
NONVANISHING OF DIRICHLET L-FUNCTIONS, II

RIZWANUR KHAN, DJORDJE MILIĆEVIĆ, AND HIEU T. NGO

Abstract. We show that for at least 5
13

of the primitive Dirichlet characters χ of large prime

modulus, the central value L( 1
2
, χ) does not vanish, improving on the previous best known result

of 3
8

.

1. Introduction

We revisit the work [8] of the first and third authors on the nonvanishing of Dirichlet L-functions.
It was proved there that when p is a large enough prime, for at least three-eighths of the primitive
Dirichlet characters χ of modulus p, we have L( 1

2 , χ) 6= 0. For prime moduli (arguably the most

interesting case) this was the best result towards the well-known conjecture that L( 1
2 , χ) should

never be zero. In this paper, we introduce two new ingredients which lead to the following improved
result.

Theorem 1.1. Let ε > 0 be arbitrary. For all primes p large enough in terms of ε, for at least
( 5

13 − ε) of all primitive Dirichlet characters χ of modulus p, we have that L( 1
2 , χ) 6= 0.

The nonvanishing problem for Dirichlet L-functions has a long history. It was studied by Bala-
subramanian and Murty [1], who were the first to establish a very small but positive nonvanishing
proportion. This was improved significantly by Iwaniec and Sarnak [7] with the proportion 1

3 . Michel

and VanderKam [9] obtained the same 1
3 proportion with their symmetric two-piece mollifier de-

scribed below (as well as nonvanishing results for derivatives of the complete L-function). Bui [2]
introduced another type of mollifier to get the proportion 34.11%. All these results hold for general
moduli q. For prime moduli q, the nonvanishing proportion 3

8 of [8] was established by improving
for the first time the length of the mollifier from the work of Michel and VanderKam [9]. The main
novelty in [8] was to connect the problem to recent advances from the theory of “trace functions”
(see [5] for a wonderful exposition of this new trend of research).

Since the hitherto state of the art paper [8], research interest in the nonvanishing of Dirichlet
L-functions has remained strong. We mention a couple of developments. Bui, Pratt, Robles, and
Zaharescu [3] were able to increase for the first time the length of the one-piece mollifier introduced by
Iwaniec and Sarnak [7]. This has led to some nice applications, but for the nonvanishing problem it
does not improve upon [8]. Pratt [10] studied the nonvanishing problem on average over the modulus,
and obtained a nonvanishing proportion of 50.073%. We hope that our work will stimulate further
research on the nonvanishing of Dirichlet L-functions.

Convention. Throughout this paper, we adopt the ε convention. That is, ε will denote an
arbitrarily small positive constant that may vary from one occurrence to the next. We write f � g
or f = O(g) to denote |f | 6 Cg for some constant C > 0, which can be made explicit in each
instance and may depend on ε > 0 but is otherwise independent of all parameters including p.
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2. New idea and a proof sketch

We refer the reader to [7, 8, 9] for background and examples of the method of mollification. In the
context of Dirichlet L-functions, it involves the evaluation of the first and second mollified moments

T1 =
2

p

∑+

χ mod p

L( 1
2 , χ)M0(χ),(2.1)

T2 =
2

p

∑+

χ mod p

|L( 1
2 , χ)M0(χ)|2,(2.2)

where the sums are over the even primitive characters (the case of the odd characters being similar).
Then an application of the Cauchy–Schwarz inequality shows that L( 1

2 , χ) 6= 0 for a proportion of at

least |T1|2/|T2| of χ. The first idea of mollification is to construct a Dirichlet polynomial M0(χ) such
that this proportion (which is only � (log p)−1 for the unmollified moments) tends to a positive limit
as p → ∞; thus M0(χ) is thought of as “mollifying” the fluctuations in sizes of central values, and
its shape can typically be understood as an instance of a Dirichlet series approximation to L(s, χ)−1

on average.
In [9], Michel and VanderKam used the twisted mollifier given by

M0(χ) =
∑
m≤M

ymχ(m)

m
1
2

+
τχ

p
1
2

∑
m≤M

ymχ(m)

m
1
2

,(2.3)

where M = pθ for some θ > 0, τχ is the Gauss sum, and

ym = µ(m)
log(M/m)

logM
.

It was shown in [9] that the above choice for ym yields a nonvanishing proportion of 2θ
1+2θ . Thus a

longer mollifier results in a better nonvanishing proportion. Michel and VanderKam were able to
take θ < 1

4 , which gave the nonvanishing proportion 1
3 , while in [8] Khan and Ngo were able to take

θ < 3
10 , which gave the nonvanishing proportion 3

8 .
Our new idea is to replace M0(χ) with a more general mollifier of the form

M(χ) = c1
∑

m≤MR

ymχ(m)

m
1
2

+ c2
τχ

p
1
2

∑
m≤M

ymχ(m)

m
1
2

,(2.4)

where M = pθ as before, R = pα for some α > 0, and c1, c2 > 0. (Equivalently, we could take one
sum of length pθ1 and the other of length pθ2 .) This is novel in two related but distinct ways. First
off, we are using an unbalanced mollifier comprising of sums of unequal lengths, in a way reminiscent
of using an unbalanced functional equation to represent an L-function. Second, the two pieces of
the mollifier are assigned different weights, which (keeping in mind the paradigm of L(s, χ)−1 and
the duality between M(χ) and M(χ−1)) can also be thought of as normalizing weights accounting
for the length. We will comment further on our choice of the mollifier later in the introduction as
well as in Section 5.

Our goal is to evaluate the first and second mollified moments

S1 =
2

p

∑+

χ mod p

L( 1
2 , χ)M(χ),(2.5)

S2 =
2

p

∑+

χ mod p

|L( 1
2 , χ)M(χ)|2.(2.6)

The mollified second moments T2 and S2 are harder to treat than the mollified first moments T1

and S1. Let

S(x, y; p) =
∑

u mod p
uu≡1 mod p

e
(xu+ yu

p

)
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denote the Kloosterman sum. In [9], when (2.3) is substituted into (2.2) and the square expanded, the
cross terms involving the Gauss sum are the hardest to treat. After some tranformations involving
Poisson summation, these cross terms lead to the problem of proving an estimate of the shape

1

pM2

∑
n,k,m1,m2∼M

ym1
ym2

S(nkm1,m2; p)� p−ε.

When M = p
1
4 , the problem is precisely to break the “trivial” estimate given by inserting Weil’s

bound for Kloosterman sums. This seems like a natural barrier. To do better and take M > p
1
4

in at least some of the variables, one must be able to detect cancellation between the Kloosterman
sums. The strategy in [8] was to glue together some of the variables, writing h = nkm1, and then
to apply Hölder’s inequality, getting

(2.7)

1

pM2

∑
n,k,m1,m2∼M

ym1
ym2

S(nkm1,m2; p)

� pε

pM2

( ∑
h mod p

ν(h)
4
3

) 3
4
( ∑
h mod p

∣∣∣ ∑
m2∼M

ym2S(h,m2; p)
∣∣∣4) 1

4

,

where ν(h) denotes the number of ways of writing h as nkm1 mod p. If M3 ≤ p1−ε then

(2.8)

∑
h mod p

ν(h)
4
3 �

∑
h mod p

ν(h)2 �
∑

nkm1≡n′k′m′
1 mod p

1

�
∑

nkm′
1≡n′k′m1 mod p

1 =
∑

nkm′
1=n′k′m1

1�M3+ε.

Thus while the first h-sum in (2.7) counts about M3 elements, the second h-sum has been extended

to a complete sum mod p. This is a wasteful step, but not too bad because M3 is at least p
3
4 in the

ranges of interest. In this way, we get the upper bound

(2.9)
pε

pM2
(M3)

3
4

( ∑
m1,m2,m3,m4∼M

∣∣∣ ∑
h mod p

S(h,m1; p)S(h,m2; p)S(h,m3; p)S(h,m4; p)
∣∣∣) 1

4

.

For the innermost h-sum, we get from [4, Proposition 3.2] that if at least one number in the tuple

(m1,m2,m3,m4) is distinct from the others, then
∑
h mod p � p

5
2 , which saves a factor p

1
2 over

Weil’s bound. The other case where no numbers in the tuple are distinct from the others forms a
smaller set for which we can just apply Weil’s bound. The limitation of this method is M = p

3
10 . It

was not explicitly shown in [8], but other choices of Hölder exponents do not yield good results.
With our new mollifier M(χ), the crucial estimate to show will be roughly

(2.10)
1

pM2R

∑
n,k∼M

√
R

m2∼M
m1∼MR

ym1ym2S(nkm1,m2; p)� p−ε.

The point is that when we glue together h = nkm1, the unbalanced mollifier allows us to use the
flexibility to increase the length of m1, and therefore have h cover more elements mod p. This way,
when we extend the sum over h to a complete sum mod p, this is less wasteful (or not at all, up
to pε factors, if the method can be pushed sufficiently far). However, while the additional freedom
certainly does not hurt, it is not clear a priori whether or not it improves the result because as we
take R larger, we may need to take M smaller. That is, when we make one of the sums comprising
the mollifier longer, the other sum may need to be shorter in order to maintain control of the error
terms.

Specifically, using the unbalanced mollifier and starting from (2.10) and proceeding as above, we
find in Burgess’ trick (2.8) that if M3R2 ≤ p1−ε, the sum on the left-hand side is � (M3R2)1+ε,
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and thus estimating the complete exponential sums at the point of (2.9) we find that the left-hand
side of (2.10) is

(2.11) � pε

pM2R
(M3R2)

3
4

(
M2p3 +M4p

5
2

) 1
4 =

1

p
1
4−ε

M
3
4R

1
2 +

1

p
3
8−ε

M
5
4R

1
2 .

To see how well our unbalanced mollifier (2.4) works altogether, we fast forward to the end game;
the main terms are treated as in [8], bookkeeping for weights and mollifier lengths, and we find that

S1 ∼ c1 + c2, S2 ∼ (c1 + c2)2 + c21/(θ + α) + c22/θ

as p → ∞, subject to the conditions 3θ + 2α < 1 and 10θ + 4α < 3 arising from the estimation
(2.11). Optimizing the ratio |S1|2/|S2| leads to the choices M = p

1
4−ε, R = p

1
8−ε, c1 = 3

5 , c2 = 2
5 .

We note that our choices θ and α are essentially as large as possible; the normalizing weights c1
and c2 can be optimized subsequently to c1 : c2 = log(MR) : log(M). In particular, the passage to
the complete sum over h modulo p in (2.7) is essentially saturated, so in principle costless up to pε

factors.
One way to understand parameters c1, c2 is that, in an unbalanced amplifier, the longer part does

a better job at mollification, so we assign it a higher weight. Alternatively, optimizing a general
unbalanced mollifier using coefficients (zm) and (z′m) in the direct and dual sums in (2.4) leads to
maximizing a quadratic form in (zm), (z′m) subject to a linear constraint, with the same optimal
choice zm/c1 = z′m/c2 = ym. Finally we remark that, in all approaches including [7, 9, 8] and ours,
the proportion of nonvanishing obtained equals ϑ/(1 + ϑ), where pϑ is the combined length of the
mollifier (MR ·M in our case). From this perspective, the improved treatment of the cross terms
allows for increase from ϑ < 1

2 of [9] to the present ϑ < 5
8 , with the full increase of the combined

length allocated to a single piece of the optimal mollifier.

3. Mollified moments

In this section we describe how to apply the mollification process of [9] and [8] with the new
mollifier (2.4). Both these works use the mollifier (2.4) with R = 1 (equivalently, α = 0), so that
the sums have equal length M = pθ. The main terms of the mollified first and second moments
T1 and T2 yield a nonvanishing proportion of 2θ

1+2θ . We first examine the mollification to find the
corresponding proportion of nonvanishing when a mollifier with unequal length sums is used instead.

3.1. Mollified first moment. We first recall the approximate functional equation [6, Theorem 5.3]

L( 1
2 , χ) =

∑
n≥1

χ(n)

n
1
2

W
( n
p

1
2

)
+
τχ

p
1
2

∑
n≥1

χ(n)

n
1
2

W
( n
p

1
2

)
,(3.1)

where

W (x) =
1

2πi

∫
(2)

Γ( s2 + 1
4 )

Γ( 1
4 )

(π
1
2x)−s

ds

s
.

Inserting (2.4) and (3.1) into (2.5) and expanding, we see that the first mollified moment equals

S1 =
2

p

∑+

χ mod p

( ∑
n≥1

m≤MR

c1ymχ(nm)

(nm)
1
2

W
( n
p

1
2

)
+
∑
n≥1
m≤M

c2ymχ(nm)

(nm)
1
2

W
( n
p

1
2

)
(3.2)

+
τχ

p
1
2

∑
n≥1
m≤M

c2ymχ(n)χ(m)

(nm)
1
2

W
( n
p

1
2

)
+
τχ

p
1
2

∑
n≥1

m≤MR

c1ymχ(m)χ(n)

(nm)
1
2

W
( n
p

1
2

))
.

A similar expression of course holds for T1, the asymptotic evaluation of which is given in [9, equation
(9)]. This proceeds by treating each of the sums as in (3.2) separately; therefore we can directly
import the results of [9] into (3.2), with some bookkeeping to account for c1 and c2, lengths of the
m-sums, and the fact that Michel and VanderKam work with the completed Dirichlet L-functions
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and use slightly different normalizations, cf. (3.1), (3.2), and [9, p.131 and equation (2)]. The main

term arises from the n = m = 1 terms of the first line of (3.2), which contribute c1 + c2 +O(p−
1
4 +ε).

The error term in this evaluation is O(p−ε) as long as the sums comprising the mollifier have lengths

less than p
1
2−ε, as stated right above [9, equation (9)], keeping in mind the notation q̂ = (q/π)

1
2 of

[9], so that ∆ translates to 2θ for a mollifier of length pθ. The condition MR ≤ p 1
2−ε will be ensured

by the first two conditions of (3.13), and so

S1 = c1 + c2 +O(p−ε).(3.3)

3.2. Mollified second moment. For the second mollified moment, inserting (2.4) into (2.6) and
expanding, we see that S2 given in (2.6) equals

2c1c2
2

p

∑+

χ mod p

|L( 1
2 , χ)|2 τχ

p
1
2

∑
m1≤MR
m2≤M

ym1
ym2

χ(m1)χ(m2)

(m1m2)
1
2

(3.4)

+ c21
2

p

∑+

χ mod p

|L( 1
2 , χ)|2

∣∣∣ ∑
m≤MR

ymχ(m)

m
1
2

∣∣∣2 + c22
2

p

∑+

χ mod p

|L( 1
2 , χ)|2

∣∣∣ ∑
m≤M

ymχ(m)

m
1
2

∣∣∣2.(3.5)

The standard first step in the evaluation of (3.4) and (3.5) comprises of firstly proving the approxi-
mate functional equation (see [8, equation (2–2)])

|L( 1
2 , χ)|2 = 2

∑
n1,n2≥1

χ(n1)χ(n2)

(n1n2)
1
2

V
(n1n2

p

)
(3.6)

where

V (x) =
1

2πi

∫
(2)

Γ( s2 + 1
4 )2

Γ( 1
4 )2

(πx)−s
ds

s
,

secondly inserting (3.6) into (3.4) and (3.5), and thirdly invoking for (n1n2, p) = 1 the approximate
identities (see [9, equation (17)] or [7, equation (3.4)]),

2

p

∑+

χ mod p

χ(n1)χ(n2) =

{
1 +O(p−1) if n1 ≡ ±n2 (mod p)

O(p−1) otherwise,

1

p

∑+

χ mod p

τχχ(n1) = Re
(
e
(n1

p

))
+O(p−1),

where as usual e(x) = e2πix. The output will be representations of (3.4) and (3.5) as quadruple
sums which we then separate into main terms and error terms. The smooth function V has the
effect of imposing the condition n1n2 ≤ p1+ε on the variables n1 and n2, because on moving the line
of integration we infer that V (x)�c x

−c for any c > 0.
For (3.5), we look to [9, section 5], where sums of the type

2

p

∑+

χ mod p

|L( 1
2 , χ)|2

∣∣∣ ∑
m≤pθ

ymχ(m)

m
1
2

∣∣∣2(3.7)

are evaluated starting from the standard first step just described. Specifically, referring to [9,
equation (16)] for the main term and [9, page 136] for the error term, we get that (3.7) equals
1
θ + 1 + O(p−ε) for θ < 1

2 . This can be seen by taking k = 0 and P0(t) = t in [9, equation

(16)], removing the factor Γ( 1
4 )2q̂φ+(q) therein (which, as in the first moment, is due to the use of

completed L-functions and slightly different normalizations in [9]; cf. (3.6), (3.7), and [9, p.131 and
equation (3)]), and keeping in mind that ∆ = 2θ. Using this evaluation of (3.7), we get that (3.5)
equals

c21

( 1

θ + α
+ 1
)

+ c22

(1

θ
+ 1
)

+O(p−ε)

for θ + α < 1
2 .
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We now consider (3.4). The above standard first step implies that (3.4) equals

4c1c2

p
1
2

Re
∑

n1,n2≥1
m1≤MR
m2≤M

(n1n2m1m2,p)=1

ym1ym2

(n1n2m1m2)
1
2

V
(n1n2

p

)
e
(n2 n1m1m2

p

)
+O

(MR
1
2

p1−ε

)
.(3.8)

It is shown in [9, section 6.1] that (3.8) yields a constant main term which is contained in the con-
tribution of the terms with m1m2n1 = 1. Specifically, it follows from [9, equation (23)], after again
removing the normalization factor Γ( 1

4 )2q̂φ+(q) (of the same origin as above), that the contribution
of these terms to (3.8) is

2c1c2 +O(p−ε),

where it is easy to see that the method indeed gives power savings for k = 0.
Next, we consider the terms with m1m2n1 > 1 in dyadic intervals. Let

(3.9)

B(M1,M2, N1, N2) =
∑

N1≤n1≤2N1
N2≤n2≤2N2
M1≤m1<2M1
M2≤m2<2M2

ym1
ym2

(pM1M2N1N2)
1
2

V
(n1n2

p

)
f1

( n1

N1

)
f2

( n2

N2

)
e
(n2n1m1m2

p

)
,

for any integers M1,M2 ≥ 1 and any N1, N2 ≥ 1
2 satisfying

N1N2 ≤ p1+ε, M1 ≤
MR+ 1

2
, M2 ≤

M + 1

2
, M1M2N1 ≥ 1,(3.10)

arbitrary coefficients ym1 , ym2 and any fixed smooth functions f1, f2 compactly supported on the
interval ( 5

4 ,
7
4 ) say, all with absolute values bounded by pε. We remark that the definition of

B(M1,M2, N1, N2) is slightly different from [8]; still we choose the same notation because of the
similarity. Note that the last condition of (3.10) restricts the sum to m1m2n1 > 1. This is because
if M1M2 = 1 then this condition implies that N1 ≥ 1, in which case the support of the test functions
implies that f1( n1

N1
) vanishes unless n1 > 1.

On putting f(n1, n2) = V (n1n2

p )f1( n1

N1
)f2( n2

N2
), we can rewrite

(3.11) B(M1,M2, N1, N2) =
1

(pM1M2N1N2)
1
2

∑
N1≤n1≤2N1
N2≤n2≤2N2
M1≤m1<2M1
M2≤m2<2M2

ym1ym2f(n1, n2)e
(n2n1m1m2

p

)
,

with coefficients ym1 , ym2 and the smooth function f all having absolute values bounded by pε. In
Section 4, specifically Corollary 4.5, we shall establish the bound

(3.12) B(M1,M2, N1, N2)� p−ε

for M = pθ, R = pα with

(3.13) 0 < θ <
1

2
− ε, 0 < θ + α <

1

2
− ε, 3θ + 2α− 1 < 0, 10θ + 4α− 3 < 0.

It will thus follow that, under the assumption (3.13), the terms with m1m2n1 > 1 in (3.8) contribute
O(p−ε). These conditions also ensure that each component of our two-piece mollifier has length less

than p
1
2−ε.

In summary, combining our evaluations of (3.4) and (3.5), we find that

S2 = c21

( 1

θ + α
+ 1
)

+ c22

(1

θ
+ 1
)

+ 2c1c2 +O(p−ε)(3.14)

=
c21

θ + α
+
c22
θ

+ (c1 + c2)2 +O(p−ε),

assuming (3.13).
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3.3. Nonvanishing proportion. We are in a position to derive the proportion of nonvanishing as
a function of the lengths of the mollifier components and weights in (2.4).

Lemma 3.1. Using the mollifier (2.4) and assuming the condition (3.13), the main terms of the
mollified first and second moments given in (2.1) and (2.2) yield the nonvanishing proportion( (c1/(c1 + c2))2

θ + α
+

(c2/(c1 + c2))2

θ
+ 1
)−1

.(3.15)

Proof. As is standard, and mentioned in the introduction, the nonvaninishing proportion is at least
|S1|2/|S2|. We now insert (3.3) and (3.14) to complete the proof. �

4. Error term

In this section we set out to prove the estimate (3.12) for the sum B(M1,M2, N1, N2) given by
(3.11) under the condition (3.10). Now there are two natural ways to proceed. In (3.11), on applying
Poisson summation in n2 after first separating into residue classes modulo p, we get the following
estimate.

Lemma 4.1. For MR2 < p1−ε, we have

B(M1,M2, N1, N2)� pε
(M1M2N1

pN2

)1/2

+ p−ε � pε
(M2RN1

pN2

)1/2

+ p−ε.

Proof. This is given by [9, equation (27)], or equivalently [8, equation (2-6)]. We note that this is
the bound that would not cover the summands with m1m2n1 = 1 (cf. [9, p.146]), but that possibility
is excluded in the definition of B(M1,M2, N1, N2). �

In (3.11), if we instead separate n1 into residue classes modulo p and apply Poisson summation,
denoting the dual variable by k, then we get Kloosterman sums as follows.

Lemma 4.2. Suppose MR2 < p1−ε. For some function f̂ with ‖f̂‖∞ � pε, we have

B(M1,M2, N1, N2) =
1

(pM1M2N1N2)
1
2

N1

p

∑
1≤|k|≤p1+ε/N1

N2≤n2≤2N2
M1≤m1<2M1
M2≤m2<2M2

ym1ym2 f̂(n2, k)S(kn2,m1m2, p) +O(p−ε).

(4.1)

Proof. See [8, equation (3-5)]. The contribution of k = 0 is shown on [8, page 8] to be O(p−ε) when
MR2 < p1−ε. �

We can estimate (4.1) as follows.

Lemma 4.3. Suppose p
N1
N2M1 < p1−ε. We have

∑
1≤|k|≤p1+ε/N1

N2≤n2≤2N2
M1≤m1<2M1
M2≤m2<2M2

ym1ym2 f̂(n2, k)S(kn2m1,m2; p)� pε
(pN2M1

N1

) 3
4

(M2p
5
8 +M

1
2

2 p
3
4 ).

Proof. This is an immediate consequence of [8, Lemma 3.2], but we review the proof. We glue
together h = kn2m1 and apply Hölder’s inequality as described in Section 2. Provided p

N1
N2M1 <
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p1−ε, we have by the argument in (2.8) that∑
1≤|k|≤p1+ε/N1

N2≤n2≤2N2
M1≤m1<2M1
M2≤m2<2M2

ym1ym2 f̂(n2, k)S(kn2m1,m2; p)

� pε
(pN2M1

N1

) 3
4
( ∑
m1,m2,m3,m4<2M2

∣∣∣ ∑
h mod p

S(h,m1; p)S(h,m2; p)S(h,m3; p)S(h,m4; p)
∣∣∣) 1

4

.

The number of tuples (m1,m2,m3,m4) where no entry is distinct from the others is O(M2
2 ). To

these tuples we apply Weil’s bound for Kloosterman sums. For the rest, we use [4, Proposition 3.2]

to get that
∑
h mod p � p

5
2 , and deduce the lemma. �

Putting Lemma 4.2 and Lemma 4.3 together, keeping in mind M1 ≤MR and M2 ≤M , we get

Lemma 4.4. Suppose MR2 < p1−ε and p
N1
N2M1 < p1−ε. We have

B(M1,M2, N1, N2)�
(pεN2MR

N1

) 1
4

+
(pεN2

2M
6R2

N2
1 p

) 1
8

+O(p−ε).

Finally, we are ready to prove

Corollary 4.5. Under the assumption (3.13), we have that B(M1,M2, N1, N2)� p−ε.

Proof. We consider two cases. If M2RN1

pN2
< p−ε, then we are done by Lemma 4.1. Note that the

condition of Lemma 4.1 is satisfied by (3.13). Therefore assume

M2RN1

pN2
≥ p−ε.(4.2)

We can combine this assumption with (3.13) to see that the conditions of Lemma 4.4 are satisfied.
Also, using (4.2), we see that the estimate of Lemma 4.4 implies that

B(M1,M2, N1, N2)�
(pεM3R2

p

) 1
4

+
(pεM10R4

p3

) 1
8

+O(p−ε).

It remains to observe that the assumption (3.13) is precisely what makes B(M1,M2, N1, N2)� p−ε.
The corollary is proved. �

5. Optimization

We are in a position to prove our main theorem.

Proof of Theorem 1.1. In view of Lemma 3.1, the task now is to minimize the ratio

(5.1)
( c21
θ + α

+
c22
θ

)
: (c1 + c2)2

subject to the conditions c1, c2 > 0 as well as

0 < θ <
1

2
− ε, 0 < θ + α <

1

2
− ε,(5.2)

3θ + 2α− 1 < 0,(5.3)

10θ + 4α− 3 < 0.(5.4)

These are the conditions of Corollary 4.5. Recall that the condition (5.2) guarantees that the lengths

of the mollifier components do not exceed p
1
2−ε, whereas the conditions (5.3) and (5.4) ensure that

B(M1,M2, N1, N2)� p−ε by Lemma 4.4.
Take for a moment arbitrary θ, α > 0 satisfying the conditions (5.2)–(5.4). Then it is immediate

from the Cauchy–Schwarz inequality, applied to the sum
√
θ + α c1√

θ+α
+
√
θ c2√

θ
, that the ratio (5.1)
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is minimized when c1 : c2 = (θ + α) : θ, in which case we find from Lemma 3.1 that we obtain the
proportion of nonvanishing (

1 +
1

2θ + α

)−1

.

Note that, as alluded to in the introduction, this expression has a natural intrinsic meaning, namely
p2θ+α = MR ·M is the combined length of the mollifier (2.4).

Thus the question is to maximize this length subject to the conditions (5.2)–(5.4). Under those
conditions, we have that

2θ + α =
1

4
(3θ + 2α) +

1

8
(10θ + 4α) <

5

8
,

and the choice θ = 1
4 − ε, α = 1

8 − ε is essentially optimal, verifying (5.2)–(5.4) and giving the
announced proportion of nonvanishing(

1 +
1

5/8

)−1

− ε =
5

13
− ε. �

Note that the sums comprising our mollifier can have lengths up to MR = p
3
8−ε and M = p

1
4−ε.

In comparison with [8], which essentially corresponds to (5.2)–(5.4) with α = 0 and had both

components of the mollifier of length p
3
10−ε, the direct (longer) sum in (2.4) is now quite a bit longer

but the dual (shorter) sum a bit shorter, with the increased combined length responsible for the
improved proportion of nonvanishing.

It is also instructive to recall the earlier work of Michel–VanderKam [9], which added the flexibility

of the two-piece mollifier, with both components of length p
1
4−ε, the maximum allowed from the

Weil bound treatment of the cross terms. The improved treatment of cross terms from [8] coupled
with the unbalanced mollifier of the present paper gives rise to the substantially relaxed conditions
(5.3)–(5.4), which are now both saturated, and where the entire gain from the increased combined

length (from p
1
2−ε up to p

5
8−ε) is optimally attributed to one of the components of the mollifier (2.4).
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