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1. Introduction
1.1. Background and statement of results

LP-improving estimates for Radon-like operators have been a fundamental object of
study in harmonic analysis for many decades and find applications in a number of inter-
esting problems in PDEs and elsewhere (see, e.g., [17]). Since the late 1990s, a favored
approach has been a combinatorial one, pioneered by Christ [7], who was inspired by
Bourgain [5,6], Wolff [26,27], and Schlag [21], as well as others. As this approach is com-
monly executed, it involves the construction of a so-called “inflation map” which iterates
the geometry of the operator in much the same way that a T7T* argument would. A
key feature of the inflation map is that the dimension of its domain (usually comprised
of products of fibers) and its target space must generally match and, when they do,
the map must have a Jacobian determinant which is nonzero on a dense open set. The
difficulty of completing a proof, once the inflation map has been obtained, boils down
to a delicate understanding of how the degeneracy of the Jacobian determinant leads to
certain integral inequalities.

A principal limitation of this approach is that inflation maps are often difficult to
construct or analyze unless the dimension and the codimension of the underlying sub-
manifolds happen to satisfy simple numerical relationships, e.g., when one is an integer
multiple of the other. For this reason, there are many gaps in the literature for Radon-
like operators of intermediate dimension (being neither curves nor hypersurfaces) when
the dimension and codimension are generically chosen.

In this paper, we introduce a new approach to this problem which allows one to
circumvent the need for an explicit inflation map. The overall philosophy of the proof
is still fundamentally combinatorial and very deeply connected to earlier approaches,
but incorporates recent ideas including the so-called Kakeya-Brascamp-Lieb inequality,
proved by Zhang [28] and further developed by Zorin-Kranich [29], and nonconcentration
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inequalities [11]. The result is a significant shift in the structure of the argument which
removes a number of important barriers and gives a unified framework which applies
across a number of situations with wildly different inflation maps (or no known inflation
map at all).

Central to this approach is a new understanding of the Brascamp-Lieb constant. To
define it in a form which is most suitable for the present purposes, let m, n, and k be
positive integers with n > k and suppose that 7y,..., 7, are linear maps from R" to
R™ k. Fix p := ;005 Let W({7;}7L,), which will be called the Brascamp-Lieb weight
associated to the maps {7, };7“:1, be defined to equal the largest nonnegative real number
such that

P P
m m
witmbt) [{ILnmo | a< |1 [ )
R~ J=1 jlenfk
holds for all nonnegative measurable functions f; on R" =%, j=1,...,m.

At the greatest level of generality, the results of this paper are simplest to state for
Radon-like operators which are defined in terms of an incidence relation ¥ which is itself
understood to be the zero set of a defining function p. More precisely, let Q2 C R™ x R”,
and let p : @ — R"* be a smooth function such that at every point (x,%) € Q such
that p(z,y) = (p1(x,y), ..., pn—k(z,y)) = 0, the matrices

9p1 ... O 9pr ... 9m
oz Oxy, oY1 OYn
D.p:= . and Dyp := . (2)
Opn—1 .. Opn—k 0pn—k - Opn—k
oz Oy, 8?]1 3yn,

(which will be called the left and right derivative matrices of p, respectively) both have
full rank n — k. We call the set ¥ := {(z,y) € Q | p(z,y) =0} the incidence relation
associated to p and call p a defining function of the incidence relation ¥ C 2. By virtue
of the Implicit Function Theorem, the sets

*Si={y €eR" | (z,y) € Qand p(z,y) =0}
and
Y= {zeR" | (z,y) € Qand p(z,y) =0}

are embedded k-dimensional submanifolds of R™ for any values of the parameters = or
y, respectively. The incidence relation ¥ will be called left-algebraic of degree d when
for each y such that >Y is nonempty, Y is contained in a k-dimensional affine algebraic
variety of degree at most d (where we do not distinguish between affine algebraic sets
and affine algebraic varieties and do not require irreducibility). It is also important to
define a canonical measure do on each *3 by means of the formula
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where dH* is the usual k-dimensional Hausdorff measure restricted to *¥. Analogous
measures on %Y may be defined as well, but will not be needed.

The first main result of this paper is the following continuum version of the Kakeya-
Brascamp-Lieb inequality:

Theorem 1. Suppose % is a left-algebraic incidence relation of degree d with defining

function p. Then for any nonnegative Lebesgue integrable functions fi,..., fr, on R™,
- P
l
/ / / ({Dzp(w,y5)}jq)|” H ) do(yr) -+ do(ym) | dx
Rr» [z =% J=1 (4)
m P
<c]] ( / fj)
j=1

for some C' < oo depending only on n, m, and d, where W({Dzp(z,y;)}72;) is the
constant as defined by (1) when m; := Dyp(x,y;) for each j=1,...,m

The inequality (4) is the main new tool of this paper for studying the LP-improving
properties of Radon-like operators in intermediate dimensions. When combined with
recent new machinery regarding nonconcentration functionals [11], the inequality (4)
can be used as a direct replacement for an inflation map construction and the associated
degenerate change of variables formula. This overcomes some significant limitations of
that approach in the regime of intermediate dimensions. The most general result of this
paper concerning LP-improving properties is the following:

Theorem 2. Suppose . C ) is a left-algebraic incidence relation with defining function
p. Suppose also that there exists ¢ > 0 for which

) “s;;p6F[W<{sz<x,yj>}?:1>1% > e(o(FN*x))* (5)

for all x € R™ and all Borel subsets F C *X, where o is the measure (3). Then the
Radon-like transform

7f(a) = [ 1o (6)

satisfies the inequality

n(m+s) % m
( / |T><E<x><nk>mdx) < Ol )
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for all Borel sets E C R™ with constant C which depends only on n,k,m,s,c, and the
degree of ¥.. Here |E| denotes the Lebesgue measure of E.

mts, Zl(f‘,j)fr)l) inequality for T following usual
conventions, e.g. [1]. In Section 5.1 we give several examples of how one can verify
the main hypothesis (5) in a number of important special cases. The broadest of these
applications is:

We call (7) a restricted strong type (

Theorem 3. For any integers n, k satisfying k < n < 2k, consider the Radon-like operator
acting on functions on R™ given by

/f<I1+t1,---,iL’k+tk7

© (8)

k k
1 1
. —§ At2, ... —§ An_pit? | dt,
xk+1+2i=1 IRAZ R axn+2i=1 ( k) z)

where Aj; is a (n — k) X k matriz whose minors satisfy the constraint

Tf(x):

Ati e AM(itn—k—1)
det #0

An=k)i " An—k)(i4n—k—1)

for all i (interpreting the columns as periodic with period k to make sense of the index
i+n—k—1wheni+n—k—1>k). Then for all Borel sets E C R",

ITxell 2 g, < 1B (9)

for some C < oo independent of E.

A standard Knapp-type argument shows that the exponents in the conclusion (9)
cannot be improved; as such, Theorem 3 can be regarded as an extension of work of by
D. Oberlin [16] concerning “model surface” quadratic submanifolds. We note that it is
understood through work of Ricci [19] that quadratic model surfaces exist with dimension
k much less than n/2 when n is large; the restriction n < k/2 present in Theorem 3 is
not a fundamental limitation of the method; in particular, Section 5.6 illustrates how
the method can be applied to a canonical non-translation-invariant quadratic Radon-like
operator which integrates over submanifolds of dimension & and codimension k2.

1.2. Outline and notation

The remainder of this paper is organized as follows: Section 2 contains the proof
of Theorem 1, which is derived from a discrete inequality of Zhang and Zorin-Kranich
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using a host of essentially standard limiting arguments. Section 3 proves a number of
important new results about the nature of the Brascamp-Lieb constant. In the context
of Theorem 2, the most important of these is Lemma 2, which establishes the compara-
bility of the Brascamp-Lieb constant and a supremum of certain invariant polynomials.
The approach is to observe a deep connection between the Brascamp-Lieb constant and
the field of Geometric Invariant Theory. Lemma 3 also gives important insight into
the family of these invariant polynomials, and in particular establishes that each such
polynomial can be expressed as the determinant of a matrix with certain simple block
structure, which is particularly useful when seeking to apply Theorem 2. Section 4 gives
the proof of Theorem 2. The proof is a relatively straightforward combination of Theo-
rem 1, Lemma 2 and Proposition 4, which is itself a generalization of a result which was
central to the study of nonconcentration inequalities [11]. Section 5 provides a number
of sample applications of Theorem 2 which include the moment curve case studied by
Christ [7], Theorem 3, and some non-translation-invariant extensions. Finally, Section 6
is an appendix which provides some elementary quantitative versions of the Inverse and
Implicit Function Theorems which are needed in the proof of Theorem 1.

The remainder of this paper employs the notation < as is now rather commonly done:
the statement A < B will mean that there exists a finite nonnegative constant C' such
that A < C'B holds uniformly over some range of parameters of A and B. When those
parameters are not readily apparent, they will be explicitly identified, e.g., “4; < B,
uniformly for all j.” The notation A 2 B is defined analogously, and A =~ B will be used
to indicate that both A < B and A 2 B hold simultaneously.

Another important piece of space-saving notation which will be used heavily is the
following: for any objects pi,...,pm, the notation {p;}’-, will denote the m-tuple

J:
(plu s 7pm)
2. Continuous Kakeya-Brascamp-Lieb: proof of Theorem 1

The core result of this section is the proof of Theorem 1. Our derivation is based di-
rectly on the Kakeya-Brascamp-Lieb inequality of Zorin-Kranich [29], which is a natural
evolution of an earlier result of Zhang [28]. Zhang’s result was itself inspired by Guth’s
approach to endpoint multilinear Kakeya [12], which was prompted by and built upon
work of Bennett, Carbery, and Tao in the non-endpoint case [4].

2.1. Reduction to smooth functions

The first step in the proof of Theorem 1 is to show that it suffices to prove (4) for non-
negative smooth functions f; of compact support. This follows by standard arguments,
but as p will generally be less than one, it is reasonable to proceed carefully nevertheless.
The auxiliary result needed is that for any nonnegative Lebesgue integrable function f
on R™ and any 6 > 0, there is a pointwise nondecreasing sequence f; of nonnegative
smooth functions of compact support such that
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f(z) < lim fi(z) for all x € R”
£— 00

(as opposed to merely almost everywhere) such that

[rsi+ [

for all ¢. To establish this auxiliary result, let > 0 be a positive real number satisfying

(1+77)/f§g+/f

and let Fj :={z € R" | (1+n)7~! < f(z) < (1 +n)? }. By definition of these sets, one
has the trivial inequality

oo

fl@)y< > @ +n)Yxe(2)

j=—00

for every x € R™ (where the sum is interpreted as an extended real number). Next, for
each j € Z, let O; be an open set containing F};, each chosen so that

Wl >

> 140y |0\ Fj| <
J
Decompose each O; into nonoverlapping dyadic boxes @j, (i.e., boxes of the form
[k12¢, (k1 + 1)2°) x -+ x [k,2%, (K, + 1)2] for integers ki,...,k, and £), and for each

dyadic box, select a smooth nonnegative function of compact support ¢;; which is iden-
tically 1 on @;x in such a way that the entire ensemble of functions satisfies

> (1+ny / %’kSg

Pk R™\Qji

To bound f everywhere by the limit of an appropriate nondecreasing sequence f;, one
may simply select some ordering of the countably many dyadic boxes @);; and let f, be
the sequence of partial sums of (1+1)?¢;x. The conclusion that lim,— f(z) is greater
than f(z) at every point follows directly from the fact that ¢z > 1 on Q;x and the
union of the Q;1’s contains Fj for each j. Similarly,

Zlirrolo/fg/%(1+n)j¢jk§;(l+n)j |Qjr| + / Pjk

R™"\Qjx

) .
< g+ (1L+0)Y[0)]
J
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g J
<3t > (U +n) [|Fl+10;\ F]
J

2 -
<) Y (10|

J

<Zaaen [r<or 1

Assuming that (4) holds for all m-tuples of smooth nonnegative functions of compact
support, the passage to general integrable functions is achieved by an application of
the Monotone Convergence Theorem (which applies because p > 0) for the particular
approximating sequences just constructed, one for each of the m functions appearing in
(4), and then letting & — 0.

2.2. Kakeya-Brascamp-Lieb for functions of varieties

After restricting attention to smooth functions of compact support, the next signifi-
cant step in the proof of (4) builds on the following special case of the Kakeya-Brascamp-
Lieb inequality as established by Zorin-Kranich [29], which is itself a generalization of
the closely related Theorem 8.1 of Zhang [28]:

Theorem (Theorem 1.7 of [29]). Let Q be the collection of all bozes [j1,71 + 1] X -++ X
[Jn,dn + 1] for integers ji,...,jn and suppose that Hy,...,Hy, are affine algebraic vari-
eties in R™ with dim H; = k. Then

S| VUL a ) dH )
92 NI, (0@ (10)

< Cp | | (deg Hj)?.

s

1

.
Il

Here p and W are as in (1), and for each smooth point x; of H;, T,,H; denotes the
orthogonal projection from R™ onto the orthogonal complement of the tangent space of
H; at x;. The constant C,, depends only on n.

The proof of Theorem 1 proceeds by deducing some self-improvements of the above
theorem which generalize it first to a discrete weighted version of Theorem 1 and then to a
continuous analogue. These refinements are the contents of the upcoming Propositions 1
and 2, respectively.

For convenience in the arguments that follow, let Qg be the box [—1/2,1/2]™ and let
Qs = x+Qo for all z € R™. The norm |- | on R™ will denote the ¢>° norm in the standard
coordinate basis. Furthermore, given = € R™ and an m-tuple {H/;}72, of affine algebraic
varieties in R™, define
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1
we ({H;}75) = / (WA, HYey)]” di (1) - dH (@) (11)
H;n:1(Hijm)

Proposition 1. If £y, ..., E,, are finite sets of k-dimensional varieties in R™ and if N; :
E; = Rxq for each j =1,...,m, then

P
Z HN] we({H;}j21) | da
Rr |H1€EL,..., \J=1
Hpm€Em, (12)
. P
<Cu [ | D2 Nj(H)degH |
j=1 | HeE;

where p and C,, are the same as in (10).

Proof. The first step of this proposition is to replace the sum over @ € Q in (10) by an
integral as in [28]. To do this, let € R™ be fixed and apply (10) to the shifted varieties
{—z+ Hj};‘n:ﬁ note that shifting does not change degree. For any Q € Q,

[ VAT e HYO) ) )
(~atH)NQ (ot Hm)nQ

- / / [W({Terj};I:l)}%de(xm)...de(m)

HiN(z+Q) HmN(z+Q)

by translation-invariance of Hausdorff measure. Since the sum of this quantity over Q) € Q
is bounded by C, [];(deg H;)? for all z € R™, it follows that

> were({H; )] < C H deg H;)?

Lezn

for all x € R™. Integrating x over [0, 1] gives

[ loattmyp as < ey (13)

Rn
for any m-tuple of affine varieties H, ..., H,,.
The next step is to introduce the weights N;. To that end, suppose initially that N
is any nonnegative integer-valued function on F; for each j = 1,...,m. For any fixed

0€(0,1)andeachj =1,...,m,let flj be a union of varieties of the form u;;+(1—0)H; as
H, ranges over all varieties in E; with N;(H;) > 0 and as 7 ranges over {1,..., N,(H,)}.
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Assume also that the shifts uj; satisfy |uj;| < 6/2 and are chosen so that no two of
the varieties uj; + (1 — §)H; are equal. The key idea in the proof of this proposition is
to apply (13) to the varieties H;. First observe that w,({H, }7L1) expands as a sum of
terms of the form w, ({uj; + (1 — d)H;}}L,), where for each j, uj; + (1 — §)H; is one of
the varieties just described whose union is H;. Each such term w ({uji + (1 — ) H;}72,)
is itself an integral over ((u1; + (1 —6)H1) N Qy) X -+ ((umi + (1 — 6)Hp) N Qy) of the
corresponding weight W'/? generated by the orthogonal projections onto the orthogonal
complement of the tangent spaces Ty, (uj; + (1 —0)H;). Observe that (uj; + (1 —6)H;) N
Qz = uji + (1 = 8)H;) N Qu—u,, = uji + (L —6)(H; N (1 —6) 'Qu—v,,) and that
(1- 6)_1Qm,uﬁ D Q(1—s)-12- To see this last fact, note that

L= wt+y=010-0)" &)+ (1—0) u +,

and when |y| < 1/2, it must follow that |(1—8) tu;+y| < §(1-8)"1/24+1/2 = (1-6)71/2,
so that

(1-0)"z+y=(01-06""(z—ui+7)

for some |§| < 1/2. These elementary observations combined with a sequence of changes
of variables imply that

[(W{Te, (uji + (1= 6)Hjy) - D)7 dHE (1) - dHE )
7% ((ugi+H;)NQq)

> / [W(T,, (1 — 6V H)Y™)] P dHE () - dH ()

(=0 (H;NQ () 1,)

= (1— gy / (W{T, H )] P dHE () - dHE (),
H]T'nzl(Hij(lfg)flz)

i.e.,

w(l 5) ! ({H }] 1) (1_5) fm ww({uji‘i‘(l—é)Hj};n:l).

Summing over the varieties forming each H; gives

> Nj(Hj)wa—s)-1a({H;}j) < (1= 0) " w, ({H;}L). (14)

H.€FE1,....Hn€E,

Since deg ij < ZHjeEj N;(H;)deg H;, applying (13) to the varieties I:Ij, invoking the
inequality (14), applying a change of variables in x, and sending the spacing parameter
§ — 07 gives the conclusion of this proposition when N is integer-valued.
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Because both sides of this inequality are homogeneous of degree p with respect to
each N;, multiplying each IN; by a nonzero real number preserves both sides of the
inequality, meaning the inequality remains true when each V; is a positive real multiple of
a nonnegative integer-valued function. However, every nonnegative real-valued function
Nj; is uniformly comparable to such a function with constants which are as close as
desired to 1. Therefore the proposition must be true in the general case of each N; being
an arbitrary nonnegative real-valued function. O

Proposition 2. For each j =1,...,m, letU; C R"™ be an open set and let H; be a mapping
from Uj into the set of k-dimensional varieties on R™ of degree at most D; such that
H;(y) depends smoothly on y. For any nonnegative measurable functions f; on Uj,

p

/ / HfJ Yi) | we({H; (yy)}g Ddyr - dyy, | dx
- (15)

SCnm|:D f':|pa
11 K

where p and w, are as above. The constant C,, is the same as in Proposition 1.

Proof. Because H}(y;) depends smoothly on y, w,({H;(y;)}7~, is known to be a con-
tinuous function of y1, ..., ym as a result work by Bennett, Bez, Cowling, and Flock [2].
For any ¢ > 0, decompose R” into a nonoverlapping union of boxes of side length . Fix
arbitrary compact sets K; C U; and let Q;(d) be a finite collection of these cubes which
covers K. For each j, let E; be the collection of varieties given by

E;:={H | H = H,(y) for y at the center of a cube Q' € Q;(8)}.

For convenience, let H;(Q’) also denote the variety H;(y) when y is taken to be the
center of Q. Fix any nonnegative measurable functions f; on U; and let

Ni(H) = > / i
Q€Q;(9) g
H;(Q' ):H
The left-hand side of (12) is exactly equal to

p

/ / /Hfa yj)we ({H; (y;) i) dys -+ dym | d, (16)

m I<1]1

where y; is the center of the cube Q' € @;(d) containing y; (which is uniquely defined for
a.e. y;j). By Monotone Convergence and continuity of the reciprocal of the Brascamp-Lieb
constant,
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p

// /Hfaygwx{my])}] Dy - dyn | de

m Ky 371

:/sli%ﬂ/ /ny vi) | inf _ ws({H; ()} dys - dym | da

LK Ky =1

= lim / /Hf] ;) . inJ‘ we({H; (zj)}] Ddyr - - dym | dz.

6—0+
m, Kl J= 1

For each 6 > 0,

inf  we({H;(2)}721) < we({H;(y;)}j%1)

|zj—y;1<o

because |y — | < §. But then by (12), this means that the limit of (16) as § — 0% is
dominated by

p p

as desired. Because each K is arbitrary, a second application of Monotone Convergence
establishes the proposition. O

2.8. Deduction of Theorem 1 from Proposition 2

Proof of Theorem 1. As already observed, it suffices to assume each f; is smooth and
compactly supported. As the submanifolds ¥¥ depend smoothly on y, it follows from
Proposition 2 that for any ¢ > 0,

/1]~ /Hfj g3 )eon ([57ISBY )y, 5ﬁ(/f)

for some implicit constant depending only on n and the maximum degree of any XY.
After a change of variables 2 — § 'z,

P

/ §—m(n—k) / . / H fi (yj)w(;am({(;*lxyj };”zl)dyl coedym | dx
j=1

SI (/o)

Jj=1
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uniformly for all positive &, where the factor §~"("=k)P = §=" arises as the Jacobian
determinant of the change of variables.

By Lemma 5 from the Appendix, it is possible to use an alternate defining func-
tion p which exhibits better uniformity properties than p itself might. In particular, for
the defining function j constructed there, the matrices D,p are exactly the orthogo-
nal projections onto the orthogonal complement of the tangent space of X% at x and
smallness of |p(xz,y)| implies proximity of z to ¥¥ in a uniform way: |p(z,y)| < dkn
for sufficiently small § implies that the set x + (—0,)™ intersects X¥ in a set of k-
dimensional Hausdorff measure at least comparable to §*. To proceed, one first observes
that T, §~ 2% is the projection from R™ onto the orthogonal complement of the tangent
space at x; € 6~ 'X%. By rescaling, the tangent plane of 67'X¥ at x; is simply a shift
of the tangent plane at dz; of ¥%/, so Ty, dIvY = D, p(6xj,y;). Consequently, if Q°
denotes the set x 4+ [—§/2,0/2]", it follows that

ws-1,({§71ZW L))

- / (W({To, 6715} )] 7 dHE (ay) - dHE ()

T, (0 1%)NQs-1,)

- w1€(5_12y1)ﬂQ5_1z,...

m
. - m AL _ v
> inf (WD, 5625, y;)} )] [ HF (67'5% N Qs-14)
Ty €(518Ym)NQs-1, Jj=1

= _inf (WD, play y) Yol r e TN (5 0 @Qh)

1 €EXVINQYL,...

1
T €8YMNQY !

By Lemma 5, then, it follows that for any compact subset K C %, there is some open
set U containing K such that whenever § is sufficiently small,

ws-15({071DW L)

. - ol T
> ¢ inf (W({Da; p(5,y5)}i20)]P H X|5(z,y;)|<6rn /2
j=1

T1EXVINQYL,...
zmez‘,ymr‘.Qg

provided (z,y;) € U forall j=1,...,m.
Now the coarea formula dictates that for any continuous function f;

/f(yj)X\ﬁ(w,yj)|<6mn/2dyj = / / fi(yj)dou(y;)du,

[=6kn /2,06, /2] F p(x,)=u

where do,, is a measure of continuous density with respect to k-dimensional Hausdorff
measure on the level set {y; € R | p(z,y;) = u}, which is a well-defined k-dimensional
submanifold of R™ when u is sufficiently small. In the special case u = 0, o is exactly
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the measure do on *¥ which was defined in (3) (assuming that p there is replaced by
7). Since everything is continuous as a function of § when f is assumed to be continuous
with compact support, the limit as § — 0% of the quantity

T €XVINQS,...
xmeZyang

5—m("—k)/.../Hfj(yj) inf W ({Dajj (%71/;)}; 1)]%
j=1

’ H X|ﬁ(17yj)\<5nn/2dy1 o dym
j=1

exists and equals a constant times

m

/ / ({ D, y;) 1)) 7 Hijjdayl - do (Ym)-

Thus

p
m

/ / / {Dlp z yj ] 1 %H y_] dO' yl --do (ym) dz

p
m

1
glimsup/ W/.../wg_lx({é—lzyj}m H (y;)dyr - - dym | dx

6—0+ _

Sjﬁl (/fj)p7

which is the desired inequality (4) with p replaced by p.

To revert from p back to p, it simply remains to assume that switching the defining
function in this way leaves the left-hand side of (4) unchanged. This follows from the
identify

[WM;m; )] = [W(m 3] H|detM|

for Brascamp-Lieb constants, where M, are any invertible matrices. The inequality is
easily proved by replacing each f;(u) with f;(M;u) in (1). Since p differs from any fixed
defining function p by multiplication on the left by an invertible matrix, it follows by
Lemma 5 that

(WH{Dapla,y;)}jir) P do(ys) -+~ do(yn)
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is unchanged when defined using p instead of p itself because the extra factors of
det(D,p(D.p)T) arising from the Brascamp-Lieb constant are exactly cancelled by the
extra factors arising from the measure do. This completes the proof. 0O

3. The Brascamp-Lieb constant and geometric invariant theory

The next major task is to establish several general facts about the Brascamp-Lieb
constant and its connection to Geometric Invariant Theory. These facts play a central
role in understanding and verifying the main hypothesis (5) of Theorem 2. Throughout
this section, for each j = 1,...,m, each 7; : R® — R™ will be an arbitrary linear
map and each p; will be a real number in [0, 1]. Following the usual convention, let the
Brascamp-Lieb constant BL({;,p;}7.;) be defined to equal the smallest nonnegative
real number such that

/ﬁ (f;(m3(@)))" dx < BL({m;, p; }72, H (@/ fi (17)

R™
for all nonnegative measurable functions f; € L*(R™). When p; = -+ = p, = m
and ny = -+ = n,, = n—Fk, note that the Brascamp-Lieb constant is merely the reciprocal

of the already-defined Brascamp-Lieb weight (1). This special case will of course be the
most important one for the purposes of Theorem 2, but throughout most of the section
the p;’s will be allowed to differ.

The overall goal of this section is to establish the existence of certain invariant polyno-
mials in the entries of the 7;’s which give meaningful quantitative information about the
Brascamp-Lieb constant. These polynomials should be thought of as generalizations of
the determinant. For this description to be useful, it will be critical to show not only ex-
istence of such polynomials, but also to provide a means by which they may be explicitly
constructed, so that they can be used as computational tools.

3.1. Brascamp-Lieb and minimum vectors
The first major result of this section is the following lemma, which establishes an

identity for the Brascamp-Lieb constant involving an infimum analogous to the one
relating to minimum vectors in the sense of Kempf and Ness [13]:

Lemma 1. Suppose that the exponents p; and dimensions n; satisfy

S Y=l (18)
=1 "

(Note: it is well-known and can be seen from scaling that (18) is necessary for the finite-
ness of the Brascamp-Lieb constant.) Then BL({m;,p;}L,) satisfies
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BLlmp)) = et Ty 5 am A, (19)
nyoeeey L0
Am€SLn,,, =t
A€SL,
where ||| - ||| denotes the Hilbert-Schmidt norm computed with respect to the standard

bases and SLy,; is the Lie group of invertible n; x n; real matrices with determinant 1.

Before proceeding to the proof, it is worth observing that the direct link between the
computation of the Brascamp-Lieb constant and Geometric Invariant Theory given by
(19) provides a rather immediate interpretation of the work of Garg, Gurvits, Oliveira,
and Wigderson [9]. Geometric Brascamp-Lieb data as they define it is exactly the set
of data which are critical points of the functional on the right-hand side of (19) when
A1, ..., Ay, A are all identity matrices (i.e., geometric Brascamp-Lieb data correspond
to minimum vectors in GIT). The functional can be shown to be convex along flows
(Ay,..., Ap, A) = (exp(tMy),...,exp(tM,,),exp(tM)), t € R, so critical points are
automatically global minima. The iterative method in [9] to compute the Brascamp-
Lieb constant approximates the argument of the infimum (argmin) of (19) when it exists
by alternately computing the argmin (A4, ..., A,,) for fixed A in one step and the argmin
A for fixed (Aq, ..., Ay) in the subsequent step. (Also note that when the data is merely
semi-stable and no global minimum exists, the algorithm instead produces a minimum
vector with closed orbit contained in the original non-closed orbit.)

Proof. Lieb [14] established that any Brascamp-Lieb inequality has an extremizing se-
quence of Gaussians, which implies that

* A*x 2
m -1 o det (Z;nzl pjﬂ'jAjAjﬂ'j)
[BL({m;,p;}i21)] = Ar€GLy,, .. [T, (det A% A;)rs
A €GL

nm

For any matrix A € SL,,

D opilllAm AP = pjtr(Amy A Ay A*) = tr [ Y pj At AT A7 AT

Jj=1 Jj=1 Jj=1

Both the trace and determinant of the matrix Z;"Zl pjAm; A5 Ajm; A can be expressed
in terms of its eigenvalues, all of which are nonnegative. By the inequality of arithmetic
and geometric means, abbreviated as the AM-GM inequality, applied to the eigenvalues,
it follows that

n

m m m

p‘ * * * * * *
ZEJH‘AJ’]T]A H|2 ZdetzijﬂjAjAj’/TjA :detzpjﬂ'jAjAj’lTj.
j=1 j=1 =1
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When the infimum of the left-hand side is taken over all A € SL,,, the inequality must
be equality; to see this, fix M := Z;"Zl pjm;AjA ;. When M is invertible, equality
must hold when A := M~/2(det M)/ ("); if M has a kernel of dimension £ > 0, let
P be orthogonal projection onto the kernel. Equality holds in the limit ¢ — co when
Ay = t1/EP 4 ¢t~V (=O(T — P). Therefore

Ky

B rn_ NNA 7 A* 2
[BL({mj, p; }it1)] 1:A1€(j}rﬁf ZJ_;PJHL]X; 2L|]“
AmEGL:Ln” nHj:1| et Aj| 7w
AeSL,

A similar application of the AM-GM inequality also gives that

ping
oo e Inpng o ||[Aym AP (1A AP
inf ¢, ooty E t; = H — 7

t1>0, ..., — n n;j - g

tm >0 J=1 j=1

To see this, the left-hand side can be seen to be greater than or equal to the right-hand
side by using the version of AM-GM inequality which raises the term

_2p1ng _ 2pmnm A A*|?
e a llAmAT P

nj

to the power p;n;/n, which is allowed precisely because (18) guarantees that the
exponents sum to 1. The reverse inequality can be established by fixing t; :=
(|||Ajm; A*[||?/n;)~*/? when all such constants are well-defined or by an appropriate
limiting argument if any such t; happens to be infinite. Writing each matrix A; as a
nonzero constant times a matrix of determinant 1 then gives that

m
-1 . —hit .
BLtmpi o) =, gt TLns = A ATl
myoteey LT
Ap€SLn,,, 7"
AeSL,

This is exactly (19). O

Before continuing, it will be helpful record an important calculation relating to
Lemma 1 which will be useful later. As it relates to the hypothesis (5) of Theorem 2,
Lemma 1 establishes that

1

_ . o AX[| Ik
= il e L IAm Al (20)

A€eSL,

=

[W({m;}520)]

j=1

when each 7; is an (n — k) x n matrix and 1/p = m(n — k) /n.
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The next step in this section is to give an abstract proof of the existence of invariant
polynomials in the entries of the 7;’s which strongly quantify the magnitude of the
Brascamp-Lieb constant. Following this, we will consider the question of how to more
explicitly find these polynomials.

A few minor reductions are in order. The first is that attention will be restricted to
only those cases in which each p; is rational. By Theorem 1.13 of Bennett, Carbery,
Christ, and Tao [3], the extreme points of the convex set

P = {{p;}jL, €10,1]™ | BL({m;,p;}}=;) < o0}

all have rational exponents {p; };-":1, and likewise rational exponents play a central role
in Theorem 2. It may also be assumed that no p; equals zero since the inequality (17)
will be trivially independent of 7; for any index j such that p; = 0, meaning that one
can simply reduce m and consider the Brascamp-Lieb inequality for a strictly smaller
number of 7;’s.

The expression (19) has deep connections to the theory of minimum vectors in Geomet-
ric Invariant Theory. Pursuing this analogy, it is natural to make a connection between
BL({7;,p, };”:1) and polynomials invariant under the underlying group representation p
of SL,, x --- x SL,, x SL, defined by

P(Ay oA, A ({5 1) = { AT AL (21)

Let ® be any nonzero polynomial function of the matrices {m; };":1 which is homogeneous
of degree d; > 0 in each 7; and is p-invariant, i.e.,

SN Iy) = AT - A @({m; 1) for all A, ..., A €R (22)

and
O({A;m A }iLy) = @({m; 1) (23)
whenever det A; = --- = det A,, = 1 = det A. If |||®||| is the maximum of |®| on all

m-tuples {7;}72 such that |[|7;|[| < 1 for all j =1,...,m, then scaling dictates that
@l TTIA;m A% > [@({A;m A Y] = [@({m )]
j=1
for all inputs {7;}7.,. If each degree d; happens to satisfy

pina PmTm 1
B = 24
dy dm EES (24)

for some real number s, then (19) implies that
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o (25)

[BL({mj, p;} 1) Hn ) el ey

In the specific case relating to Theorem 2, the constraint (24) is trivially satisfied when-
ever d =dy = -+ = d,,, and (20) yields the inequality

m(ﬂ ) k

19177 @ ({m; 7))

B =

[W({m}e)]? = (n— k)~

(26)

The following lemma establishes that the collection of all such invariant polynomials can
be used to compute the order of magnitude of the Brascamp-Lieb constant:

Lemma 2. Suppose that the exponents {p;}7.; € (0,1]™ are rational and satisfy (18).
Let IP be the collection of all nonzero invariant polynomials ® satisfying (22), (23), and
(24). Then

0 (27)

m -1 _L m
[BL({r},p;}7=1)] ~ sup [[[R]w |@({m;}im)

with implicit constants that are independent of {m;}L, (where the supremum is under-
stood to be zero if IP = )). Moreover, there exists a finite subset TPy C IP such that

1 1 1 1
sup ||| @[] = [@({m;}jL)[*> ~ sup [[|®[[ o |D({m;}j,)| .
PeIP €IP,
Proof. The lower bound follows immediately from (25). The upper bound will be proved
by contradiction. Without loss of generality, it may be assumed that data exists such
that the left-hand side of (27) is strictly positive. Suppose for each positive integer N,
there is some data {ﬂN}m 1 such that

= (28)

—1 -1 m
[BL{mY,ps}j)] ™ > N sup [[[@f]|" % |[B({m)}1,)
dcIP

By homogeneity of both sides in the data {ﬂN};”l,
BL({ﬂév,pj 74) = 1 for each N, and by replacing each tuple {7r ™, with

PN ,...an any({m }7hy) for some choice of A{Y,..., A} and AN for each N which

it may be assumed that

m
tend to minimizers of the right-hand side of (19) as N — 00, it may further be assumed

that
" Coring
| REATRE § R
j=1 j=1

as N — oo. Once again, noting that both sides of (28) are homogeneous in 7; for each

1/2

j, rescaling individual 7;’s as necessary allows one to assume that [||7}V]|| — n;'" as

N — oo for each j = 1,...,m. By passing to a subsequence in IV, this means that 7rj
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converges to some limiting data for each j = 1,...,m. Let this limit data be denoted
{m$°}7 . Now for any matrices Ay, ..., Am, A, by Lemma 1,

HIHA m AP = lim H 1|4 Y A*||[Poms

j=1

> timsuwp | [Ty ) BUcndpy) ™ = TTn "

N—o00 j=1 j=1
so taking an infimum over all Ay,..., Ap, A gives that BL({n$°,p;}jL;) < 1. In fact,
this inequality must be an equality, Wthh can be seen by simply taking each A; and A
to be the identity. Now for any ¢ € IP,

5o

m —1 —L m =
= [BL({n}",p;}721)] = N[l[®[l|” = [d({m} }]2,)

bl

which means that ®({z}7",) — 0 as N — oco. By continuity of each ®, it follows that

= 0. (29)

o0 m -1 -L ocolym
[BL({WJ' apj}jzl)] =1and (EEII;HM’M e |(I>({7Tj 1)

Since each exponent p; is rational and nonzero, it must be possible to find positive
integers ¢i,...,qm and g such that p;jn; = ¢;/q for each j. Now suppose that

({xwyz 1= 17"' { €Ty 7yz7n ;1m1)

is any real-valued map which is linear in each xz € R™ and each yg ceR"fori=1,...,q;
and j =1,...,m. The group SL,, x --- x SL,, x SL, acts on the vector space V of all
such II by defining

P(A4,... Am,A)H({xza% = 1;“’7{ Z; ayz i= 1)

M({Afz}, Ayl Yo (AL o ARy i),

m17

Let II*° € V be the multilinear functional given by

m  4qj
({xwyz = 17"’ Zn7y;m gml : HH< Lis ] yz> (30)

where (-,-) is the usual inner product on R™. The Hilbert-Schmidt norm of p(4, ... 4, 4) 11>
is exactly equal to

m
LT HAmse A,

j=1
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so by Lemma 1, it follows that

1= \||H°°|||Hn = [BL{m}°,p;}1-1)]
s (31)
= f II*°
Aleslrﬁ IHP Aty Am,A) ||\Hn
A €SL, . =t
A€eSL,

Combining this identity with Proposition 3 below, there must exist a nonconstant, ho-
mogeneous p-invariant polynomial P on V such that P(II*°) # 0. Here homogeneous is
meant in the usual sense of polynomials and specifically does not refer to (22). Suppose
the degree of P is equal to d. Using the definition (30) of II*°, we see that each entry of
1% is itself a product of entries of the 77°. Thus we may regard P(II°°) as a polynomial
in the entries of the 73°. To be explicit, regarding 7y,...,7; as matrices of indeter-
minates, one can define II exactly as was done in (30) by replacing #$°,..., 75 with
the m1,...,mm. The function P(II) is now a polynomial in the indeterminate matrices
T1,...,Tm; to emphasize this dependence, define ®({7;}* ;) := P(II). One must show
that @ satisfies (22), (23), and (24). In the former case, rescaling each 7; by A; scales
all entries of IT by A7" --- A%~ and since P is homogeneous of degree d, this means that
PN IT,) = AT - AL )FD({m; )7 ,), which implies (22) with d; = dg; for each j
(and because p;n; = ¢;/q for each j, the condition (24) holds for sg := dg). Because
P is p-invariant, ®({m;}]L,) = P(Il) = P(p(a,....a,,,a)l1) = ®({A;m; A*}JL,), which is
(23). Because P(II*°) = 1, the polynomial ® just constructed contradicts (29) because
(29) indicates that ®({7$°}7L,) should equal zero rather than 1.

The finite subset IP( can be taken to be only those polynomials of the form P(II) just
described, for those P belonging to any finite generating set of the p-invariant algebra
on V, since the contradiction just derived will still hold if P(II*°) = 0 for all such
polynomials. O

Proposition 3. Let V' be the real vector space of all maps

({x'myz = 17"' { ?17y2m ?ml) (32)

which are real and linear in each zz € R™ and each yf € R” fori=1,...,q; and
j=1,...,m. The group G := SL,, x---x SL,, . x SL,, acts on the vector space V' of all
such II by defining

P(Ar s A O g Yy {2y )

M({ A2}, A ylya . {ALx (33)

A* am

mLs Y; z:l)‘

If 11 € V' has the property that
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inf II||| = ||| 4
inf [flpgt|I} = [IITL]}} > 0, (34)

where ||| - ||| is the Hilbert-Schmidt norm on V' computed with respect to the standard
basis, then there exists a homogeneous, nonconstant p-invariant polynomial P on V' such
that P(II) =1

Proof. This proposition is a special case of a fundamental and widely-known result in
Geometric Invariant Theory as applied to real linearly reductive groups (to see that G is
linearly reductive, express G as a subgroup of GL,,, +...4n,, +m; the Lie-Kolchin Theorem
[25, Section 10.2] implies that the radical of G must consist of upper-triangular matrices,
and consequently the unipotent radical must simply be the identity). Corollary 1.2 of
Mumford [15] indicates that any two disjoint Zariski closed G-invariant subsets of V' can
be separated by an invariant, i.e., an invariant polynomial P exists which vanishes on
one but not the other. Since {0} is certainly a Zariski closed, G-invariant subset of V', it
suffices to establish that the G-orbit of IT is Zariski closed and does not contain zero. By
(34), II # 0. The criterion (34) indicates that II is by definition a minimum vector in the
sense of Richardson and Slodowy [20], and consequently Theorem 4.4 of [20] guarantees
that the G-orbit of II is indeed Zariski closed. But the G-orbit of Il cannot contain 0
(because 0 = pyII for some g € G implies that 0 = py-1(pyII) = II). Thus there must be
a polynomial P which vanishes at 0 and is nonvanishing at IT. If P is not homogeneous,
we can express P as a sum of homogeneous polynomials of distinct degrees, each of which
must be G-invariant (which can be easily seen by an induction argument and comparing
highest-degree terms before and after an application of p,); at least one will vanish at 0
and not at II, at which point it may be trivially rescaled to equal 1 at II. O

3.2. Invariant polynomials and the Caley €2 process

While Lemma 2 is the theoretical foundation upon which much of this paper rests, it
is necessary to have a more concrete way of describing polynomials in the class IP. To
that end, it is useful to appeal to the very old and well-known fact in invariant theory
that invariants associated to the group SL,, are generated by application of the “Cayley
Q process,” which is briefly described here as it applies to the more general situation of
Brascamp-Lieb invariant polynomials satisfying (22), (23) and (24). As before, it will be
assumed that the exponents p; are positive, rational, and satisfy the scaling condition
(15).

If ® is any polynomial in {r;}72; satisfying (22), (23) and (24), then for any matrices
Ay, ..., Ay, A with strictly positive determinants, by homogeneity and p-invariance it
must be the case that

O({A;mAY,) = | (det A)** T[(det Aj)Psse | @({m;}y). (35)
j=1
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Since matrices with positive determinant form an open set in R™*"™ for all n and since

the left-hand side of the identity (35) must be a polynomial function in the entries of

each Aj, this forces s and p;se to be positive integers and it further forces (35) to hold

for all matrices A4, ..., A,, and A even if some of the determinants are zero or negative.
Let Q4 be the Cayley 2 operator associated to A, i.e.,

L0 )
QA = Z (_1) 81410-1 e 8.14"0—" *

oceS,

(Here and throughout the remainder of Section 3, o will denote a permutation rather
than referring to the measure (3).) The Cayley 2 operator associated to A satisfies the
identity

Q% (det A)° =¢p s >0

for all positive integers s and also satisfies Q4 f(BA) = (det B)(Q 5 f)(A)| _p for any
n X n matrix B and any C™ function f of R™*" (for both facts, see Theorem 4.3.4 of
Sturmfels [24]). These facts together imply that

Qi QT e({A;m AT = c@({m 1) (36)

for some nonzero constant ¢ depending only on the exponents d;, p;, and n; when ®
satisfies (22), (23) and (24). They also imply that for any ® satisfying (22) and (24) only,
the function ® of {r; }iLq given by

S({mj}jLy) = QLT QO ({Aym AT (37)

necessarily satisfies each of (22), (23), and (24) (note there is no dependence of ® on A
or the A;’s because the orders of differentiation are chosen specifically to balance the
degrees of dependence of ®({A;m; A"} ) on these matrlceb) To see why (23) holds, note
that one must also have that QAf(AB) (det B)(Q 5 f)(A)| i_ 45 because Q4 = Qa,
so it follows that

Quaf(AB) = Qu- f(AB) = Qa- f((B*A")") = (det B)Q 4. f(A"))| 4 p- a-
= (det B)Q1f((A")")| g-—p-a» = (det B)Q 1 f(A)] 5.

= (det B)Q Af(ANA:AB'

Consequently

O({Bjm;B},) = Qi QR - QR ®({A; Bym; B*A*}TL )

= [(det B)*® H det B;)Pise
j=1
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. QSeQP1se L OPmSe P AWA* m. ) )
A YA, A ({ 7 }j—l) A=AB,A;=A,B,

= |(det B)® HdetB YPase Ci)({ﬂj};n:l)

because the expression on the next to last line above is independent of the choice of A
and Aj at which it is evaluated. Thus to understand the space of homogeneous invariant
polynomials of a given multi-degree (dy, . .., d,,), then, it suffices to understand the image
of the map ® — Q5F QN ... QI ** O ({A;m; A*}7L ) for polynomials @ satisfying (22)
and (24) only.

3.8. Polynomial invariants of Brascamp-Lieb data

We come now to the main result of this section, which gives a concrete characterization
of the class IP in terms of polynomials which are expressible as determinants of block-
form matrices. In light of Lemma 2, these determinants can be reasonably regarded as
quantifying various sorts of transversality of the maps {m;}7"; which allow for finiteness
of the Brascamp-Lieb constant for any desired rational exponents {p,}72; € (0, 1]". This
approach to understanding the Brascamp-Lieb constant is complementary to the work
of Bennett, Carbery, and Tao [4] and Bennett, Carbery, Christ, and Tao [3] in exactly
the same way that direct computations with invariant polynomials complement charac-
terizations of the nullcone in Geometric Invariant Theory. The strength of the finiteness
criteria established in [3] is that one need only show that a single (cleverly-chosen) in-
equality is violated to deduce that the Brascamp-Lieb constant is infinite. Lemma 2,
in contrast, allows one to deduce the finiteness of the constant by demonstrating the
nonvanishing of a single (cleverly-chosen) invariant polynomial.

Lemma 3. Suppose {p, je € (0,1]™ are rational exponents satisfying the scaling con-
dition (18). Let s be an integer such that pjs is an integer for all j = 1,...,m. Let
Vs be the vector space of all polynomials ® satisfying (22), (23), and (24) for se = s.
Then Vs is spanned by polynomials of the form det M({m;}72,), where M({m;}7L,) is
an ns X ns matriz consisting of block elements of size nj x n for j =1,...,m arranged
in the following way:

e FEach block entry is a constant multiple of m; for some j =1,...,m.

o For each j = 1,...,m, there are p;s block rows of height n; (i.e., the block row is
a group of n; adjacent rows of M). In each such block row, all block entries are
multiples of ;. At most n; of these block entries are nonzero.

e There are s block columns of width n. In each block column, there are at most n
nonzero block entries.

Fig. 1 illustrates the structure of all such matrices M.
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s block columns of width n

C11171 C11s71

| |
p1s block rows of | |
: | . |
height nq ‘ . ‘

C1(p,s)1T1 C1(p,s)sT1
77777777777 I
| |
| |
| |
| |

Cm11Tm Cm1sTm
| |
pm s block rows of I I
B | T |
height n,, \ . \

Cm(p,s)1Tm “ee Cm(p,s)sTm

Fig. 1. Block structure of ns X ns matrices M whose determinants span the space of invariant polynomials
of Brascamp-Lieb data satisfying (22), (23), and (24) for s¢ = s. Here each c¢;,4,i, is a scalar.

Proof. The proof proceeds by an analysis of the action of the Cayley {2 operator on
general multilinear functionals. One could instead formulate this problem as a quiver
representation and appeal to a number of general results concerning the structure of
semi-invariants (see, for example Domokos and Zubikov [8]), but for the present purposes
the Q operator will yield a more elementary and transparent proof from the standpoint
of analysis. Readers should also note the similarity of the matrices M ({m;}L,) and the
Brascamp-Lieb operator as defined in [9].

Suppose that IT : (R™)™ — R is a multilinear functional on R™. This II is expressed
in the standard basis by the formula

H({xi}?:l):: Z Iy @1y o T g,

~Jn=1

where z; ; is the j-th coordinate of x;. For any n x n matrix A,

n
H({Axl}lzl) - H]l"']nAJIkl A]nknx]wkl xnykn'
Jiyeeesgn=1
k1, kn=1

If this sum is differentiated by 0"/0Ais, ---0Ape,, the result will equal zero unless
Jis...,Jn are distinct and k; = 0;, for each ¢ =1,...,n. Thus
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" n -
mn({Al’z}zzl) = Z Hjl...jnx]_’o-jl tee l'n’o—jn . (38)

J1seedn=1
distinct

Multiplying (38) by (—1)? and summing over o € &,, gives that

Qall({Azi}i,) = ( Z (_I)THTr“Tn) ( Z (=1)721,6, "'xn,on>

T€G, ceS,

TEG,
The notation [z7 - - - ¢, is simply shorthand for the determinant of the nxn matrix whose
columns are given by the vectors x1,...,x,. The quantity in parentheses on the last line
above will be called the alternating contraction of II in the indices (1,...,n) and will

be denoted H|(1,__47n). Suppose now that IT has some arbitrary degree of multilinearity,
ie., IT: (R")* — R for some ordered index set A. If #A < n, then QATI({Ax;}ien) =0
trivially. If instead k > n, then by the product rule it must be the case that

Qall({Azi}icn) = Z 1], ({Azi}ieavs)[2]s
ICA
#I=n

where II|; is the multilinear functional with index set A \ I obtained by performing
an alternating contraction in the indices I (arranged in the usual order) and where
[]r = [z, - - x;,] with 41 < --- < 4, being the elements of I. By induction, for any s
such that #A > ns,

All({Azi}iea)

= Z Z I, -
#11=n #Is=n
Ii,..I, pairwise disjoint

. {Azitieavus_, 1))leln - [2]r.. (39)

When #A = ns and A = [ U- - - U, for pairwise disjoint /;s, the quantity II|; --- |; is
simply a scalar obtained by performing an alternating contraction in each of the index
subsets I1,..., ;.

Now consider the multilinear functional

m  4j
H({ad,yl Aol i) o= [T T (ol ) (40)
j=1i=1

where p;n; = ¢;/q and where the 7; are as in the previous section; this is exactly the
same construction as (30). If A € SL,, and A; € SL,,, for each j = 1,...,m, then we

J
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seek homogeneous polynomials of degree d in the entries of IT which are invariant under
the action of these matrices given by

I({Ayz}, Ay} }? DA AR Ayt ).

(Note that this action differs from p by replacing A% and A" by A; and A; since the
special linear group is closed under adjoints, this change is inconsequential and simplifies
notation.) Any polynomial function of II must belong to the span of d-fold products of
the expressions (40), where in each term of the product, the xz s and yf ’s are regarded as
fixed but may change from factor to factor (which is to say that evaluating IT on specific
tuples of a:f 's and yf 's gives a basis of functions from which the algebra of polynomial
functions of II can be generated). If this polynomial happens to be invariant under the
action of the matrices (Ay,..., Am, A), recall from (36) that polynomial must be pre-
served (up to multiplication by a nonzero constant) by the operator Q5 Q%' *® ... Qm®
when s¢ := dg. Moreover, as observed in (37), this compound Cayley operator maps
all homogeneous polynomials of II satisfying (22) and (24) into the space of invariant
polynomials satisfying (22), (23), and (24). By virtue of the calculations above, the space
of all such invariant homogeneous polynomials of a fixed degree is spanned by repeated
alternating contractions of tensor powers of II, where the contractions take place with
respect to compatible entries. Specifically this means forming alternating contractions of
the multilinear functional

dg;

d m .m dm : 7
Hd({levyzl}zillv { Ti Y, }q : HH xj77rjyj> (41)

in such a way that contractions are in n-tuples of indices corresponding to the variables
y; for any values of ¢ and j and in n;-tuples of indices corresponding to the variables wj
for each j = 1,...,m. After performing such an operation, the object that remains is a
scalar quantity because dg; = n;p;se is an integer multiple of n; and d(g1 + -+ ¢m) =
dg(pin1 + - 4+ pmnm) = sen is an integer multiple of n.

Let

A:={(i,j)ez® |ie{l,...,dg}, j€{1,....m}}

and suppose A is given the lexicographic ordering. This is the index set associated to the
product (41). For any A € A, let its coordinates be denoted iy and jy, i.e., A := (ix,jx).
The structure of the expansion of

QPO o QI T ({Avrl, Ayl VI8, (A, Ay Yy (42)

will include a sum over all partitions J := {Jy,..., s} of A into pairwise disjoint
sets of cardinality n, where alternating contractions of length n are performed over the
groups of variables y; indexed by each of the subsets Ji,...,Js,. Summing over all
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such partitions will yield the expansion of the Q%" factor. The expansions of all the
remaining factors of €2 can be expressed as a sum over a different type of partition

I:={L,...,Isy(p+4pn)} of A. In this case, the alternating contractions will involve
n; indices and variables mé‘ yeee ,x;nj for values of j between 1 and m. In other words, each
I, .o Iy (py+otp,,) Must consist of indices of the form {(i1,7), ..., (in,,j)} for some j.

While it is perhaps clear what one means by applying the formula (39) to compute the
alternating contraction of (41) with respect to these partitions I and J, carefully carrying
out this computation explicitly and compactly requires some additional notation. First,
for any A € A, let [A]; denote the unique subset I, € I such that A € I,. Likewise let [A]
be the unique element of the partition J containing A\. Let & be all permutations o of A
such that [o]; = [N for all I (i.e., & is restricted to permutations of A which preserve
the partition I) and analogously for & ;. Lastly, let 7/ ()\) be the total number of indices
A € [A]r such that ' < X\ and similarly let ¢/ (¢) be the total number of indices X' € [A]
such that A < \. It follows that the repeated alternating contraction of II¢ associated
to the partitions I and J is given exactly by

Z (_1)0+T H (ﬂ-jA)TI(U'/\)CJ(T,\) (43)

o€, 7TES, AEA

where (7;)¢e is the £¢'-entry of the matrix of 7; in the standard basis. The formula
(43) can be seen to be an alternating contraction precisely because inside each I, € I,
o merely permutes elements of I,, which means that the values of 7! (0y) for A € I,
are merely permutations of {1,...,n;, } and similarly for the partition J. The identity
(39) guarantees that (42) is expressible of a linear combination of terms of the form
(43) with coefficients which depend on the x; and the y;, moreover, it can be some-
what easily checked that each term of the form (43) is invariant under the action of
(Ay,..., Apn, A) precisely because (43) is expressible in terms of alternating contractions
and such contractions themselves have the desired invariance properties.

Now for each A € A, let 7y be a #A X #A matrix with rows and columns indexed by
A whose entries are

s o d ety DL = V] and [ = [V
0 otherwise

With this definition, it must be the case that (43) is equal to

DORCS Viaan | (CIVENS (44)

o, 7€EG A AEA

where the sums are now over all permutations o and 7 of A because the terms of the sum
(44) simply vanish for all permutations o € G \ &7 and 7 € &5 \ & (simply because
there will necessarily be some A such that [A|; # [oa]r or [A]; # [7a]s, which means that
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one of the entries of 7y in the product (m))s,r, will necessarily be zero by definition of
(mx)aa). The expression (44) is itself exactly equal to the expression

(H a%) det 3" tamy

AEA AEA

for real parameters ty, since by the product rule

()= (Ia) o (Sem)

Oty
AEA AEA AEA TEGH AMeEA \XEA
= Z (_]‘)T H (7'('0—)\,))\/,,-)\,
o,7EG ) A EA

(where the permutation o comes from all orderings of the partial derivatives) which can
be seen to equal (44) by replacing 7 by 7 o o, reordering the terms in the product, and
then replacing o by o~ !. Derivatives of polynomials can always be evaluated exactly
as finite differences, which means that (43) itself be realized as a linear combination of
determinants det AeA AT for various values of the parameters ty.

To finish, observe that the matrices ) have common block structure. To be precise,
each row X of the full matrix is uniquely associated with a unique element of I, namely,
[M]1r € I, in the sense that my will be identically zero in row A unless [A]; = [X];.
The same goes for columns: 7 is zero in column X unless [A\']; = [A];. By reordering
rows so that rows associated to the same set in I are adjacent and likewise bringing
columns associated to the same set in J together to be adjacent, it follows that the
alternating contraction (43) is expressible as a linear combination of determinants of
#A X #AN = nse X nse matrices of the exact form described in the statement of the
lemma. To see that every block row associated to m; for fixed j contains no more than n;
nonzero copies of 7;, simply note that this block row is associated to exactly n; literal
rows A" of the large matrix, and there are exactly n; values of A such that 7y is not
automatically zero in this row (namely, the values of A such that [A]; = [X];). If each
such A belongs to a different element of the column partition J, then there can be at
most n; nonzero block entries in this block row. The argument for block entries in block
columns is similar. 0O

4. Radon-like operators: proof of Theorem 2

This section contains the proof of Theorem 2. The general structure is to combine
three elements: the characterization of the Brascamp-Lieb constant given by Lemma 2,
the continuous Kakeya-Brascamp-Lieb inequality as it is formulated in Theorem 1, and
key ideas from [11] formulated for the study of nonconcentration inequalities. The initial
step is to observe that the quantity in the integrand on the left-hand side of (4) is an
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integral nonconcentration quantity and so may be directly estimated from below via a
supremum:

Lemma 4. Suppose 7 is a continuous map from some L-dimensional manifold M into
R(=F)X" - For any Borel set F C M and any finite nonnegative Borel measure o on M,
there is a Borel subset F' C F with o(F") > o(F')/2 such that

T =

[ W) ] dottn) - dotn) 2 (0(F)™ sup [W({r(t))]
Fm b cFr

with an implicit constant which depends only on n, k, and m.

The proof of Lemma 4 is based on the following proposition, which is a mild extension
of Lemma 1 from [11]:

Proposition 4. Let V' be a normed vector space. For any positive integer d, any topological
space X, any nonnegative finite Borel measure p on X, any d-dimensional vector space
F of continuous functions f : X — V, and any § € (0,1), there is a closed subset
Xs C X with w(Xs) > (1 — 0)u(X) such that

p({zex \ @) = a sup 1)1 ) = 607 ux) (45)

yeXs

for all f € F. The set Xs has the form
Xs={z e X | fi(x) =0Vj <jo and |f;(z)| < 1,Vj = jo } (46)
for some functions f1,..., fa € F and some jo € {0,...,d+ 1}.

Proof. Informally, the content of (45) is that there must always be a relatively large
subset X5 C X (large as a fraction of X with respect to the measure u) such that each
[ € F exceeds d™ ' sup,c x, |f(y)| on some nontrivial fraction of X. In essence, it allows
one to approximately reverse the usual inequalities of LP-norms on X if one is allowed
to compute the L> norm over a slightly smaller set than all of X. The main challenge is
to show that the set X5 can be defined independently of the particular choice of f € F.

By homogeneity of (45) and homogeneity of the inequality pu(Xs) > (1 —§)u(X) with
respect to the measure p, it may be assumed that p is a probability measure since (45)
is clearly true for the zero measure. For any positive €, let

Fo={feF |p({z e X [[f(z)[>1}) <e}.

The first task is to establish a number of elementary facts about the sets F.. The most
basic of such facts are that 0 € F. and that F. is star-shaped at the origin, i.e., f € F.
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implies tf € F, for all ¢ € [0,1]. This follows directly from the inequality |¢tf(z)| < |f(z)]
when t € (0,1). Moreover, for any f € F, tf € F. for all sufficiently small ¢ > 0, since

1. t ]. = 1. d =
Jm p({[tf] > 1}) /tggg Xjef(>1dp =0
X

by virtue of Dominated Convergence and the fact that ¢f(x) — 0 for all . A fourth
important simple fact is that F. is closed in the vector space topology on F. To see this,
observe that for any sequence of functions f, — f as n — oo, at every point x € X
where |f(x)| > 1, it will always be the case that |f,(z)| > 1 for all n sufficiently large,
simply by continuity of | - |. Thus by Dominated Convergence,

p{lfal > 1O A1f] > 1) = p({[f] > 1}) as n — oo

In particular, if p({|fn] > 1}) < € for all n, then necessarily pu({|f| > 1}) <e.
Fix a norm || - ||z on F, and for all f on the unit sphere {||f||F = 1}, let

L (f):=sup{t>0 |tfeF}.

This function L.(f) is necessarily upper semicontinuous on the unit sphere because F.
is closed: if L.(f) < a for some a > 0 and some f with ||f||z = 1, then (a —n)f € F¢
for all sufficiently small n > 0. Because F, is closed, (a — n)g € F¢ for all g sufficiently
close to f, yielding L.(g) < a. Because the unit sphere is compact, there is a dichotomy:
either L. is bounded on the unit sphere and F. is a compact set (since in this case || - || =
is necessarily a bounded function on F.), or L. is unbounded and there exists a nonzero
f € F such that tf € F, for all t > 0. By Dominated Convergence, any such f must
satisfy

p({f #0}) <e (47)

because lim; o0 X|¢f(2)|>1 = | at every point x where f(z) # 0.

Now fix any § € (0, 1). From here forward, fix € := d~146. Suppose there exists a nonzero
f1 € F. satisfying (47) when d = 1. In this case, setting X5 :={z € X | fi(z) =0} will
satisfy the hypotheses of the lemma because all functions f € F will be identically zero
on X;. This forces (45) to be vacuously true because the supremum over X will always
be zero. If d = 1 and (47) does not hold for any nonzero f; € F., one can instead let
f1 = L(f)f for some nonzero f € F. and define X5 := {z € X | |fi(x)] < 1}. Since
f1 € Fe, it must be that u(Xs) >1—e=(1—0)u(X). Now

pl{z € X | |A@] 21} = lim u({o € X | 1fi(0)] > s})

by Dominated Convergence. If the value of the limit on the right-hand side were strictly
less than €, s~1 f; would belong to F, for some s < 1, which would mean that s~!L.f €
Fe, contradicting the maximality of the supremum L(f). Thus
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p{z e X [ |filx) > 1}) > e=d ou(X),

which implies (45) because 1 > sup, ¢ x, |f1(y)|- By homogeneity of (45) in f (and trivi-
ality of (45) when applied to the zero function), the lemma must hold when d = 1.

Thus it suffices to assume that d > 1. If F, is not compact, let f; be taken to equal
any nonzero f satisfying (47), let X := {z € X | fi(z) =0}, and let F be any maximal
subspace of F which is linearly independent when restricted to X. Because f; = 0 on X,
the dimension d of F is at most d — 1; if F is trivial, then the lemma follows by fixing
X5 := X. Thus it may be assumed that 1 < d < d — 1. By induction on dimension,
setting & := d§/(d — &) € (0,1) gives that there exists a set X5z C X of the form (46)
with measure at least (1 —8)(1 —€) > (1 — 6)u(X) such that

" ({x e X ‘ F@)] = d" sup 1) }) > M9 0

yeXs;

for all f € F; however, every function in F restricts to a function in F on X, so without
loss of generality, the inequality also holds for all f € F with the same constants. Thus
(45) must be true if one defines X; := X N X3, which also has the form (46) because X
is merely equal to the set {x € X | fi(x) =0} for some f.

It now suffices to assume that F. is compact. Let det be any nontrivial alternating
d-linear functional on F (which is unique up to scalar multiples). By compactness of F,
there exist f1,..., fq € F such that

|det(f1,...,fa)l= sup |det(hy,..., haq)l
hy,...,ha€Fc
The supremum must be strictly positive because |det(hy,...,hq)| # 0 for any linearly
independent set {h1,...,hq} C F. and for any such set, there must exist a small positive

constant ¢ such that th; € F, for all .. Now by Cramer’s rule, for any f* € F,

d ~
Z _7 1detf fla"wf_]w"afd)fi (48)
j=1 det(fla"'7fd)
where ~ denotes omission. By the choice of f1,..., f4, the coefficient of each f; in the

sum on the right-hand side of (48) has magnitude at most 1. If one defines
Xy {z € X | |fi() <1¥j=1,....d},

then X§ is contained in the union of sets {x € X | |f;(x)| > 1} for j =1,...,d; each of
these sets has measure at most €, so u(X§) < de = §. At any point € X, each term in
the sum (48) has magnitude at most 1. Thus

sup |f(y)| <d (49)
yEXs
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for all f € F..
Now suppose f € F is any function which is not identically zero on X5 and let @ > 0
be any number such that

a<d ! sup [f(y), e,  supla~'f(y)>d. (50)
yeXs yeX

By (49), a~!f € F cannot belong to F.. This means that

p{lfl > a}) = u({la” f| > 1}) 2 e=d7'a.

Taking a supremum over all « satisfying (50) and applying Dominated Convergence a
final time gives that

v <{|f > a7t sup 1)1 }) > a1

y€Xs

which is exactly the desired inequality (45). O

Proof of Lemma 4. By Lemma 2, there is some finite collection {®;}, of polynomial
functions of {m;}72; such that

W{r ()]s = 30 (@ ({r(t) V) (51)

i=1

where d; is the degree of ®; as in (22). Apply Proposition 4 to the vector space F of
polynomial functions of 7w of degree at most d;, where the measure u is o restricted to
F. Tt follows, fixing § := 1/2, that there exists F’ with o(F’) > o(F)/2 such that

/ 1By ({ ()| 5 dor (1)
F

n—k
>F/|‘I)i({7f(tj)}§n_1) i X@i({ﬁ(tj)};,;1)|2sumlew \:iiri{;uj)}}":l)\da(h)

n—k
o (suPner P (t)})
- dim F

supy, ¢ [Pi({m(t5) 172
o ({ner [mtne = Tz
1 . —1—nzk nrk
> 5 (dim 7)™ o (F) (|2 ({r(t)}0)]) = xe (t1)
for any values of 1,2, ..., t,,. Note the slight abuse of notation in the inequality just

derived: on the top line (which becomes the left-hand side), ¢; denotes a variable of
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integration, while on the final line (the new right-hand side), ¢; denotes a point which
can be chosen arbitrarily (but yields a trivial inequality unless t; € F’). We proceed
inductively, integrating this inequality over t5 and deriving a new inequality, etc.; the
final result of this process yields the inequality

/ B4 ({ ()} )| T dor(ty) - dor(trn)

Fm

2 (1 @s({r(t) ) ™ HXF/

where the implicit constant is a function of dim F. Summing over 7 and taking a supre-
mum of the right-hand side over all ¢1,...,t,, € F’ completes the lemma by virtue of
(51). O

With the proof of Lemma 4 in hand, the proof of Theorem 2 follows rather easily as
well:

Proof of Theorem 2. Suppose that ¥ C  C R"xR" is a left-algebraic incidence relation
with defining function p : Q@ — R™*. By Theorem 1, for any Borel measurable set
E C R"”, the function

Tonxp(r) = / / (W Dap(a, y;)Yjen)] 7 do(y) -+~ do(ym)
*¥NE  *¥NE

belongs to LP(R™) with p := n/(m(n — k)) and satisfies

||TmXE| |LP(R”) /S |E|m

with implicit constant which is independent of E. Now apply Lemma 4 by fixing F' to
be any subset of *3 N E on which o is finite; this gives that

Toxr(@) 2 ((F)™ sup_ W({Dap(a,y)}i))?

for some Borel set F/ C F C EN®Y with o(F’) > o(F)/2 and some implicit constant
which is independent of E and x. The main hypothesis of Theorem 2 gives that

sup  [WH{Dapl,y)Y1)]P 2 (0(F)" 2 (o(F))*

Y1y Ym EFY

for some exponent s and an implicit constant independent of z and F’ and consequently
independent of E. But o(EF N*Y) = Txg(z) for the Radon-like operator (6), and also
o is o-finite on the manifold *¥ since it has smooth density with respect to Lebesgue
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measure there, so by applying the newly-derived inequality T, xr(z) > (o(F))™t* to a
sequence of choices of F' selected so that o(F) — o(EN7?XY) in the limit, it follows that

Txp(r) 2 (Txp(@)™*

with implicit constant that is independent of x and E. It follows that
(Txe)" " |lLe®ny S [ TmxellLe@n) S TE™.

Raising both sides to the power 1/(m + s) gives (7). O

5. Applications of Theorem 2

This final main section looks at various applications of Theorem 2, which includes
the proof of Theorem 3. It begins with some basic computations which show how to
compute a suitable defining function and the measures (3) for a Radon-like operator
whose incidence relation is given parametrically. Following that is an example application
of Theorem 2 which yields an alternative to Christ’s proof of the LP-improving properties
of the moment curve [7]. Then comes the proof of Theorem 3, followed by a few extensions
and generalizations.

5.1. A preliminary observation about parametrized incidence relations

Proposition 5. Let x,y € R™ be regarded as ordered pairs (z',z"), (y',y") € RF x Rn=F
and let v : R¥F x R™ — R™* be any polynomial function. Then the Radon-like operator
given by

Tf(x):= /f(:z:/ +t, 2" + (¢ x))dt
Rk

is exactly the operator (6) from Theorem 2 for the defining function

1"

pla,y) =y" —a" =y — 2’ 2). (52)
In particular, the measure do defined by (3) equals Lebesgue measure dt.

Proof. Let B(t,x) be the (n — k) x k matrix given by

2] e}
a(ta) - Gh(ta)
: : : )
4] n—k %) n—k
’étlk(tax) ’étkk(tam)
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where 71, ...,Vn_x are the coordinate functions of v in the standard basis and 1, ..., {g
are the coordinates of t. Taking (52) as the definition of p, the right derivative matrix
Dyp (recall (2)) has the block structure

[_B(y/ - 'rlv .Z‘) In—k]

where I,y is the (n — k) x (n — k) identity. The induced Riemannian metric (-, -) on the
graph ¥ satisfies

o o\ _ . Oy O
<ati’atj>_6”+8t,» ot;’ (53)

where - is the usual dot product on R % and d,; is the Kronecker delta. When the right-

hand side of (53) is regarded as a matrix, the square root of the determinant equals the
density of Hausdorff measure with respect to coordinate measure, i.e.,

dH* = det(I), + BT B)'/2dt.
Similarly,
det(D,p(Dyp)T)Y/? = det(I,,_\, + BBT)Y/2.
Therefore

dHk _ det(Ix + BTB)!/? 5
det(Dyp(Dyp)T)1/2 — det(I,—y + BBT)1/2

Now both det (I +B” B)Y/? and det(I,,_ +BBT)Y/? are invariant under the transforma-
tion B — Oy,_; BOy, where O,,_, and Oy, are orthogonal matrices of size (n—k) x (n—k)
and k X k, respectively. Thus by the Singular Value Decomposition, to compute the ratio

det(I, + BT B)'/?
det(I,,—y + BBT)1/2’

it suffices to assume that the only nonzero entries of B appear on the diagonal and that
B;; > 0 for all 7, in which case

min{k,n—k}
det(I + B'B)"/? = det(l,—r + BB")"? =[] (1 +B3H)Y2

i=1

It follows that do =dt. O
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5.2. Warm-up application: the moment curve

As a first example of how Theorem 2 can be applied in practice, consider the case
of convolution with the standard measure on the so-called moment curve. In R™ this is
exactly the Radon-like transform given by

Tf(x) = /f@1 Ftms 2w+ )L (54)

This operator was the titular case study of Christ’s seminar work on the combinatorial

approach to LP-improving inequalities [7]. In particular, Christ established that this op-

erator satisfies a restricted weak type (”%rl, g((:;ﬁ; ) and a corresponding dual inequality.

Christ’s method was later extended by Stovall to arrive at a full Lebesgue space bound
for this and more general polynomial curves [22,23]. The arguments below show that
Theorem 2 provides a rather direct route to an intermediate result, namely that (54)

satisfies a restricted strong type (”TH7 %) inequality.
As implied above, let x := (z1,...,2,) and y := (y1,...,yn). The incidence relation

associated to (54) has an algebraic defining function which is given by

p(z,y) == (T2 — Yo + (1 — 21)% oo Tn — Yn + (y1 — 21)").

Proposition 5 guarantees that the operator (54) equals the operator (6) specified by
Theorem 2. A simple computation gives that D,p(x,y) = w(y1 — 1), where

2t 1 0 - 0
2
— 1
(t) = 3t 0
: : . .0
(—1)"nt”—1 o --- 0 1

There is a centrally-important polynomial function (I>(t(1), e ,t(”)) which depends only
on 7(tW), ..., (™) and satisfies the invariance properties (22) and (23), given (as in
Lemma 3) by a block-form determinant:

[ (M) 0 e 0 T
0 m(t(2)) :
ot ... tM) = det : :
0 e 0 (V)
_w(t(’”) 7r(t<")) . w(t(”)) |

Subtracting upper block rows from the bottom block row results in individual block
entries which are zero in all but their first columns. Expanding the determinant in the
columns which vanish in the last block row gives that ® must equal £(n!) times
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t() () . t(n=1) _ 4(n)
det : : ,
t(l) n—1 _ t(n) n—1 .. t(l) n—1 _ t(n) n—1
() (") () (")
which is equal to
1 . 1
) . t(n)
(—=1)" det
(tMyn=t ... ()1

This is simply the classical Vandermonde determinant. Now if F© C R is any Borel
measurable set with positive Lebesgue measure, it is always possible to find n distinct
points t) ... t(") ¢ F such that [t®) —tU)| > |F|/(2n — 1) whenever i # j. This is
because one can always partition R into nonoverlapping intervals of length |F|/(2n — 1);
the set F' must intersect at least (2n — 1) of these intervals in a set of positive measure,

so one can always take t(), ... t(™ from n such intervals which are not adjacent. Thus
(D, 1)) 0 _ 5 LT
sup T = sup H |t —tV | 2 PRI
tW,. MR n: t Lt MEF i i, 2n—-1)"=2

Since ® is a degree n — 1 function of each 7(t)) in the sense of (22), the inequality (25)
gives that

1
sup  (W(r(tD) |7 = 7=
t) .t eF

n+l n(ntl)
2 7 2(n—1)

Thus Theorem 2 implies that (54) satisfies a restricted strong type (2= ) in-

equality.
5.8. Results concerning nonconcentration inequalities

Before proceeding with the proof of Theorem 3, it is necessary to recall the main
result from [11] concerning nonconcentration inequalities. The point of doing so is to give
sufficient conditions of a quantitative nature which guarantee that the main hypothesis
(5) of Theorem 2 is true. This will involve identifying certain invariant quantities which
generalize the notion of rotational curvature, first introduced by Phong and Stein [18].

From [11], recall that a multisystem & of size N on an open set @ C R"* is a
collection of smooth vector fields {X;}jzl,__m_h i=1,...,~ such that foreachi =1,..., N,
the vector fields {X;—}j:L.“’n_k commute and are linearly independent at every point
in Q. The collection of all such multisystems is denoted M), For any fixed vectors
X1,..., Xn—k at a point t € Q and any function « : {1,...,¢} — {1,...,n — k}, where



P.T. Gressman / Advances in Mathematics 387 (2021) 107831 39

¢ < N, the differential operator (X - 8)“ is defined to equal Zﬁ( .-+ Z} , where Z;» is the
unique constant-coefficient linear combination of X7,..., X" . which equals X; at the
point ¢. Such a will be called ordered multiindices in n variables and |«| will be used to
denote the order of differentiation of (X - 8)¢, i.e., |a] = . Matrices T € GL,,_;, act on
these differential operators by defining

n—=k
(T*X)l = Z Tjin
j=1
and taking (T*X - 8)® := ((T*X) - 8)“. The main result from [11] that will be used here

is the following:

Theorem 4 (cf. Theorem /J of [11]'). Suppose Q@ C R™ % is an open set and that
®(ty,...,tm) is a polynomial function of t1,... t,, € R?7*. For any s > 0, let

(T*e-0)2 - (T*c - )omd(t, ..., 1)

inf max
8EM®) |ag],....|am|<N | det T
TeGLy &

w(t) :=

(55)

ne
Jj=
denotes the differential operator (T*e - @)% applied in the variable t;. If o is any non-

where e := {e;}"=F is the collection of standard coordinate vectors at t and (T*e - 8);”'

negative Borel measure which is absolutely continuous with respect to Lebesgue measure
such that

do
—(t) S wl(t
(1) < w(t)
at each point t € §, where ‘fi—‘; is the Radon-Nikodym derivative of o with respect to

Lebesque measure, then for any Borel set F' C €,

sup_[®(ty, ..., tm)| 2 [o(F)]° (56)
t1,<-~7tm€F

with implicit constant depending only on (n — k,m, s, deg ®, N).

Suppose ®(t1,...,t,) is a polynomial function of ¢,...,t,, € R"* and that
c1,...,Cn are nonnegative integers such that

e O Oty ) =0 (57)

L Theorem 4 of [11], unlike the other main theorems of that paper, does not actually require one to assume
that ® vanishes to some positive order on the diagonal, but there is likewise no harm in doing so, since in
the present case the Theorem will only be applied to polynomials which do indeed vanish to some positive
order on the diagonal.
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identically on the diagonal ¢; = - - - = t,,, for all choices of a1, ..., a,, satisfying |a;| < ¢;
for each j and |a;| < ¢; for at least one j =1,...,m. By definition of (T™e - 9)?,

(T e-0)* =2, - Z},
where Z} is a linear combination of X{,..., X! , which equals Z;Zlk Tja,0; at the

point ¢ and so on through Zﬁe, which is a linear combination of X¥,... ,Xﬁfk that

equals Z;;lk Tjq,0; at the base point ¢. For convenience, let T*0 denote the tuple

n—k n—=k
D Ty D Titn-iyds
j=1 j=1

and let (T*9)® be the composition

n—k n—k
> Tja, 0 | | D Tjad;
j=1 j=1

The difference (T*e - 8)* — (T*9)* is a differential operator of order strictly less than ¢
at that distinguished point ¢t where each Zf is fixed to equal Z;L;lk T;;0;. By hypothesis
on the vanishing of derivatives of ® on the diagonal, then, it follows that

(T e-0)2 -+ (T e 3 B(t,... 1) = (T )% -+ (T ) d(t,.. . 1)

when |a;| = ¢; for each j = 1,...,m. As before, the subscript j in the expression (1T7*0),
refers to the partial derivative as it is applied in the variable ¢;. It follows that

=

) [(T*0){* -+ - (T*0)am D (L, ..., t)
wit) 2 TGIGI}_anfk \al\:cll,.r.l%\);m\:cm | det T'| (58)

To further aid in the estimation of the right-hand side of (58), one may assume without
loss of generality that the infimum over T is taken only over those T" which are upper-
triangular. The reason for this is that we may always write TE = U for some matrix E
of determinant 1 with uniformly bounded entries (i.e., a bound independent of T') and
some upper-triangular matrix U, which then implies that

(U 0)5 - (U*0)3 B, ... )]
S max [(T*O)* - (T O)om (¢, ..., 1)

~
[B1]=lcrl, | B |=|cm]

(59)

with universal implicit constants depending only on n. The proof of this fact is a direct
application of the following proposition:
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Proposition 6. For every positive integer d and every T € R*?, there exist U, E € R4¥¢
such that U =TE, U is upper-triangular, det E = 1, and

d d
SN |Eul <2t -1

(=1 1i=1

Proof. If d = 1, the proposition is trivially true simply by fixing E to be the 1 x 1 identity
matrix. When d > 1, suppose that the final row of T has at least one nonzero entry.
Let i be an index which maximizes |T,;|. Without loss of generality, it may be assumed
that ¢ = d, since otherwise we may permute columns of 7" to make it so, and compensate
with a corresponding permutation of the rows of the matrix E to be constructed shortly
(and if the permutation leaves det E negative, simply multiply a single column of F
by —1 to restore positivity). Under this assumption, let T}, = Tj; — T, diTczilTjd for all
i,j € {1,...,d — 1}. By induction, there exists B’ € R(¢=1D*(4=1) with determinant 1
such that T'E’ is upper triangular. Now let E be defined so that

E), Lie{l,...,d—1}

By 72] le] ddE E:dandie{l,...,dfl}.
0 i=dand € {1,...,d—1}
1 i=0=d

Then for ¢ € {1,...,d — 1}, we have

d d-1 d—1 ,
S T 37 Sl E jAd

TjZEEi = ( TJZEZ1> — jd T_Zz 22 — {0 (=1 ~je~e . :
=1 —

j=d

which ensures that T'E is indeed an upper-triangular matrix. We have that det £ = det £’
by expanding the determinant of E with respect to its d-th column. Lastly, if ¢« < d, we
have

Tde
E li

ZlEézl —ZlEml +

because |Tge/Taq| < 1 for each ¢ € {1,...,d —1}. Thus

d—1
<2) |l
/=1

d d—1
S Eal<2 ) \E&|+Z|Egd| <2028t _1)41=21-1.
i,0=1 i,4=1 =1

If Ty; = 0 for all ¢, one can instead take E just as above with the exception that
Eg4 :=0forie {l,...,d—1}. The desired conclusion follows after a minor modification
of the above argument.
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As a final remark, it may be of interest to note that a modification of this argument
which involves a further step of multiplying both U and E on the right by a suitably
optimized diagonal matrix yields the stronger inequality max; y_,|Ep| < 2(d=1)/2 The
extent to which this upper bound can be improved as a function of d is not immediately
clear, but this will not be a concern under the present circumstances. O

5.4. Quadratic submanifolds: proof of Theorem 3

Just as was done for the moment curve, the main idea behind the proof of Theorem 3
is to apply Theorem 2; to do so, one establishes the nonconcentration inequality (5) by
studying a well-chosen invariant polynomial ® and applying Lemma 2.

To be more specific, the proof proceeds by applying Theorem 2 to the operator (8).
The parameter s in Theorem 2 will be fixed to equal n — k and m will be taken equal to
n. For an appropriate defining function p, the problem reduces to proving that

n i T n—
sup  [W({Dap(,y)}j=1)|? Z (o(Fne8))"*
Y1, Ym EF
uniformly for all x € R™ and all Borel F' C *¥. To accomplish this, it suffices to identify a
suitable invariant polynomial function ® of the matrices {D,p(z,y;)}}_; which satisfies
the inequality

IW({Dopla,y)Y-)7 2 [@({Dapla, y;) 1oy

uniformly in z and yy, . .., yn. Since D p(z,y) will depend only on the first k coordinates
of y and since Proposition 5 guarantees that o agrees with Lebesgue measure in these
first k-coordinates, it will suffice by Theorem 4 and the inequalities (58) and (59) to
show that (with ¢ := n — k here and throughout the rest of the section)

max  |(U"0)7" -+ (UF0)g" ®(Dap(2,y), -, Dep(z,y))l

jora|=--=Jen |=e
k-1 MGet1) 0 Aeto) (60)
> |detU|° | ] det : :
) =0
! AcGiet1) 0 Ac(jete)

for any upper-triangular matrix U € R*** where as before, the operator (U *8);” is
applied with respect to the variables of y; prior to restricting to the diagonal.

To arrive at the final goal (60), one must first be precise about the defining function
p and the polynomial ® to be used. As for p, it is convenient to use (52) multiplied by
a factor of —1 to simplify computation:

k

1
ps(Us0) := —Upij + Upsj + 5 > Nilvi —wi)
=1

2
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for j = 1,...,c. Here u := (u1,...,u,) € R™ and v := (v1,...,v,) € R™ (where the
symbols u and v are used to simply avoid the need to temporarily redefine the meaning
of the subscripted variables y1, .. .,y,). Taking the unusual but harmless convention of
ordering the entries of v as ug41,...,Un,u1,...,ux, the corresponding left derivative

matrix of p is given by

1 0 - 0 (u—v)An -+ (up —ve)Awk
0 1 . . . .
Dyp= (61)
: . .0 : . :
0 -« 0 1 (ug—v)Aea - (up—wvp)Aer
As already noted, the case m := n of Theorem 2 is the one of interest here, and the

quantity W({Dzp(z,y;)}7_; will be estimated from below in terms of well-chosen in-
variant polynomials (where once again it should be emphasized that each y; is still to
be understood as an element of R™ for each j = 1,...,n as opposed simply a coordinate
entry of some single vector). In particular, by Lemma 1 and specifically using (26), it
will be the case that

1
(W Dap(a,y;)}j=1]" 2 1@({Dap(, y;)}=1)| (62)
whenever ® satisfies (23) and (22) with d; = --- = d,, = d — k, as shall be the case for
the specific ® constructed below.
As in earlier sections, suppose that 7y, ..., T, are real ¢ xn matrices. To these matrices
one may associate an nc x nc matrix M(m,...,m,) as follows. First, regard each m; as

possessing ¢ x ¢ block A; and a ¢ x k block B; by fixing A; to consist of the first ¢
columns of 7; and B; to consist of the final £ columns of 7;. The matrix M will have a
nested block structure:

o an upper left block MUL of size ke x ¢® which itself is divided into smaller blocks of

size ¢ X ¢ which are denoted MgL fori=1,...;k,j=1,... ¢,
o a lower left block ML of size ¢? x ¢? which is itself divided into smaller ¢ x ¢ blocks
MR for i, j=1,...,¢,

« an upper right block MY% of size kc x kc consisting of smaller ¢ x k blocks MZ-IJJ-R for
i=1,....k,5=1,...,¢c, and

o a lower right block M of size ¢? x kc consisting of smaller ¢ x k blocks M{;R for
,j=1,...,c.

The various sub-blocks of M are derived from the matrices A; and B; as follows:
o Let MgR = B; if the diagonal of MYF passes through MgR and let MZ»ZJJ-R =0

otherwise. (Here the diagonal is understood as the literal diagonal of the k¢ X ke
matrix MUE))
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Ay Bl
Ao Ao B> B>
A3 A3 B3 B3
Ay “B4
A5 A5 B5 _BS
Akt Byt
Ak+2 Bk+2
Akts B3
A, By,
Fig. 2. Illustration of the structure of the matrix M (mw1,...,m,).

o Let MJ" = A; if (i,7) is a pair for which M7 " lies on the diagonal of MY# and
MUL = 0 otherwise. The layout of MY” matches the layout of MUF with the B;
blocks replaced by A; blocks.

o Let MEE = Aj,; and MI%L =0 when i # j.

o Let MER = By, and MigR =0 when ¢ # j.

Fig. 2 illustrates the structure of this matrix M (7, ..., m,). With the matrix M (my, ...,
7n) defined, let

D(m1, ..., mp) =det M(m1,..., 7). (63)

(To apply @ in the case of (60), one need only specify that m; = D,p(x,y;) for each
j =1,...,n.) Permuting the columns of M (my,...,m,) brings it exactly into the form
identified in Section 3.3, so in particular (63) defines a polynomial ® which has the
invariance property (23) and is homogeneous of degree ¢ in each of the matrices 71, ..., 7,
(som =nand dy,...,d, = cin (22)). In particular, this quantity (63) will satisfy (62)
when 7 := Dyp(x,y;) foreach j =1,...,n.

When (61) is used for the matrices 71, ..., 7, as described above, it will be the case
that Ay =---=A,, = I.x. and B; = B(x —y;) for each j = 1,...,n with
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tidin o Ak
B(t) := : : )
Lider - trAek
under the convention that ¢t = (t1,...,#;) € R¥ and that each 2 — y; is understood to

be projected down to R¥ by retaining only the first k coordinates of each x — y; € R™
Restricting to the situation in which yx11 = -+ = yn, it will be the case that m11 =
-+ = T,. By elementary row operations and expanding the determinant of M, it follows
that

(1, .. Ty Ty ) = (=1 ¥ det MUB(By — B, ..., By — By).
For convenience, define

®YR(B,..., By, By) :=det MYR(B, — B,,,..., By — B,),

where by MY%(B; — B,,, ..., By, — B,), we mean simply the matrix with the same struc-
ture as MYR but with each By, ..., By, replaced by By — B,,, ..., B, — B,,, respectively.
On the full diagonal y; = - - - = y,,, the matrix MY% will be identically zero, and so ®VF

will be zero as well.
Since B(t) is some ¢ x k real matrix which depends smoothly on the parameter ¢ € R¥,

®UR on the diagonal. For each

one can precisely understand the low-order derivatives of
j=1,...,n,let t¥) € R* denote the first k coordinates of x — y;. The immediate goal is
to compute @YU and its low-order derivatives at a point t() = ... = ¢t(®) = ¢ for some
fixed value of t(9). Since By1 = --- = B,, = B(t\9) on the diagonal, for each index j €
{1,..., k}, there is a unique collection of ¢ rows of the matrix MY®(B,—B,,, ..., By—B,)

which vanish identically when t0) = t(9); consequently
o5t - onk @UE(B(t W), ... B(t®), B{t)) =0

when t() = ... = t®) = (0 if |a;| < ¢ for any j = 1,...,k. This is precisely the
situation anticipated by (57): taking ¢y = -+ = ¢y = cand ¢gy1 = --- = ¢, = 0 in (58)
establishes that the inequality (60) would in principle be sufficient to prove Theorem 3
by the application of Theorem 2.

A precise analysis of higher derivatives of ®Y%® on the diagonal is more delicate. By
linearity of B as a function of ¢, it suffices to assume t(?) = 0. To establish a lower
bound for quantity w(t) from (55), one may use (58) and (59). After these reductions, it
suffices to compute or otherwise estimate the derivatives of ®UR(B(tM), ..., B(t(),0)
with respect to constant-coefficient vector fields X1, ..., X of the form

J
X0 =3 et

=1
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These are just the vector fields determined by U*9 in (60). In particular, X j@ denotes the
j-th operator among those defining U*d, applied to the variable ¢t(¥). Note in particular
that Xl(i) points in the first coordinate direction in the variables ¢(*), Xéi) lies in the
span of the first two coordinate directions, and so on. To simplify computations, it will
be assumed for the moment that the diagonal entries ¢y = Uy are all equal to 1. It
will also be useful to take the periodicity convention X (¢ +) Nk = X @) for any positive
integer N. When j and j' are both integer subscripts of the vector fields just defined,
the relation 7 < j’ will be said to hold when this inequality holds in the usual sense
for the representatives of j,j’ taken from the interval {1,...,k} (i.e., the relation j <
j' will mean that the representative of j which belongs to {1,...,k} is less than the
corresponding representative of ;).
It will be shown by induction on ¢ that for any ¢ < k, one has

Xi o X X X{VVR(BAW), L BEW), 0)

(t=1)c+1"

-1 AiGetn) 0 Mijere) (64)
= det M/ ]| det : : )

i=0

J )\c(jc+1) to )\c(jc+C)

where MY is the (k — £)c x (k — £)c lower-right minor of the matrix MY® and where
the columns of the matrix A of coefficients associated to the operator (8) are regarded as
periodic with period k just as was the case for the index j of the vectors X ](Z) There are
two cases to consider: one case when the block B4 appears exactly once in the matrix
MUZE (e.g., By or By in Fig. 2) and another case when the block appears twice in MYF
with one copy appearing immediately to the right of the other (e.g., Bs or Bs in Fig. 2).
In the first case, the truncated matrix M, ZUR has the ¢ x 1 block

T
/41 41
|:tgc+1))‘1(éc+1) e tgc—i-l) AC(£C+1)

in its upper left-hand corner. As a function of ¢+ the determinant det M ZU B does not
depend on tz(-“l) for any ¢ < fc+ 1 (interpreted periodically), since all such columns of
MUR that do depend on these variables lie outside the minor MéU B This means that

the derivative of det M KUR with respect to X éc_ﬁ) must simply equal the derivative with

respect to t§c)+1, the effect of which is to replace the upper left block in the first column

with the new block

T
Alber1) 7 Ac(letr) }

and to replace all other entries in the first column with zeros (if they do not vanish
already) because they are constant with respect to t(+1) The argument then repeats for
all the remaining derivatives X éf_ﬁ) through X ((fjrrll))c by advancing to the second column

and so on. At each stage, there is no dependence on t¥) with respect to any “lower”
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coordinate directions. Once all derivatives of det M L,U R with respect to t+1) have been
taken, the result is that
(£+1) (£+1) UR
Xéc-i-c e X€c+1 det MZ

may be expressed as the determinant of a matrix with a ¢ X ¢ minor in the upper-left
corner equalling

A1(€c+1) to )‘l(fc—l-c)

Ac(fc-‘,—l) T /\c(ﬁc-i-c)

and the matrix M}ff in the lower right corner.

On the other hand, if the block By appears twice in MY, then the argument above
requires slight modification. First, there must be an index p in the range {fc+1,...,(£+
1)c} which is equivalent to 1 modulo periodicity. If any columns of the leftmost Byyq
block appear in the minor MY, they must appear alone on their own column since no
block in MY® can have neighbors both on the right and below. This would mean that
MY has a block in the upper left hand corner with the form

£+1 £+1

t§c+1)/\1<éc+1) e tj(o—l )Al(p—l)
£+1 ! £+1 .

tfzc+1)/\c(ec+1> féfl )Ac<p—1>

and all other entries in these same columns must be zero. It follows when taking the de-

terminant of Mé] B that factors of téijﬁ) yens ,tl(fjll)

factor out by multilinearity of the determinant as a function of the columns. Further-

appearing on their own rows simply

more, although these same columns of the leftmost Byy; appear again in the rightmost

Byy1 block, elementary column operations allow one to subtract the leftmost copy of

these columns from the rightmost block without changing the determinant of M(ZU R

Thus it may be assumed without loss of generality that det M[UR has no dependence
on t(lZJrl) t(€+1)

le+1 00 "p—1
exactly the same argument as above, then, it follows that

beyond the factors already obtained from the initial columns. By

X{e o X5 det MR

Al(bet1) *°° AM(tete)

)

-1 l+1 UR
=i )t det MEE det

)‘C(Zc+1) o )\C(Zc+c)

and from this identity the desired conclusion holds after differentiating once again with

x{eHn .,ngéjll) in order just listed (X(”l) first,

respect to the remaining derivatives X, ", .. bor1
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etc.), once again using the fact that at every step, there is no dependence on variables
from the “lower” coordinate directions. Finally, because the X vector fields are constant-
coefficient linear combinations of coordinate vector fields, we see that while the order of
differentiation was extremely useful to exploit for computational purposes, it does not
have an effect on the final result. Therefore in both cases we conclude that

Al(ter1) "7 Al(tete)
X{he Xioty) det M{'R = det MR det :
Ac(lc+1) t /\c(échc)
Now (64) with ¢ = k gives the final conclusion that
1 k k
xMoxm. "X((k)71)c+1 - XPRUR(BEW), .. B(t*), 0)
k-1 [ MGern o Miero) (65)
= H det K :
=0
’ AcGjet1) 1 Ac(jete)

The inequality (65) gives exactly the desired inequality (60), i.e.,

max |(U*a);¥1 T (U*)gkq)(Dmp(xvy), B Dxp(m7y))|

jons | == ey |=e
k-1 MGet) 0 (et

> H det : :
=0 )\c(ijrl) s )‘c(jc+c)

under the assumption that U;; = 1 for each i. When the diagonal elements of U are not
all 1, one may instead apply (65) by choosing

J
(1) _ -1
Xj = E Ujj Ujgaty,)
=1

foreachi=1,...,kand j = 1,...,k. Because each subscript index in the set {1,..., k}
appears exactly ¢ times among the derivatives on the left-hand side of (65), multiplying
both sides of (65) by |det U|¢ (which is simply the ¢-fold product of the absolute value
of the diagonal elements of U) gives the more general inequality

max  |(UF0)7" -+ (UF) " @(Dap(2,y), - - ., Dap(a, y))|

o | ==l |=e

k1 M(er1) 0 M(jete)
> |det U[° [ det : :

=0 Ac(jer1) 0 Acjere)
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for arbitrary invertible upper-triangular matrix U; if U is not invertible, the inequality
just established is trivially true. This is exactly the desired inequality (60).

By (58) and (59) (fixing s = ¢), it follows that the appropriate density w(t) from (58)
is at least bounded below by a fixed implicit constant (depending only on n) times K /e
where

k-1 MGet1) 0 AM(ete)
K = H det :

=0

’ AcGet1) 0 Ac(jete)

By Theorem 4, the measure K/¢dt satisfies K'/¢dt < wdt, so that
c
sup [@({Dapla,y) 1| 2 KM o(F n75)]

for all Borel sets F© C R™. Assuming that K > 0, the inequality (7) must hold by
Theorem 2 after fixing m = n and s = n — k. This is exactly the desired conclusion of
Theorem 3.

5.5. A generalization

The nature of nonconcentration inequalities such as the main hypothesis (5) of Theo-
rem 2 is that when (5) can be shown to for some model operator, this can often be used
to show that it must hold for some generic class of operators and that there must exist
some nontrivial polynomial functions of the data which govern the sort of nondegeneracy
which (5) implicitly requires. The following result gives such an example:

Theorem 5. Let k and n be positive integers satisfying the inequalities k < n < 2k and let
all vectors x,yy € R™ be regarded as pairs (z',z") € R¥ x R"™* and (3, y") € R¥ x R*k,
respectively. There exists a nonempty collection of nontrivial polynomials {Py,..., Py}
on the space (RF*¥Yn=F (ie. on the space of (n — k)-tuples of k x k real matrices) such
that the following holds: For any incidence relation p of the form

plx,y) =y" —z" —Q(z',y)

where Q : RF x RF — R % is a polynomial in =’ and y', if ' C R* x R* is an open set
such that

N

> P02, Q@ y)IP >

=1

at every point (x',y") € Q' for some constant ¢ > 0, then for any Borel set E C R™, the
Radon-like operator
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Tf(z) = / F 2" + QU y))dy’
(a',y") e
satisfies

_n__
2n—k

T ne <C|E
| XEHLH(]R")_ |

for some C < oo independent of E (where |E| denotes Lebesque measure of E).

Proof. As noted above, let = (z/,2") € R x R"™* and similarly for y. Consider the
Radon-like operator parametrized by y = x + (t,Q(2',2" 4+ t)) for t € R*, which has
defining function p(z,y) := y” — 2" — Q(a’,y’) as noted in the statement of the theorem.
Using Theorem 4 and following the same initial derivation as in the proof of Theorem 3,
to verify the main hypothesis of Theorem 2, it suffices to show that

S({Dup(z,y;)}i=1)
= det MUR(DJU’Q<$/’ ?/1) - Dw/Q(l‘/, y/)a s ?DI’Q(mla ! + y;c - DI’Q(x/? yl>)

has the property that

a « n 1

(T - (T ) ®({ Dapl(a, y) } 1y ) |7

max max (66)
TEGL_k |a1|==|ax|=n—k | det T'|

is uniformly bounded below for all (z',3") € ' C R¥** where 0’ represents the partial
derivatives with respect to the single-primed y’-variables. As before, note once again that
loj| < n—k for some j € {1,...,k}, the matrix MY® will have a row which is identi-
cally zero when it is evaluated on the diagonal y; = --- = y, = y; when |a;j| = n — k for
each j € {1,...,n — k}, the resulting derivative (7%0"){" --- (T*9") * @({ Dzp(w,y) }}—1)
is expressible on the diagonal as a polynomial function of ai,y,Q simply because each
derivative must fall on a distinct row of MUE for the determinant to be nonzero, which
means that no higher-order derivatives in 3’ occur in nonzero terms. If R is any polyno-
mial function of the quantities

{aial T al/cakq)({Dxp(xv y)})}laﬂ:m:\akl:m

which is invariant under the natural action of T" € SL,_, then just as in the proof of
Theorem 3, it must be the case that

a « n _1
[(T*0")3 - (T*0 ) @({ Daplz, y) =y )| 7 F
max max
TEGL_k |a1|==|ay|=n—k |detT|

2 IRUO™ - 9™ DU Dap(, 9) 1) e ==l =) T
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for some implicit constant that depends only on n, k, and R. Because we know that
the quantity (66) on the left-hand side is nonzero for some choice of p (namely, the
case established by Theorem 3), this guarantees that it is possible to find a nontriv-
ial invariant polynomial R because the null cone of the SL,,_j representation associ-
ated to (66) does not trivially contain all vectors. Taking P(92,,,Q(z',y'))) to equal
R({01™" - 8,"*®({D2p(x,9)}) }ay|=--=|ar|=m) for all possible nontrivial R establishes
the conclusion of this theorem. O

5.6. Maximal codimension

The final application of Theorem 2 is to establish boundedness of certain non-
translation-invariant quadratic model operators which have the maximum possible codi-
mension for the given dimension. When the dimension of the underlying submanifold
is k, the codimension cannot exceed k2, which is simply equal to the number of mixed
partial derivatives 8%,?/.

Let z := (2/,2”) for 2/ € R* and 2” € R¥*. For convenience, x} will denote the
coordinates of z’ in the standard basis and z}; will be the coordinates of z”, where i, j
range over {1,...,k}. The operator which will be studied here is given by the definition

Tf(x) = / @'+t Ly + 248 + )}t (67)
Rk

for all measurable functions on R¥ x R¥*. The associated defining function p(z, y) maps
into R¥* and has

px,y) == —y" +a" + {xjyi}7 -1

2k+1 2k+1)
k+1° k :

Theorem 6. The Radon-like operator given by (67) is of restricted strong type (
Proof. The matrix D,p(x,y) consists of two blocks: one k? x k block on the left and a
k2 x k2 block on the right which simply equals the k2 x k? identity matrix. The block
on the left can itself be understood as composed of k x 1 sub-blocks which equal 7/’
(interpreted as a column matrix) along the block diagonal and 0 elsewhere, i.e., in row
(4,7) and column £, the entry of this matrix is y}d; ¢, with ¢ being the Kronecker §. The
simplest invariant polynomial which may be used to estimate the Brascamp-Lieb weight
is the following;:

i Dxp($7y1) 0 0
0 Dxp(iﬂ,yQ) :
O({ Dyl y;) Yi21) := det : - : 0
0 0  Dup(z,yk)
| Dop(z, yis1) < Dap(x,yp+1) |
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To compute this determinant, subtract one copy of each of the upper block rows from
the bottom block row and expand the determinant in those columns corresponding to
the k? x k2 identity blocks of D,p(z,y1), ..., Dyp(z,yx); since there are now no nonzero
entries in these columns in the final block row, the expansion is trivial and one concludes
that, up to a possible factor of £1, the determinant equals

Y1 —y1 0 - 0 Ykl —Ye O - 0

det 0

: ) ) . 0
0 R 0 R

where each yj1 — y; is understood as a k x 1 block, as is each 0. Rearranging columns,
this matrix can itself be brought into block form, and consequently

k
DD pl,yp) VD] = [det [ =1 s — ]| -

This ® corresponds to the case of a multilinear determinant functional, which has been
studied in a variety of contexts [10]. In particular, it is known (see [11]) that

sup |det[yk+1—y1 yk+1—yk}|Z|F|
Y1 Yk1 EF

for any Borel set F' € R¥, so it follows that

sup [2({Dap(z,y1) DI 2 lo(*S N F)[*.

Y1y Y1 EFNTE

By (26) with m = k+1,n = k(k+ 1) and d; = --+ = d4y1 = k? (one can see that
the exponent is k? by using multilinearity of the determinant defining ® as a function

of its rows), it follows that |W({Dip(x,yj)}fill| 2 |P({Dyp(x, y])}fill)L so Theorem 2

applies when s = k to give that

b1
ITXEI 218 g gy S BV

for all Borel E C RF x R¥*. 0
6. Appendix

This Appendix contains the proof of Lemma 5, which establishes the existence of a
“normalized” defining function which satisfies a number of desirable properties. Lemma 5
was used in Section 2.3 to complete the proof of Theorem 1. The proof of Lemma 5 is
essentially a consequence of a quantitative version of the Implicit Function Theorem.
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To simplify matters somewhat, it is useful to adopt some additional notation. For any
x € R™ and any r > 0, let Q,, := x + (—r,7)™. Fix | - | to be the ¢°° norm R"™ in the
standard coordinates and further fix || - || to be the £ — £°° operator norm on matrices
in R™*™, There is no intrinsic reason why such a choice is required, but having norm
balls equal to product boxes makes the application of these results somewhat simpler.

Proposition 7. Let ® be an everywhere differentiable map from the ball Qy, » into R" %,
where 0 < k < n. Let D®, be the (n — k) x n derivative matriz of ® at x and let R be
an n x (n— k) matriz such that

sup ||[D®,R—-1I||<c<Ll.
2€Qzg,r

If |®(z0)| < r||R||7H(1 — ¢), there exists some u € R™ such that the point x = x¢ + Ru
satisfies © € Quy.ry ®(x) =0, and |z — xo| < ||R||(1 — )7 ®(z0)]-

Proof. The point x will be the limit of the sequence given by
Tjp1 = ;= RO(x;)

for all j > 0. By assumption, |®(z)| < r||R||~(1 — ¢). Suppose that for some value of
the index j, it is known that the following inequalities hold:

()] < ¢7@(x0),

1—¢
|z — 2ol < ||RH1—_C|‘I>(9CO)\ <r(l-¢).
By definition of ;1 and the above inequality for |®(xz;)|,
|wj4+1 — 25| < ||Rl|e?|®(x0)| (68)
which gives that

) 1—citt
2541 = @ol < g — zo| +[|R]||(z0)| < IRl ———~

|®(x0)| < r(1 — ).

One implication of this inequality is that the line segment joining x; and x;1 belongs
to Qz,,r- Consequently, the function

t— <I>(:1cj — tR‘P(LL']))

is well-defined and differentiable for all ¢ in some open interval containing [0, 1]. By the
chain rule and the Mean Value Theorem, for any z € R™, there is some ¢ € [0,1] such
that
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(2, =Dy, _tra(e,) RO(x)) = (2, ®(xj11) — (z)),

where (-, -) is the usual inner product in standard coordinates. For convenience, let z, :=
xj —tR®(z;). Rearranging terms in the above expression yields

(2, 2(xj41)) = — (2, (DPs, R — I)®(z;)) .

Taking absolute values and a supremum over all z with coordinates whose magnitudes
sum to 1 and applying the main hypothesis of this proposition gives that |®(z;4+1)| <
¢|®(z;)|, which implies that the induction hypotheses continue to hold when the index j is
replaced by j+1. By (68), the sequence {x;} must be Cauchy; by continuity of ®, defining
x = lim;_,o, x; gives that ®(z) = lim; o, ®(z;) = 0. The definition of the sequence
and continuity of matrix multiplication gives that z — zg = Ru for some v € R", and
the limit of the induction hypotheses gives that |z — x| < [|R||(1 —¢)7|®(x0)| <r. O

Proposition 8. Let ®, R, xg, and r be as in Proposition 7 and suppose k > 0. Let V be
the orthogonal complement of the image space of R and suppose

sup |D®,v| < C.
weon,r
[v]<1, veV

If |®(x0)| < 5IIRI|T (1 = ¢), then

€ Q136001 0t (s, A )

for some constant ¢, > 0 that depends only on n.

Proof. The new hypothesis guarantees that |®(xg 4+ v) — ®(xo)| < C|v| whenever v € V
and |v| < r. The proof is by the Mean Value Theorem as it just appeared:

(2, ®(z0 + v) = (20))| = [{z, Dy, v)]|

for some z, € Qg r; applying the new hypothesis of this proposition and taking a
supremum over z gives |®(zo + v) — ®(z0)| < C|v].

Suppose now that |®(zg)] < Z||R||7*(1 — ¢) as assumed in the statement of this
proposition. For any v € V' such that |v| < min{%, 5||R||~(1 —¢)},

r _
|@(z0 +v) = @(0)| < Clo| < FlIRIITH (1 — o),
which means that |®(zg 4 v)| < |®(z0)| + ||R]|7*(1 — ¢) < 5||R]|~(1 — ¢). Moreover,

Quotv,r/2 C Quy,r, S0 the previous proposition applies on the box with new center
xo + v and new radius r/2. This implies that there exists u € R™ such that ®(zo +
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v+ Ru) = 0 and |Ru| < §. In other words, the zero set {x € Qu,,» | ®(x) = 0} must
contain a graph over the k-dimensional set {v € V | |v| <min{%, &[|R[|7*(1 - ¢)} },
which forces the graph to have k-dimensional Hausdorff measure at least as large as the k-
dimensional Hausdorff measure of the parametrizing set. This establishes the conclusion
of the proposition. 0O

Lemma 5. Suppose p is a smooth defining function on some open set  of an incidence
relation X. There exists some open set Q0 C Q containing ¥ and another smooth defining
function p of X such that the following hold:

1. At every point (x,y) € X, the matriz Dyp(x,y) has rows which are orthonormal
vectors in R™.
2. At every point (x,y) € X,

det Dyp(Dyp)" <y AT
————— = =det D,p(D .
det Dyp(Dyp)T — 1t PuP(PuP)

1 =det D,p(D.p)" and

3. For every compact subset K C X, there is an open set U C containing K and a

positive 0y such that for any (x,y) € U, |p(x,y)| < 0k, for any 6 < §y (where Kk, is
some fized constant depending only on n) implies that

Hk(Q;E,(S N Ey) Z cnék
for some positive ¢, depending only on n.

Proof. For any real symmetric positive-definite matrix A, let A=1/2 be the matrix such
that every eigenvector e of A with eigenvector A > 0 of A is also an eigenvector with

—1/2

eigenvalue \ of A=1/2 Tt is relatively easy to see that the mapping A — A~1/2 is a

smooth function of A; the standard way to see this is to use the identity

1

ATV = /21/2(,2[ —A)ldz

21
¥

where z1/2 is a branch of the square root on the right half space Rez > 0 which equals
the positive square root on the real axis and = is, for example, a closed circular contour
in the right half space which encloses all eigenvalues of A.

Let Q € Q be the neighborhood of ¥ on which det D,p(D,p)T > 0; the function

p(x,y) = (Dap(Dap)") "2 p(z,y)

is well-defined and smooth on  provided that p is smooth. This mapping  vanishes
if and only if p vanishes (so that ¥ is also the set of points (z,y) where p(x,y) = 0),
and by the product rule, D,j = (Dyp(D.p)")~*/2D,p at all points of ¥ (since all terms
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in which derivatives fall on (D,p(Dp)")~/? vanish because p vanishes). This implies
that D,p(D.p)T is the identity matrix at all points (z,y) € ¥, which means that the
rows of D,p are mutually orthogonal unit vectors when (z,y) € X. The formula for
det D,p(D,p)T also follows directly from the definition of j.

Now fix any compact subset K C Y. Because K is compact, there must exist some
r > 0 such that Qg .3, X Qyg.3r C Q for any (z9,70) € K. It may further be assumed
(after possibly reducing the value of r) that

1

1D2p () (Dailao, o)) — 11 < 5

and

1
|D.p(x' 4 )v| < 3 for all v € ker D, p(z9,yo) such that [v] <1

whenever (zg,10) € K and (2/,3') € Q are any points that satisfy |z¢ — 2| < 2r and
lyo — 3’| < 2r (simply because the quantities on the left-hand sides of these inequalities
will be identically zero when (zg,y0) = (2/,3’) and are continuous functions on compact
sets, so are consequently uniformly continuous).

Now suppose U is the open set of pairs (z,y) such that |z — xg| < r and |y — yo| <7
for some (xo,y0) € K. For any (z,y) € U, fixing R := (D,p(z0,v0))T gives that

N | =

1
sup |[Dop(a’,y)R—1I|| < s and  sup  [Dap(a’,y)v| <
zleQz,S 2 IIGQQ‘,,S

|v|<1,v€ker RT

for any § < r. Because R consists of orthonormal columns, there must be a constant
k), > 0 depending only on n such that ||R||~! > «/,. By Propositions 7 and 8 (taking
c=C = 1) It follows that

6 !
1p(z,y)| < % = H*(Qus NTY) > ¢, 0%
The lemma is complete by simply fixing dg := r and &, := &, /6. O
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