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This paper is devoted to a systematic study of certain geometric integral inequalities which arise in
continuum combinatorial approaches to L”-improving inequalities for Radon-like transforms over poly-
nomial submanifolds of intermediate dimension. The desired inequalities relate to and extend a number
of important results in geometric measure theory.
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1. Introduction

1.1. Main results. This paper is devoted to the systematic study of functionals of the form

A(E) :=/ [P (x1, .. x)dp(xy) - - - dp(x), (D
Ek

S(E) = sup |P(x1, .o Xp)]s (2)
(X1,...,x;)€EX
where the sets E range over all Borel subsets of some domain €2 C R", the measure u is a nonnegative
Borel measure, and ® : QF — R™ is some fixed polynomial function of (xy, ..., xx). When m > 1, the
bars | - | are to be understood as a fixed but otherwise arbitrary norm on R™. Functionals of the forms (1)
and (2) will be called nonconcentration functionals since they quantify the extent to which product sets EX
fail to lie in the zero set of ®.

The principal motivation for the study of nonconcentration functionals concerns the study of L?”-
improving properties of Radon-like operators. Approximately twenty years ago, this field was revo-
lutionized by ideas, developed by Christ [1998], D. Oberlin [2000], and others, which in some sense
recast the problem as a “measure-theoretic counting problem”. This approach has been incredibly
successful in advancing understanding of Radon-like operators and has led to the study of interesting
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new mathematical objects and ideas as well. Among these are Oberlin’s affine Hausdorff measure
[2003] and multilinear determinant functionals [Gressman 2011a]. Studying the general framework of
nonconcentration functionals provides a way of unifying these related but distinct ideas. This general
approach will also yield new L”-improving estimates for Radon-like operators in certain intermediate
dimensions (i.e., averages over submanifolds with dimension and codimension both greater than 1)
through Theorem 3 below.

The general goal is to determine when one has inequalities of the form

A(E) > ¢ s [ (E)FT, 3)

S(E) > ¢, IL(E)P “4)

for all Borel sets E C 2, where s > 0 is a fixed real number and ¢, s and ¢, ; are nonnegative constants
which do not depend on E. The cases ¢, ; =0, C;H =0, and u = 0 are uninteresting; to avoid these
exceptions, a nonnegative Borel measure p on €2 will be said to satisfy (3) or (4) nontrivially when p is
not the zero measure and the corresponding inequality holds with a strictly positive constant. Both (3)
and (4) will be called nonconcentration inequalities.

In applications, the specific functions ® which arise always vanish on the diagonal

A::{(xl7---,x1<)€9k|xl:-~-:xk}.

To keep track of this degeneracy, we will denote the order of vanishing by ¢ > 1, meaning that all partial
derivatives of order less than g vanish identically on A and some partial derivative of order g is nonzero
at some point of A.

We will also make liberal use of the notation <, =, and ~. An inequality of the form A < B will
mean that there is some implicit multiplicative constant C such that A < CB; the constant C in such an
inequality is always independent of the parameters over which A and B are explicitly quantified (e.g.,
saying that u(E) < (diam(E))" for all Borel sets E means that the constant is independent of E but may
depend on u and n, for example). In some cases, the parameters upon which the constant does depend
will be identified for additional clarity. Inequalities of the form A 2 B are the same as B < A, and A~ B
is shorthand for the pair of inequalities A < B and B < A.

A central observation of this paper is that there is a generalization of the weighted Hausdorff measure
which plays a fundamental role in the inequalities (3) and (4). For any Borel set E C Q2 and any o > 0,
let the o -dimensional weighted ®-Hausdorff measure of E be defined to equal the quantity

oo oo
o RTINS - . .
AG(E) = lgrﬂé?f{;“[‘s(&)] ‘ XE = Ecixlgi, ¢; > 0 and diam(E;) < § for all z}. ®)
Here the adjective “weighted” refers to the presence of the constants ¢; in (5) which effectively generalize
the notion of coverings of E that one sees in the traditional unweighted definition of Hausdorff measure.
To contextualize the results that follow, let us briefly consider the inequality (4) and the measure A3, in an
important special case:
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Example A (Hausdorff measure). When ®(x, y) :=x — y for x, y € R" (where | - | is taken to be the
Euclidean norm on R"), S(E) equals the diameter of £ and AJ, is equal to the classical o -dimensional
Hausdorff measure 7 ; see [Federer 1969, 2.10.24]. The order of vanishing ¢ of ® on the diagonal is
simply 1. In the special case s = 1/n, the sharp form (i.e., with optimal constant CQD, 1 /n) of the inequality (4)
with u = Ay = H" is known as the isodiametric inequality and it is known that Euclidean balls are
extremal sets for (4) [Federer 1969, 2.10.33]. If u is any other nonnegative Borel measure satisfying

w(E) < [diam(E)]" (6)

for every Borel set E C €2, then the Radon—-Nikodym theorem and Lebesgue differentiation theorem imply
that w(E) < H"(E), meaning that Lebesgue measure on R” is, up to a constant, the largest measure on
R" satisfying an isodiametric inequality (6). More generally, modulo a loss of sharpness in the constant,
the inequality (4) is equivalent to the upper Ahlfors regularity condition

(B, (x) < rl/s

for all Euclidean balls B,(x) C R”, since every set E of bounded diameter is contained in a ball of
comparable diameter by virtue of Jung’s theorem [Federer 1969]. This tells us that (4) cannot be satisfied
nontrivially when s < 1/n and that for s > 1/n Frostman’s lemma gives the existence of nontrivial
measures p satisfying (4) supported on any set E of positive 1/s-dimensional Hausdorff measure.

We are now ready to state the main result, which generalizes a number of the classical inequalities and
observations highlighted in the motivational example above:

Theorem 1. Let A and S be as in (1) and (2). As stated there, let ® be a polynomial function from
(RM* — R™ which vanishes to order g > 1 on the diagonal A. Then the following are true:

(1) If o > n/q, then L3, (2) = 0. There are no Borel measures 1 satisfying (4) or (3) nontrivially when
s=1/o.

(2) If 0 <n/q, then there is a Borel measure wu satisfying (4) or (3) nontrivially with s = 1/o if and only
if A3(2) > 0.

(3) If o =n/q, then 1y, is absolutely continuous with respect to Lebesgue measure and there is an
explicit estimate (see (38)) for the pointwise magnitude of the Radon—Nikodym derivative. For any Borel

measure [, let ||S|| . s be the supremum (possibly equal to zero) of all nonnegative constants C;;, s such
that (4) holds for all Borel sets E C 2. Then

A(E) % S(E) 2 D/ (BN 2 18 g /nl 10 (DI )

for all Borel sets E C 2, with implicit constants depending only on the parameters (n, k, g, deg ®). In
other words, the measure )»g/ 1 satisfies (4) itself and is, up to a multiplicative constant, the largest such

measure.

In comparison to the classical results recalled in Example A, part (2) of Theorem 1 can be understood
as a generalized Frostman’s lemma and (7) can be thought of as an extension of the isodiametric inequality
(sharp constants notwithstanding).
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A key step in the proof of Theorem 1 is the following result, which establishes the comparability of
sharp constants for (3) and (4):

Theorem 2. Let A and S be as in (1) and (2). As stated there, let ® be a polynomial function from (Rmyk
to R™ which vanishes to order g > 1 on the diagonal A. For any nonnegative Borel measure | and any
s > 0, w satisfies (3) with positive constant if and only if u satisfies (4) with positive constant. Moreover,
if one defines || A|l s to be the supremum of all nonnegative c,, s such that (3) holds for all Borel sets
E C Q, then

S s = NAl s Z NSl s (8)

where the implicit constant depends only on (n, k, s, deg ).

The value of Theorem 2 is that the nonconcentration functional S is generally much easier to calculate
and estimate than 4. In particular, Theorem 2 is what makes it possible to characterize existence
of nontrivial measures p satisfying (4) in terms of the geometric measure-theoretic generalization of
Hausdorff measure (5) and the corresponding generalization of Frostman’s lemma. Just as in Example A,
there is a particularly important value of “dimension” for the measure (5) in which it is possible to deduce
detailed information about the Radon—Nikodym derivative of this generalized Hausdorff measure with
respect to Lebesgue measure.

1.2. Connection to Radon-like operators. Suppose that y (¢, x) is a polynomial map from R” x R"? into
RM with r := Ny —n > 0 and that € is some Borel measurable subset of R” x R2. To this y and 2, one
may associate the Radon-like operator

11w = [ frt e, ©

which may be informally regarded as averaging functions f on RV over the family of sets {Z,}, cgm
given by
To={yt,x)eRV |1 e R, (1, x) € Q).

The main result of this paper regarding the operator (9) is the following:

Theorem 3. Suppose N, = rk for some positive integer k. For each x € R, let!

o, x)AN- - Aw(t, x)
D (ty, ..., 1) = y , (10)
X1 A ANdxp,

where w is the r-form

dy dy ay
w(t, x) ::1 | Z . det [a(t,x) BTi,(t’x) E(t,x)] dxi N---Ndx;,, (1D
<ij<+<ir <N

where each dy [9x;; is an Ny x 1 column matrix of partial derivatives, dy /9t is the N1 X n Jacobian matrix
of v with respect to t, and the determinant is that of the N X N\ square matrix formed by concatenation.

INote that the ratio of forms in the definition of ® « 1s a well-defined real number because both numerator and denominator
belong to the same one-dimensional vector space of N-forms on RN2,
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Suppose q is a positive integer such that 8,01‘ R Bg" D, (11, ..., ty) vanishes identically on the diagonal
t) = -+ = tx for all multiindices ay, . .., o with |a1| 4+ -- -+ |og| < g — 1. Forany T € GL(n, R), let
(T*3)}* be the differential operator

n 731 n Qkn
() (Sna)
j=1 j=1
where ty1, ..., tyy are the coordinates of ty in the standard basis and oy, . . ., ay, are the entries of the
multiindex ay. If

[(T*0){" - - (T*O)* ®x(t, ..., 1)

6:= inf inf max (12)
(t,x)eQ TEGL®,R) ot|+-+leu|=q |det T'|9/n
and p :=1+n/(kq), then the Radon-like operator (9) satisfies the inequality
1T xF || o sy S 87| FVP (13)

for all Borel sets F C RM'. The implicit factor in (13) depends only on (n, Ny, Na, q, deg ).

Here we see the full benefit of Theorems 1 and 2: it suffices to prove Theorem 3 under the alternate
definition that § is any real number satisfying

/k Dt . )]y -~ di = S| EFH (14)
E

for every point x € R™? and Borel set E C R" such that E x {x} C €, where s :=n /q. This is because
(38) guarantees that the measure )J:D/Vq has density greater than or comparable to §”/¢ (modulo uniform
implicit constants) at every point (t', x) € 5, which by Theorem 1 and (7) implies (14) (again, up to
a uniform implicit constant). The hypothesis (12) is easier to verify by hand than (14) is, but (14) is
much more directly and naturally connected to the Radon-like operator through a proof built on the
change of variables formula, similar to various earlier approaches [Gressman 2013; 2015] in the spirit of
combinatorial/continuum incidence methods developed in [Christ 1998]. Christ’s technique, based on
ideas of Bourgain [1986; 1991], Wolff [1995; 1997], Schlag [1997], and others, has, since its development
twenty years ago, had an impact on the subject of harmonic analysis which is difficult to overstate. It
has influenced and inspired work of Bennett, Carbery, and Wright [Bennett et al. 2005], Christ [2011],
Dendrinos, Laghi, and Wright [Dendrinos et al. 2009], Erdogan and R. Oberlin [2010], Hickman [2016],
D. Oberlin [2000], Schlag [2003], Stovall [2011; 2014], Tao and Wright [2003], and many others.
When r = 1, the operator (9) integrates over hypersurfaces and the integral on the left-hand side of (14)
reduces to a multilinear determinant functional [Gressman 2011a]. In this case it is known [loc. cit.] that for
fixed x the inequality (14) is satisfied nontrivially if and only if the Lebesgue measure dt on the submanifold
I', C R parametrized by ¢ — w(t, x) satisfies D. Oberlin’s affine curvature condition, meaning that

[XRmﬁ(w(t,X))dtSIRll/S (15)

for all boxes R with arbitrary orientations and eccentricities, with an implicit constant which is independent
of R. The condition (15) is called affine because the implicit constant does not change when I, is acted
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on by an equiaffine? transformation and is regarded as a curvature condition because it necessarily fails
when I, lies in any affine hyperplane. The question of whether (15) is satisfied for a given w(z, x) is
surprisingly difficult to solve and systematic approaches have only recently become available [Gressman
2019]. When r > 1, the situation is even more difficult, as there are no previously known analogues of
the Oberlin affine curvature condition which apply to (14).

It is also worthwhile to explicitly identify an interesting unboundedness result relating Radon-like
operators to D. Oberlin’s affine measure and affine curvature condition (18). It was observed by D. Oberlin
[2003] and others that any measure v on R" satisfying either a nontrivial Fourier restriction inequality or
L?-improving convolution inequality must satisfy the inequality

w(R) S|R|? (16)

for some o > 0 as R ranges over all boxes in R? of arbitrary orientations, i.e., all sets of points which
may be expressed as products of finite intervals with respect to some orthogonal coordinates on R". In
analogy with Oberlin’s affine measure,’ let

¢ (E) := liminf |R; 1
AL (E) = lim in {;Cﬂ jl

XE = Z ¢jXRr;» ¢j > 0and R; are boxes of diameter < 8}
J
be called the o -dimensional weighted affine Hausdorff measure. This weighted affine Hausdorff measure
is trivially dominated by Oberlin’s affine measure of dimension no; they may, in fact, be comparable
for all o beyond the special value o = n/q highlighted in Theorem 1, but it is unclear how one would
proceed for other values of o, and the classical techniques used in [Federer 1969] immediately fail when
one deals with boxes of arbitrary orientation and eccentricity.
In terms of this measure A7, we have the following proposition:

Proposition 4. Suppose K C R" is compact and fix any o > 0. Then K admits a nontrivial positive Borel
measure [ satisfying the Oberlin affine curvature condition (16) if and only if the o -dimensional weighted

affine Hausdorff measure of K is nonzero. In particular, A% (K) = 0 implies that for any exponents

p1, P2, 11,12 € [1, 00] satisfying
1 1 r 1
o= ———:—2 ::r2|:1__:|’

PP
neither of the inequalities

s flleeewy SIHfln@y  or N fllengy SIFILn @y

(where f denotes the Fourier transform) hold uniformly in f for any nontrivial positive Borel measure
supported on K.

1.3. Examples. It is worthwhile to briefly examine some additional implications of Theorem 1 in some
familiar and unfamiliar settings.

2The prefix “equi-" specifies those affine transformations which preserve Lebesgue measure.
3Note that Oberlin adjusts the exponent o so that the affine dimension of R” is n, but by the present convention the dimension
is always 1.
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Example A’ (Hausdorff measure). To generalize the first example, suppose that y : R”? — R", p < n, is
any locally injective polynomial function and set ®(x, y) := y(x) — y(y). Locally the measure )Lg, on
R? pushes forward to equal exactly the p-dimensional Hausdorff measure on R” restricted to the image
of y. Because there is a universal bound in terms of the degree for the number of isolated solutions x
of the equation y (x) = a for any a, the measures must be comparable globally as well. The order of
vanishing ¢ is still 1, and by (7), it follows that the p-dimensional Hausdorff measure on the image of y
also satisfies an isodiametric inequality on R"; i.e.,

HP (v (E)) S [diam(y (E))]”. a7)

Such an inequality can only hold in general because y is polynomial; if y is merely C, it is easy to
construct a highly oscillatory curve, for example, with infinite length inside a ball of finite radius. It is also
worth noting that up to multiplicative constants, the measure #” restricted to the image of y is essentially
the largest measure satisfying the p-dimensional upper Ahlfors regularity condition equivalent to (17).

Example B (determinantal measure). An interesting nontrivial example on the space of n x n matrices
is to set (A, Ap) :=det(A; — Ap) for any A, A, € R"*". The order of vanishing g equals n. Using
the estimate (38) for the magnitude of the Radon—Nikodym derivative dAg, /dx, it will be shown (see
Proposition 10) that A7, is comparable to Lebesgue measure on R"*". Thus, the first inequality of (7)
becomes a determinantal isodiametric inequality for subsets of R"*", namely,

|E| <[ sup |det(A —A)|]"
A,A'eE

for all Borel sets E C R™*". The implications of this inequality for a corresponding Radon-like operator
are detailed in Section 6.

Example C (affine measure). For y as in Example A’, let

P(x1, ... Xpg1) i=det(y (X)) =y (Kng1)s -0 ¥ () = ¥ (ng1)),

where the determinant of an ordered list of n vectors in R" is defined to equal the determinant of the n x n ma-
trix whose j-th column contains the ordered coordinates of the j-th vector in the standard basis. The mea-
sure A%, pushes forward to a measure on the graph of y which is dominated by D. Oberlin’s affine measure
of dimension no [2003] up to a uniform multiplicative constant; while it is not clear that these two measures
are comparable in all cases, it is a consequence of (38) that the measures must be comparable when o = p/q.
For this particular value of o, the measure Ag, is comparable to the recently defined affine hypersurface
measure [Gressman 2019], which is the optimal measure satisfying Oberlin’s affine curvature condition

u(R) S|R|YP (18)

for all boxes R C R” of arbitrary orientation. Similar to the Hausdorff measure and the upper Ahlfors
regularity condition, the Oberlin condition (18) is in fact equivalent to the a priori stronger inequality (4)
(see Section 2.2).
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Example D (projective measure on forms). When the underlying space is taken to be the decomposable®
r-vectors in A" (R"%) for positive integers » and k, let

o0

P°(E) :=13§r£(i)gf{2c,- sup

i—] @bL..wk€E;

x
AeeA
PO g <Y g ci20 and diam(E;) <8 for all i} (19)

i=1

U ‘

(where diameter is with respect to any metric inducing the usual topology). The form w (¢, x) defined by
(11) is always decomposable (see Sections 5 and 6); if f — w (¢, x) is locally injective for each x, then
the push-forward of the measure A3, on R" to the graph of w(-, x) will be comparable to the restriction
of P? to the same graph. If g is the smallest integer such that @, (¢, ..., f;) vanishes to order g on the
diagonal for some x, then setting

~ dxy4
Q= {(t,x) eR" x RM d;q;x(t) > 08”/‘1}

for an appropriate constant ¢ depending only on (n, g, N1, N, deg y) yields the inequality (14) with
s = q/n by Theorem 2 together with the fact that

S(ENQ) 2 (M1 (ENQ)I™ > [e6"E N Q19"
when €2, is the set where the Radon—Nikodym derivative d)»'g :1 /dt exceeds ¢8"/4.

1.4. Structure of the paper. Section 2 contains a proof of Theorem 2 using elementary convex geometry
via Lemma 5, an earlier version of which appears in work on affine submanifold measures [Gressman
2019]. This section also contains some basic GMT observations about ®-Hausdorff and weighted
®-Hausdorff measures which will be used in the proof of Theorem 1. In particular, Section 2.2 contains
a proof of the relevant generalization of Frostman’s lemma, which is a rather direct reinterpretation of
Howroyd’s proof as appearing in [Mattila 1995], as well as a proof of Proposition 4. Section 3 provides
the bulk of the proof of Theorem 1. The case o < n/q is essentially an immediate consequence of
Lemma 6, while the case o > n/q relies on a scaling argument to show that ®-Hausdorff measure
of dimension o must be absolutely continuous with respect to Lebesgue measure and to consequently
estimate the Radon—Nikodym derivative. At this point, the remaining portions of Theorem 1 are reduced
to establishing Theorem 7, which gives an explicit construction for any s of a measure (possibly zero)
satisfying (4). The proof of Theorem 7 is then reduced to proving Lemma 8 (see also [Gressman 2019]),
which is the content of Section 4. As a part of the proof of Lemma 8, Section 4 also identifies the
underlying intrinsic geometric objects which play an important algebraic role in the lemma and relate
closely to earlier geometric sublevel set estimates [Gressman 2011b].

Section 5 is a self-contained proof of Theorem 3 using a combinatorial approach much like earlier
work on uniform sublevel Radon-like inequalities and averages over n-dimensional submanifolds of R
[Gressman 2013; 2015]. Section 6 gives some example applications of Theorem 3 which correspond to
the GMT examples from Section 1.3.

4Here “decomposable” means expressible as an r-fold wedge product of 1-vectors.
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2. Proof of Theorem 2 and basic measure inequalities

2.1. Proof of Theorem 2. The proof of Theorem 2 begins with the following lemma, which generalizes
Chebyshev’s inequality to finite-dimensional vector spaces of functions. The heart of this generalization is
to show that there exists a single set of controlled measure outside of which all functions in the vector space
are uniformly bounded (when properly normalized). It extends earlier results for single-variable polyno-
mials [Gressman 2009] and real-analytic functions [Gressman 2019, Lemma 3]. Although it will only be
applied to Borel measures, measurability in the lemma may be taken with respect to any abstract o -algebra.

Lemma 5. Suppose 1 is a positive measure on some space X and F is a d-dimensional real vector space
of measurable functions from X into some vector space with norm | - |. Then for any t > 0, there is a
measurable set E; C X such that n(X \ E;) <t~ for which every f € F satisfies the inequality

sup | f ()] < rdf fldp. 20)

xeE;

Proof. The inequality (20) is vacuously true for any f € F (regardless of t and E;) for which the integral
on the right-hand side is infinite. It therefore suffices to prove (20) for the subspace of those f € F for
which the integral is finite (the triangle inequality guarantees that such functions are indeed a vector
space). Since this subspace also has dimension at most d, we may assume without loss of generality that
every f € F is u-integrable.

Next, let Fy be the subspace consisting of all f € F such that f | fldu = 0. If Fy is nontrivial, let
{h1,..., he} be a basis of Fy and define

X02={XGX

4
pILHEO] >0}.
i=l1

Because Fy is a finite-dimensional vector space (by the triangle inequality again) and because each basis
element /; vanishes identically on X \ Xy, every f € Fy is identically zero on X \ X(. Furthermore
1 (Xp) = 0; this follows because

l
[ X mwidn=o
i=1

so by the monotone convergence theorem and Chebyshev’s inequality,

u(Xo) = lim M({xeX‘ZVz (x)|>—})<supN/Z|h ()| dp =0.

N=>0

If Fo happens to be trivial, set Xy := &.

Now let F; be any subspace of F which has trivial intersection with Fy and satisfies 7 = Fo+ F;. If Fy
is trivial, then (20) holds because F = Fy, and consequently fixing E; := X \ X gives u(X \ E;) =0 and
sup,cpg, | f(x)|=0forall f € F. Thus it may be assumed that the dimension of F; equals d; € {1, ..., d}.
Define S to be the set of all f € F such that

/Ifldusl.
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The mapping f +— [ | f|dp is continuous with respect to the vector space topology, and because Fo N F;
is trivial, f +— [ |f|dp is a norm on Fj, which implies that S must be compact. Fix det to be any
nonzero alternating d;-linear functional on F;. By continuity and compactness, |det(f, ..., fz,)| attains
its maximum for some (f1,..., f4,) €S 41 Note also that the value of the maximum cannot be zero, since
by scaling this would force det to be identically zero. By Cramer’s rule, for any f € S,

di r
. det(f,fl,...,f‘,...,fd)
— § -1 j—1 J 1 ”
f j=1( ) det(f1, ..., fa) J;

where the circumflex * indicates that f; is omitted from the sequence of arguments of det. In particular,

by the choice of the functions fi, ..., fg,, the coefficient of each f; in this expansion of f has magnitude
at most 1. By the triangle inequality and scaling, then, it follows that

dy
|00 < (Zm(xn)/uw 1)
j=1

for any f € F; and any x € X. Now for any 7 > 0, fix

dy
Zm(xnsm}. (22)

E, = {x € X\ Xo
j=1

By Chebyshev’s inequality,

1 & d 1
w(X\ Er) < ~d /(; |fj(x)|) dp(x) < o < o

note in particular that the first inequality is strict because

dy
tdyx g, (x) < D 1f5(0)]
j=1
for each x € X \ Xy. Equality of the integrals over X \ Xy would force equality of the two functions
wu-almost everywhere on X \ X, which would then force (X \ X¢) =0, meaning ultimately that =0 and
F1 = {0}, which has already been handled. Taking a supremum of the inequality (21) over all x € E; gives

sup | ()| Srd/Ifldu

xeE;
for any f € F. Since every f € F must equal fy+ f; for some fy € Fo and f; € F] and since fj is identi-
cally zero on the given E, the fact that (20) holds for f; immediately implies that it holds for f as well. [J

Before applying this lemma to the proof of Theorem 2, a brief remark is in order. Although the set E;
given by (22) is only described as measurable, this is generally an understatement; if the functions of F
are all continuous, then E; is closed; if every f € F is a polynomial, the sets E; are semialgebraic since
they take the form

di £
Y cifix) <tdand Y Ehi(x) =0 forall ¢j, & € {—1, 1}}

{x eX
j=1 i=1

for functions f;, h; € F, which in this case are polynomials of bounded degree.
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Proof of Theorem 2. The proof follows rather directly from Lemma 5. Without loss of generality, it may
be assumed that p is not the zero measure on €2, since in this case || A s = S|l 4,s = 0. In all other
cases, ||All.,s and ||S||,,s must be finite. First observe that

[W(E)]*A(E) < S(E)

for any measurable set £ with nonzero p-measure since the integrand of A(FE) is pointwise dominated
by S(E) on EX. Consequently, for any such E,

Al [ (BT < [(E) M A(E) < S(E),

which then implies that || A, s < ||S||.,s. To prove the remaining inequality of (8), one applies Lemma 5
with the vector space F being real-valued polynomials of degree at most deg ®. If m > 1, then an arbitrary
and unspecified norm | - | has been fixed as well; let K* be the unique symmetric, compact, convex subset
of R™ such that

|v| = sup |€-v| (23)
leK*

for all v € R™, where - is the usual dot product. When the inequality (20) is applied iteratively in
conjunction with Fubini’s theorem, this establishes the chain of inequalities

/Ek |d><x1,...,xk>|du<x1>---du<xk>szk (€)1, oo X0 - (O dpt(x1) - (xp)

> /Ek_l(CT)—l [(€-D (V1. x) ks (O xE, (1) dja(x2) - - d e (xg)
> > (CT)HE®) 31,y k- O xEe, (1) - xE, (V)

for any yi, ..., yx € 2, where C is the dimension of F, which depends only on n and deg ®. Taking a
supremum over £ € R™ and yy, ..., y; and assuming that (4) holds gives that

A(E) > (CT)*S(Er) = (CO) ™M U(EDF ISl s = (CT) ™ (E) — T 1Sl u.s (24)
forany 7 > 1/u(E). If u(E) € (0, 00), fixing 7 :=2/u(E) gives that
A(E) = QO) ™ (E) IS s [ (ED T = 275C) T |IS ]| s [ (E)IF.

If w(E) =0 or u(E) = oo, then the inequality immediately above still holds since it is trivial when
w(E) = 0 and since the right-hand side of (24) is infinite for any positive T when w(E) = co. Therefore
the inequality holds for all £, meaning that

—(s+k) ~—k
1Al = 27 C)S ] s,

which completes the main assertion (8) of Theorem 2. In particular, the constant depends only on
(n, k, s, deg ®) and not on w or the norm on R™. O
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2.2. Basic GMT inequalities and Frostman’s lemma. In this section, the focus returns to Theorem 1.
The goal for the moment is to lay out some basic geometric measure theory which underlies the analytic
inequality (4). To that end, given a general polynomial ® : Q¥ — R™ vanishing to order ¢ > 1 on the
diagonal as in the Introduction, for any o > 0 and any E C €2, let

H3 (E) = lim (i)gf{Z[S(Ei)]" xe =3 xm, diam(E:) < a}, (25)

G (E) = lgrg(i)rlf{ Z ci[S(E)]°

XE <) cixg, ¢ >0, diam(E;) < a}. (26)

To be clear, one need not assume that the sets E; have any regularity, but there is no loss of generality in
requiring that each E; be Borel or even closed since the continuity of ® implies that S assigns the same
value to E; and its closure E;. The quantity Hg will be called the ®-Hausdorff measure of dimension o,
and as already defined in Theorem 1, Ag, is called the weighted ®-Hausdorff measure of dimension o.
Note that Hg, is a special case of the Carathéodory construction (see [Federer 1969; Mattila 1995]),
while Ag, generalizes the measure that Howroyd [1995] calls the weighted Hausdorff measure. Just as in
the definition of the classical Hausdorff measure, the quantities (25) and (26) both define metric outer
measures on 2 and therefore restrict to well-defined measures on the Borel sets; see [Folland 1999,
Proposition 11.6].
The most basic inequalities satisfied by these quantities are that

ISI7,1 /6 (E) < AG(E) < He(E) 27)

for any Borel set E and any nonnegative Borel measure w. The first inequality follows because

IS11%,.1 /o (E) = ||S||;1,1/<,fxEdus ||8||;,1/af2cixa du
i

o0 (00)
=Y cillSIG. o (E) <Y clSEN.

i=1 i=1
The latter inequality of (27) follows simply because the infimum (26) is taken over a strictly larger set
than (25). It is natural to ask when the measures A3, and Hg, are equal or comparable. For the classical
Hausdorff measure, equality is known (see [Federer 1969]), but for general measures this need not be the
case. In the context of this present paper, the arguments of Section 3 will establish comparability in the
range o > n/q (although both measures are trivial when the inequality is strict). Beyond this observation,
the question of comparability of A3, and Hg, in the regime o < n/q will for now remain unexplored.

The measure Ay, holds fundamental significance in the study of nonconcentration inequalities because it

characterizes, via a generalization of Frostman’s lemma, the existence of nontrivial measures u satisfying
such inequalities.

Lemma 6. Fix any o > 0. There exists a nontrivial positive Borel measure [ on the compact set
K C Q C R" satisfying
S(E) = [u(E)]'° (28)

for all Borel sets E C K if and only if 15, (K) > 0.
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Proof. The proof follows Howroyd’s proof [1995] of Frostman’s lemma as given by Mattila [1995,
Theorem 8.17]. By (27), the existence of nontrivial & automatically guarantees that A%, (K') > 0. Conversely,
for any function f on K, let

Pos(f) = inf{z cilS(EN°

f= ZCiXE,-, ¢i >0, diam(E;) < 3}-
i
For any continuous functions f, g on K, it is elementary to check that

Dos(tf) =tpss(f) forallte[0,00),
Po,s(f +8) < Pos(f)+ Po,s(g).

It is also true that p; s(g) = 0 for every nonpositive function g. Thus

tpos(Xk) < Po,s(txx) forallz eR.

Consequently by the Hahn—Banach theorem, there must exist a linear functional L defined on the space
CY(K) of continuous functions on K such that L(xx) = Po.s(xx) and L(f) < po.s(f) for any continuous
function f. If f is nonnegative, 0 = —p, s(—f) < L(f) as well, so L is a positive linear functional on
C°(K). By the Riesz representation theorem, there must be a nonnegative Borel measure 1o on K such that

L(f) = f Fdpo forall feC'K)  and oK) = LK) = pos(xe)-

Now if E is any Borel set with diameter smaller than §, let f; be a sequence of functions in C O(K) which
are identically 1 on a neighborhood of E, bounded above by 1 everywhere, and vanish outside the set E;
of points distance at most 1/j from E. Then

wo(E) < liminff fjduo =liminf L(fj) <liminf p, s(fj) <liminf[S(E;)]° = [S(E)]°,
j—o00 j—o00 j—o00 j—o0o

where the last inequality follows because @ is a polynomial and therefore continuous. Finally, if A3, (K) > 0,
then there must be some positive § such that p, s(xx) > 0. For this fixed value of §, o must be nonzero.
By subdividing R" into nonoverlapping boxes, there must be a dyadic box B of diameter less than § such
that ;o(B) > 0. Now define the measure u by u(E) := po(E N B). It follows that ©(2) = pno(B) >0
and, for any Borel set £ C Q2 of any diameter,

W(E) =uo(ENB) <[S(ENB)I° <[S(E)I°
as desired. O

We now briefly pause to give a proof Proposition 4 from the Introduction using Lemma 6 before
returning to the proof of Theorem 1:

Proof of Proposition 4. Using Oberlin’s earlier calculations [2003, Proposition 2], it suffices to set
D(x1, ..., xXp4+1) :=det(x; — X441, - .., Xy —Xp+1) as noted in the Introduction and show that the Oberlin
affine curvature condition (16) is equivalent to (28) modulo constants and that A7 ~ Ag,. Both facts are
quickly established by showing that for any bounded Borel set £ C R" there is a box R such that £ C R and

IR|~  sup  [P(x1, ..., Xy
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with implicit constants depending only on dimension. Because taking the closure of E does not change the
supremum, it may be assumed without loss of generality that E is compact and one may fix an ensemble
X1, ..., Xp+1 Which achieves the supremum of |®| on E"HL If the supremum is zero, then necessarily
the span of all vectors x — x,4| as x ranges over E must have dimension strictly less than n, which
implies that E lies in an affine hyperplane. By the boundedness of E, this implies that E is contained
in a (degenerate) box R of volume zero. Otherwise the supremum is strictly positive, and by the same
argument appearing in the proof of Lemma 5, it must be the case for any x € E that

n
X =Xpq1+ Z cj(xj — Xp+1)
j=l1
for constants ¢; € [—1, 1]. The set of all such points having such an expansion is an affine image of
the box [—1, 1]" and consequently has Lebesgue measure 2" |det(x| — Xp41, - - -, Xn — Xnt1)| = 2"S(E).
By the John ellipsoid theorem, this same set of points must be contained in an ellipsoid of comparable
volume, and that ellipsoid must trivially be contained in a box R of comparable volume. Thus E C R
and |R| < S(E) as promised.
Using this conclusion, if (16) is assumed to hold, then, for any bounded Borel set E,

n(E) = n(R) S IRI” = [S(E)°.

If E is unbounded, we may write E as the union of an increasing family E; of bounded Borel sets and
then observe that
w(E) = limsup 11(E;) < lim sup[S(E1° < [S(E)I°.
j—00 j—00
Likewise it must clearly be the case that A%, S A9 since |R| ~ S(R) and since A involves an infimum
over a smaller class. However, for any bounded Borel sets E; such that 3 ; ¢; xg; > xg for positive ¢;’s,
it is also true that ) ; ¢; xg; > X for the distinguished rectangles R; containing each E;. Moreover,

Y GIRIT D GISENT,
j

J
which implies that A ~ A%,. The proposition now follows from Lemma 6. U

3. Proof of Theorem 1

The most difficult case of Theorem 1 to establish is the case o = n/q. After the cases o < n/q and
o > n/q are settled (the former using Lemma 6 and the latter using what amounts to a scaling argument),
the proof of Theorem 1 is reduced to a new theorem, Theorem 7, formulated in Section 3.3, and ultimately
to the forthcoming Lemma 8 (also given in Section 3.3).

3.1. The case 0 <n/q. The proof of Theorem 1 in the case o < n/q is an almost immediate consequence
of Lemma 6. First, supposing that there is a Borel measure u satisfying (4) nontrivially with s = 1/0, we
have A%, (€2) > 0 by virtue of (27) applied to the set €2 directly.

On the other hand, if A% (2) > 0, then because 2 is an open subset of R", it may be written as a
countable increasing union of compact sets. By the monotone convergence theorem, at least one of these
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compact subsets K must have Ag (K) > 0 as well. By Lemma 6, K must admit a measure u satisfying
(4) nontrivially on K; extending u to be zero on the complement of K gives a measure © on 2 which
satisfies (4) nontrivially as well. In fact, it is worth noting that this argument works for any value of o.
Consequently for any s > 0, S admits a Borel measure satisfying (4) nontrivially if and only if A (11)/ () >0.
The reason for the restriction o < n/q, as will be seen momentarily, is simply that A3, (2) =0if o > n/q.

3.2. The case 0 > n/q: comparison to Lebesgue measure. The goal of this section is to establish that
Hg must vanish when o > n/q and to further show when o =n/q that Hg, must be absolutely continuous
with respect to Lebesgue measure with an upper bound on the corresponding Radon—Nikodym derivative.
Fix standard coordinates on 2 C R"™ Let 0 denote the n-tuple of partial derivatives (91, ..., d,) in the
coordinate directions. Furthermore, for any 7' € GL(n, R), 7*d will denote the n-tuple

n

n
T := (Z T1dj, ..., ZTj,,aj>.
j=1

j=1

For any multiindex o = («y, .. ., &), we let (T*0)“ be the differential operator
n o n oy
(Zma) - (Xma)
j=1 j=1
and for a function like ®, which we regard as depending on x1, ..., xt, each being a point in R" generally

and 2 specifically, the notation (7*9)7 will be used to indicate the operator arising when (T%9)* is
applied in the variables x; and every other x;- for i’ # i is held constant.
Assuming that ® : Q¥ — R™ is any smooth function which vanishes to order at least ¢ at every point

(x,...,x) € QF for every x € Q, the main inequality to be proved in this section is that for almost every
x €
e’ i T (TP ) 9
dx ™ TeGL(n,R) |aj|+-+|ax|=¢ |det T'| '

The implicit constant in (29) will depend only on &, n, and g.
To begin this calculation, fix § € (0, c0) and T € GL(n, R), and suppose that uy, ..., u; € [—1, 1]"
and that K > 1 is a positive integer. It must be the case by Taylor’s theorem that

O’ + K '8Tuy, ..., x'+ K '8Tuy)
TN - (T*HFD(x/, ..., x
= K184 Z ( )1 il“‘).kak’(x X)I,[(fl ...I,{Zk-"-O(K_q_lSq"rl) (30)
loer |4+ +lok |=q ' '

for any x’ belonging to any fixed compact subset of @ C R". Since ® is smooth, the error term
O(K~471§9%1) is uniform as x ranges over any compact set and as u, ..., u; vary inside the box
B :=[—1, 1]". In particular, if x is any given point in  and x" € x + 8T B, then by a second application
of Taylor’s theorem to the main term on the right-hand side of (30), it follows that

sup | O+ K '8Tuy, ..., x' + K~ '8Tuy)|
Uui,...,ur€B

SKT981  max  [(T*){'---(T*) @ (x,..., )|+ 0K 48ty + o(k~17 184y (31)
ot |++Flox|=q
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for small é and large K, with an implicit constant depending only on g, k, and n, in contrast with the error
terms, which may also depend on x, T, etc. From this inequality, it follows that if C :={C1, ..., Ck»}
is the covering of x 4+ 37 B by the collection of K" boxes induced by subdividing B into K equal parts
along each axis, then

DO osup @Gyl SKTU8  max (TR (TRHF D, L x)|
i=1 Y1 Yk€C loey [+ +ok |=g

+ O(Kn—qo(sa(q-i-l)) + O(Kn—(q+1)05(q+l)a).
As K — oo, the diameters of all sets in the covering C go to zero, so taking this limit implies that

(x+38TB)=0 wheno > g (32)

and that

MY (x+8TB) 8" max  [(TH0)% - (T* )X D(x, ..., x)["/9 4+ 0(8"4+V/1),
ey |4+-+lex|=q

where just as on previous lines, the implicit constant depends only on ¢, k, and n. When o > n/q, the
equality (32) forces Hg (£2) = 0 since €2 is contained in a countable union of boxes x + 8T B with centers
x € Q. By (27), this forces A (£2) = 0 as well and rules out the existence of any nontrivial Borel measure
satisfying a nonconcentration inequality when s = 1/0.

It now suffices to assume o = n/q. For any x in a compact subset of €2 and any sufficiently small §, it
has been established that

(T*9)§" - (T* ) D, ..., )"/

ML (x+8TB) S |x+8TB|  max +0(@8"ath/ay (33)
oy |+ +-lok |=¢ |det T'|

with implicit constant depending only on ¢, k, and n. To reiterate: the restriction of x to a compact set
influences the a priori size of the error term but not the implicit constant of (33). Because the maximum
over oy, ..., o is a locally bounded function of x and because 8"t/ /|x +8TB| — 0as 8§ — 07, it
follows that for all sufficiently small § and all x in any compact set, there is a constant C (depending on
the compact set and the transformation 7 as well as on ¢, k, and n) such that

9 (x +8TB) < Clx +8TB|.

This inequality forces ’H'Zb/ 7 to be locally absolutely continuous with respect to Lebesgue measure since
any set of Lebesgue measure zero can be covered by a countable union of boxes of this form whose
measures sum to any prescribed small value. Now because 7—[';,/ 7 is known to be absolutely continuous
with respect to Lebesgue measure, the Radon—Nikodym derivative can be estimated pointwise almost
everywhere by dividing both sides of (33) by |x + 8T B| and letting § — 0. The result is that, for almost
every x € €,

drH”/q T%9 o * 0\ % el n/q
© < max |(T*0)y" -~ - (T70); P(x x)| '
dx g |4+ ok | =g |det T|
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Because the inequality is true uniformly in 7, one can take an infimum of the right-hand side over a
countable dense subset of GL(n, R) to conclude that

dHY1 T*) .. (T*)%* D(x, ..., x)|"
@ < inf max I )i ( i P 2l , (34)
dx TeGL(1,R) |oy |[+-+|ox|=¢ |det T'|

with some implicit constant depending only on ¢, k, and n. This is exactly the asserted inequality (29).

It is worth observing that by homogeneity and scaling (and permuting the order of the standard
coordinates), it suffices to take the infimum in 7' over the group SL(n, R) rather than GL(n, R). It should
also be mentioned that since the coordinate system used to derive (29) was essentially arbitrary, one could
strengthen (29) a priori even further by taking an infimum on the right-hand side over all coordinate
systems. However, this apparent strengthening of (29) is not an actual improvement in this case: since all
lower-order derivatives vanish, it turns out that replacing the standard coordinate partial derivatives with
partial derivatives in new coordinates leaves the value of the right-hand side of (29) unchanged. This
coordinate independence will be a key point in the final stages of the proof of Theorem 1.

3.3. Multisystems and Theorem 1 with 0 =n/q. The inequalities (27) and (29) just proved establish
that for a given ® any measure u satisfying (4) with s = g /n must be absolutely continuous with respect
to Lebesgue measure and must have a Radon—-Nikodym derivative controlled (up to an implicit constant)
by ||S ||q_/"n/ ? times the expression on the right-hand side of (29). The purpose of this section is to introduce
some additional ideas which will be used to show that the upper bound given by (29) can be used to
define a measure which also satisfies (4). To prove this fact, it turns out to be necessary to work with a
slightly more elaborate expression and then to show that this new, more complicated expression happens
to be comparable to the right-hand side of (29).

The added complexity is to replace the standard coordinate derivatives 0“ by a broader family of
differential operators which includes coordinate partial derivatives in all smooth coordinates as well as
some slightly more general operators. The new object under consideration will be called a multisystem. A
multisystem d on an open set U is a collection of smooth vector fields Y;”, i=1,...,N, j=1,...,n,
where for each fixed i, {Yj(’)} j=1,...,n commute and are linearly independent at every point in U. The
integer N will be called the size of 3, and the class of all multisystems of size N will be denoted by M),
For any finite sequence of the form « : {1, ...,a} — {1, ..., n} with a < N and any n-tuple of vectors
X1, ..., X, at the point p, let

(X-9)* := Z(SZ) e Zéll)’

where Z éi) is the unique constant-coefficient linear combination of Y © ., Y,fi) which equals X, at the
point p. Such « will be called ordered multiindices in n variables and |«| will be used to denote the order
of differentiation of (X - )%, which equals the cardinality of the domain of «. As in the previous section,
T € GL(n, R) will also act on these differential operators by defining

(T*X); = Z T;i X;
j=1
and taking (T*X - 9)* := ((T*X) - 3)“.
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Since the remainder of this paper deals with measures on R" which are absolutely continuous with
respect to Lebesgue measure, it will be convenient to switch back and forth between analytic and
geometric descriptions of these measures. In particular, every measure p will be identified with a density
w(Xt, ..., X,) which acts on n-tuples of vectors at the point x (for pu-a.e. x € 2) by means of the
correspondence

du
I'L(Xl,,Xn):‘_‘|det(leu,Xn)|7 (35)
dx
where the determinant is of the n x n matrix whose columns are the coefficients of the vectors X; in

the standard basis. With all notation in place, it is now possible to state the main existence result for
nonconcentration inequalities:

Theorem 7. For any s > 0, let 1 be the density on Q2 which at the point x is given by
(T*X-0){" - (T*X - P(x,...,x)|1/*

Xi1,...,X,):= inf max . 36
(X 2 3EM®M ||| <N |det T'| (36)
TeGL(n,R)

For any Borel set E C €2,
S(E) Z [W(E)T, (37

with implicit constant depending only on (n, k, s, deg ®, N).

It is implicit in the statement of Theorem 7 that the expression (36) is a density in the sense of (35).
To see that this is the case, it suffices to observe first that (36) is zero when X1, ..., X, are linearly
dependent. This follows because for each § > 0, there must be a matrix 75 € GL(n, R) such that
(TyX); = X; for each j but det Ty = 8~ 1. Testing (36) on this family T and sending § — 0" shows that

the right-hand side of (36) must be zero. The next step is that when X, ..., X, are linearly independent,
there must be a matrix Mx sending the standard basis ey, ..., e, to Xy, ..., X,, which implies that
det My = det(X1, ..., X,;). Then because GL(n, R) is a group, one may replace T everywhere on the

right-hand side of (36) by (My')*T, which gives
(T*X-0)]" - - (T*X - D (x,...,x)|1/*

inf max
deM®™  ol,....lax|<N |det T|
TeGL(n,R)
= inf max [(T*e- Y - (Te- ) P(x, ..., )" |det(X X))l
AeMM  aq],..., ok | <N |detT| Iy -+ Apn
TeGL(n,R)
as desired.

The main lemma, Lemma 8, necessary to prove Theorem 7 and complete the proof of Theorem 1 is
stated below and proved in Section 4. It establishes the existence of a special multisystem 9 and some
associated vector fields Y1, ..., Y, for which it is possible to prove a kind of Bernstein or reverse Sobolev
inequality on arbitrary Borel sets. Versions of such inequalities for intervals and boxes appear, for example,
in [Phong and Stein 1998, (2.1)] and [Greenblatt 2007, (3.21)], respectively. The adaptation of such
results to arbitrary Borel sets requires substantial new ideas, even in comparison to the one-dimensional
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version of this result appearing in [Gressman 2009]. Lemma 8’s usefulness follows from the fact that,
like Lemma 5, the set E’ defined in the lemma and the implicit constants are independent of the choice of
f within the vector space.

Assuming for the moment that Theorem 7 has been established, it is possible to quickly finish the
proof of Theorem 1 in the remaining special case o = n/q. The second inequality of (7), i.e.,

A9 CEN™ 2 118 gl (E)]E™,

is simply a restatement of the corresponding basic inequality from (27) when o = n/q. To complete the
proof of Theorem 1, it suffices to show when s = g /n that the density (36) from Theorem 7 is comparable
to or greater than the density on the right-hand side of (34) which dominates d?—[g/ ?/dx. Once this is
known, if  is the measure promised by Theorem 7 when s = g/n and N = ¢,

[H/ ()" < [w(E)]9" < S(E)

for any Borel set E, with uniform implicit constants depending only on the parameters (g, k, n, deg ®),
because n dominates ’Hg/ 7 by comparison of densities and p satisfies (4) by Theorem 7. Combining with
the basic inequalities (27) gives

W(E) ~ 1! (E) ~ Hy/* (E)

for all Borel sets E, with implicit constants depending only on (g, k, n, deg ®). To reiterate, u is
dominated by 7—[2,/ by virtue of the basic inequalities (27), so the densities from (36) and (34) must in
fact be comparable, and thus the upper bound (34) improves to become

dryl o dHy (T*0)]" -+ (T*)F P (x, ..., x)|"4

~ inf max , 38
dx dx TeGL(1,R) |ai|++larl=¢ |det T'| (38)

with implicit constants depending only on (k, n, g, deg ®).

Thus, assuming Theorem 7, it suffices to compare the densities from (29) and (36), and show that the
latter dominates the former up to a uniform constant. In so doing, it further suffices to fix X, ..., X, to
be the standard coordinate vectors on 2 C R". Now because @ vanishes to order ¢ on A, it must be the
case that

(T*X - 8)‘;“ - (T*X - 3)Z‘kd>(x, ce X)) = (T*E))‘i{1 (T*a)z"fb(x, ey X)

whenever |a1| + - - - + |ox| = ¢ since the two differential operators have equal highest-order parts and
the lower-order terms are all differential operators of order ¢ — 1 and lower (note that for any ordered
multiindex «;, the operator 81‘?‘ agrees with a standard unordered multiindex because the coordinate vector
fields commute.) Therefore the inequality

inf max |(T*8)71 (T*a)chD(x’ ”"x)|n/q
TeGL(n,R) |aj|++|ak|=¢q |detT|

< inf max |(T*X'a)7l"'(T*X'a)gkfb(x,,,,’x)|"/q

MM gl laxl<g |det T'|
T eGL(n,R)

must hold. Thus the final portions of Theorem 1 will follow once the proof of Theorem 7 is complete.
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Theorem 7 is itself a rather direct consequence of the following lemma:

Lemma 8. Suppose that i is a nonnegative Borel measure on Q2 C R" which is absolutely continuous
with respect to Lebesgue measure with locally integrable Radon—Nikodym derivative. Letd > 1 and N > 1
be fixed positive integers. Given any bounded Borel set E C 2 of finite, nonzero [i-measure, there exists
an open set U, a multisystem 9 of size N on U, vector fields Y1, ..., Y, on U, and a Borel set E' CUNE
such that

(1) u(E") Z n(E),
(2) u(Yy, ..., Y, 2 u(E) at every point of E', and
(3) for every polynomial map f : Q — R™ of degree at most d and every ordered multiindex o with
la] < N,
sup [(Y - 9)* f(x)] Ssup | f(x)]. (39)

x€eE’ xekE

The implicit constants depend only on (n,d, N).

Proof of Theorem 7 assuming Lemma §.. At this point, the proof of Theorem 7 is almost the same as the
proof of Theorem 2. Let E be a bounded Borel measurable set with positive « measure. Fix an integer

N > 0 and let the multisystem d, vector fields Yy, ..., Y,, and sets E’ and U be as in Lemma 8. Let y be
any point in E’. If «y, ..., oy are ordered multiindices such that |o;| < N foralli =1, ..., k, then
sup [ P(xq, .., X0 2 sup (Y- 3) @ (xy,.. ., X1, Y)]
(xl ..... xk)eE" (X],...,xk_|)€Ek71

22 (Y Ry, )

Taking a maximum over «q, ..., o and comparing to the definition (36) of the density w (fixing 7T to be
the identity), it follows that
sup [ P(xr, . x)] 2 Y Y 1 2 TR(E)].
(X1,...,x¢)€EX
This is exactly the desired inequality (37). If w(E) =0, the inequality (37) is trivial, so the only remaining
case is when E is an unbounded Borel set. In this case, E = Ui,lozl Ey, where Ey = EN{x € Q| |x| < M}.
Then by monotone convergence,

S(E) z sup S(Ey) Z supl(En)) = [(E)J
M M

as desired. O

3.4. Remarks on calculation. Before proceeding with the proof of Lemma 8, it is perhaps worthwhile to
make some elementary remarks regarding the infimum appearing in (34) or (36) since from a practical
perspective it represents the most difficult part of any actual calculation of the density. If « is any ordered
multiindex of order d, then by multilinearity it follows for any invertible square matrices 7 and O that

(TO™)*'X-9)*= )" 0z, - 05" (T*X-3)F.
|Bl=d
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If, for example, O is an orthogonal matrix, it must then be the case that

max  |(TO™H)*X-3)% - (TOTH)X-)d(x,...,x)

loei ... lax | =N

<™ max [(T*X-0){" - (T*X - 3)* ®(x,...,x)| (40)
by simply using the fact that |0ﬁcl| < 1 and making the conservative estimate that the number of terms in
the expanded multilinear sum is never greater than n™*. This simple calculation shows that the infimum
over T € GL(n, R) in (36) is always comparable (up to a factor depending only on n, k, N, and s) to the
infimum over all matrices in some fixed subset G C GL(n, R) provided that every matrix 7 € GL(n, R)
has a factorization T = G O, where G € G and O is orthogonal.

The propositions below demonstrate two slightly different applications of this same idea. The first
example is based on the singular value decomposition. Using this simplification, it is possible to
characterize the positivity of the density (38) pointwise in terms of a height-type criterion for certain
Newton-like polytopes. Algebraically, the proposition is closely related to the Hilbert—-Mumford criterion,
which was first proved in the real-valued case proved in [Birkes 1971].

Proposition 9. For any x € 2, if ® vanishes to order q at (x, ..., x), then
T*)Y - (T*N D (x, ..., x)|"4
inf |(T*9))" - (T79)," D( )] -0
TeGLn,R) loi|+-+lokl=q |det T'|
if and only if for every orthogonal matrix O, the point (q/n, ..., q/n) € [0, 00)" belongs to the convex
hull in [0, 00)" of the set
k
{oel todar [ (0% (0 NFD(x, ..., x) #0, Y o] :q}. (41)
j=1

Proof. By the SVD, every T € GL(n, R) factors as T = 01D O,, where O1, O, € O(n,R) and D is
a nonnegative diagonal matrix. If the diagonal entries of D are denoted by (71, ..., t,), the expansion
analogous to (40) gives that

[ [(T*0){" - - (T*0);* D (x, ..., x)|"/
n? inf max
TeGL(,R) |oy|+-+|ax|=¢ |det T|
k
> inf max DL (0F)M L (0F) D (x, ..., X)), (42)

01€0(n,R) |ai|+-+lakl=q

1€(0,00)"
where 1:= (1, ..., 1) € Z" It is also trivially true that the inequality (42) is reversed when the factor of
n?* is omitted. Thus it suffices to find necessary and sufficient conditions for the quantity on the right-hand
side of (42) to be nonzero. For convenience, let a denote any k-tuple of multiindices («y, ..., ax) with

la1| + - -+ |ak| = g, and define Za :=a; + - - - + oy and

Ca:= (O] - (OFDFD(x, ..., )"
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If (g/n)1 belongs to the convex hull of the set (41) for every O, then for every O it must be possible to
finday, ... » AN and 6y, ... ,91\/0 € [0, 1] such that 6; + - - '+9N0 =1,

No q
0:3q; = ~
Z j &4 nl’

j=1

and C,; >0 for j =1, ..., No. Because a maximum of terms always dominates any convex combination,
it follows that

No No
inf max s HO/O%C, > inf [ 00%ac, )% = []Ca)”. (43)
te(0,00)" a re(0,1)n 4 . / e /
J= J=

The quantities C, are continuous functions of O and nonzero at the particular O in question, so each C,;
is strictly positive on a neighborhood of O and consequently the infimum (43) must be bounded below by
a positive quantity on a neighborhood of O € O (n, R). By the compactness of the orthogonal group, the
infimum (42) must be strictly positive.

If, on the other hand, there is some O € O (n, R) such that (¢ /n)1 does not belong to the convex hull of
(41), then the separating hyperplane theorem guarantees the existence of £ € R" such that £- Xa > (¢ /n)¢-1
for all @ with C, # 0. Taking t = (e~*%, ..., e7*'") gives

(~H0/@Ta _ ~Gn/9t(Za—@/mD _

as s — oo for all a. Consequently the infimum (42) must be zero. O

For the second example, recall the determinantal Hausdorff measure from Section 1.3. In that section,
it was claimed that
EIS sup |det(A; — Ap)["
A1,AreE
for any Borel set E C R"*". By virtue of Theorem 1, to prove this inequality, it suffices to show that
the density (38) is uniformly bounded below. This calculation is relatively straightforward for triangular
matrices T and is recorded in the following proposition:

Proposition 10. Let
®(Ar, Ay) =det(A; — Ay),

where Ay and A, denote matrices in R"*". Then the Radon—Nikodym derivative d\3,/dx is uniformly
bounded below by a constant depending only on n.

Proof. Before beginning, note that the correct ®-Hausdorff dimension for this problem is n because n? is
the dimension of the parameter space R"*" and ¢ = n is the order of vanishing of ® on the diagonal.
Order the entries (i, j) of n x n matrices lexicographically and let 9;; correspond to differentiation
in the direction of the (7, j)-entry. For any T € GL(n x n, R), one may write T = LQ for a lower
triangular matrix L and an orthogonal matrix Q (this is just the so-called Q R decomposition applied
to T*). Consequently, in taking the infimum (38), up to a uniform constant, it suffices to assume that T
is lower triangular; in this case the directional derivatives Y;; := (7*0);; are spanned by 9,/ ;- for those

entries (i’, j') which are lexicographically greater than or equal to (i, j).
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Because the determinant is a linear function of each column and each row of a matrix,
diyjy -+ - 9j,j, det(-) =0

if either the indices i1, ..., i, or the indices ji,..., j, are not distinct. When both the i’s and the
Jj’s are distinct, the value of the derivative is =1 depending on the relative orderings of the indices.
By the definition of the directional derivatives Y;;, the differential operator Yiy, - - - Yy, can always be
written as a linear combination of derivatives 9;, j, - - - 9;, j,» where (i1, j1) > (1, £1), ..., (in, ju) = (n, £y)
lexicographically. However, among all such possible choices of the entries (i1, ji), ..., (in, jn), there is
only one possibility where the i’s and j's are distinct: (i, j;) = (1, £1), ..., (in, ju) = (n, £,). This is
becausei; >1, ..., i, >n, so by the pigeonhole principle, the i’s can only be distinct wheni; =1, ...i, =n.
This forces j; > ¢y, ..., j, > {£,, whichimplies j; =¢4, ..., j, =¥, for the same reason because £, ..., £,
are already distinct. Therefore
Yig, -+ Yug, det(-) = £cie, -+ Cne,, s

where c;; is the coefficient of 9;; in the expansion of Y;;. It follows that

1/(n) n
[]0 - Y, det()1] =TT le!""
oceq, i,j=1

since each entry (i, j) appears in a 1/n fraction of all permutations o. Because T is lower triangular, the
product of all |c;;| is just the absolute value of the determinant. Therefore

max |(T*9)Y® (A, A)| > |det T|"/"

la|=n
for any lower triangular matrix 7. Raising both sides to the power n gives exactly the desired lower bound
for the density (38). O

As a final remark on calculation, note that the simplifications used above apply equally well to
Theorem 7. Using the QR decomposition as above, for example, it is possible to show that the function &
on R? x R? given by

D ((x1, y1)s (¥2, ¥2)) = (x1 = x2)” + (1 = y2)°
satisfies the nonconcentration inequality

S(E) 2 |E|*P,

which is an interesting result because this @ is degenerate when o =n/q =2/2. The necessary calculation
is relatively simple when one assumes without loss of generality that one of the two vectors in the pair
T*X points in the y-direction.

4. Proof of Lemma 8

4.1. Construction of the multisystem.

Proof of Lemma 8. The proof begins by establishing that it suffices to assume that the functions f are
scalar-valued, i.e., that m = 1. When m > 1, recall that in defining (1) and (2), we use a fixed but arbitrary
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norm |- | on R™. As previously noted in (23), there must exist a symmetric, compact, convex set K* C R™
such that

lv] = sup [€- V]
leK*

for all v € R™. Taking f := (fi, ..., fn) to be a polynomial map of degree d and assuming the lemma
for the case m = 1 gives

sup [(Y - 3) f(x)] = sup sup |(Y -9)“(£- f)(x)]

xeE’ xeE' LeK*
< sup sup [(€- f)(x)] = sup | f(x)],
leK* xeE xeE

where implicit constant can taken to be independent of m and of the choice of norm |- | on R™.

Let Fy be the vector space of polynomials f of degree at most d and let D := dim Fy. Because E
is bounded, all polynomials of degree d are bounded on E, and because E has nonzero p measure, no
nontrivial polynomial can vanish identically on E. Thus f > sup,.g | f(x)| is a norm on Fo, and as in
the proof of Lemma 5, one may fix det to be any nonzero alternating D-linear form on Fy. Using this det

just as was done earlier, it is possible to find fi, ..., fp € Fo such that sup, . | fj(x)| <1 and
N
£=Y ¢f (44)
j=1
for any f € F¢ with constants ¢; satisfying |c;| < sup,.g | f(x)| foreach j =1, ..., D. For any n-tuple

(J1» J2s -+ jn) of indices in {1, ..., D} such that j; < j» <--- < j,, let U,
x € 2 such that

j, be the open set of points

.....

ldfj, A Adf 1| > 3|dfiy Ao Adf, L] foralliy, ... iy e{l,..., D},

where df|, denotes the exterior derivative of f at the point x. The union of all Uj,
Jj1 < --- < j, must be all of Q because at every point x there must be some j; < --- < j, for which

j, over all possible

.....

dfj, N--- Ndfj, |x 1s nonzero. Since these open sets cover €2, they cover E as well, and there must
W) =D"u(E). OnU :=Uj, . .,

.....

consequently be a single choice of j; < --- < j, such that u(ENUj,

.....

define vector fields Y1, ..., Y, by means of the formula

_dfjl/\---/\df/\---/\dfjn

Y; f: ,
if dfiy, A+ Adf;,

(45)

where df in the numerator appears in position i of the wedge product and replaces dfj,. This means
that ¥; f;, vanishes if i # i’ and is identically 1 on Uj,
locally coordinate vector fields and commute with one another. Moreover, by (44) and the definition of

jn» if i =1i’, which further means that the Y; are

.....

Uj,....j,» it must be the case that

D
Y f1 < 1Yl sup /()| < 2D sup |/ (x)|

=1 xekE
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at every point of U}, . ;. . Furthermore

dp
|M(Y1,..-,Y)|_ldﬂ=/ lw(Yn, ..., Y™ ldfj, A---Adfj,
/EmU " ENU " df, A Adfy,] ! !

1
- df; oo ANdF
'/EHU |(df]| AN /\df]n)(Yla AR | Yn)l | f]l é A f]nl

=/ dfiy Ao A,
ENU

and by the change of variables formula, the last integral will be bounded above by the maximum number

of nondegenerate solutions (i.e., solutions where the Jacobian determinant of the system is nonzero) of
the system of equations

fix)y=ai, ..., f[fi,(x)=ay (46)

in ENU foray,...,a, €[—1, 1] since | fj,(x)| <1 on E. Letting S denote a uniform upper bound for
this number of solutions, it follows from Chebyshev’s inequality that there is a measurable set £’ C ENU
with w(E") = 1 D™"u(E) such that

p(Yi, ..., Yy) = DTS W(E).

This completes the proof of Lemma 8 in the case N = 1.

By induction, assume the lemma has been established up to some level N — 1. For convenience, let the
sets E/ and U at stage N — 1 be denoted by Ex_1 and Uy _1, respectively. Suppose also that the lemma
has been proved for some class of functions Fx_; which includes all polynomials of degree d. Stage N
follows by applying the already-established base case of the lemma to the space of functions Fy on Uy_1,
which is defined to be the span of Fy_; and Y; Fy_1, i = 1, ..., n. Postponing for the moment the
problem of counting solutions of systems of equations during this induction procedure, it must be the case
that, for any N, there is an open set Uy and some measurable Ey C E such that u(Ey NUy) = w(E)
for some implicit constant depending on (n, d, N) and there is a multisystem 9 of size N, formed by
extending the multisystem @ of size N — 1 to add new vector fields Yj(N) :=Y; defined by (45) on Uy as
above. For this extended multisystem, it must be the case that

Yy (D f < Cysup | f ()] @7)
N J1 YeE
for all ji, ..., jy and all f € Fy. Moreover, because each collection Y l(i), R Y,Ei) is locally given by

coordinate vector fields with local coordinate functions which themselves belong to the finite-dimensional
function space Fy_1, it follows that

n

i+1 i+1 j
Y](l ) — Z(Y](l )fZ)Y(l)v
=1

when f1, ..., f, are the functions used to construct the Ye(i). In particular, the coefficients |Yj(i+l) fe| are
bounded uniformly in j and ¢ (and uniformly in £ and w). By induction, this implies that the final vector
fields Y;N) are linear combinations of the Ye(l) for i < N with coefficients that are uniformly bounded.
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Because the vectors may be written as linear combinations of all previous Ye(l) with bounded linear

coefficients, it follows from (47) that

sup [(YNM) )Y f(x)| < sup | f ()],

xeEy xekE

)
Y;

with implicit constant independent of © and E whenever « is an ordered multiindex with || < N. Taking
the vector fields Y ](N) Yn(N)
E’' := Ey and U := Uy completes the proof with the exception of the unfinished business of counting

to be vector fields promised in the statement of the lemma together with

g e 0 ey

solutions of systems of equations. (]

4.2. Underlying geometry and solution counting. The problem of counting solutions is an independent
algebraic issue which has already been addressed elsewhere in the case of real-analytic functions [Gressman
2019], so the reader who is not interested in the precise nature of the implicit constants in Theorem 1 may
skip the rest of this section and consider Theorem 1 fully proved. For those who continue reading, there
are two main purposes to this section. The first is to establish that the systems of equations encountered in
the previous section have a bounded number of isolated solutions with an upper bound depending only on
the constants (n, d, N) as promised. The second major purpose of this section is to demonstrate that there
is an intrinsic geometric object which governs the possible number of solutions. This means that a finite
upper bound will continue to hold uniformly even when the functions f belong, for example, to some
o-minimal structure. This intrinsic geometric object is also closely related to certain geometric differential
operators which were constructed some time ago to study uniform coordinate-independent sublevel set
estimates [Gressman 2011b]. In a very precise way, the object described below allows one to extend those
earlier differential operators to a broader class which includes rational functions of the simpler objects.

Throughout this section, the open set 2 C R” and the polynomials of bounded degree on Q will
be regarded as simply an abstract smooth manifold M of dimension » and a finite-dimensional vector
space F of smooth functions on M. Given such a pair (M, F), a new pair (M’, F'), representing a
sort of abstract derivative of the original pair, is constructed as follows. Let M’ be the bundle A’ (M)
of nonvanishing n-forms over points of M; i.e., points of M’ are nonvanishing n-forms w,, where the
subscript x is used to indicate that w, acts as an alternating n-linear form on the tangent space at x € M.
Let F’ be the vector space of smooth functions on M’ spanned by the functions

flwx):=f(x),  feF,
dfin---ndfa)lx

Wy

and

fioooo, fueF.

The construction of (M’, F') allows one to extend the class of functions F to a broader class involving
derivatives of the functions in F without constructing vector fields or coordinate systems. The cost of the
construction is the change of the dimension of M from n to n+ 1, which roughly corresponds to including
a new indeterminate variable. If M is the one-dimensional interval (a, b), for example, then one can
show that M’ is diffeomorphic to (a, b) x Rxo and F' is spanned by the functions f(¢) for f € F and
functions of the form sf’(¢), where s # 0 is the new indeterminate. In higher dimensions, the situation is
somewhat more complex but still analogous.
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Iterating the construction of M’ and F' gives a sequence of manifolds M and function spaces F
on MY, i =0,...,N (with M := M and F© := F). The spaces M) have dimension n + i and
have fiber bundle projections p;

MO Py 6D PP 0O

For convenience, let 7 ) be the projection map pjo- - -o p; from M@ to M©. The space F @) is spanned
by functions of the forms

flwy) = (fop)(wy),  feFi™h

and
i dfi N ANdfpti-1)l
A"V farieD e, = R (48)
Wy
for fi,..., furi-1 € F (=1 For convenience, define F ® to be the vector space of functions on MD

which are of the form (48) only. One may also regard F =1 to be a subspace of 7 by composing with
the projection p;.

The manifolds M) completely capture the analysis and geometry of the vector fields Y j(i) and the
function spaces Fy constructed in Lemma 8. In a practical sense, this is because the problem of counting
solutions can be lifted from M to M), This idea is formalized by the following lemma.

Lemma 11. Suppose Fy consists of a finite-dimensional vector space of smooth functions on M. Let
Fi1, ..., Fn be the vector spaces of functions as constructed in the proof of Lemma 8; i.e., F; is the span
of Ficiyand Y; Fi_y, j =1,...,n, for vector fields Y; defined as in (45) for some f;, ..., fj, € Fi_1.
Then the number of nondegenerate solutions x € U of the system

fik)=ay, ..., fulx) =ay, (49)

where f1, ..., fn € Fn, ai, ..., a, € R, for a given open set U is equal to the number of nondegenerate
solutions p € (™)=Y (U) of a corresponding system

Fi(p)=bi,.... Fuyn(p) =bpyn. (50)
where Fi, ..., Fn+N € .7:(N), bl, ey bn+N e R

Although the manifold M™®) is somewhat more abstract than M itself, Lemma 11 is a significant
result for two reasons. The first is that it allows one to sidestep inherent difficulties of understanding
the vector fields ¥; when counting solutions. The second is that the functions in 7™ are never more
complex than derivatives of the functions in F and polynomials, as shown by the following proposition:

Proposition 12. Suppose that ¢ is a diffeomorphism from some open set U C R”" onto some open subset
of M. For each N, there is a diffeomorphism o™ from U x R];:s/o onto (r N~ (@(U)) such that for every
Flv ceey F}’l-‘rN—l EF(Nil)’

a(F17 R Fn-i—N—l)

d"™NNEL L Fav—Dlom =1 ---tydet ,
=Dl d(x. 11, iy-1)

61y
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where the determinant on the right-hand side is the Jacobian determinant of the functions
F] OQO(N), ey Fn+N—] OQD(N)
in the coordinates (x, 11, ...,ty_1) € U X [R{Zgl.

Proof. By induction on N, let ¢ be given by

dxy N---Ndx dt dty_
<p(N)(x,t1,...,tN):=¥/\—1/\---/\ V-l ,
IN I IN=1 loW=D(x1y,tne1)
where dxi, ..., dx, are differentials of the coordinate functions x1, ..., x, on ¢~} (U) induced by ¢. As

can be seen from the formula, these coordinates have the property that the canonical projection from
MM 1o MWD corresponds to dropping the variable y. It is easy to check in these coordinates that

a(Fl’ DRI Fn+N71)
o(x, 1, ... tn—1)

dFiAN---ANdFy1n_1 = [det :|dx1 A ANdxy ANdtp A -+ ANdity_y

o0(Fy, ..., Fan—
=t1---tN|:det (F1 ntN 1)]<p‘N)(x,t1,...,tN)
O(x, 11, ..., IN—1)
for any Fi, ..., Fyen—1 € FN=D_ Definition (48) immediately gives (51). O

An important corollary is that when the functions F are polynomials of bounded degree in a suitable
coordinate system (as will always be the case when applying the result to Lemma 8), the functions F®)
may also be regarded as polynomials of a suitably bounded degree in the appropriate coordinates as
well. Thus the number of nondegenerate solutions to the system (50) would immediately be bounded by
Bézout’s theorem, just as applied in the proof of Theorem 3.

The proof of Lemma 11 proceeds by showing that every function f € Fy (the function space analogous
to Lemma 8) must agree with a function in F™) (the function space on M®)) on a suitably constructed
n-dimensional submanifold of M®) which is defined implicitly via a system of equations in 7™, This
implies that the system of equations (49) involving the somewhat mysteriously constructed functions
fits -+ f;, can be naturally lifted to an system on M™) where the functions in the system belong
to F™). Because both Fy and FV) are vector spaces, the only part of this assertion which is somewhat
cumbersome to prove is that ratios of wedge products a la (45) appear as values of functions in F®)
restricted to suitable submanifolds. This is accomplished by a trivial induction on N combined with the
following proposition, which shows how to identify quantities like (45) via the identity (53) and also
demonstrates in (52) how to inductively identify the n-dimensional submanifold of M®) on which the
desired identities hold.

Proposition 13. Suppose F; € 7Y foreach j=1,..., N and let
MM = {pe MV | Fi(p)=-- = Fy(p)=1).
Then:

(1) The set MS;N) is a manifold and the projection 7 ™) is a diffeomorphism of any open subset of M%N)
and its image.
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Next suppose that hy, ..., h, and gy, ..., g, are smooth functions on some open subset O C M for
which there exist Hy, ..., H,,G1, ..., G, € FN) such that for each j =1, ..., n, H; restricts to hj on
M%N) NN ~=1(0) and likewise for G, and g;. In other words, h; or™) = H; on M%N) NENMY~1(0)
and g; or®™) = Gjon M%N) N(@MNY~=1(0) foreach j =1, ..., n. If one defines

Fyyi:=d""™(G\,.... Gy, Fi,..., Fy), (52)

the following must also be true:

(2) The image 1 N*tD(M %NH)) N O C M consists of exactly those points in 7 ™) (M EDN)) N O at which
dgiN---Ndgy, #0.
(3) There is a function in F (V+D which restricts to
dhyN---Ndh,
d IS WAREIAN d &n
at every point of O where the denominator is nonzero, namely

dhyA---Ndhy o g (VD

=d""™N(H,,...,H,, Fi,..., Fy) (53)
dgl /\"'/\dgn

on MV A (VD) =1(0),

Proof. From the formula (51) in the coordinates o) on M™ N (xM)~1L(U), it is clear that every
F ~(J)
j € F
functions of x. There are several important consequences of this simple observation. The first is that F;

is independent of #; when k > j. When k = j, it also follows that

must equal 71 ---¢; times a polynomial in (1, ..., #;_;) with coefficients that are smooth

oF; 1
— =—F;. (54)
alj l‘j

This means that the Jacobian matrix d(Fy, ..., Fy)/0(t1, ..., ty) always has full rank at every point

of M%N) since the Jacobian matrix is triangular and its diagonal entries are never zero (since F; =1 on
M%M for each j and by assumption #; # 0 for each j as well). By the implicit function theorem, this
guarantees that ./\/l%v) is always a manifold regardless of the choice of the particular F;’s. Moreover,
because of this triangular structure and the linearity of F; as a function of ¢;, it is easy to see that for a
given (x,t,...,4) € Mg), there is at most a unique value of ¢, such that (x, 7, ...,%41) € MgH),
and such a solution exists if and only if F;yi(x, ], ...,¢,t) is not an identically zero function of ¢.
As already noted, if such a value of #;;; exists, it is necessarily true that the Jacobian determinant
detd(Fy, ..., Fix1)/0(t1, ..., tix+1) must be nonvanishing at (x, tq, ..., t;+1). Therefore by the implicit
function theorem, the projection 7 ™) must be a diffeomorphism of any open subset of M%N) and its
image. This establishes the first conclusion of the proposition.

Because 7 is a diffeomorphism of any open subset of M) and its image, one may define
coordinates on M(Iﬁv) N (x™M)~1(U) using ¢ by lifting the coordinate function ¢ via (x¥))~!, i.e., by
mapping x € U N (p‘ln(N)(/\/l%N)) to (r™)~!(p(x)), where U is any suitable open subset of M on
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which a coordinate system ¢ is defined. Let X1, ..., X, denote the associated coordinate vector fields. It
follows that dm ™) (X;) = d/9x; for each i =1, ..., n. In the coordinates ¢™) on M), this means that

N
_ 0 e
Xi:= x; +Zlczj(xvt)atj
J=

foreachi =1, ..., n. Since each Fj is constant on Mgv), it must be the case that X; F; =0 on Mgv) for
each pair of indices i, j. Therefore by applying the usual row operations to the Jacobian determinant (51)
(taking the convention that distinct rows of the matrix correspond to partial derivatives with respect to
distinct coordinate variables), it must be the case that

G oF 0G
d""NGy,...,Gp Fi,...,FN) =1 -1 det — [|det —— [ =1t det — 55
(G 1 N) =1 N+1[ e 8XM e 3. JN)] N+1|: e 8X] (55)

on M;{V) (using the triangular structure of 0 F'/9dt and (54)). If it is also known that G; restricts to g; on
MY A @®)=1(0), then X;G; = X;(gj o ™) = (dr ™ (X;)g;) om™ = (3g;/3x1) o™, 50

0
d""™N(Gy,...,Gpn, Fi,..., FN) =tN11 |:deta—g:| (56)
X
in the coordinates (x, ¢ tn+1) wh ) (N)y—1
s, ..o tvgr) When (x, 1y, ... ty) € M N (@) 7 H(U).
Assuming that Fy is defined so that (52) holds, it follows that for any given (x, t,...,ty) €
M%N) N (™= (), the equation Fyyi(x,t1,...,ty+1) = 1 will have a solution 7y if and only if

det(dg/dx) # 0 at the point x € U, which will occur exactly when dg; A --- Adg, # 0. Because every
point of O is contained in an open set U on which a coordinate system is defined, this forces the second
conclusion of the proposition to be true, namely, that 7 ¥+ (M ;{VH)) N O will be exactly the subset of
aM MMM 0 at which dgy A - Adg, #0.

As for the third conclusion of the proposition, assuming that x € U is a point at whichdg, A- - -Adg, #0

and that (x, #;,...,ty) € M;N),
oh det(dh/0 dhyN---Ndh
d""™N(H,,...,H,, F\,...,Fy) =ty |det— [ = etdh/9x) _ dhi -
ox det(dg/dx) dgiAN---Ndg,
assuming 1 =ty det(dg/dx), which must be the case when (x, t1,...,tn41) € M}NH). Because U
was arbitrary, the formula holds on all of O as well. O

The proof of Lemma 11 follows quickly from Proposition 13. By induction on N, once it is known
that there are suitable F; € F ® fori =1, ..., N such that every function g € Fy of the form

(N) (1)
n v

for f € F has a corresponding function G in F™) which restricts to g on ./\/lgv), the third conclusion of

the proposition establishes that the same property must hold at stage N + 1 as well. This is because the
functions fj , ..., fj, in the denominator of (45) defining the new vector fields Yl.(NH) belong to the span
of Fy and Y l.(N)]-" ~, which means by induction that each such function is the restriction to M%N) of a
function in F ™), These extended functions define F, . via (52). The key point is that the vector fields
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Y 1(N+1), e, Y,SNH) all have the same denominator, so the same choice of Fy . defining M%NH) works

VD Via the identity (53).
A consequence of this observation is that when Hy, ..., H, € F (N) restrict to hy, ..., h, on some

simultaneously for the application of any one of the vector fields Y;

open subset of M%N) N (x™M)~1(0), every solution of the system of equations
hix)=a;, i=1,...,n,
for x € O will correspond to a solution of the augmented system
Hi(x,ty,....,ty)=a;, i=1,...,n, and Fix,ty,...,ty)=1, j=1,...,N,

in MM N (M)~1(0) (in the sense that (x™)~! will map solutions in O injectively to solutions in
MM A (@N)~1(0) of the augmented system) and that the mapping preserves nondegeneracy in the
sense that det(dh/0x) # 0 for a solution point in O if and only if

det@(Hy, ..., Hy, Fi, ..., FN)/3(x, 11, ..., ty)) #O0.

This latter observation follows immediately from the equality of (51) (when fixing (G, ..., Gy4n) :=
(Hy, ..., Hy, Fy,..., Fy))and (56). Thus Lemma 11 must be true. This completes the proof of Lemma 11
and consequently the proofs of Lemma 8 and Theorems 1 and 7 as well.

5. Proof of Theorem 3

Having completed the proofs of Theorems 1 and 2, we return now to the application of these results to
the study of L?-improving properties for Radon-like operators. In this section, we give a self-contained
proof of Theorem 3, and in Section 6, we consider several interesting applications of Theorem 3 which
relate to the examples from the Introduction.

Proof of Theorem 3. As defined in the Introduction, suppose that y (¢, x) is a polynomial map from
R" x RM into RM. Let r := N| — n, and suppose that N> = rk for some integer k. The basic structure of
this proof is to estimate the quantity

o= [ 1o zk>|Hxﬂy(rj,x))xg(zj,x)dn dn dx 7)

from below and above, where @, (7], ..., #) is defined to be the Jacobian determinant of the map
(x,t1,....t0) = (y(t1,x), ..., ¥ (t, x)). The main upper bound for Q(F) comes from the change of
variables formula and Bézout’s theorem: for any (uq, ..., ux) € (RV)YK since N1k = N, + nk, Bézout’s
theorem guarantees that the number of connected components in CV'* of the solution set of the system of
equations

(Y x), oy (e, X)) = (g, ooy ug) (58)

is at most the product of the degrees of the polynomials; see [Fulton 1984, Chapter 8, Section 4]. This
means that the number of real solutions of the system where the Jacobian is nonvanishing cannot exceed
this same upper bound, since the nonvanishing of the Jacobian at a real solution guarantees that such
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a solution will be isolated in complex space as well. Now by the change of variables formula, if the

number of solutions (x, f1, ..., #;) of the system (58) inside the domain of the integral Q(F’) is never
greater than N for any choice of (uq, ..., uy), then
k
oFy =N | LT xrepdur - du=NIFI' (59)
j=1

Without loss of generality, it may be assumed that Jacobian determinant is nonvanishing at every counted
solution of the system (since the integral on the set where |®, (71, ..., )| = 0 is necessarily zero); i.e.,
N need only bound the number of isolated solutions of (58) for a given right-hand side (uy, ..., ug),
which Bézout’s theorem guarantees is bounded by the product of degrees.

To estimate (57) from below, recall the definition (11) of the form w. The key fact to establish is that the

functional ®, is indeed the Jacobian determinant of the map (x, t1, ..., fx) — (Y (t1, x), ..., ¥y (t&x, X)),
i.e., that
o(y(ty, x), ..., vy, tH,Xx)AN- - Aow(ty,
ot 1) o det PP Y@ ) 01,0 A A0, ) )
o(x,t1, ..., 1) d)Cl/\'”/\d)CN2
To prove (60), first observe that the Jacobian matrix has block structure
"oy ay -
ox (t1,x) o (t1,x) 0 0
: 0 . . : 61
a_y . ‘. a_y )
9% (tk—1, X) : i (tk—1, X) 0
4 L 4
Er (t, x) 0 0 a7 (tk,x)_

where dy /0x is an Ny x Nj block of partial derivatives of y (with the coordinates of y corresponding to
rows and the partial derivatives in the coordinate directions of x corresponding to columns) and 9y /9t is
a corresponding N| x n block of partial derivatives. To simplify the determinant of the matrix (61), label
the coordinates of #; as (¢j1, ..., tj,). It will be necessary to use the identity

(andxy +---+ain,dxy, +bridtjy + - - - + bi,dtjy)
A« A(anpdxy +- - +an n,dxy, +byidtjy + - - + b pdty)

=w; Ndtjy A--- Ndtj, + Ej, (62)
where one defines
N ay, --- ai, by - by
wpi= Y det| ¢ .ttt |dx A Adx,
iy = anyi, *+ anyi, bng oo+ b
<--<iy
and observes of the remainder E; that it is spanned by all Ni-fold wedge products of dxi, ..., dxy,,
dtj1, ..., dt;, which omit dt;; for at least one index i € {1, ..., n}. The proof of the identity is essentially

immediate after observing that when computing the correct coefficient of dx;; A- - - Adx;, in wj, it suffices
to assume that a;; =0 fori #iy,...,i,.
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To use the identity (62), first express the determinant as the coefficient of dx; A--- Adxy, Adtp A
s Adtig A e ANdtgr A - - Adity, inan (N 4+ kn)-fold wedge product of one-forms with coefficients
drawn from the rows of the block-form matrix (61). The wedge of the forms in the j-th block of rows
is given by (62) when each coefficient a;;' is replaced the (i, i’)-entry of the matrix (3y /9x)(t;, x) and
each coefficient b;; is replaced the (i, i")-entry of the matrix (3y /d¢)(t;, x). In particular, this yields the
identity w; = w(t;, x). To compute the Jacobian determinant (60), it suffices to take the wedge of the
expressions (62) over j =1, ..., k and show that the remainders E; do not influence the coefficient of
dxy N---Ndxy, Ndtyy A== Adty A+ Adigp A - - - Adi,. Because the variables #; appear only in the
J-th block of rows, there is only one way for dt;; A --- Adtj,, to be a factor in the full wedge product:
it must appear explicitly in a corresponding term of (62). In other words, when taking the wedge over

all j, any wedge product including an E; will not contain all n factors dt;1, ..., dt;,. In the place of the
missing dt;;, every term of E; must necessarily contain more than r factors drawn from dxy, ..., dxy,.
Since every term of the wedge product (62) must contain at least r factors drawn from dxy, ..., dxp,, it

follows by the pigeonhole principle that in the full k-fold wedge product representing the determinant
(61), when expanded by multilinearity, any term including E; must be expressible as a sum of wedge
products with at least one duplicate dx;. Thus (60) must hold.

It is worth pausing briefly to make the observation that w must be decomposable. First note that the
form w as defined by (11) is independent of the chosen coordinate system on R"? because we can trivially
rewrite the definition (11) of w to be a sum over all r-tuples (iy, ..., i) € {1,..., N»}" at the cost of a
factor of (r!)~! (every term in which iy, ..., i, are not distinct must be zero) and then check directly
that a change of coordinates in R"? leaves (¢, x) unchanged. Likewise a change of coordinates in R”
changes w(f, x) by only nonzero scalar factors at each (¢, x). If r — y (¢, x) does not have injective
differential, then w(#, x) vanishes. Thus, when w is nonzero, the dimension of the quotient RN modulo
the image of the differential d,y (¢, x) always has dimension r = N; — n. The image of the differential
d,y(t, x) in this quotient space is therefore at most »-dimensional, meaning that whenever w (¢, x) is not
zero, it is always possible to choose a coordinate system near any given x for which dy /dx; belongs to
the span of the ¢ partial derivatives of y whenever i > r. Computing the form (11) in these coordinates
shows that @ must be a multiple of dx; A - - - Adx, and is therefore decomposable. Moreover, it follows
that w (¢, x) A w(t2, x) vanishes to at least order r when ¢ = t, and w(t;, x) #~ 0. This then implies that
®, (11, ..., ) vanishes to order at least r(k — 1) on the diagonal A at all points where w (¢, x) # 0.

Returning to (57), fix a Borel measurable set F C RV'. By (59),

k
/|<I>x(r1,...,rk>|[Hxﬂy(z,-,x))x;z(r,,x)} dxdt; ---dn S|FI,

j=1

where the implicit constant can be taken to equal the maximum number of isolated solutions (x, 1, ..., t)
of the system (y (t1, X), ...,y (tx, x)) = (uy, ..., ux) as uy, ..., u range over RV, Defining F, C R™
to equal

F, ={teR"|y@t,x)€eF, (I,X)GEZ}
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(which will be a Borel subset of R" since y is a continuous function of ¢), it follows by Fubini that

/[/ |, (t1, ..., 10)|dty - -dtk} dx <|FIk.
Fk

By the main hypothesis (14) of Theorem 3, it must be the case that

JELRR 5/[/ ENCRA P ---drk]dx <|Fl (63)
Ft
since for each x we have F, x {x} C Q. However, by the definition (9) of the Radon-like operator 7,
[Fel =T xr(x)

for each x. Inserting this equality into (63) and raising both sides to the power 1/(k 4 s) gives the
conclusion (13) of Theorem 3. Il

As a final remark concerning the proof, it should be noted that the constraint that r = N; — n divides
N3 is only used in proving the upper bound for (57) via the change of variables formula. As weighted
nonlinear Brascamp-Lieb inequalities (generalizing the results of Bennett, Carbery, Christ, and Tao
[Bennett et al. 2008; 2010]) ultimately become available, it may be possible to remove the divisibility
constraint at the cost of changing the definition of @, to correspond to the correct weight for that context.

6. Further applications to Radon-like operators

To close, it is illuminating to examine several examples of averaging operators (9) to which Theorem 3
applies and explicitly see how Theorem 1 applies, as was abstractly indicated by Example D in Section 1.3.
For convenience, it will be assumed that the map y (¢, x) has the form

y(t, x) = (1, Yo(t, x)),
where ¥ : R" x RV — R’ for some integer r (in which case N :=n +r) and N, = rk for some integer
k > 2. A short calculation gives that

3 3
o, ) =" Y det[a%(t,x)--- Ml?(t,x)]dxilA---Adxir
i1

. . i
1<ij<--<i,<rk r

because the determinants in the original definition (11) have block structure in the first n rows and last
n columns. If the coordinates of yy are labeled (yp)1, - .., (o), then this formula for w (¢, x) agrees with
the wedge product

(=D"dx(yo)1 A+ - Adx(Y0)r,

where d, is the exterior derivative in the x-variables only. From this observation, it follows that ® has the
particularly simple form

, 90 r Y0 !
O, (11, ..., 1) = (—=1)" det |:3_(t17x)i| [—(tk,X)] ,
X 0x

where dyy/0dx is the r x rk Jacobian matrix of yy.
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Example A (Hausdorff measure). Let C; be the real associative algebra® generated by elements 1, e1, ..., ep,
which are subject to the relations le; = ¢;1 = ¢; for all j, e;e; = —eje; when j #1i, and el.2 = 1. The
dimension of the algebra as a vector space over the reals is 2, and
4 2 ¢
(Soe) (5
Jj=l1 Jj=l1

for any real numbers ay, ..., a;. Consequently if My, ..., M, are the 2¢ x 2¢ matrices which express the
action of left multiplication in C; by ey, ..., e, respectively, in the standard basis, then

4 2 ¢ 2t
det[ZajM]} = (Zajz) .
j=1 j=1
If n < £ and one defines a mapping

L
L(t):= Y Tj(t)e;

j=1
for polynomial functions I'y, ..., I';, then the Radon-like operator
Tf(y,x) :=f f(t,y+T®x)xg(, y, x)dt, (64)
Rn

where x, y € Cy, has the corresponding functional ®
4
@, (11, 12) =T (02) =T (I,

where | - | denotes the Euclidean distance of points in C when expressed in coordinates with respect to the
standard basis. This @ vanishes to order 2¢ on the diagonal, so when o = n2~¢ and s = 2¢/n the optimal
measure of Theorem 1 is comparable to the n-dimensional Hausdorff measure on the image of I", assuming
that T'(¢) is locally injective. If € := Q x C¢ x C; for a set Q on which (det(dT'/31)7 (3T'/a1))1/2 > §1/2,
then (14) must apply and consequently

NT Xl ot sy S 8720 21/ Q1420) (65)

for all Borel sets ¥ C R" x C,. In particular, note that the image of I' need not have any curvature
whatsoever; in this case, the multiplicative structure of the Clifford algebra grants the operator (64) a sort
of rotational curvature regardless of the higher-order geometric properties of I'. If I simply parametrizes
a linear subspace, then (64) becomes a restricted n-plane transform; the estimate (65) can be taken to be
global in ¢ and consequently scaling and Knapp examples give that the integrability exponents appearing
in (65) are sharp.

Example B (determinantal measure). Generalizing the first example, suppose that I : R* — R">" s a
polynomial map. The Radon-like operator

Tf(y,x) = fR £ty 4+ DO x5 v, x) dt, (66)

SThe algebra Cy is an example of a Clifford algebra.



120 PHILIP T. GRESSMAN

where y, x € R" and ['(t)x denotes matrix-vector multiplication, has functional

Dy (11, 12) = det(['(r2) — I'(11)).

The order of vanishing ¢ of ® on the diagonal must be at least n’. The associated measure ’Hz)/ " from
Theorem 1 is comparable to the n/n’-dimensional determinantal Hausdorff measure from Section 1.3
restricted to the image of I' (assuming, for example, that I' is locally injective). The measure must
be absolutely continuous with respect to Lebesgue measure, so whenever it is nonzero, one can take
Q:=Q x R" x R", where  is any set on which the Radon-Nikodym derivative is at least comparable
to 8"/". Then (14) will hold and the conclusion (13) of Theorem 3 will hold with k =2 and s = n’/n.
An extreme case occurs when n = n’? and T is simply a linear isomorphism. Fixing dT to Lebesgue
measure on R” ¥ the isodiametric determinantal inequality on R" " proved in Proposition 10 implies
the global, scaling-invariant inequality

[\/[R”/ xR

for all Borel sets F C R" " x R".
A modification of this example also applies to the case of convolution with measures on quadratic

S |F|2n//(2n/+])

Q@n'+1)/n’ n'/(2n'+1)
dx dy]

/ xr(T,y+Tx)dT
R xn’

submanifolds of dimension n in R?". Specifically, fixing

n n
Q(a,b) = (Z Qjiaibj..... Y Q;’ja,-b,)
i,j=1 ij=1
under the assumption that ij = Q]‘fi for each i, j,£ =1, ..., n, the operator
T70.0 = [ fy= 0t =t =) (67)

has a corresponding functional & given by

D, (11, 1) =det(Q(-, 1 — 1)),

where Q( -, a) denotes the n x n matrix whose (i, j)-entry equals

n
Y Q.
=1

Since @ is a polynomial of degree exactly n, the density (38) is a constant function. In the framework of
geometric invariant theory, the infimum (38) is comparable to the infimum over the SL(n, R)-orbit of the
polynomial p(¢) :=det Q(-, t), where elements of SL(n, R) act by linear coordinate changes (see, for
example, [Richardson and Slodowy 1990] extending the Kempf—Ness minimum vector construction to the
context of real algebraic geometry). Thus the infimum is zero if and only if p belongs to the nullcone of
the representation. Because the nullcone is exactly the zero set of all SL(n, R)-invariant polynomials in
the coefficients (which is a finitely generated algebra), this reduces the problem of applying Theorem 3 to
(67) to a finite list of calculations once a set of generating SL(n, R)-invariant polynomials is known. This
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approach complements earlier work of the author [Gressman 2015] which formulates a slightly weaker
result in terms of the critical integrability exponent of the polynomial det Q( -, 7).

Example C (affine measure). For the Radon-like operator
Tfx',x):= | f@x+T@) x)xa, x' x)dt, (68)
Rn

where x’ € R, x € R, and I' : R” — R* is a polynomial map (and - is the dot product), the corresponding
functional ® equals

Py (11, ..o, 1) = det(T' (1) = F(txt1), -+ -, T(t) — T(trg1))

up to a factor of +1. The order of vanishing ¢ must be at least k but will generally be much larger. If
o =n/q and I is locally injective, then the sharp measure from Theorem 1 is comparable to Oberlin’s
affine measure on the image of I'; for general submanifolds, this measure will be comparable to affine
submanifold measure as recently constructed by the author elsewhere [Gressman 2019] (although the
comparability may fail in special cases, e.g., when I" includes no mixed monomials). Unlike the Clifford
algebra example, the nondegeneracy of affine submanifold measure on I' depends on higher-order
geometry of I" and not just its first derivatives. Once again, because this measure is necessarily absolutely
continuous with respect to Lebesgue measure, if the image of I' has nonzero affine Hausdorff measure,
then a suitable & can be defined to apply Theorem 3 to (68).
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