1-inert functions .

Lemma 4.2 (Integration by parts bound [BKY]). Suppose that w = wr(t) is a family of
X -inert functions with compact support on [Z,27], so that for all j = 0,1,... we have
the bound w9 (t) < (Z/X)™7. Also suppose that ¢ is smooth and satisfies for j = 2,3,.
PV (t) < % for some R > 1 wzth Y/X > R and all t in the support of w. Let

I:/ w(t)eVdt.

[e.o]

If |¢'(t)] > % for all t in the support of w, then I <4 ZR™ for A arbitrarily large.
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Lemma 4.3 (Stationary phase, [BKY] [KPY]). Suppose wr is X-inert inty,...tq, supported
onty < Z andt; < X; fori=2,...,d. Suppose that on the support of wr, ¢ = ¢r satisfies
pertazt+aq Y 1

4.2 ——— (1,10, ..., 1) K e
(42) 8t‘f1...6t3d¢(1 2 1) <or 7o Xg . XGa
for all ay, ..., aq € N with a; > 1. Suppose ¢"(t1,ta,...,tq) > %5, (here and below, ¢' and
¢" denote the derivative with respect to t1) for all ty,ta, ... tq in the support of wr, and for

each to, ..., tq in the support of ¢ there exists to < Z such that ¢'(tg,ta, ..., ts) = 0. Suppose
that Y/ X% > R for some R > 1. Then

. 7 .
(43) I = / €l¢(t1"“’td)wT(t1, R ,td>dt1 = —61¢(t0’t2""’td)WT(t2, R ,td) + OA(ZR_A),
R VY
for some X-inert family of functions Wr, and where A > 0 may be taken to be arbitrarily
large. The implied constant in (4.3) depends only on A and on Cr defined in (4.1).

The fact that W7 is inert with respect to the same variables as wy (with the exception of
t1, of course) is highly convenient. In practice, we may often temporarily suppress certain
variables from the notation. This is justified provided that the functions satisfy the inertness
condition in terms of these variables. We also remark that if d = 1, then Wr(ta,...t4) is a
constant.

The following remark will be helpful for using Lemma 4.3 in an iterative fashion. First
note that tq is the unique function of to, ..., t; which solves ¢'(t,...,tq) = 0 when viewed
as an equation in ¢;. In other words, t, is defined implicitly by ¢'(to,...,ts) = 0. In practice
it might be an unwelcome task to explicitly solve for ¢y, and the following discussion will aid
in avoiding this issue. Let

(44) @(tg,...,td) - ¢(t0,t27...,td),
so by the chain rule,
0 dty 0 0
4. — = ¢ — + — ot = — .
( 5) at] (t27 7td) ¢ (t07t27 >td>atj + 8tj¢(t07 7t]) 8t] (t07 7t])>

and so on for higher derivatives. Hence the derivatives of ® have the same bounds as those
on ¢ (supposing uniformity with respect to the first variable t1).

As a simple yet useful consequence of this, if ¢ satisfies (4.2) (with Z replaced by X, say)
as well as a%¢(t1, cotg) > XLJQ >R >1forj=1,2,... k, uniformly for all ¢;,...,¢; in the

support of wy, then

Xi... X

(4.6) /k eiqﬁ(n,...,tcz)wT(tl7 o 7td)dt1 Codty = YTzkeiqf)(vo;tmh...,td)WT(tk+1, o 7td)
R
Xq... X,
=0 ),
where v € R¥ is the solution to Vé(vo; tis1, - - -, ta) = 0, where the derivative is with respect

to the first k& variables only (i.e. the first k& entries of V¢ are zero). Here we have trivially
integrated each error term over any remaining variables of integration; the arbitrarily large
power of R savings nicely allows for this crude treatment of the error terms.

The following is an archimedean analog of the well-known change of basis formula from
additive to multiplicative characters (compare with [IK, (3.11)])
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Lemma 4.4. Suppose that wr is 1-inert, supported on x < X where X > 1. Then
(4.7) e twr(x) = X7 / v(t)a'dt + O(X 1),

=X

where v(t) = vx(t) is some smooth function satisfying v(t) < 1. Moreover, v(t) = e~t1sItl/INY/ (¢)
for some 1-inert function W supported on —t < X.
Proof. Let f(z) = e “wr(x). By Mellin inversion,
dx

T .

(4.8) f(z) :/()%xsds, where  f(—s) :/000 e~ xS wp(r)

Take o0 = 0, so s = it. Lemma 4.2 implies that f(—it) is very small outside of the interval
—t < X. For —t < X, Lemma 4.3 gives that

(4.9) Fl—it) = X~ 2etlos(t/e (1) 4 O(X 20,
where W is a l-inert function supported on —t < X. ]

For later use, we record some simple consequences of the previous lemmas.

Lemma 4.5. Let v(t) = e~/ VV (t) for some 1-inert function W supported on —t < X
with X > 1. Let y(s) = 7*/?T'(t%) for k € {0,1}. Let D(s) = Yo", a,n~* be a Dirichlet
series absolutely convergent for Re(s) = 0 with maxser |D(it)] < A for some A > 0. Let
c1, Ca, 3 be some real numbers (which may vary with X ) with 0 < ¢; < 1 and |co| X3+ |e3| <
X179 for some § > 0. For any Y > 0 we have

(4.10) X2 / v(t)e OBty it D (i) gt <, 4 1
and
Sz [T —ei Y (1/2 =it +¢3)) i
4.11 X2 / o(t)e-critiolieait? 2 Y*D(it)dt <, 1.
-t L AP T e

The bounds depend only on v and A.

Proof. Expanding out the Dirichlet series, and exchanging summation and integration, it
suffices to prove the result with D(s) = 1. We first consider (4.10), which is an oscillatory
integral with phase
B(t) = —(1 + c;)tlog [t| + tlog(eY) + cot?.

Note that the leading phase points in the direction —tlog |t|. For |t| < X we have ¢/(t) =
—(1+¢1)log |t +1log(Y) — ¢; + O(X%). Lemma 4.2 shows that the left hand side of (4.10)
is very small unless logY = (1 + ¢;)log X + O(1), for a sufficiently large implied constant.
On the other hand, if logY = (1+¢;)log X + O(1), then ¢'(t) = —(1+¢;) log(|t|/X) — (1 +
c1)log X +1log(Y) + O(1) = O(1). We may then use Lemma 4.3 to show the claimed bound
(4.10).

For the second bound (4.11), we first observe that by Stirling’s formula we have we have

Y(1/2 —i(t +c3)) W(t)e—i(t+C3)1og\t+r:3|+cz't +O(X20),

v(1/2 +i(t + c3))
for some 1-inert function W and some ¢ € R. With the phase of this gamma ratio pointing
in the same direction as —tlog |t|, we can repeat the same argument as above to show square
root, cancellation. O
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We end this section with some heuristic motivation for the bound in (4.11), and how it is
related to (1.11) from the sketch. Let w be a fixed inert function, C' > 1 and P := A/C > 1.
By Poisson summation, we have

(4.12) S = ie( - é)w(c/C’) - Z/Ze( - ? - qt)w(t/(])dt.

Integration by parts and stationary phase tells us that the sum is essentially supported on
q = % in which case the integral is bounded by \%. An alternative (and admittedly more

roundabout!) way to accomplish this same goal is to use Lemma 4.4 with z = 2%%, and
the functional equation of the Riemann zeta function (shifting contours appropriately). The
dual sum will have a test function of the form on the left hand side of (4.11) (with ¢3 =0
in fact), and the bound in (4.11) is consistent with the simpler Fourier analysis presented in
this paragraph above. The reader may wonder, then, why we have proceeded in this more
complicated fashion if the Fourier approach is simpler. The answer is that the actual sums
we encounter in this paper are arithmetically much more intricate than the simplified one
presented in (4.12). The Mellin transform approach is better-suited to handling the more
complicated arithmetical features that are present in our problem, so on the whole, taking
into account both the analytic and arithmetic aspects of the problem, the Mellin transform
approach is simpler.

5. CHARACTER SUM EVALUATIONS
We need the following elementary character sum calculations. Define the Gauss sum

(5.1) G(%)z Z ec(az?).

z (mod c¢)

We need to evaluate G(a/c). It is well known (e.g. see [IK, (3.22), (3.38)]) that

O L S S ey

provided (2a,c) = 1. The case with ¢ even is treated as follows. Let § € {0, 1} indicate the
parity of the highest power of 2 dividing ¢, as follows: if 2"2||c then let

(5.3) d=wvy (mod 2).

From the context, this should not be confused with usages where ¢ is a small positive constant
or the §(P) function which equals 1 when a statement P is true and 0 otherwise.

Lemma 5.1. Suppose ¢ = 2Fc, with k > 2, ¢, odd, and 0 is as in (5.3). Suppose also
(a,¢) = 1. Then

(5.4) G(E) _ EC061/2<a25) {1 + eq(ac,), 5=0

c co /| 242%es(ac,), §=1.

Proof. First we note that if ¢ = ¢y with (¢, ¢2) = 1, then

(5.5) G(i) - G(%)G(%)
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Suppose that ¢ = 2¥ with & > 2. Let j be an integer so that 2j > k, and write z = u + 2/v
with u running modulo 27 and v running modulo 2¥~7. Then

(5.6) G(%) = Z e (au?) Z egr—j—1(auv).
u (mod 27) v (mod 2k—7)

The inner sum over v vanishes unless u = 0 (mod 2¥771), so we change variables u =
2F=i=1y with r now running modulo 2%~*+1_ This gives

a .

(57) G(?) = 2k J Z €92j—k+2 (CLTQ).
r (mod 22 —k+1)
In the case that k is even, we make the choice j = k/2, giving
a
(5.8) G<2k> =22 %" eyfar?) = 2Y7(1 + eq(a)).
r (mod 2)
If k£ is odd, we take j = %, giving now
(5.9) G(;—k> =27 Z egs(ar?) = 2%68(a).
r (mod 22)

Assembling the above facts, and using (5.2), now completes the proof. O

Lemma 5.2. Let x be a Dirichlet character modulo q, and suppose d|q and (a,d) = 1. Let

(5.10) Sy(a,d,q) = Z x(n).
n (mod q)
n=a (mod d)
Suppose that x is induced by the primitive character x* modulo ¢*, and write x = x*xo where
Xo 1§ trivial modulo qo, with (qo,q*) = 1. Then Sy(a,d,q) = 0 unless ¢*|d in which case

(5.11) Syla.d.q) = Iy (@ ] (1 - 1).
plgo P
pid
Proof. Suppose ¢ = ¢1q2 with (q1,g2) = 1 and correspondingly factor d = dyds and x = x1x2
with x; modulo ¢;. The Chinese remainder theorem gives S, (a, d, ¢) = Sy, (a, d1, ¢1) Sy, (a, da, ¢2).
Writing d = d*dy where d*|q¢* and dy|qo, we apply this with ¢; = ¢*, ¢2 = qo, x1 = X*, X2 = X0,
d; = d*, and dy = dy. By the multiplicativity of the right hand side of (5.11), it suffices to
prove it for x* and yp.
By [IK, (3.9)], Sy~(a,d*,q*) = 0 unless ¢*|d*, in which case it is given by (5.11), so this
case is done.
For the x( part, we simply use Mobius inversion, giving

(5.12) Syo(a, do, qo) = Zu Z 1.

tlgo n (mod go/¢)
¢n=a (mod dp)

Since (a,dy) = 1 by assumption, this means that we may assume (¢,dy) = 1, and then n is
uniquely determined modulo dy, which divides qo /¢, giving

(5.13) S (a, do, @o) = Z “ - H (1 - 1). 0

p
(f do) 1 ﬂgg
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For a,b,c € Z with ¢ > 1, define
(5.14) T(a,b;c) = Z S(2?, y% c)ec(2xy + ax + by).

z,y (mod ¢)
For ¢, odd, write its prime factorization as ¢, = Hp p™ ] . ¢%" where each a,, is odd and each
by is even. Let ¢* =[] p and co =[], ¢. Then ¢* is the conductor of the Jacobi symbol (Z>
Lemma 5.3. Let a,b,c € Z, with ¢ > 1. Suppose ¢ = 2/c, with j > 4 and ¢, odd, with
d defined as in (5.3). Define o’ = g V= ﬁ Then T'(a,b;c) = 0 unless 4|(a,b) and
(a,c) = (b,c), in which case

(5:19) T(a,bi0) = (an ims)e eal=abya) (S Jas(a' Ve 25y T =),

p|C|:|7PM.?720)

where gs is some function depending on a',b', c, modulo 22%9 that additionally depends on

((a L ,2279) . In particular, we have that T(0,b;c) < c>26(c* = 1)6(c|b).
Proof. We have
(5.16) T(a,b;c) Z Z (t(x +Ty)* + az + by).

t (mod c¢) z,y (mod c)

Changing variables * — x — ty and evaluating the resulting y-sum by orthogonality, we
deduce

(5.17) T(a,b;c) =c Z Z ec(tz® + az).

t(mod ¢) x(mod c)
bt=a (mod c)
The congruence in the sum implies that T'(a, b;c) = 0 unless (a,c) = (b, ¢), a condition that
we henceforth assume. Changing variables © — x + ¢/2 also shows that T'(a, b; ¢) = 0 unless
2|a, so we assume this condition also.

Write ¢ uniquely as ¢ = ¢jcy where c|c?, cp|c; and ¢; /¢y is square-free (another way to see
this factorization is by writing ¢ uniquely as AB? with A square-free; then ¢; = AB and
ca = B). Observe that 2%|c, from 2%|c. Let x = x1 + 129, and let Q(z) = tz? 4+ ax. Note
that

(5.18) Q(z1 + c1w2) = Q(xy1) + Q' (1) crwa + %c%x% = Q(x1) + Q' (z1)c1z2  (mod c).
Thus

(5.19)
Do w@@)= Y @) Y ea@@lr)=a Y Q)
z (mod c¢) z1 (mod c1) z2 (mod c2) 21 (mod c1)
Q' (x1)=0 (mod c2)
In our case, Q'(x1) = 2tz1 + a, so the congruence means 2z; = —ta (mod ¢;). Since 2|a and
2|cy, this is equivalent to x; = —t§ (mod ¢3/2). Writing z; = —t§ + %o, with v running

modulo Qi—;, we obtain

(5.20) Z ee(Q(x)) = coec(—ta*/4) Z e(%/c).

x (mod C) v (mod 2%)
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While the exponential in the inner sum has modulus 4¢; /¢, the sum is only over 0 < v <
2(c1/co)—1. However, observe that the exponential has the same values at 1 < —v < 2(¢1/c),
so that the inner sum above is half of a Gauss sum. Thus
CQ * ) t
5.21 T(a,b;c) = 2 = 4G( )
(521) (@be)=cf D eltaG (o
t (mod c¢)
bt=a (mod c)

By Lemma 5.1, we deduce

5.22 T(a,b;c) = ¢* e, ta®/4 < ) ’
(5.22) (a,b;¢) o D, edl—ta’/4) 21/2¢ (O), 5=1.
t (mod c)
bt=a (mod c)
This formulation contains a few additional observations. We have used that the Jacobi sym-
bol ( @ /62) ) agrees with (;-) for ¢ coprime to ¢, where n, is the odd part of an integer n.

We have also used that (¢; / ¢2)o and ¢, have the same values modulo 8. Thus we can replace
€1 /ea)o» €a(t(c1/ca)o), and eg(t(c1/c2)o) With €., es(tc,), and es(tc,) respectively. These ob-
servations can easily be checked by using multiplicativity to reduce to the case when c is a
power of an odd prime. If ¢ = p!, then ¢;/c; = 1 when [ is even, and ¢, /c; = p when l is odd.

Next we turn to the ¢t-sum in (5.22). Suppose first that 2||a. Let ¢’ = L b = (a - The
congruence bt = a (mod ¢) uniquely determines ¢ modulo ¢/(a, ¢), since it is equivalent to
t=Vda (mod c¢/(a,c)). Now in the t-sum, one can pair up ¢ with £+c/2 and observe that the
corresponding values of the exponential e.(—ta?/4) will cancel out since e.(—(c/2)a?/4) =
—1. Also, the values of (£) = (&), ea(tc,) = ea(tc,), and es(te,) = es(fc,) remain the same
under ¢ — t + ¢/2, since by assumption 2%|c. Therefore, T'(a, b, c) vanishes unless 4|a (and
hence 4[b), which we now assume to be the case. This allows the convenient simplification
e.(—ta*/4) = e.(—ab/4).

Breaking up the t-sum into congruence classes modulo 2%+, to uniquely determine eg2+s(tc,),
we obtain

. 1+ eq(ve,) * 129
(5.23) T(a,b;c) = CS/ZEcoec(_ab/4) Z {21/2 Z <C_>
v (mod 22+9) €8 ('UCO) t (mod c) ?
t=b'a’ (mod ﬁ)
t=v (mod 2219)

For the congruence t = b'a’ (mo )) to be consistent with t = v (mod 2%?), it is necessary

d
d (acc) 22+5))'
Recall that ¢ = 2/c,, where j > 4. Factoring the moduli in the sum, we have

524 D L S VI ) QD S|
t (mod c) ° t (mod co) ° t (mod 2j)_

t=bla’ (mod (a, p)) t=bla’ (mod (a?go)) t=bla’ (mod
t=v (mod 2219)

and sufficient that v = b'a’ (mo

(a 2]) )
t=v (mod 2219)

The sum modulo 2/ above equals, by the Chinese Remainder Theorem and the fact that the
condition (¢,2) = 1 is automatic because (v,2) = 1,
; j 245
a4 2 ((“2”’2 ) = (a,27727%),

22+6] (a?;j) 922+

@y
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provided of course that v = b'a’ (mod ( (a2;-), )). Therefore, we have that T'(a, b; ¢) equals

A * 1+ 64(1)00) * 129
3/2 B —2-6 te
(6.25) Peel-ab/(a 2 Y {21/26 v (2 (o)
v (mod 22+‘5) 8 ° _ t(mod co) ?
v=Fa (mod (2 ,2+%)) t=b'a’ (mod 2%5)

2])

ByLemma52w1thq-co,d— oy a="0d, ¢ =c*, and ¢y = ¢, we have

* t a't! . Co 1
(5.26) > (—) = (a.0) (5 )oe =) T 1 =p.
Co c (a?CO>
t (mod co) pleg
t=b'a ’(mod (ac )) M(a co)

Inserting (5.26) into (5.25) and simplifying a bit using (a, ¢,)(a, 2/727%) = (a, 7555 ), we deduce
that T'(a, b; ¢) equals

(527) C3/2€CO€C< ab/4)( a, 22+5)<a’b/2 > H (1 _pfl) Z* {;1_/{—2::((1100)

c* Ve
pleq v (mod 2219) 0)’

Co
MTareo) =F/a' (mod (; 2;]) 22+0))

times the delta function that ¢* d1v1des

s ) The inner sum over v is a function of a’, ¥, ¢,

modulo 22+° that additionally depends on ( o QJ),QZM) In addition, (g—i) is a function of ¢,
modulo 22+°. O

6. START OF PROOF

Let 0 < U < (2 —§)T. By an approximate functional equation, dyadic decomposition of
unity, and Cauchy’s inequality, we have

— 2, V2
(6.1) M := Z |L(sym~u;, 1/2+iU)|* < L max
T<t;<T+A T<t;<T+A n

where wy () is supported on x < N and satisfies w%) (z) <; N7 and Npyay = (U+1)V271F,
To save some clutter in the notation, we want to simply write U instead of U + 1 in all
estimates involving U. The reader may accept this as a convention or, when 0 < U < 1, we
can write n~Vwy(n) = n~Wniwy(n) and absorb n' into wy(n) by redefining the weight
function. Thus we can henceforth assume that U > 1.

Next we insert a weight

(6.2) h(t) = tz;% [exp < — @;—5)2> + exp ( — @2—5)2)},

write \;(n?) = p;(n?)/p;(1) and over-extend (by positivity) the spectral sum to an orthonor-
mal basis of all cusp forms of level 2¢, embedding the level 1 forms. This embedding trick,
introduced for the purpose of simplifying the 2-part of the exponential sum in Lemma 5.3,
is motivated from [BI12, p.4]. We also form the obvious Eisenstein series variant on the sum.
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This leads to the inequality (see the remarks following Lemma 2.1)

63) M< max T_< 3 h(t;) ‘ m(m)wN(n)‘g

1KN<KNmax N , cosh(7t;) niv

u; level 2
1 [~ h) Ta,z’t(HQ)
i ; dm /_Oo cosh(t) ) ; il wn(n)

Opening the square and applying the Kuznetsov formula, we obtain

2dt) .

(6.4) M<K AT+ max  T¢|S(H),
1<K N< Ninax
where
1 S(m?,n?;c) 4mmn
(65) S(‘H) = N O(Z ; szUn U N(m)wN(n)H< c ))
(6.6) H(z) = z/ J(z,t)t tanh(wt)h(t)dt,

and J(z,t) is as defined in Lemma 2.1.

By [JM, (3.10)] we get that H(z) < 222 for z < 1. Using this with « = 47mmn/c, we can
truncate ¢ at some large power of T, say ¢ < 7% with an acceptable error term.

Using [GR, 8.411 11] and the fact that the integrand in (6.6) is an even function of ¢, one
can derive as in [JM, (3.13)] that H(z) = 2Re(Hy(x)), where

(6.7) Ho(x) = / incoshy / ¢=2i04 tanh (rt)h(t)dtdo.

o0 —00

The inner t-integral above is

o 241 (t —T) (t+ 1)
—2ivt 4 _ _
(6.8) /_OO e t tanh(mt) T <eXp ( A2 ) + exp ( A2 >)dt
= AT (72T 4 2T g(Av),

where g(y) = gar(y) behaves like a fixed (even) Schwartz-class function; namely it satisfies
the derivative bounds ¢\ (y) <4 (1 + |y|)~*, for any j, A € Z>,. Hence

(6.9) Hy(x) = 2AT/ elreoshve =20l o ( \y))du.
From this, we can write the real part of Hy(z) as a linear combination of Hy(z), where
(610) Hi(.’l?) — AT/ eiixcoshvaing(A,U)dU — ATeiix/ eii:p(coshv 1)—2ivT (A’U)d

Then (6.4) becomes
(6.11) M<K AT+ max  T°|S(H.)|.

1<<N<:ENmax
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It suffices to bound S(H,), as the argument for S(H_) is similar. For convenience, let us
write this as H(z) = ATe” K, (z), where

(6.12) K+($) _ / em(COShU_l)_Qng(A’U)dU.

Finally, we apply a dyadic partition of unity to the c-sum. To summarize, we have shown

(6. 13)
_ AT Z Z Z S(m?2,n?c eC(an)w(m, n. C>K+<47rmn> Lo,

szUn U c
C ¢=0(mod 24) m,n

where the first sum is a sum over integers C' equal to 2//2 for 0 < j < 300logT and
w(x1, T2, x3) = Wy (21, T2, x3) is 1-inert and supported on z7 < x5 < N and ¢ < C.

We may approximate H,(z) quite well by truncating the integral at |[v] < A™'T¢ and
then use an integration by parts argument to see that H, (z) is very small unless

(6.14) x> AT,

For more details of an alternative approach, one may see [JM, pp.76-77]. In our situation

where x < c , we conclude that we may assume
N? ur
6.15 CKLTF— T —
(6.15) SUAr <t A

For our purposes it is inconvenient to develop the wv-integral further at this early stage.
However, we do record the following slight refinement that is useful for large values of x.

Lemma 6.1. Suppose that

(6.16) x> T

Then

(6.17) K+(x) = / / ez’x(cosh(v)*l)*%Tvg(Av)n(U)dv + O((Q;T)floo)’
v <<33_1 QTs

where 1) is supported on |v| < = V2T° and satisfies property (4.1) for a 1-inert function.
Proof. This follows from the integration by parts lemma. O

7. DOUBLE POISSON SUMMATION
Next we apply Poisson summation to the m and n sums in (6.13), giving

(7.1) ATZ 3 Z L) 1,0+ O™,

C  ¢=0(mod 24)

where
4
(7.2) I(k, 4, c) / / “UyiUe.(kx —Ky)KJr( 7T%y)w(aj,y,c)dxdy.
By Lemma 5.3, T'(—k, ¢;¢) = 0 unless (k,c) = (¢,¢) and 4|(k,¢), in which case

k'

(7.3) T(—k,é,c):03/2(/6,2’2’50)60(/{6/4)( Jas(' € o) (e Gy I a-».

plcmvpf(kc,go)
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' ko
where k' = oL U= (13 oL

Lemma 5.3 (here the function g5 has the same properties as the one appearing in Lemma
5.3, but may not agree with it).

Write

d was defined in (5.3), and other notation is carried over from

(7.4) c =2, k=2k, (=270,

with (k,lyco,2) = 1. The condition (k,c¢) = (¢, ¢) now becomes min(\,v) = min(\,~), and
(koy €o) = (€o, Co). The condition 4|(k, ) now means v,y > 2. We also write

(7.5) = qrir;

where ¢ is square-free, r1|¢>, and (¢,72) = 1. With this notation, ¢* = ¢ and CD shares
Co _ qu

k,co) (k07q7'1) (ko,rz)
ar?

q| g7y Which is equivalent to (ko, qr?)|ri. Then
0,471

the same prime factors as ro. Note (

16) SH) =Y rowm L @2 YOy %
C

vy>2,A>4 (r1r2,2)=1 q:r1|q™> (kolo,2)=1
min(\,v)=min(\,y) (¢,2r2)=1 (ko,co)=lo,c0)
(koar?)lr?

(T1 =) (50) o codectht/iasth 0. )10k .0) + O@ =),

r3
P|T2,MW

where in places to simplify the notation we did not display the substituted values such

as ¢, = qrirs. We remark that the statement that gs(k’, ¢, c,) depends additionally on

(== o ,2%%%) means it depends on (2A~™in(AW) 92+9) T particular, gs depends additionally on
A, v, but only lightly, in the sense that it falls in the four following cases:

(7.7) DA<y, d)A=v+1, di)A=v+2,  iv)A>v+3.

Next we want to give a variable name to (k,, ¢,), etc. We have (k,, ¢,) = (ko, qr3) (Ko, 73),
and similarly (£,, o) = (£o, qri)(ko,73). Let

(7'8) (koaqr%> = (gmqrf) =91, and (kmrg) = (60?7%) = g2

Here g; runs over divisors of 72 and g, runs over divisors of 3. Let

(7.9) ko = q192ke, Lo = 91920,

where (k0! qg) =1 and (k)¢, TQ) = 1. In our context, the presence of the Jacobi symbol
(%) means that we may automatically assume (k.¢/,q) = 1 which implies (k.¢., q T%) =1
Note that &' = k/2v~"™n(A) and ¢ = ¢/27™n(A)  We also apply quadratic reciprocity,
giving (%) = ( W z') times a function depending on £/, ¢! ¢' modulo 8 (which only alters

0’ o)
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the definition of g). Making these substitutions, we obtain

(7.10) 5(}@:2% > @27 Y Mg ] a-pY
C

v,y>2,A>4 (r1m2,2)=1 gy |r?
min(A,v)=min(\,y) gz\r% plre, P)f 2

Z Z <k/€/ )ec(k£/4)g/\ VV(S(k/o?g;;q)I(k,g, C) _‘_O(q"—lOO)7
qgrilg™® (kL 0),2)=1
@2r2)=1 iy, 78021

where gy ,.4,5 is some new function modulo 8.
Finally, we decompose g into Dirichlet characters modulo 8, and break up the sum ac-
cording to the four cases in (7.7), leading to a formula of the form

(7.11) [S(Hy)[ < max |5, (H)],
cases in (7.7)
where
AT v 9A—2—0 -1
(712) S(H) =) wran 2. @277 30 D g [[ a-p7)
C v,y>2,A>4 (r17r2,2)=1 gq|r? r3
min(\,v)=min(\,7) g2lr3 P|r21ME

one of (7.7) holds

> Z m(/f;)nz(z;)ns(q)(ﬁ)ew/wk,e,c)+0<T—10“>.
gr1lg™ (k’f’ o

(g,2r2)= /gt T2
", 92> 1

8. THE BEHAVIOR OF [(k,{,c)

The purpose of this section is to develop the analytic properties of I(k,¢,c). We begin
with a few reduction steps. Inserting (6.12) into (7.2), we have
(8.1)

I(k,l,c) = / (Av) _Q“’T/ / “Wylle (kx — by + 2xy(coshv — 1))w(w, y, c)drdydv.

Let A, B > 0, ¢ > 0 be real numbers and N and U as before, and consider the integral

(8.2) HABUEN) = [ o (e,y. )dody,
R2

where wy is 1-inert, supported on x <y < N with N > 1, and
(8.3) ¢(z,y) = —Ulogx + Ulogy + Ax — By + exy.
In our case,

2k 2l ho—1
(8.4) A= L, B= l, e =€(v) :471'&,

c c c

and then
(8.5) I(k,0,c) = / g(Av)e " TI(A, B, U, e(v), N)do.

Note that in our study of I(A, B,U, ¢, N), we may assume throughout that ¢ > 0, because
€(v) = 0 if an only if v = 0, a set of measure 0 for the v-integral of I(k, ¢, c).
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Moreover, we may wish to assume that wy(x,y) = wy(x,y, ) depends on some unspecified
finite list of additional variables that are held suppressed in the notation. In this situation
we will assume that wy is 1-inert in terms of all the variables, not just x and y.

Lemma 8.1. Suppose that eN? = o(U), with U — oo.
1. Then I(A,B,U,e, N) <¢ NU~C with C > 0 arbitrarily large, unless

U
. AxBx—.
(8.6) ~
2. In the range (8.6), we have
N? .
(8.7) J = _€z¢(x0,y0)W(_) + O<N2U70)’

U

where (To,Yo) is the unique solution to Vo(xo,yo) = 0, and W is 1-inert in terms of any
suppressed variables on which wy may depend.
3. Supposing (8.6) holds, ¢(xo,yo) has the asymptotic expansion

(8.8) (o, y0) = Ulog(A/B) + zj:ch<%>l+2j n O<U<Z_%>3+2J)7

for some absolute constants c;.

Note that (8.6) implies <% = df = o(1), so that (8.8) is an asymptotic expansion. We
also remark that the assumption e N? = o(U) means that the dominant part of ¢ comes from

—Ulogx + Ulogy, and exy is a smaller perturbation.

Proof. The integration by parts lemma (Lemma 4.2) shows the integral is small unless (8.6)
holds. Assuming (8.6) holds, then Lemma 4.3 may be iteratively applied (using the remarks
following Lemma 4.3) which gives the form (8.7), with a 1-inert function W.

It only remains to derive the Taylor expansion for ¢(zg,yo). We have

(8.9) ¢(Uz/A,Uy/B) = Ulog(A/B) + U®(z,y),
where
(8.10) O(z,y) = —logr +logy +x —y+dry, and &= % =o(1).

By a simple calculation, we have that V®(zg,yo) = 0 if and only if 2o = 1 — dzoye and
Yo = 1 + dxoyo. Thus

(8.11) To + Yo = 2, and Yo — To = 20X0Yo.

Letting 1o = xoyo, we see that it satisfies the relation 7o = (1 — dro)(1 + drg) = 1 — §rd.
Solving this explicitly, we see that rg is an even function of §, analytic for |§| < 1/2. Note
ro =1 — 6%+ O(6*). Then we have

14 or
(8.12) P (20, y0) = log(yo/0) + 2o — Yo + 0zoyo = log (1 57"0) — oo,
— 0rg
which is an odd function of §, with power series expansion of the form ®(zg, o) = 0— %(53+. o

Translating back to the original notation gives (8.8). O
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Lemma 8.2. Suppose that = = o(1).
1. Then I(A, B,U,¢e, N) <¢ N~ with C > 0 arbitrarily large, unless

(8.13) |Al < |B| <eN, A<0, and B > 0.
2. Assuming (8.13), then

(8.14) J = lew(wo,yo)w(.) + O(N2U_C),

€

where (xg,yo) s the unique solution to Vo(xo,yo) = 0 and W is l-inert in terms of any
suppressed variables on which wy may depend.

3. Finally, ¢(xo,yo) has the following Taylor expansion

610 ot = 22 [ (55)" +o(f5) )+ s ().

with certain absolute constants c;.

The condition U = o(eN?) means that the dominant phase in ¢ is ezy, and the phase
—Ulogx + Ulogy is a perturbation.

Proof. Considering the z-integral, Lemma 4.2 shows that / << N~¢ unless
A Yy U
1 A e U
(8.16) —~ v < @ =)

Since 1 < ¥ < 1 (with certain absolute implied constants), this means that |A| < |¢| N with
A having the opposite sign of € (i.e., A < 0). Similarly, considering the y-integral shows that
I is small unless | B| < eN with B having the same sign as € (i.e., B > 0).

Next we wish to apply Lemma 4.3 to I. There is a minor technical issue from the fact
that the second derivative with respect to = (or y) of exy vanishes, even though this should
be viewed as the dominant phase. This issue may be circumvented by a simple change of
variable to diagonalize this quadratic form. Precisely, if we let + = u+v and y = u— v, then

(8.17) o(u,v) == ¢(u+v,u —v) = eu® + au — ev® + fv + Ulog (u J_r U),
u—+ v
for certain «, § whose values are immaterial. Then a simple calculation gives
2 -1 1 1
(8.18) —splu,v) = 26 + U<(u —7 s 0)2) = 2¢(1+ O("IN2U)) > |e].

A similar calculation shows |aa—v22<,0(u, v)| > |e|]. Once we know that stationary phase can be
applied after this linear change of variables, we can then revert back to the original variables

x,y, giving

1 .
(8.19) [ =~ @vyyL () + O(N),
€
where Vo (zg,y9) = 0. We have
—AB —A
(8.20) é(Ba/e, —Ayfe) = —==d(x,y) + Ulog (—)
€ B
where
(8.21) O(x,y) =2y —x—y+dlog(y/z), and 0= Ve U _ o(1).

AB " eN?
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A simple calculation shows V®(z,y0) = 0 if and only if

o o
(822) 1‘0:1——7 ygzl—l——
Yo Zo

Solving these explicitly, we obtain

1 —20+ V14 462 1426 + V1 + 462

2 2
and thus
14+ V1 + 452 1426+ v1+ 462 =
(8.24) D (z9,90) = v d log ( TVt ) =— ch&’
2 1 —26+ V14 462 =
which is analytic in § for |§| < 1/2, and also even with respect to 0. O

Remark. Lemmas 8.1 and 8.2 have some close similarities. In both cases, the stationary
phase method may be applied, and the stationary point can be explicitly found by solving
a quadratic equation. In each case, only one of the two roots is relevant, and the other is
outside the support of the test function. We expect, but did not confirm rigorously, that
when U =< eN?, which is a range that is not needed in this paper, then both roots of the
quadratic equation are relevant. This situation is more complicated because the two roots
may approach each other in which case a cubic Taylor approximation to the phase function
is more applicable (as with the Airy function, for instance).

9. CLEANING UP SOME TERMS

In this section we take the opportunity to deal with some ranges of parameters for which
relatively easy methods suffice. This will simplify our exposition for the more difficult cases.
With the aid of the analysis from Section 8 we can now treat some ranges of c.

Lemma 9.1. The contribution to S(H,) from C < # N2T< is bounded by AT

Proof. Let § be the contribution to S(Hy) from C <« TE Since z = %2, the assumed
upper bound on C means x > T?7¢, so that the condltlons to apply Lemma 6.1 are in effect.
Applying Lemma (6.17) to (7.2), we deduce

(9.1) J(k,z,c)_/|<< o (A, B U e(v), N)dv + O(T),

With parameters as given in (8.4). Under the present assumptions, we have ¢ < % f < Tze =

L. Therefore, in the notation of (8.4), we have eN? <« T,

First consider the case where U > T3¢, In this case, e N? = o(U), and so Lemma 8.1 implies
I(A,B,U,e, N) < U_lN2 and is very small unless A < B = Q. Translating notation, we
may assume |k| < |¢| < 5=, and in particular, k and ¢ are nonzero. Integrating trivially over
v, we deduce

N

NCY2Te kI Ny —100 JIN N —100
(9.2) I(k,0,c) < (1+| | ) (1+L> .

U cU cU
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Inserting this bound into (7.10), we obtain

ATT®
93) IS|<=—+ > (@22

uc
vy >2 A>4
min(A,v)=min(\,y)

k,;2V N\ —100 6227 N\ —100
SN Sae S (e BT (1 B
ko £, #0712 g1 |r? ¢°°=0 (mod r1)

2 -_ C
92(r3 qA?\T%T%

Estimating the sum trivially, and simplifying using C' < J;—;T‘E and N < Ny < U211,
we deduce

AT C?*U,._. AUN?__ Uz, .
(9.4) ’S|<<T I T° < T3 T <<ATﬁT,
which is acceptable since U < T.

Next we indicate the changes needed to handle the case U < T3¢. Integration by parts
(Lemma (4.2)) shows that [(A, B,U e, N) is very small unless A, B < TT?’E, equivalently,
k|, €] < $T%. Using O < 257 and N < Nyay < T this means that we only need
to consider k = ¢ = 0. A trivial bound implies 1(0,0,c) < NCY2T*=,

Using the final sentence of Lemma 5.3, we see that the contribution to S from £k = ¢ =10

is bounded by
AT NCY?T¢
NC¥2 U

AT AN
(9.5) C < 7Tffcl/z << AT, O

T2X01/2

In light of Lemma 9.1, for the rest of the paper we can assume that

N? .
(9.6) C> FT .
Lemma 9.2. Suppose (9.6) holds, and let
TC
Then with x = 4”% = %2, we have
(0. Ko(w) = [ ety auyyu)do + O((T) ™)
UXVO

where n 1s a 1-inert function supported on v < Vj.

Before proving Lemma 9.2, we record a simple consequence of it which follows from in-
serting (9.8) into (7.2) (valid under the assumption (9.6), which is in effect):

(9.9) I(k,?,c) = / e@(eosh()=1)=2Tv o (A \p(v) I (A, B, U, e(v), N)dv + O(T~).
'UXVQ

Proof. In the definition of K (z) given by (6.12), we first apply a smooth dyadic partition
of unity to the region 100V < |v| < A™IT? = o(1). Consider a piece of this partition, with
say Z < |v| < 2Z. We may apply Lemma 4.2 with both Y and R taking the value zZ? (and

N? 2« N2V2 . L
r < 75 ). Note 2% > =% > T*, so any such dyadic piece is very small.
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Next we consider the portion of the integral with |v| < 7&. The version of the integration
by parts bound stated in Lemma 4.2 is a simplified variant of [BKY, Lemma 8.1] (localized
to a dyadic interval, etc.) which does not directly apply. However, the more general [BKY,
Lemma 8.1] can be used to show that this portion of the integral is also small. The statement
of [BKY, Lemma 8.1] contains a list of parameters (not to be confused with the notation from
this paper) (X, U, R,Y, Q) which in our present context take the values (1,Vy, T, N?/C,1).

Lemma 8.1 from [BKY] is sufficient to show the integral is very small provided % — 00

and RU — oo. Here QR/VY takes the form TYC > T¢/% and RU = V,T > T¢, using the
assumption (9.6). The remaining part of the integral is displayed in (9.8).

O
Lemma 9.3. Suppose that the conditions of Theorem 1.1 hold, as well as (6.15). Then
NCY2 (f\iU 2mi T2kl 100
(9.10) Ik i) = =% <Z> exp ( - W)W(-) +O(T1),
where W is 1-inert (in k, £, and ¢, as well as all suppressed variables), and supported on
cU

A1 k== —.

(9.11) =

Proof. We begin by making some simple deductions from the conditions of Theorem 1.1.
First we note that (1.2) directly implies UA > T'*°. Since (6.15) holds, we additionally
deduce

2

UN?
(9.12) C<—T %

for some § > 0. Another consequence of (1.2) is that

T° 26
(9.13) T2AS < T,
From the fact that U < T', we also deduce that (for some 6 > 0)
(9.14) A > T30,

Now we pick up with (9.9). Using (9.7), the condition (9.12) means that d[\]ﬂ = % =
Ej\g < T79, so that the conditions of Lemma 8.1 are met. This gives an asymptotic formula
for the inner integral I(A, B, U, ¢(v), N) for all v < V4. In particular, we deduce that I(k, ¢, c)
is very small unless (9.11) holds, a condition that we henceforth assume is in place. Note

that by (8.6)
eU  (coshv—1)Uc _UCVy _UC(TC/N?*)? T*C T

1 = = = = T
(9.15) AB ki Kl (CU/NE _UNZ STA
since k< < € v < Vp, and C < ]AV—F_Z;T‘5 (recalling (6.15)). Therefore,

eU\3 T \3 T3 /

1 (55) (7)) T < g T < T,

(9.16) UAB < U A <<U2Ag <

for some ¢’ > 0. This calculation shows that in (8.8), the terms with j > 1 can be absorbed
into the inert weight function. This is where we use the condition (1.2) which can likely
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be relaxed to UA > T+ since this condition is sufficient to show that (8.8) is a good
asymptotic expansion. Therefore,

N2 iU 2 hv—1
(9.17) I(k,0,c) = —(E) / exp ((— 2iTv+ ;Ucleoshv )>W(U7 Yo,
UXVO

U \/ 94

plus a small error term, where W (v, ) is 1-inert with respect to k, ¢, ¢, and all other suppressed
variables. Next we can apply cosh(v) — 1 = v?/2 4+ O(v*) and absorb the v* terms into the
inert weight function, using (6.15) and (9.14) as follows:

vevy o ot T /
1 0 = —T* <177
(9.18) ke N Sas S
Finally, by stationary phase we obtain the desired estimate. 0

Next we simplify our expression for I(k, ¢, c) under the conditions of Theorem 1.3, when
U is small.

Lemma 9.4. Suppose that the conditions of Theorem 1.3 hold, as well as (9.6). Then
I(k,?,c) is very small unless

C*17?
(9.19) he e OO
i which case
Nt | o
(920) I(kz,ﬁ, C) = CTQ(_k:/E)’LUec(_k,g/]_Q)/ 6—27,7)T+27]2dw(v7_)dv +O(T_100)7
v<Vp

for some function W(v,-) that is 1-inert with respect to k, ¢, ¢, and all other suppressed
variables.

Remark. Although it is possible to also evaluate the asymptotic of the v-integral in (9.20),
we prefer to save this step for later, in Section 10.

Proof. We again pick up with (9.9) (recall also the definition (8.2)), which takes the form

(9.21) I(k,¢,c) = / n(v)g(Av)e >*T1 (% sl )d”>
'UXVO

) 7U767N
C Cc

with € = e(v) = 4rh=l — Y = €2 for all v = Vo. Since (9.6) holds, this means that

c C N4
6%2 = %VCQ < T7¢, so that the conditions of Lemma 8.2 are met. This directly implies that

I(k,?,c) is very small unless (9.19) holds. Note that
AB kl AB|/UeN2 |U? U?N*>
(9.22) S . and |22 <—6> L
€ ¢(coshv — 1) e I\AB AB cr?
The latter calculation shows that the terms with j > 1 in (8.15) may be absorbed into the
inert weight function. We thus conclude that

LT °.

N4 . : T
(9.23) I(k, 0, ¢) = ——(—k /)Y / e 2T e W (v, Yo + O(T 1),
CT2 UXVO
Finally we observe the Taylor/Laurent approximation
1 2 1
(9.24) — — 4+ 0(v?),

coshv—lzﬁ 6
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and that

kt , _C°TS T . /
(9.25) VR S < T T,

for some ¢ > 0, where we have used C' < %Ts from (6.15). This lets us absorb the

lower-order terms in the Taylor expansion into the inert weight function. Therefore, (9.20)
holds. U

10. MELLIN INVERSION

We recall that we have the expression (7.10), in which is contained a smooth (yet oscilla-
tory) weight function of the form

(10.1) F(k,0.c) = eo(kt/A)I(E, L, c).

In the conditions of Theorem 1.1, we have that I is given by Lemma 9.3, while in the
conditions of Theorem 1.3, we have that I is given by Lemma 9.4. In both cases, the function
f is very small except when k and ¢ are fixed into dyadic intervals. We may therefore freely
insert an inert weight function that enforces this condition.

First consider the setting relevant for Theorem 1.1. The function f has phase as given
in Lemma 9.3, modified to include e.(k¢/4) which is strictly smaller in size due to the
assumption U < (2 — §)T. We apply Lemma 4.4 to the phase function, and apply Mellin
inversion to the inert part. We therefore obtain

(10.2)
2”]{’ WU T2glg2k/£/ s U2 s _
flk ) = 275’ /tVP/// Uqrir32 - W) (1_ m> olt)d(ur, uz, ua)

K u2 K u
( >\> ( p ) ( p ) 3dU1dUQdU3dS,
(]T1T22 k! g1g22v 0 g1g227

plus a small error term, where s = it, and where

NvC CT? cU
10.3 d=— P=— K=—.

(10:3) U’ N2’ N

By standard Mellin inversion of an inert function, the function w is entire and has rapid decay

on any vertical line. However we do not specify the vertical contour in the integral above
(and in several instances below). Also we have absorbed constants such as ﬁ and the like
into the weight functions. We recall that k = 2"g,gok!, £ = 27g1gol., and ¢ = 2 qrirs. We
recall from Lemma 4.4 that v(t) is supported on —t < P, is O(1), and has phase e~ !&(ltl/e),

We can also apply these steps to I given by Lemma 9.4, which will have a similar structure

but with an extra v-integral. We obtain

(10.4)
d, o 2”k:’ v g AL AL Iys
| — 2wT / /// 152 - t
f( ) 7C> \/ﬁ vaoe 276/ —p qur22)\ v— fy) <U2+6) ’U( >w<u1>u27u3)

K u3
dudusdusdsd
(2e3) (o) () s
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plus a small error term, where this time

N? CcT? C?71? cT
(105) @0 - W’ P — W, - N3 5 ‘/0 = ﬁ
Here, w(uy,us,u3) is implicitly an inert function of v. It is the Mellin transform (in the
suppressed variables, but not in v) of the function W (v, ) which was introduced in Lemma
9.4.

At this point, we finally asymptotically evaluate the v-integral. We are considering

(106) / €—2ivT—25logv-i-slog(l-i—%)w(v’ ')dU,
Vo

where we recall s = it, —t < P. We first observe that slog(1 + %) = sv?/6 + O(sv?), and
note
1+e

T
4) _ 4
(10.7) |sv?| < PVy < A
by the assumption A > T'/5*¢. Therefore, the term with sv* can be absorbed into the inert
weight function at no cost. We are therefore considering an oscillatory integral with phase
p(v) = —20T — 2tlogv + tv? /6. 1t is easy to see that [¢”(v)| < & throughout the support
0

of the test function, and that there exists a stationary point at vy satisfying

2t tUO
10.8 27— —+ — =0.
(10.8) w3

< T,

We explicitly calculate

109) . _2T—2T,/1+% PR <P5)
. 0 — arlE

/
- 4d—+0
2t/3 T T

for some constant a’. We observe that £ 71 < Tge < T79, so quantities of this size (or

smaller) may be safely discarded. For later use, we note in passing that £ = < AQ < T7°.
We conclude

t3 P®
(10.10) #lvo) = —2tlog(|s|/T) + 2t + o +O(T4)
for some new constant a. Therefore,
. . . o2 1% 1t
10.11 e—2wT—2ztlogv+zt10g(1+7)w v, - dv = _06—22“08( ) WTQW ),
[ (0o = % )

for some inert function W and constant a. Therefore, we deduce a formula for f in the form

(10.12)
k:’ i KL\, —aitlog(1)+ia L
= o) [ [ ] ATy sttt
t=<P 12

K u2 K us
duydusduzdsd
<q7“1r§2/\> <ikéigig22”> <€ggngQV> upauz0u3asav,

N1V, N? CT? ok CT
(10-13) *=orpn T o P K= YT

where now
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This expression for f(k, ¢, c) is similar enough to (10.2) that we can proceed in parallel. We
mainly focus on the proof of Theorem 1.1.
Inserting (10.2) into (7.12), we obtain

(10.14) S, (H,) = AC‘Z/Q\;};/tvP/// 77 1 s (), us, u3)

c" K“2+“3Z(s, Uy, Uz, uz)dug dusdusds,
where Z = Z, is defined by

B (21/ 2/\ 2— 6
(1015) Z(87 U/l7 u27 u3) - Z 2)\(u1+s)+y(u2 —iU— +’Y U3+ZU Z Z
. (1/)7\72)27)‘2%)\ ) (7‘17‘2 2) 1gl|7‘1
min(A,v)=min(A, r2
one of (7.7) holdz g2Ir
(= ) mme(Em(@ I a(1=p7)
ol plra, pi22

*
Z Z ! Yup—iU—s (¢ iU— 2.2 T
grla® (k0 2)=1 (ko)uz iU S(fo)uerzU squ1+s(¢1r2>u1+s(glg2)w+u3 3
9 -1 o oT
@2D=E i, 72y
92

We initially suppose that Re(s) = 0 and Re(u;) = 2 for each i, securing absolute convergence
of the sum. An obvious modification, using (10.12) in place of (10.4), gives the corresponding
formula for U small, namely

AT @
10.16) S, (H / /// ~2itlog( ) iaga (4 w(uy, ug, u
(10.16) S,(Hy) = NC?,/Q\/— . v(t)w(ui, uz, us)
C*™ K" 7 (s, uy, ug, uz)duy dusdusds,

where the parameters correspond with (10.13), and the formula for Z is slightly different
(multiplied by 7;(—1) to account for changing variables k! — —k, with k > 1).
11. PROPERTIES OF THE DIRICHLET SERIES Z

In this section, we pause the development of S,(Hy) and entirely focus on the Dirichlet
series Z.

11.1. Initial factorization. Throughout this section we assume that Re(s) = 0. For sim-
plicity of notation only, we also take nn = (11,72, 73) to be trivial, as the same proof works in
the general case.

Definition 11.1. Let Dy be the set of (s,u1, uz,uz) € C* with Re(s) = 0, and
(11.1) Re(uy) > 1, Re(ug) > 1, Re(ug) > 1.

It is easy to see that the multiple sum (10.15) defining Z converges absolutely on Dj.
We will work initially in Dy, and progressively develop analytic properties (meromorphic
continuation, bounds, etc.) to larger regions. The largest domain in which we work is the
following

Definition 11.2. Let D, be the set of (s,uy, ug, uz) € C* with Re(s) =0, and
(11.2) Re(ug) > 1/2, Re(ugz) > 1/2, Re(uy1) + min(Re(us), Re(usz)) > 1.
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Obviously, Dy C Dy

The following notation will be useful throughout this section. Suppose that D is a subset
of (s,uy,uz,u3) € C* defined by Re(s) = 0 and by finitely many equations of the form
L(Re(uq), Re(usz), Re(us)) > ¢ where ¢ € R and L is linear with nonnegative coefficients. For
o > 0, define D7 by replacing each such equation by L(Re(u;), Re(us), Re(us)) > ¢+ 0. The
nonnegativity condition means D C D for any o > 0.

As a notational convenience, we write k and ¢ instead of kj and ¢ in (10.15) (since there
should be no danger of confusion with the original k£ and ¢ variables). In the domain Dy, we
may take the sums over k and ¢ to the outside, giving

Zk‘,[(sa Uy, U2, u3)

kuz—iU—séug—f—iU—s ?
(k,2)=1

( ) p|T27P’(2 -

(114) Zké(s u17u27u3 Z Z Z u1+s T T u1+5(g192)u2+U3 25—1"

(r1m2,2)=1 gllrl qri|g™
g2|r (g,2r2)=1

2
(32 .k0=1

(11.3) Z(s,uy,ug, ug) = Z(2)<S7U1,UQ,U3)

where

and

gV 9A—2-0
(11.5) Z® (5,1, uy, ug) = Z 2", )

IA(u1+s)+v(uz—iU—s)+y(ug+ilU—s) °
VY22, 224

min(\,v)=min(\,7y)
one of (7.7) holds

We first focus on properties of Zj,, and then turn to AN

11.2. Continuation of Z;,. Note that Z; , has an Euler product, say Zj, = HW52 Z,ffé). It
is convenient to define

(11.6) o =uy+uz—2s—1, B =u +s.
Note that (11.1) implies Re(a) > 1 and Re(f) > 1. It is also convenient to observe that
(11.7) (s,ur,ug,u3) € Do = Re(2a+25) >1 and Re(a+26) > 1.

We evaluate Z,?? e) explicitly as follows.
Lemma 11.3. Suppose that Re(f) > 0 and Re(a + ) > 0. For p{2k(, we have
1 + p—a—QB _ p—1—2a—26 + X(p)p—l—Qa—SB
(1= x(p)p=?)(1 = p2e72) ’
where x(n) = xre(n) = ({5). For p|kl, we have

(118) Z](C{OK)<S,U1,U2,U3) =

—1-2a-283

1-p
(11.9) Z7) (s, w1, ug, uz) = T

Proof. For (p,2kf) = 1, we have, using the convention oo -0 = 0,
(») _ _ . X ()
(11'10) zZv (av 6) _ Z Z 1 Poaera0 Z pﬁ(q+2r1+2r2)+a(91+g2)'

min(rq1,r2)=0 0<g1<2r1 0<¢q<1
0<g2<2r2 00-q>T1
min(g,r2)=0
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We write this as >+, -, where the latter terms force ¢ = r; = 0. We have
(11.11)

Z = Zp72/5r2< Z pfagz_k(l_p 2ar2) ZP,QBTQ <1 — L

ro>1 ro=1 0<g2<2ra—1 ro=1

—2ars

- +(1_p71)p72ar2).

This evaluates as

28
—ay—1 p p N
(11.12) (=) (s L _p_za_w) 0 =p

which simplifies as

oy 1+p© p (1 —p)

(11.13) p (1 _ p_2'8>(1 _p—2a—2,8> + (1 —-p )(1 _p—2a—2,8>(1 — p—2ﬁ).

In turn this becomes
p2f 1y, —2 2
(11.14) (1— p20-28)(1 — p29) [1 +p *+ (1 —p )p (1—-p B)}

Likewise, we compute

(11'15> Z Z Z Z pﬂ(q+2r1 +a91 1+ Z Z pﬁ 1+27’1 +a91

ro=0 r1=00<g1<2r; 0<¢<1 r1=00<g1<2r
00-q2T1

by separating out the cases ¢ = 0 and ¢ = 1. We calculate this as

1 — —a(2r1+1)
(11.16) 1+ x(p EZp_w” —,
r1=0 -
which can be expressed as
(11.17) | X ( L ) . Xt pm)
' l—pe\l—p % 1-p22 (1= p2P)(1 = p2e20)

Putting the two calculations together, we obtain

72" (a,8) =
L—p ) A —p )+ x(Pp (L +p™ ) +p A+ p + (L —p H(p™>* —p~ 7))
(1 =p=29)(1 — p~2225) '
Distributing out the numerator and canceling like terms, we obtain
(I+x@p )AL +p ) —p ' >0 -p™)
(1 =p=2°)(1 — p~22=28) '

(11.18) Z®)(a, B) =

Simplifying gives (11.8).
Next, we need to consider the primes p|kl. At such a prime we must have (¢,p) = 1 (or
else (4 ) = 0) which implies r; = 1 and go = r2. Thus

—1-2a—28

1 _ >5r2>0 1 _

(p) o ( D . p

(11.19) ZW (s, uy, ug, ug) = E PR R R O
ro>0
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Define the Dirichlet series

1 (n) (b)) xre(c)
(n,2)=1 na+26 abc=n b1+a61+a+ﬁ7

(11.20) D(a, B, xxe) =

which is absolutely convergent for Re(a+23) > 1 and Re(a+3) > 0 (observe these conditions
hold on D, by (11.7)). Note the Euler product formula

(11.21) D, B xue) = [T+ 07721 = p7 4 xaep)p ).
p#2

Putting together (11.8) and (11.9), we deduce (initially) in the region D,

((2a +28) _
(11.22)  Zy (s, w1, uz,us) = L(B, Xke) - 27204725)7119(04, B, xke) (1= xe(2)279) H a,

plkl

where

1 _ p-1-20-28
(11.23) 0 = p

Note that in D, we have
(11.24) a,=1+0(p™).

Lemma 11.4. The series Zy (s, uy, us,us) has meromorphic continuation to the domain
Doo. In this region, Zy, has a polar line only at B = 1 which occurs if and only if Xk s
trivial.

Proof. This follows from (11.22), using (11.7). O

Remark 11.5. Observe the nice simplification in the passage from (11.18) to (11.8), in which
a factor of of (1 — p~?%) is canceled from the numerator and denominator. This reveals that
there is no ¢(28)! type factor in (11.22), which would have infinitely many poles in the
domain D.

11.3. Evaluation of Z®. Recall that Z(® has four cases, corresponding to (7.7).

Lemma 11.6. In cases (i)-(iii) of (7.7), the function Z® initially defined by (11.5) in the
region (11.1) extends to a bounded analytic function on De,.

Proof. This follows from brute force computation with geometric series. For case (i), we have
(1 _ 2—(u2—iU—s))—1(1 _ 2—(u3+iU—s))—1

@) —
(11'25) 77 = 22+624(a+6)(1 _ 2,a,5) ’

which satisfies the claimed properties by inspection. Cases (ii) and (iii) are easier, and give
73 = 971=9=8a=48(1 _ 9=a=B)~1 and 7 = 27972045 (1 — 272=F)~1 regpectively. In case
(ii), to see the boundedness on Dy, note 2734 = 2-2a=289-a=28 ' and recall (11.7). O

When Z® is given by case (iv), which recall restricts the summation to A > v + 3, it is
convenient to split the sum into two pieces according to the size of A — v. For any integer
L > 3, write Z® = Z(<2£ + Z(>2L), where ZgL) restricts to A — v < L, and Z(fz restricts to
A—v> L. - -
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Lemma 11.7. In case (iv), Zg extends to an analytic function on Dy, wherein it satisfies
the bound
(11.26) 1Z8)| < L2750 +1).

The tail Z(fg is analytic on Dy wherein it satisfies the bound
(11.27) 1Z28)| < 2718

Proof. Since A > v + 3, then min(\, v) = v, and the condition min(\, ») = min(\,y) means
~v = v. Therefore,
92— 200—20

2Y
(11.28) Z(;Iz :Z Z AB+r(atl) Z Z 2 (v+u) /3+Voz - (1 —2-a=h) Z 272,

v>2 v4+3<A<v+L v>2 3<M<L 3<u<L

From this representation we easily read off its analytic continuation and the bound (11.26).
For the tail, we may modify the previous calculation to give

9—2a— 23 27204725 27,8(L+1)
11.29 7% = 91 —
( ) >L (1 —2-a-B) Z (1 —2-2-8) (1 —2-8)
u>L+1
from which we immediately read off the desired properties. O

Remark. Note that Z(>2,Z does not analytically continue to D since (11.29) has poles on
the line Re(3) = 0. This explains the reason for splitting Z(® into these two pieces.

To unify the notation, in cases (i)—(iii), we define Z(>2£ = 0 and Z(;g = Z®. Corresponding
to this decomposition of Z?, we likewise write
(11.30) Z=2Zcp+ 71

With this definition, then the statement of Lemma 11.7 holds in cases (i)-(iii) as well. In
this way we may henceforth unify the exposition for the four cases (i)—(iv).

11.4. Continuation of Z;. It is now useful to define another domain.

Definition 11.8. Let Dy be the set of (s,uy,uz,u3) € C* with Re(s) = 0, Re(ug) > 1,
Re(us) > 1, and satisfying

(11.31) {Re(ul) + min(Re(uz), Re(us)) > 3/2

Re(u1) + 2min(Re(usz), Re(us))) > 3.
Note that Dy C Dy C Dy.

Lemma 11.9. The series (11.3) converges absolutely on Dy N {5 # 1} (and uniformly on
compact subsets), which furnishes meromorphic continuation of the function Z<y to this
domain. Moreoever, the residue at B =1 of Z<y, is bounded for Re(us), Re(us) > 1.

Proof. We return to (11.3) and use the representation (11.22), valid in Dy. The results from
Section 11.3 give the analytic continuation of ng to Do (and hence, Dy). Since L(B, xke)
has a pole at 8 = 1 when yg is trivial, we suppose |3 — 1] > o > 0, and will claim
bounds with an implied constant that may depend on o. For 0 < Re(f) = Re(u;) < 1,
we have the convexity bound |L(f, Xie)| <im(g),0,e (kl)1 e (with an implied constant
depending at most polynomially on 3). One easﬂy checks that (11.3) converges absolutely for
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min(Re(usz), Re(us)) + RGQ(B ) > 3 which is one of the inequalities stated in (11.31). Similarly,

for Re() < 0 we use the convex1ty bound |L(8, xxe)| < (k€)27ReB)*= 16 sce the absolute
convergence for Re(u;) + min(Re(usy), Re(us)) > 3/2. The uniform convergence on compact
subsets is immediate, and so the meromorphic continuation follows.

Finally, to see the size of the residue, we simply note from (11.22) that Resg—1 Zx ¢ < (k€)°
for Re(us), Re(us) > 1. In addition, the pole only exists if k¢ is a square. Moreover, Z (<22 is
bounded at this point. From (11.3) we may then easily see the absolute convergence of the

sum of these residues over k, /. O

11.5. Functional equation. Next we investigate how Zj, and Z<; behave after an appli-
cation of the functional equation of L(f, xx¢). Suppose that xx, is induced by the primitive
character x* of conductor (kf)*. We have

(11.32) A(s,x7) = ((K0))*Py(s)L(s, ") = A(1 = 5, X7),
where y(s) = W_S/QF(HT"‘), where k € {0,1} reflects the parity of x. We therefore deduce
the asymmetric form of the functional equation:

B b= 1 —x"(p)p~*)
(11.33) Ls:xa) = (k0))3 s L1 ,Xu)}r[M 0 )
Lemma 11.10. In Do, N {Re(B) < 0}, we have
w1571 —=p) ((2a +28) -
(1134) Z]ﬁg = ((k’g) )2 /Bf}/")/WD(C%ﬁ’ Xk() (1 _ 27204726)71 (1 -2 BXkE(Q))
o ) 7 A= X0 17,
; q'=° PM (1= x*(p)p") }—IM g

Proof. Lemma 11.4 implies that the expression (11.22) for Zj, is analytic on Do, N {8 #
1}. With the assumption Re(f) < 0, we may apply the functional equation and express
L(1 — B, xxe) in terms of its absolutely convergent Dirichlet series, which is (11.34). O

Having applied the functional equation to Zj,, the plan of action is to now insert this
expression into the definition of Z<;, and reverse the orders of summation, bringing k and ¢
to the inside. The outcome of this step is recorded with the following.

Lemma 11.11. On Dy N {Re(B) < 0}, Z<; is a finite linear combination of absolutely
convergent expressions of the form

@71 =8) (2a+28) (1£27F)
2 G i s (255 >

(11.35) 1(q Aq,
(q2

with Ay = Ay(s,ur, ug, ug, U, v, ..., 1) defined by

(11.36) Z p(abe)va(c) __pu(h)

(le at+28  pltapltatp

(abe,2)=

3 (E)vs(k)wa(€) ((kO)*)2~ (1 = xp((KO)")vs(p)p~") e

g L =g (R v p))p )

(ke,2)=1 p|kt p|kt

and where the v; run over Dirichlet characters modulo 8.
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Observe that (11.36) converges absolutely on D;.

Proof. Applying Lemma 11.10 into (11.3), which is valid on D; N {Re(5) < 0} by Lemma
11.9, and applying the Dirichlet series expansion of D(«, 3, xx¢) given in (11.20), we deduce

((2a +28) 3 (k0)"): " y(1-B)

(2)
(1137) Z<L(S U1, U9, U3) Z<L (1 _ 2—2@—2/3)—1 kuz—iU—SEu:s-H'U—s 7(6)

(k0,2)=1

(1 _ Xk€(2)2_6) Z “2(abc) ,u(b) = (%) (1 — pﬁ 1 Hap’

a+28 pl+al+a+8 1-83
(abc,2)=1 (CLbC) b ¢ q=1 4 plkl (1 X p|kl

where recall a, = 1+ O(p™!) on Dy, and x* = X}, is the primitive character induced by
Yae(n) = (&) (s0 (1) = ().

We next wish to focus on the sums over k£ and ¢. One small issue is that the parity of the
character yx, (and hence the formula for v(s)) may vary. However, the parity only depends
on k and ¢ modulo 8. Also, ¢ may be even, but we can factor out the 2-part of ¢ and directly
evaluate its summation. Likewise, we can apply quadratic reciprocity (again!) to give that
(%) equals ( ) times a function that depends only on ¢, ¢, k, £ modulo 4. Similarly, we have
that x5,(p) equals Xp((k€)*) up to a function modulo 4. We can then use multiplicative
Fourier/Mellin decomposition modulo 8 to express Z<;, as a finite linear combination, with
bounded coefficients, of sums of the form claimed in the statement of the lemma. O

Next we develop some of the analytic properties of A,. For notational convenience, we
consider the case with all ; = 1, as the general case is no more difficult. We expand the Euler
product over p|k¢ involving x* into its Dirichlet series and reverse the orders of summation
(taking k, ¢ to the inside), giving

(11.38) 4= Y 122 (abe) pu(b) u(d)

(abe)e+2Bpltacltatigiel -3 tote

(abede,2)=1
where
(56 (50 (ke)")
(1139) Aq,c,d,e = Z Jeuz—iU—s puz+ilU—s H Ap-
k¢=0 (mod d) plkt
(k£)>°=0 (mod e)
(k,2)=1

Lemma 11.12. The function A, 4. has meromorphic continuation to Du, in the form
(11.40) Aq7c,d7e = L(u1 + U9 — U — %, qude)L(Ul + Uus — U — %, qude)C(')

where C' = Cy(c,d, e, s,uq,ug, ug,U) is a Dirichlet series analytic on Dy and satisfying the
bound C < ((de)’)~2minRe(uzus)+e op D_

Proof. We initially work on D; where the sum defining A, .q. converges absolutely. Now

Ag,c,de has an Euler product, taking the form Agcae =], 01 Al 4 say, where
P EE N (k028
() _ (c_q)( de J(P*5)")2
(1141) Aq,c,d,e - Z pk(’UQ*iU*S)‘Fe(’UBJ”Z’U*S) apk+£,

k+0>v,(d)
00- (k+6)>vp (€)

where v, is the p-adic valuation, and where we set a0 =1 and a,; = a, for j > 1.
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For the forthcoming estimates, we recall our convention from Section 1.4 that an expression
of the form O(p~*) should be interpreted to mean O(p~R¢()). If p t de, then by separating
the cases with k£ + ¢ odd and k + ¢ even, we obtain

(p) — p > [ 1 1 ] — min(2uz,2u3)
Aq,c,d,e L <Cche pu1+u2—iU—% + pu1+u3+iU—% p + O(p ))
-1 + ( p > |: 1 i 1 ] + O( — min(2ua, 2ug)) + O( p_1 )
che ’l/,1-‘y—’l,L2—iU—l p’ll‘1-‘r’l,b3-‘riU—l pU1+min(u27U3)—%

-1

1+O( — min(2u2,2u3) )—|—O( )+O( —2(u1+min(ug,u3)— 1))

ul +m1n(u2 u3)— 5

(1 - qude( )p e u2+zU+ )(1 — qude(p)p—m—u?,—iU—&-%)

Note that on DI, the O-term is of size O(p~'~7), and hence

(1142> H A((;’;C)’d’e - L(ul + Uz — ZU - %’ Xqu€>L<u1 + us — ZU - %7 qude)B
ptde

where B = B(q,c,d, e, s,uy,us, us,U) is an Euler product that is absolutely convergent and
bounded on DZ_.
k+e)

If p|de, then ((p —

positive, hence > 2). From such primes we obtain AP

) = 0 unless (pF+9)* =1, so We can assume that &k + ¢ is even (and

aede = O~ ™" (2u2,2u3)) " and hence

(11.43) [TA%,. < ((dey)-2minReluzua)te,

plde

where (de)” = [], 4 p. Putting the estimates together, we deduce (initially in D;) the

representation (11.40), where C' is analytic on Do,. Thus A, .4, inherits the meromorphic
continuation to Dy, as well. ]

Definition 11.13. Let Dy be the set of (s,uy,uz,uz) € C* with Re(s) = 0, Re(ug) > 1/2,
Re(us) > 1/2, and satisfying

(11.44) Re(uy) + min(Re(usg), Re(usz)) > 3/2.
One easily checks that Dy C Dy C D..
Lemma 11.14. The function A, has meromorphic continuation to Dy N {Re(uq) < 1/2}.

Proof. We (initially) work in the domain D;, where the absolute convergence is ensured.
Substituting (11.40) into (11.36), and letting cde = r, we obtain

(11.45) Ag= > Lluy +us — iU = 3, Xgr) L(ug + us + iU — 3, xqr) D(q,7),
(r,2)=1
where
2
_ p* (abe)pu(b) pu(d)

(11.46) D(g,r) = Z (abc)ot2Byltacltatifel—5 Co(*)-

ab,2)=1

(cdeir
We claim that D(q,r) is analytic on Dy N {Re(u;) < 1/2} and therein satisfies the bound
(1147> D(q, 7“) < qsrﬂ—l-I—e Hp—2u1—2 min(ug,ug)—i—l'

plr
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We now prove this claim. Recall (11.7), which in particular immediately shows the absolute
convergence in Dy, of the free sum over a,b in (11.46). Hence
(11.48)
/’L d€ 2 min(uz,u3) /1/ rle 2 min(ugz,u3)
D@ < Y d)((de)')” =S d)((r/c))” ‘

Cl+2a+3ﬁdﬁ€1 B Cl+2a+3ﬁdﬁ( )17,8
cde=r cdlr

One may now check (11.47) by brute force, prime-by-prime (by multiplicativity).

A consequence of (11.47) is that on Dy, N {Re(u;) < 1/2} we have the bound D(q,p*) <
pkap_l_g, for p prime and k£ > 1, which extends multiplicatively. Therefore, > |D(q,r)| <
oo on Dy N {Re(uy) < 1/2}. The Dirichlet L-functions appearing in (11.45) are at most
O((gr)?) on D,. Therefore, (11.45) gives the meromorphic continuation of A, as stated in
the lemma. O

Lemma 11.15. On DyN{Re(uy) < 0}, the function Z<y, extends to a meromorphic function,
on which it is a ﬁnite linear combination of absolutely convergent sums of the form

* Cqr . .
(11.49) Z <L Z Z q L(uy +us — iU — 1, xgv) L(u1 4+ uz — iU — 3, xgr?/'),

where v, V' are Dirichlet characters modulo 8, and >." means that the sum runs only over
square-free integers. Here cq, is a Dirichlet series depending on s, ui, ug, us, U that is analytic
on Dy N{Re(uy) < 1/2}, wherein it satisfies the bound

(11.50) Cqp K rtam2min(uzua) (gg)e

Proof. We work initially on the domain D; N {Re(u;) < 0} so that Lemma 11.11 may be
applied, giving (11.35). Now Lemma 11.14 may be invoked to give that Z<, is a linear
combination of terms of the form
1— 200+ 2 1+277
(1151) Z(<227( B) ¢Ra+28) ( )
TA(B) -2 (122
Z qﬂ ! Z (u1+u2—iU— %>erV)L(ul+U3+iU—%7erV/)D(Q7r)>

(r,2)=1

which converges absolutely on Dy N {Re(B) < 0}. This gives the claimed meromorphic
continuation of Z<y.

Next we show the claimed form (11.49), which resembles closely the expression (11.51)
except that we need to restrict ¢ and r to be square-free. Towards this end, replace g by
qq3 and 7 by rr3 where the new ¢ and r are square-free. Note that L(s, Xqra3r2 ) agrees with
L(s, Xqr) up to finitely many Euler factors that are bounded by O((gr)*) for Re(s) > 1/2.
These finite Euler products can be incorporated into the definition of D(gq,r), which still
satisfies (11.47) on Doy N{Re(u;) < 1/2}. Then we need to check the convergence in the sums
over ¢» and ro. To this end, we first note simply that 37 5, @Y = ¢(2—28)(1-272+28),
which is analytic and bounded for Re(u;) < 1/2 — o. For rq9, we have from (11.47) that

(1152> Z ’D(q, 7”7"%)| < Z qs(rrg)ﬁflJre Hp72u172min(umu3)+1 < (qr)srfmemin(ug,ug)'
T2 r2 plr

Finally, this gives the meromorphic continuation of Z<; to Dy N {Re(u;) < 0} with the
coeflicients ¢, analytic on Do, N {Re(uq) < 1/2} and satisfying (11.50). O
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12. COMPLETION OF THE PROOF OF THEOREM 1.1

Recall that the off-diagonal of > r., 7, A [L(sym®u;, 1/2 +4U)|? is a sum which we have

been studying in dyadic intervals n=<mx N and ¢ < C . Recall that N <« UY/2T'+=,
C < XL and C > 2= originating from (6.1), (6.15), and (9.6). We also defined certain
parameters ®, P, K which can be found in (10.3), but for convenience we recall here & = NT*@,

P = CN—:';Q, K = C—]\[]] Aided by the properties of Z developed in the previous section, we are
now ready to finish the proof of Theorem 1.1. We pick up from the expression (10.14), where
we begin with Re(u;) = Re(ug) = Re(ug) = 2. Next we write Z = Z<; + Z~, and choose
L so that 2F =< C'T¢. To bound the contribution from Z-, we shift u; far to the right, and
use the bound (11.27). In terms of u;, we get a bound of size O((C/2%)Re(u1) « T—eRe(w)
which is negligible. Next we focus on Z<y..

We begin by shifting u; to the line —e, which is allowed by Lemma 11.9. There is a pole
of Z< at f = uy + s = 1, with bounded residue. However, since Im(s) < P and P > T*,
the weight function is very small at this height and the contribution from such poles are

negligible. Thus we obtain
(12.1)

AT @ s _ wr rugus V(L — U1 — 8)
st =Y s g | J | [ () romon w20

Z(§2£ Z Z QUI+S_1Cq,T’L(U1 + Ug — ZU - %7 er)L(ul + Uz — ZU - %7 er)duldUQdu3d57

r q

plus a small error term, as well as additional terms with the characters twisted modulo 8.
Since all our estimates hold verbatim for these additional twists, we suppress this from the
notation. Next we want to truncate the sums over ¢ and r. To do so, we move u; far to the
left, keeping Re(uz) = Re(us) = —Re(u;) + 100. Note that this remains in the domain D),
and that Re(u;) < 0 so that the conditions of Lemma 11.15 remain in place to apply (11.49).

Also, note that the coefficients ¢, are O(r~1%) here. Moreover, we observe by Stirling that
(12.2) ‘71_—1“_8)‘ « pz—Re(w)
(ug + s)
In terms of the u;-variable, the integrand in (12.1) is bounded by some fixed polynomial in
T times
Cq Re(ul)
12.3 G
(12.3) PR
Therefore, we may truncate ¢ at ¢ < () where
PK 2
(12.4) Q=

After enforcing this condition, and reversing the orders of summation (taking r,q to the
outside of the integrals), we shift the contours of integration so that Re(u;) = 1/2 — ¢ and
Re(us) = Re(uz) = 1/2 + ¢; this is allowed by Lemma 11.15 as these contours shifts may
be done in such a way that we remain in the domain D, N {Re(u1) < 1/2} on which ¢, is

analytic. Moreover, we observe from (11.26) that Zgz <« L < TF on this contour. We then



MOMENTS AND HYBRID SUBCONVEXITY FOR SYMMETRIC-SQUARE L-FUNCTIONS 37

bound everything with absolute values, obtaining

€ 27t ,-)/ 1 —Uu = Zt)
(125) S(H+) << T maX 03/2 \/_ /// 1’;130}( ‘ /t,\P it u1 + Zt) (t)cqudt

4,r<Q
|w(uy, ug, u3)]C’1/2KZ g Y L(uy + uy — iU — 1, Xq) Pdur dusdus.
<@

By Lemma 4.5, keeping in mind that ¢,, is given by a Dirichlet series, uniformly bounded
in ¢ by (11.50), we have

(12.6) max

>0

Y1 —uy —at
P_I/Q/x”wv(t)cqrdt < 1.
¥ (ur + it) ’

Applying (3.3), we then obtain
PK?

Te.
C

5 AT 1/2 1/2 _

Therefore, we obtain

(12.8)

AT P'2K
NC Cc1/2

Using C' < —T6 this simplifies as

AT N/ C CU (TCU N U1/2>'

S(Hy) KT max e U N\

@K( —|—U1/2><<T6mx

1/2
(12.9) S(Hy) < T° max ANT\/E(T]%U + Ul/z) < T&(TAﬁ/ﬁf + (ATU)Y?).
By (6.11) and the remark following it, this implies
T'?U
(12.10) Z |L(sym®uy, 1/2 +iU)[* < T*(AT + —75- AL/2 i)
T<t;<T+A

We have AT > T;ijg if and only if A > gf;z This inequality holds because one of the

conditions of Theorem 1.1 requires A > /3, and Uf/s > Tl /3 because T' > U.

13. PROVING THEOREM 1.3

For the proof of Theorem 1.3, the parameters ®, P, K are given in (10.13), which for
convenience we recall take the form ¢ = \%—;, P = CN—I;Q, K= CQTQ . The bounds on N and
C are the same as recollected in Section 12. The overall idea is to follow the same steps as in
Section 12, though picking up with (10.16) instead of (10.14). The only structural difference

between the two formulas is the additional phase of the form

(131) 6—22'tlog;(%)-ﬂa;;’2

Here the cubic term is of size O(PT~%), as mentioned following (10.9). This only affects
the argument in bounding (12.6), but Lemma 4.5 is applicable (using the above remark that
the cubic term is of lower-order) and gives the same bound with the above additional phase.
Referring to (12.7), we thus obtain

AT
NC

PY2K
C1/2

AT N3 C’2T2<T3C’2 1>'

(13.2) S(H,) < T°max NCCUeTE N3 UNE T

<I>K( +U1/2) < Tamax
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Using C' < ]AV—;T ¢, this simplifies as

3/2

T3C*?

. AT 1) (T 1/2
(13.3) SHy) KT max NC ( i +1> T <A3/Q+(AT) )
Thus in all, by (6.11) and the remark following it, we obtain
s T3/2
(13.4) S |LlsymPuy 1/2)P < T (AT + W)‘

T<tj <T+A

The second term is smaller than the first term if and only if A > T/5.
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