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This paper considers the problem of establishing Lp-improving 
inequalities for Radon-like operators in intermediate dimen-
sions (i.e., for averages overs submanifolds which are neither 
curves nor hypersurfaces). Due to limitations in existing ap-
proaches, previous results in this regime are comparatively 
sparse and tend to require special numerical relationships 
between the dimension n of the ambient space and the di-
mension k of the submanifolds. This paper develops a new 
approach to this problem based on a continuum version of 
the Kakeya-Brascamp-Lieb inequality, established by Zhang 
[28] and extended by Zorin-Kranich [29], and on recent results 
for geometric nonconcentration inequalities [11]. As an initial 
application of this new approach, this paper establishes sharp 
restricted strong type Lp-improving inequalities for certain 
model quadratic submanifolds in the range k < n ≤ 2k.
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1. Introduction

1.1. Background and statement of results

Lp-improving estimates for Radon-like operators have been a fundamental object of 
study in harmonic analysis for many decades and find applications in a number of inter-
esting problems in PDEs and elsewhere (see, e.g., [17]). Since the late 1990s, a favored 
approach has been a combinatorial one, pioneered by Christ [7], who was inspired by 
Bourgain [5,6], Wolff [26,27], and Schlag [21], as well as others. As this approach is com-
monly executed, it involves the construction of a so-called “inflation map” which iterates 
the geometry of the operator in much the same way that a TT ∗ argument would. A 
key feature of the inflation map is that the dimension of its domain (usually comprised 
of products of fibers) and its target space must generally match and, when they do, 
the map must have a Jacobian determinant which is nonzero on a dense open set. The 
difficulty of completing a proof, once the inflation map has been obtained, boils down 
to a delicate understanding of how the degeneracy of the Jacobian determinant leads to 
certain integral inequalities.

A principal limitation of this approach is that inflation maps are often difficult to 
construct or analyze unless the dimension and the codimension of the underlying sub-
manifolds happen to satisfy simple numerical relationships, e.g., when one is an integer 
multiple of the other. For this reason, there are many gaps in the literature for Radon-
like operators of intermediate dimension (being neither curves nor hypersurfaces) when 
the dimension and codimension are generically chosen.

In this paper, we introduce a new approach to this problem which allows one to 
circumvent the need for an explicit inflation map. The overall philosophy of the proof 
is still fundamentally combinatorial and very deeply connected to earlier approaches, 
but incorporates recent ideas including the so-called Kakeya-Brascamp-Lieb inequality, 
proved by Zhang [28] and further developed by Zorin-Kranich [29], and nonconcentration 
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inequalities [11]. The result is a significant shift in the structure of the argument which 
removes a number of important barriers and gives a unified framework which applies 
across a number of situations with wildly different inflation maps (or no known inflation 
map at all).

Central to this approach is a new understanding of the Brascamp-Lieb constant. To 
define it in a form which is most suitable for the present purposes, let m, n, and k be 
positive integers with n > k and suppose that π1, . . . , πm are linear maps from Rn to 
Rn−k. Fix p := n

m(n−k) . Let W({πj}mj=1), which will be called the Brascamp-Lieb weight 
associated to the maps {πj}mj=1, be defined to equal the largest nonnegative real number 
such that

W({πj}mj=1)
∫
Rn

⎡⎣ m∏
j=1

fj(πjx)

⎤⎦p

dx ≤

⎡⎣ m∏
j=1

∫
Rn−k

fj

⎤⎦p

(1)

holds for all nonnegative measurable functions fj on Rn−k, j = 1, . . . , m.
At the greatest level of generality, the results of this paper are simplest to state for 

Radon-like operators which are defined in terms of an incidence relation Σ which is itself 
understood to be the zero set of a defining function ρ. More precisely, let Ω ⊂ Rn ×Rn, 
and let ρ : Ω → Rn−k be a smooth function such that at every point (x, y) ∈ Ω such 
that ρ(x, y) = (ρ1(x, y), . . . , ρn−k(x, y)) = 0, the matrices

Dxρ :=

⎡⎢⎢⎣
∂ρ1
∂x1

· · · ∂ρ1
∂xn

...
. . .

...
∂ρn−k

∂x1
· · · ∂ρn−k

∂xn

⎤⎥⎥⎦ and Dyρ :=

⎡⎢⎢⎣
∂ρ1
∂y1

· · · ∂ρ1
∂yn

...
. . .

...
∂ρn−k

∂y1
· · · ∂ρn−k

∂yn

⎤⎥⎥⎦ (2)

(which will be called the left and right derivative matrices of ρ, respectively) both have 
full rank n − k. We call the set Σ := {(x, y) ∈ Ω | ρ(x, y) = 0} the incidence relation 
associated to ρ and call ρ a defining function of the incidence relation Σ ⊂ Ω. By virtue 
of the Implicit Function Theorem, the sets

xΣ := {y ∈ Rn | (x, y) ∈ Ω and ρ(x, y) = 0}

and

Σy := {x ∈ Rn | (x, y) ∈ Ω and ρ(x, y) = 0}

are embedded k-dimensional submanifolds of Rn for any values of the parameters x or 
y, respectively. The incidence relation Σ will be called left-algebraic of degree d when 
for each y such that Σy is nonempty, Σy is contained in a k-dimensional affine algebraic 
variety of degree at most d (where we do not distinguish between affine algebraic sets 
and affine algebraic varieties and do not require irreducibility). It is also important to 
define a canonical measure dσ on each xΣ by means of the formula



4 P.T. Gressman / Advances in Mathematics 387 (2021) 107831
∫
xΣ

fdσ :=
∫
xΣ

f(y) dHk(y)
det(Dyρ(x, y)(Dyρ(x, y))T )1/2

, (3)

where dHk is the usual k-dimensional Hausdorff measure restricted to xΣ. Analogous 
measures on Σy may be defined as well, but will not be needed.

The first main result of this paper is the following continuum version of the Kakeya-
Brascamp-Lieb inequality:

Theorem 1. Suppose Σ is a left-algebraic incidence relation of degree d with defining 
function ρ. Then for any nonnegative Lebesgue integrable functions f1, . . . , fm on Rn,

∫
Rn

⎡⎣∫
xΣ

· · ·
∫
xΣ

[
W({Dxρ(x, yj)}mj=1)

] 1
p

m∏
j=1

fj(yj) dσ(y1) · · · dσ(ym)

⎤⎦p

dx

≤ C

m∏
j=1

(∫
fj

)p
(4)

for some C < ∞ depending only on n, m, and d, where W({Dxρ(x, yj)}mj=1) is the 
constant as defined by (1) when πj := Dxρ(x, yj) for each j = 1, . . . , m.

The inequality (4) is the main new tool of this paper for studying the Lp-improving 
properties of Radon-like operators in intermediate dimensions. When combined with 
recent new machinery regarding nonconcentration functionals [11], the inequality (4)
can be used as a direct replacement for an inflation map construction and the associated 
degenerate change of variables formula. This overcomes some significant limitations of 
that approach in the regime of intermediate dimensions. The most general result of this 
paper concerning Lp-improving properties is the following:

Theorem 2. Suppose Σ ⊂ Ω is a left-algebraic incidence relation with defining function 
ρ. Suppose also that there exists c > 0 for which

sup
y1,...,ym∈F

[W ({Dxρ(x, yj)}mj=1)]
1
p ≥ c(σ(F ∩ xΣ))s (5)

for all x ∈ Rn and all Borel subsets F ⊂ xΣ, where σ is the measure (3). Then the 
Radon-like transform

Tf(x) :=
∫
xΣ

fdσ (6)

satisfies the inequality

(∫
|TχE(x)|

n(m+s)
(n−k)m dx

)m(n−k)
n(m+s)

≤ C|E| m
m+s (7)
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for all Borel sets E ⊂ Rn with constant C which depends only on n, k, m, s, c, and the 
degree of Σ. Here |E| denotes the Lebesgue measure of E.

We call (7) a restricted strong type (m+s
m , n(m+s)

(n−k)m ) inequality for T following usual 
conventions, e.g. [1]. In Section 5.1 we give several examples of how one can verify 
the main hypothesis (5) in a number of important special cases. The broadest of these 
applications is:

Theorem 3. For any integers n, k satisfying k < n ≤ 2k, consider the Radon-like operator 
acting on functions on Rn given by

Tf(x) :=
∫
Rk

f

(
x1 + t1, . . . , xk + tk,

xk+1 + 1
2

k∑
i=1

λ1it
2
i , . . . , xn + 1

2

k∑
i=1

λ(n−k)it
2
i

)
dt,

(8)

where λji is a (n − k) × k matrix whose minors satisfy the constraint

det

⎡⎢⎣ λ1i · · · λ1(i+n−k−1)
...

. . .
...

λ(n−k)i · · · λ(n−k)(i+n−k−1)

⎤⎥⎦ 	= 0

for all i (interpreting the columns as periodic with period k to make sense of the index 
i + n − k − 1 when i + n − k − 1 > k). Then for all Borel sets E ⊂ Rn,

||TχE ||
L

2n−k
n−k (Rn)

≤ C|E| n
2n−k (9)

for some C < ∞ independent of E.

A standard Knapp-type argument shows that the exponents in the conclusion (9)
cannot be improved; as such, Theorem 3 can be regarded as an extension of work of by 
D. Oberlin [16] concerning “model surface” quadratic submanifolds. We note that it is 
understood through work of Ricci [19] that quadratic model surfaces exist with dimension 
k much less than n/2 when n is large; the restriction n ≤ k/2 present in Theorem 3 is 
not a fundamental limitation of the method; in particular, Section 5.6 illustrates how 
the method can be applied to a canonical non-translation-invariant quadratic Radon-like 
operator which integrates over submanifolds of dimension k and codimension k2.

1.2. Outline and notation

The remainder of this paper is organized as follows: Section 2 contains the proof 
of Theorem 1, which is derived from a discrete inequality of Zhang and Zorin-Kranich 
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using a host of essentially standard limiting arguments. Section 3 proves a number of 
important new results about the nature of the Brascamp-Lieb constant. In the context 
of Theorem 2, the most important of these is Lemma 2, which establishes the compara-
bility of the Brascamp-Lieb constant and a supremum of certain invariant polynomials. 
The approach is to observe a deep connection between the Brascamp-Lieb constant and 
the field of Geometric Invariant Theory. Lemma 3 also gives important insight into 
the family of these invariant polynomials, and in particular establishes that each such 
polynomial can be expressed as the determinant of a matrix with certain simple block 
structure, which is particularly useful when seeking to apply Theorem 2. Section 4 gives 
the proof of Theorem 2. The proof is a relatively straightforward combination of Theo-
rem 1, Lemma 2 and Proposition 4, which is itself a generalization of a result which was 
central to the study of nonconcentration inequalities [11]. Section 5 provides a number 
of sample applications of Theorem 2 which include the moment curve case studied by 
Christ [7], Theorem 3, and some non-translation-invariant extensions. Finally, Section 6
is an appendix which provides some elementary quantitative versions of the Inverse and 
Implicit Function Theorems which are needed in the proof of Theorem 1.

The remainder of this paper employs the notation � as is now rather commonly done: 
the statement A � B will mean that there exists a finite nonnegative constant C such 
that A ≤ CB holds uniformly over some range of parameters of A and B. When those 
parameters are not readily apparent, they will be explicitly identified, e.g., “Aj � Bj

uniformly for all j.” The notation A � B is defined analogously, and A ≈ B will be used 
to indicate that both A � B and A � B hold simultaneously.

Another important piece of space-saving notation which will be used heavily is the 
following: for any objects p1, . . . , pm, the notation {pj}mj=1 will denote the m-tuple 
(p1, . . . , pm).

2. Continuous Kakeya-Brascamp-Lieb: proof of Theorem 1

The core result of this section is the proof of Theorem 1. Our derivation is based di-
rectly on the Kakeya-Brascamp-Lieb inequality of Zorin-Kranich [29], which is a natural 
evolution of an earlier result of Zhang [28]. Zhang’s result was itself inspired by Guth’s 
approach to endpoint multilinear Kakeya [12], which was prompted by and built upon 
work of Bennett, Carbery, and Tao in the non-endpoint case [4].

2.1. Reduction to smooth functions

The first step in the proof of Theorem 1 is to show that it suffices to prove (4) for non-
negative smooth functions fj of compact support. This follows by standard arguments, 
but as p will generally be less than one, it is reasonable to proceed carefully nevertheless. 
The auxiliary result needed is that for any nonnegative Lebesgue integrable function f
on Rn and any δ > 0, there is a pointwise nondecreasing sequence f� of nonnegative 
smooth functions of compact support such that
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f(x) ≤ lim
�→∞

f�(x) for all x ∈ Rn

(as opposed to merely almost everywhere) such that∫
f� ≤ δ +

∫
f

for all �. To establish this auxiliary result, let η > 0 be a positive real number satisfying

(1 + η)
∫

f ≤ δ

3 +
∫

f

and let Fj :=
{
x ∈ Rn

∣∣ (1 + η)j−1 < f(x) ≤ (1 + η)j
}
. By definition of these sets, one 

has the trivial inequality

f(x) ≤
∞∑

j=−∞
(1 + η)jχFj

(x)

for every x ∈ Rn (where the sum is interpreted as an extended real number). Next, for 
each j ∈ Z, let Oj be an open set containing Fj , each chosen so that

∑
j

(1 + η)j |Oj \ Fj | ≤
δ

3 .

Decompose each Oj into nonoverlapping dyadic boxes Qjk (i.e., boxes of the form 
[k12�, (k1 + 1)2�] × · · · × [kn2�, (kn + 1)2�] for integers k1, . . . , kn and �), and for each 
dyadic box, select a smooth nonnegative function of compact support ϕjk which is iden-
tically 1 on Qjk in such a way that the entire ensemble of functions satisfies

∑
j,k

(1 + η)j
∫

Rn\Qjk

ϕjk ≤ δ

3 .

To bound f everywhere by the limit of an appropriate nondecreasing sequence f�, one 
may simply select some ordering of the countably many dyadic boxes Qjk and let fn be 
the sequence of partial sums of (1 + η)jϕjk. The conclusion that lim�→∞ f�(x) is greater 
than f(x) at every point follows directly from the fact that ϕjk ≥ 1 on Qjk and the 
union of the Qjk’s contains Fj for each j. Similarly,

lim
�→∞

∫
f� =

∫ ∑
j,k

(1 + η)jϕjk ≤
∑
j,k

(1 + η)j

⎡⎢⎣|Qjk| +
∫

Rn\Qjk

ϕjk

⎤⎥⎦
≤ δ

3 +
∑

(1 + η)j |Oj |

j
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≤ δ

3 +
∑
j

(1 + η)j [|Fj | + |Oj \ Fj |]

≤ 2δ
3 + (1 + η)

∑
j

(1 + η)j−1|Fj |

≤ 2δ
3 + (1 + η)

∫
f ≤ δ +

∫
f.

Assuming that (4) holds for all m-tuples of smooth nonnegative functions of compact 
support, the passage to general integrable functions is achieved by an application of 
the Monotone Convergence Theorem (which applies because p > 0) for the particular 
approximating sequences just constructed, one for each of the m functions appearing in 
(4), and then letting δ → 0+.

2.2. Kakeya-Brascamp-Lieb for functions of varieties

After restricting attention to smooth functions of compact support, the next signifi-
cant step in the proof of (4) builds on the following special case of the Kakeya-Brascamp-
Lieb inequality as established by Zorin-Kranich [29], which is itself a generalization of 
the closely related Theorem 8.1 of Zhang [28]:

Theorem (Theorem 1.7 of [29]). Let Q be the collection of all boxes [j1, j1 + 1] × · · · ×
[jn, jn + 1] for integers j1, . . . , jn and suppose that H1, . . . , Hm are affine algebraic vari-
eties in Rn with dimHj = k. Then

∑
Q∈Q

⎛⎜⎝ ∫
∏m

j=1(Hj∩Q)

[
W({Txj

Hj}mj=1)
] 1

p dHk(x1) · · · dHk(xm)

⎞⎟⎠
p

≤ Cn

m∏
j=1

(degHj)p.

(10)

Here p and W are as in (1), and for each smooth point xj of Hj, Txj
Hj denotes the 

orthogonal projection from Rn onto the orthogonal complement of the tangent space of 
Hj at xj. The constant Cn depends only on n.

The proof of Theorem 1 proceeds by deducing some self-improvements of the above 
theorem which generalize it first to a discrete weighted version of Theorem 1 and then to a 
continuous analogue. These refinements are the contents of the upcoming Propositions 1
and 2, respectively.

For convenience in the arguments that follow, let Q0 be the box [−1/2, 1/2]n and let 
Qx = x +Q0 for all x ∈ Rn. The norm | · | on Rn will denote the �∞ norm in the standard 
coordinate basis. Furthermore, given x ∈ Rn and an m-tuple {Hj}mj=1 of affine algebraic 
varieties in Rn, define
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ωx({Hj}mj=1) :=
∫

∏m
j=1(Hj∩Qx)

[
W({Txj

Hj}mj=1)
] 1

p dHk(x1) · · · dHk(xm). (11)

Proposition 1. If E1, . . . , Em are finite sets of k-dimensional varieties in Rn and if Nj :
Ej → R≥0 for each j = 1, . . . , m, then

∫
Rn

⎡⎢⎢⎣ ∑
H1∈E1,...,

Hm∈Em

⎛⎝ m∏
j=1

Nj(Hj)

⎞⎠ωx({Hj}mj=1)

⎤⎥⎥⎦
p

dx

≤ Cn

m∏
j=1

⎡⎣ ∑
H∈Ej

Nj(H) degH

⎤⎦p

,

(12)

where p and Cn are the same as in (10).

Proof. The first step of this proposition is to replace the sum over Q ∈ Q in (10) by an 
integral as in [28]. To do this, let x ∈ Rn be fixed and apply (10) to the shifted varieties 
{−x + Hj}mj=1; note that shifting does not change degree. For any Q ∈ Q,∫

(−x+H1)∩Q

· · ·
∫

(−x+Hm)∩Q

[
W({Txj

(−x + Hj)}mj=1)
] 1

p dHk(xm) · · · dHk(x1)

=
∫

H1∩(x+Q)

· · ·
∫

Hm∩(x+Q)

[
W({Txj

Hj}mj=1)
] 1

p dHk(xm) · · · dHk(x1)

by translation-invariance of Hausdorff measure. Since the sum of this quantity over Q ∈ Q
is bounded by Cn

∏
j(degHj)p for all x ∈ Rn, it follows that

∑
�∈Zn

[
ωx+�({Hj}mj=1)

]p ≤ Cn

m∏
j=1

(degHj)p

for all x ∈ Rn. Integrating x over [0, 1]n gives

∫
Rn

[
ωx({Hj}mj=1)

]p
dx ≤ Cn

m∏
j=1

(degHj)p (13)

for any m-tuple of affine varieties H1, . . . , Hm.
The next step is to introduce the weights Nj . To that end, suppose initially that Nj

is any nonnegative integer-valued function on Ej for each j = 1, . . . , m. For any fixed 
δ ∈ (0, 1) and each j = 1, . . . , m, let H̃j be a union of varieties of the form uji+(1 −δ)Hj as 
Hj ranges over all varieties in Ej with Nj(Hj) > 0 and as i ranges over {1, . . . , Nj(Hj)}. 
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Assume also that the shifts uji satisfy |uji| < δ/2 and are chosen so that no two of 
the varieties uji + (1 − δ)Hj are equal. The key idea in the proof of this proposition is 
to apply (13) to the varieties H̃j . First observe that ωx({H̃j}mj=1) expands as a sum of 
terms of the form ωx({uji + (1 − δ)Hj}mj=1), where for each j, uji + (1 − δ)Hj is one of 
the varieties just described whose union is H̃j . Each such term ωx({uji +(1 − δ)Hj}mj=1)
is itself an integral over ((u1i + (1 − δ)H1) ∩Qx) × · · · ((umi + (1 − δ)Hm) ∩Qx) of the 
corresponding weight W1/p generated by the orthogonal projections onto the orthogonal 
complement of the tangent spaces Txj

(uji +(1 − δ)Hj). Observe that (uji +(1 − δ)Hj) ∩
Qx = uji + ((1 − δ)Hj) ∩ Qx−uji

= uji + (1 − δ)(Hj ∩ (1 − δ)−1Qx−uji
) and that 

(1 − δ)−1Qx−uji
⊃ Q(1−δ)−1x. To see this last fact, note that

(1 − δ)−1x + y = (1 − δ)−1(x− uji) + (1 − δ)−1uji + y,

and when |y| < 1/2, it must follow that |(1 −δ)−1uj+y| ≤ δ(1 −δ)−1/2 +1/2 = (1 −δ)−1/2, 
so that

(1 − δ)−1x + y = (1 − δ)−1 (x− uji + ỹ)

for some |ỹ| ≤ 1/2. These elementary observations combined with a sequence of changes 
of variables imply that∫

∏m
j=1((uji+Hj)∩Qx)

[
W({Txj

(uji + (1 − δ)Hj)}mj=1)
] 1

p dHk(x1) · · · dHk(xm)

≥
∫

∏m
j=1(1−δ)(Hj∩Q(1−δ)−1x)

[
W({Txj

((1 − δ)Hj)}mj=1)
] 1

p dHk(x1) · · · dHk(xm)

= (1 − δ)mk

∫
∏m

j=1(Hj∩Q(1−δ)−1x)

[
W({Txj

Hj}mj=1)
] 1

p dHk(x1) · · · dHk(xm),

i.e.,

ω(1−δ)−1x({Hj}mj=1) ≤ (1 − δ)−kmωx({uji + (1 − δ)Hj}mj=1).

Summing over the varieties forming each H̃j gives∑
H1∈E1,...,Hm∈Em

Nj(Hj)ω(1−δ)−1x({Hj}mj=1) ≤ (1 − δ)−kmωx({H̃j}mj=1). (14)

Since deg H̃j ≤
∑

Hj∈Ej
Nj(Hj) degHj , applying (13) to the varieties H̃j , invoking the 

inequality (14), applying a change of variables in x, and sending the spacing parameter 
δ → 0+ gives the conclusion of this proposition when Nj is integer-valued.
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Because both sides of this inequality are homogeneous of degree p with respect to 
each Nj , multiplying each Nj by a nonzero real number preserves both sides of the 
inequality, meaning the inequality remains true when each Nj is a positive real multiple of 
a nonnegative integer-valued function. However, every nonnegative real-valued function 
Nj is uniformly comparable to such a function with constants which are as close as 
desired to 1. Therefore the proposition must be true in the general case of each Nj being 
an arbitrary nonnegative real-valued function. �
Proposition 2. For each j = 1, . . . , m, let Uj ⊂ Rn be an open set and let Hj be a mapping 
from Uj into the set of k-dimensional varieties on Rn of degree at most Dj such that 
Hj(y) depends smoothly on y. For any nonnegative measurable functions fj on Uj,

∫
Rn

⎡⎣∫ ⎛⎝ m∏
j=1

fj(yj)

⎞⎠ωx({Hj(yj)}mj=1)dy1 · · · dym

⎤⎦p

dx

≤ Cn

m∏
j=1

[
Dj

∫
fj

]p
,

(15)

where p and ωx are as above. The constant Cn is the same as in Proposition 1.

Proof. Because Hj(yj) depends smoothly on y, ωx({Hj(yj)}mj=1 is known to be a con-
tinuous function of y1, . . . , ym as a result work by Bennett, Bez, Cowling, and Flock [2]. 
For any δ > 0, decompose Rn into a nonoverlapping union of boxes of side length δ. Fix 
arbitrary compact sets Kj ⊂ Uj and let Qj(δ) be a finite collection of these cubes which 
covers Kj . For each j, let Ej be the collection of varieties given by

Ej := {H | H = Hj(y) for y at the center of a cube Q′ ∈ Qj(δ)} .

For convenience, let Hj(Q′) also denote the variety Hj(y) when y is taken to be the 
center of Q′. Fix any nonnegative measurable functions fj on Uj and let

Nj(H) :=
∑

Q′∈Qj(δ)
Hj(Q′)=H

∫
Q′∩Kj

fj .

The left-hand side of (12) is exactly equal to

∫ ⎡⎣∫
Km

· · ·
∫
K1

m∏
j=1

fj(yj)ωx({Hj(y′j)}mj=1)dy1 · · · dym

⎤⎦p

dx, (16)

where y′j is the center of the cube Q′ ∈ Qj(δ) containing yj (which is uniquely defined for 
a.e. yj). By Monotone Convergence and continuity of the reciprocal of the Brascamp-Lieb 
constant,
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∫ ⎡⎣∫
Km

· · ·
∫
K1

m∏
j=1

fj(yj)ωx({Hj(yj)}mj=1)dy1 · · · dym

⎤⎦p

dx

=
∫

lim
δ→0+

⎡⎣∫
Km

· · ·
∫
K1

m∏
j=1

fj(yj) inf
|zj−yj |≤δ

ωx({Hj(zj)}mj=1)dy1 · · · dym

⎤⎦p

dx

= lim
δ→0+

∫ ⎡⎣∫
Km

· · ·
∫
K1

m∏
j=1

fj(yj) inf
|zj−yj |≤δ

ωx({Hj(zj)}mj=1)dy1 · · · dym

⎤⎦p

dx.

For each δ > 0,

inf
|zj−yj |≤δ

ωx({Hj(zj)}mj=1) ≤ ωx({Hj(y′j)}mj=1)

because |y − y′| ≤ δ. But then by (12), this means that the limit of (16) as δ → 0+ is 
dominated by

Cn

m∏
j=1

⎡⎢⎣Dj

∑
Q′∈Qj(δ)

∫
Q′∩Kj

fj

⎤⎥⎦
p

= Cn

m∏
j=1

⎡⎢⎣Dj

∫
Kj

fj

⎤⎥⎦
p

as desired. Because each Kj is arbitrary, a second application of Monotone Convergence 
establishes the proposition. �
2.3. Deduction of Theorem 1 from Proposition 2

Proof of Theorem 1. As already observed, it suffices to assume each fj is smooth and 
compactly supported. As the submanifolds Σy depend smoothly on y, it follows from 
Proposition 2 that for any δ > 0,

∫ ⎡⎣∫ · · ·
∫ m∏

j=1
fj(yj)ωx({δ−1Σyj}mj=1)dy1 · · · dym

⎤⎦p

dx �
m∏
j=1

(∫
fj

)p

for some implicit constant depending only on n and the maximum degree of any Σy. 
After a change of variables x �→ δ−1x,

∫ ⎡⎣δ−m(n−k)
∫

· · ·
∫ m∏

j=1
fj(yj)ωδ−1x({δ−1Σyj}mj=1)dy1 · · · dym

⎤⎦p

dx

�
m∏(∫

fj

)p
j=1
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uniformly for all positive δ, where the factor δ−m(n−k)p = δ−n arises as the Jacobian 
determinant of the change of variables.

By Lemma 5 from the Appendix, it is possible to use an alternate defining func-
tion ρ̃ which exhibits better uniformity properties than ρ itself might. In particular, for 
the defining function ρ̃ constructed there, the matrices Dxρ̃ are exactly the orthogo-
nal projections onto the orthogonal complement of the tangent space of Σx at x and 
smallness of |ρ̃(x, y)| implies proximity of x to Σy in a uniform way: |ρ̃(x, y)| ≤ δκn

for sufficiently small δ implies that the set x + (−δ, δ)n intersects Σy in a set of k-
dimensional Hausdorff measure at least comparable to δk. To proceed, one first observes 
that Txj

δ−1Σyj is the projection from Rn onto the orthogonal complement of the tangent 
space at xj ∈ δ−1Σyj . By rescaling, the tangent plane of δ−1Σy at xj is simply a shift 
of the tangent plane at δxj of Σyj , so Txj

δ−1Σyj = Dxj
ρ̃(δxj , yj). Consequently, if Qδ

x

denotes the set x + [−δ/2, δ/2]n, it follows that

ωδ−1x({δ−1Σyj}mj=1)

=
∫

∏m
j=1((δ−1Σyj )∩Qδ−1x)

[
W({Txj

δ−1Σyj}mj=1)
] 1

p dHk(x1) · · · dHk(xm)

≥ inf
x1∈(δ−1Σy1 )∩Qδ−1x,...

xm∈(δ−1Σym )∩Qδ−1x

[W({Dxj
ρ̃(δxj , yj)}mj=1)]

1
p

m∏
j=1

Hk
(
δ−1Σyj ∩Qδ−1x

)

= inf
x1∈Σy1∩Qδ

x,...

xm∈Σym∩Qδ
x

[W({Dxj
ρ̃(xj , yj)}mj=1)]

1
p δ−km

m∏
j=1

Hk
(
Σyj ∩Qδ

x

)
.

By Lemma 5, then, it follows that for any compact subset K ⊂ Σ, there is some open 
set U containing K such that whenever δ is sufficiently small,

ωδ−1x({δ−1Σyj}mj=1)

≥ cmn inf
x1∈Σy1∩Qδ

x,...

xm∈Σym∩Qδ
x

[W({Dxj
ρ̃(xj , yj)}mj=1)]

1
p

m∏
j=1

χ|ρ̃(x,yj)|<δκn/2

provided (x, yj) ∈ U for all j = 1, . . . , m.
Now the coarea formula dictates that for any continuous function fj∫

f(yj)χ|ρ̃(x,yj)|<δκn/2dyj =
∫

[−δκn/2,δκn/2]n−k

∫
ρ̃(x,·)=u

fj(yj)dσu(yj)du,

where dσu is a measure of continuous density with respect to k-dimensional Hausdorff 
measure on the level set {yj ∈ Rn | ρ̃(x, yj) = u}, which is a well-defined k-dimensional 
submanifold of Rn when u is sufficiently small. In the special case u = 0, σ0 is exactly 
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the measure dσ on xΣ which was defined in (3) (assuming that ρ there is replaced by 
ρ̃). Since everything is continuous as a function of δ when f is assumed to be continuous 
with compact support, the limit as δ → 0+ of the quantity

δ−m(n−k)
∫

· · ·
∫ m∏

j=1
fj(yj) inf

x1∈Σy1∩Qδ
x,...

xm∈Σym∩Qδ
x

[W({Dxj
ρ̃(xj , yj)}mj=1)]

1
p

·
m∏
j=1

χ|ρ̃(x,yj)|<δκn/2dy1 · · · dym

exists and equals a constant times

∫
xΣ

· · ·
∫
xΣ

[W({Dxρ̃(x, yj)}mj=1)]
1
p

m∏
j=1

fj(yj)dσ(y1) · · · dσ(ym).

Thus

∫ ⎡⎣∫
xΣ

· · ·
∫
xΣ

[W({Dxρ̃(x, yj)}mj=1)]
1
p

m∏
j=1

fj(yj)dσ(y1) · · · dσ(ym)

⎤⎦p

dx

≤ lim sup
δ→0+

∫ ⎡⎣ 1
δm(n−k)

∫
· · ·

∫
ωδ−1x({δ−1Σyj}mj=1)

m∏
j=1

fj(yj)dy1 · · · dym

⎤⎦p

dx

�
m∏
j=1

(∫
fj

)p

,

which is the desired inequality (4) with ρ replaced by ρ̃.
To revert from ρ̃ back to ρ, it simply remains to assume that switching the defining 

function in this way leaves the left-hand side of (4) unchanged. This follows from the 
identify

[
W({Mjπj}mj=1)

] 1
p =

[
W({πj}mj=1)

] 1
p

m∏
j=1

|detMj |

for Brascamp-Lieb constants, where Mj are any invertible matrices. The inequality is 
easily proved by replacing each fj(u) with fj(Mju) in (1). Since ρ̃ differs from any fixed 
defining function ρ by multiplication on the left by an invertible matrix, it follows by 
Lemma 5 that

[W({Dxρ(x, yj)}mj=1)]
1
p dσ(y1) · · · dσ(yn)
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is unchanged when defined using ρ̃ instead of ρ itself because the extra factors of 
det(Dxρ(Dxρ)T ) arising from the Brascamp-Lieb constant are exactly cancelled by the 
extra factors arising from the measure dσ. This completes the proof. �
3. The Brascamp-Lieb constant and geometric invariant theory

The next major task is to establish several general facts about the Brascamp-Lieb 
constant and its connection to Geometric Invariant Theory. These facts play a central 
role in understanding and verifying the main hypothesis (5) of Theorem 2. Throughout 
this section, for each j = 1, . . . , m, each πj : Rn → Rnj will be an arbitrary linear 
map and each pj will be a real number in [0, 1]. Following the usual convention, let the 
Brascamp-Lieb constant BL({πj , pj}mj=1) be defined to equal the smallest nonnegative 
real number such that

∫
Rn

m∏
j=1

(fj(πj(x)))pj dx ≤ BL({πj , pj}mj=1)
m∏
j=1

⎛⎝ ∫
Rnj

fj

⎞⎠pj

(17)

for all nonnegative measurable functions fj ∈ L1(Rnj ). When p1 = · · · = pm = n
m(n−k)

and n1 = · · · = nm = n −k, note that the Brascamp-Lieb constant is merely the reciprocal 
of the already-defined Brascamp-Lieb weight (1). This special case will of course be the 
most important one for the purposes of Theorem 2, but throughout most of the section 
the pj ’s will be allowed to differ.

The overall goal of this section is to establish the existence of certain invariant polyno-
mials in the entries of the πj’s which give meaningful quantitative information about the 
Brascamp-Lieb constant. These polynomials should be thought of as generalizations of 
the determinant. For this description to be useful, it will be critical to show not only ex-
istence of such polynomials, but also to provide a means by which they may be explicitly 
constructed, so that they can be used as computational tools.

3.1. Brascamp-Lieb and minimum vectors

The first major result of this section is the following lemma, which establishes an 
identity for the Brascamp-Lieb constant involving an infimum analogous to the one 
relating to minimum vectors in the sense of Kempf and Ness [13]:

Lemma 1. Suppose that the exponents pj and dimensions nj satisfy

m∑
j=1

pjnj

n
= 1. (18)

(Note: it is well-known and can be seen from scaling that (18) is necessary for the finite-
ness of the Brascamp-Lieb constant.) Then BL({πj , pj}mj=1) satisfies
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[
BL({πj , pj}mj=1)

]−1 = inf
A1∈SLn1 ,...,

Am∈SLnm ,

A∈SLn

m∏
j=1

n
− pjnj

2
j |||AjπjA

∗|||pjnj , (19)

where ||| · ||| denotes the Hilbert-Schmidt norm computed with respect to the standard 
bases and SLnj

is the Lie group of invertible nj × nj real matrices with determinant 1.

Before proceeding to the proof, it is worth observing that the direct link between the 
computation of the Brascamp-Lieb constant and Geometric Invariant Theory given by 
(19) provides a rather immediate interpretation of the work of Garg, Gurvits, Oliveira, 
and Wigderson [9]. Geometric Brascamp-Lieb data as they define it is exactly the set 
of data which are critical points of the functional on the right-hand side of (19) when 
A1, . . . , An, A are all identity matrices (i.e., geometric Brascamp-Lieb data correspond 
to minimum vectors in GIT). The functional can be shown to be convex along flows 
(A1, . . . , Am, A) := (exp(tM1), . . . , exp(tMm), exp(tM)), t ∈ R, so critical points are 
automatically global minima. The iterative method in [9] to compute the Brascamp-
Lieb constant approximates the argument of the infimum (argmin) of (19) when it exists 
by alternately computing the argmin (A1, . . . , Am) for fixed A in one step and the argmin 
A for fixed (A1, . . . , Am) in the subsequent step. (Also note that when the data is merely 
semi-stable and no global minimum exists, the algorithm instead produces a minimum 
vector with closed orbit contained in the original non-closed orbit.)

Proof. Lieb [14] established that any Brascamp-Lieb inequality has an extremizing se-
quence of Gaussians, which implies that

[
BL({πj , pj}mj=1)

]−1 = inf
A1∈GLn1 ,...,

Am∈GLnm

⎡⎣det
(∑m

j=1 pjπ
∗
jA

∗
jAjπj

)
∏m

j=1(detA∗
jAj)pj

⎤⎦
1
2

.

For any matrix A ∈ SLn,

m∑
j=1

pj |||AjπjA
∗|||2 =

m∑
j=1

pjtr(Aπ∗
jA

∗
jAjπjA

∗) = tr

⎛⎝ m∑
j=1

pjAπ∗
jA

∗
jAjπjA

∗

⎞⎠ .

Both the trace and determinant of the matrix 
∑m

j=1 pjAπ∗
jA

∗
jAjπjA

∗ can be expressed 
in terms of its eigenvalues, all of which are nonnegative. By the inequality of arithmetic 
and geometric means, abbreviated as the AM-GM inequality, applied to the eigenvalues, 
it follows that∣∣∣∣∣∣

m∑
j=1

pj
n
|||AjπjA

∗|||2
∣∣∣∣∣∣
n

≥ det
m∑
j=1

pjAπ∗
jA

∗
jAjπjA

∗ = det
m∑
j=1

pjπ
∗
jA

∗
jAjπj .
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When the infimum of the left-hand side is taken over all A ∈ SLn, the inequality must 
be equality; to see this, fix M :=

∑m
j=1 pjπ

∗
jA

∗
jAjπj . When M is invertible, equality 

must hold when A := M−1/2(detM)1/(2n); if M has a kernel of dimension � > 0, let 
P be orthogonal projection onto the kernel. Equality holds in the limit t → ∞ when 
At := t1/�P + t−1/(n−�)(I − P ). Therefore

[
BL({πj , pj}mj=1)

]−1 = inf
A1∈GLn1 ,...,

Am∈GLnm ,

A∈SLn

⎡⎣∑m
j=1 pj |||AjπjA

∗|||2

n
∏m

j=1 |detAj |
2pj
n

⎤⎦
n
2

.

A similar application of the AM-GM inequality also gives that

inf
t1>0,...,
tm>0

t
− 2p1n1

n
1 · · · t−

2pmnm
n

m

m∑
j=1

pjnj

n
t2j
|||AjπjA

∗|||2
nj

=
m∏
j=1

(
|||AjπjA

∗|||2
nj

) pjnj
n

.

To see this, the left-hand side can be seen to be greater than or equal to the right-hand 
side by using the version of AM-GM inequality which raises the term

t
− 2p1n1

n
1 · · · t−

2pmnm
n

m t2j
|||AjπjA

∗|||2
nj

to the power pjnj/n, which is allowed precisely because (18) guarantees that the 
exponents sum to 1. The reverse inequality can be established by fixing tj :=
(|||AjπjA

∗|||2/nj)−1/2 when all such constants are well-defined or by an appropriate 
limiting argument if any such tj happens to be infinite. Writing each matrix Aj as a 
nonzero constant times a matrix of determinant 1 then gives that

[
BL({πj , pj}mj=1)

]−1 = inf
A1∈SLn1 ,...,

Am∈SLnm ,

A∈SLn

m∏
j=1

n
− pjnj

2
j |||AjπjA

∗|||pjnj .

This is exactly (19). �
Before continuing, it will be helpful record an important calculation relating to 

Lemma 1 which will be useful later. As it relates to the hypothesis (5) of Theorem 2, 
Lemma 1 establishes that

[
W({πj}mj=1)

] 1
p = inf

A1,...,Am∈SLn−k

A∈SLn

1
(n− k)

m(n−k)
2

m∏
j=1

|||AjπjA
∗|||n−k (20)

when each πj is an (n − k) × n matrix and 1/p = m(n − k)/n.
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The next step in this section is to give an abstract proof of the existence of invariant 
polynomials in the entries of the πj ’s which strongly quantify the magnitude of the 
Brascamp-Lieb constant. Following this, we will consider the question of how to more 
explicitly find these polynomials.

A few minor reductions are in order. The first is that attention will be restricted to 
only those cases in which each pj is rational. By Theorem 1.13 of Bennett, Carbery, 
Christ, and Tao [3], the extreme points of the convex set

P :=
{
{pj}mj=1 ∈ [0, 1]m

∣∣ BL({πj , pj}mj=1) < ∞
}

all have rational exponents {pj}mj=1, and likewise rational exponents play a central role 
in Theorem 2. It may also be assumed that no pj equals zero since the inequality (17)
will be trivially independent of πj for any index j such that pj = 0, meaning that one 
can simply reduce m and consider the Brascamp-Lieb inequality for a strictly smaller 
number of πj ’s.

The expression (19) has deep connections to the theory of minimum vectors in Geomet-
ric Invariant Theory. Pursuing this analogy, it is natural to make a connection between 
BL({πj , pj}mj=1) and polynomials invariant under the underlying group representation ρ
of SLn1 × · · · × SLnm

× SLn defined by

ρ(A1,...,Am,A)({πj}mj=1) := {AjπjA
∗}mj=1. (21)

Let Φ be any nonzero polynomial function of the matrices {πj}mj=1 which is homogeneous 
of degree dj > 0 in each πj and is ρ-invariant, i.e.,

Φ({λjπj}mj=1) = λd1
1 · · ·λdm

m Φ({πj}mj=1) for all λ1, . . . , λm ∈ R (22)

and

Φ({AjπjA
∗}mj=1) = Φ({πj}mj=1) (23)

whenever detA1 = · · · = detAm = 1 = detA. If |||Φ||| is the maximum of |Φ| on all 
m-tuples {π̃j}mj=1 such that |||π̃j ||| ≤ 1 for all j = 1, . . . , m, then scaling dictates that

|||Φ|||
m∏
j=1

|||AjπjA
∗|||dj ≥ |Φ({AjπjA

∗}mj=1)| = |Φ({πj}mj=1)|

for all inputs {πj}mj=1. If each degree dj happens to satisfy

p1n1

d1
= · · · = pmnm

dm
= 1

sΦ
(24)

for some real number sΦ, then (19) implies that
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[
BL({πj , pj}mj=1)

]−1 ≥

⎛⎝ m∏
j=1

n
− pjnj

2
j

⎞⎠ |||Φ|||−
1

sΦ |Φ({πj}mj=1)|
1

sΦ . (25)

In the specific case relating to Theorem 2, the constraint (24) is trivially satisfied when-
ever d = d1 = · · · = dm and (20) yields the inequality

[
W ({πj}mj=1)

] 1
p ≥ (n− k)−

m(n−k)
2 |||Φ|||−n−k

d |Φ({πj}mj=1)|
n−k

d . (26)

The following lemma establishes that the collection of all such invariant polynomials can 
be used to compute the order of magnitude of the Brascamp-Lieb constant:

Lemma 2. Suppose that the exponents {pj}mj=1 ∈ (0, 1]m are rational and satisfy (18). 
Let IP be the collection of all nonzero invariant polynomials Φ satisfying (22), (23), and 
(24). Then [

BL({πj , pj}mj=1)
]−1 ≈ sup

Φ∈IP
|||Φ|||−

1
sΦ |Φ({πj}mj=1)|

1
sΦ (27)

with implicit constants that are independent of {πj}mj=1 (where the supremum is under-
stood to be zero if IP = ∅). Moreover, there exists a finite subset IP0 ⊂ IP such that

sup
Φ∈IP

|||Φ|||−
1

sΦ |Φ({πj}mj=1)|
1

sΦ ≈ sup
Φ∈IP0

|||Φ|||−
1

sΦ |Φ({πj}mj=1)|
1

sΦ .

Proof. The lower bound follows immediately from (25). The upper bound will be proved 
by contradiction. Without loss of generality, it may be assumed that data exists such 
that the left-hand side of (27) is strictly positive. Suppose for each positive integer N , 
there is some data {πN

j }mj=1 such that

[
BL({πN

j , pj}mj=1)
]−1

> N sup
Φ∈IP

|||Φ|||−
1

sΦ |Φ({πN
j }mj=1)|

1
sΦ . (28)

By homogeneity of both sides in the data {πN
j }mj=1, it may be assumed that

BL({πN
j , pj}mj=1) = 1 for each N , and by replacing each tuple {πN

j }mj=1 with 
ρ(AN

1 ,...,AN
m,AN )({πN

j }mj=1) for some choice of AN
1 , . . . , AN

m and AN for each N which 
tend to minimizers of the right-hand side of (19) as N → ∞, it may further be assumed 
that

m∏
j=1

|||πN
j |||pjnj →

m∏
j=1

n
pjnj

2
j

as N → ∞. Once again, noting that both sides of (28) are homogeneous in πj for each 
j, rescaling individual πj ’s as necessary allows one to assume that |||πN

j ||| → n
1/2
j as 

N → ∞ for each j = 1, . . . , m. By passing to a subsequence in N , this means that πN
j
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converges to some limiting data for each j = 1, . . . , m. Let this limit data be denoted 
{π∞

j }mj=1. Now for any matrices A1, . . . , Am, A, by Lemma 1,

m∏
j=1

|||Ajπ
∞
j A∗|||pjnj = lim

N→∞

m∏
j=1

|||Ajπ
N
j A∗|||pjnj

≥ lim sup
N→∞

⎛⎝ m∏
j=1

n
pjnj

2
j

⎞⎠[
BL({πN

j , pj}mj=1)
]−1 =

m∏
j=1

n
pjnj

2
j ,

so taking an infimum over all A1, . . . , Am, A gives that BL({π∞
j , pj}mj=1) ≤ 1. In fact, 

this inequality must be an equality, which can be seen by simply taking each Aj and A
to be the identity. Now for any Φ ∈ IP,

1 =
[
BL({πN

j , pj}mj=1)
]−1 ≥ N |||Φ|||−

1
sΦ |Φ({πN

j }mj=1)|
1

sΦ ,

which means that Φ({πN
j }mj=1) → 0 as N → ∞. By continuity of each Φ, it follows that

[
BL({π∞

j , pj}mj=1)
]−1 = 1 and sup

Φ∈IP
|||Φ|||−

1
sΦ |Φ({π∞

j }mj=1)|
1

sΦ = 0. (29)

Since each exponent pj is rational and nonzero, it must be possible to find positive 
integers q1, . . . , qm and q such that pjnj = qj/q for each j. Now suppose that

Π({x1
i , y

1
i }q1i=1, . . . , {xm

i , ymi }qmi=1)

is any real-valued map which is linear in each xj
i ∈ Rnj and each yji ∈ Rn for i = 1, . . . , qj

and j = 1, . . . , m. The group SLn1 × · · · × SLnm
× SLn acts on the vector space V of all 

such Π by defining

ρ(A1,...,Am,A)Π({x1
i , y

1
i }q1i=1, . . . , {xm

i , ymi }qmi=1)

:= Π({A∗
1x

1
i , A

∗y1
i }q1i=1, . . . , {A∗

mxm
i , A∗ymi }qmi=1).

Let Π∞ ∈ V be the multilinear functional given by

Π∞({x1
i , y

1
i }q1i=1, . . . , {xm

i , ymi }qmi=1) :=
m∏
j=1

qj∏
i=1

〈
xj
i , π

∞
j yji

〉
(30)

where 〈·,·〉 is the usual inner product onRn. The Hilbert-Schmidt norm of ρ(A1,...,Am,A)Π∞

is exactly equal to

m∏
|||Ajπ

∞
j A∗|||qj ,
j=1
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so by Lemma 1, it follows that

1 = |||Π∞|||
n∏

j=1
n
− qpjnj

2
j =

[
BL({π∞

j , pj}mj=1)
]−q

= inf
A1∈SLn1 ,...,

Am∈SLnm ,

A∈SLn

|||ρ(A1,...,Am,A)Π∞|||
m∏
j=1

n
− qpjnj

2
j .

(31)

Combining this identity with Proposition 3 below, there must exist a nonconstant, ho-
mogeneous ρ-invariant polynomial P on V such that P (Π∞) 	= 0. Here homogeneous is 
meant in the usual sense of polynomials and specifically does not refer to (22). Suppose 
the degree of P is equal to d. Using the definition (30) of Π∞, we see that each entry of 
Π∞ is itself a product of entries of the π∞

j . Thus we may regard P (Π∞) as a polynomial 
in the entries of the π∞

j . To be explicit, regarding π1, . . . , πj as matrices of indeter-
minates, one can define Π exactly as was done in (30) by replacing π∞

1 , . . . , π∞
m with 

the π1, . . . , πm. The function P (Π) is now a polynomial in the indeterminate matrices 
π1, . . . , πm; to emphasize this dependence, define Φ({πj}mj=1) := P (Π). One must show 
that Φ satisfies (22), (23), and (24). In the former case, rescaling each πj by λj scales 
all entries of Π by λq1

1 · · ·λqm
m , and since P is homogeneous of degree d, this means that 

Φ({λjπj}mj=1) = (λq1
1 · · ·λqm

m )dΦ({πj}mj=1), which implies (22) with dj = dqj for each j
(and because pjnj = qj/q for each j, the condition (24) holds for sΦ := dq). Because 
P is ρ-invariant, Φ({πj}mj=1) = P (Π) = P (ρ(A1,...,Am,A)Π) = Φ({AjπjA

∗}mj=1), which is 
(23). Because P (Π∞) = 1, the polynomial Φ just constructed contradicts (29) because 
(29) indicates that Φ({π∞

j }mj=1) should equal zero rather than 1.
The finite subset IP0 can be taken to be only those polynomials of the form P (Π) just 

described, for those P belonging to any finite generating set of the ρ-invariant algebra 
on V , since the contradiction just derived will still hold if P (Π∞) = 0 for all such 
polynomials. �
Proposition 3. Let V be the real vector space of all maps

Π({x1
i , y

1
i }q1i=1, . . . , {xm

i , ymi }qmi=1) (32)

which are real and linear in each xj
i ∈ Rnj and each yji ∈ Rn for i = 1, . . . , qj and 

j = 1, . . . , m. The group G := SLn1 × · · · × SLnm
× SLn acts on the vector space V of all 

such Π by defining

ρ(A1,...,Am,A)Π({x1
i , y

1
i }q1i=1, . . . , {xm

i , ymi }qmi=1)

:= Π({A∗
1x

1
i , A

∗y1
i }q1i=1, . . . , {A∗

mxm
i , A∗ymi }qmi=1).

(33)

If Π ∈ V has the property that
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inf
g∈G

|||ρgΠ||| = |||Π||| > 0, (34)

where ||| · ||| is the Hilbert-Schmidt norm on V computed with respect to the standard 
basis, then there exists a homogeneous, nonconstant ρ-invariant polynomial P on V such 
that P (Π) = 1.

Proof. This proposition is a special case of a fundamental and widely-known result in 
Geometric Invariant Theory as applied to real linearly reductive groups (to see that G is 
linearly reductive, express G as a subgroup of GLn1+···+nm+m; the Lie-Kolchin Theorem 
[25, Section 10.2] implies that the radical of G must consist of upper-triangular matrices, 
and consequently the unipotent radical must simply be the identity). Corollary 1.2 of 
Mumford [15] indicates that any two disjoint Zariski closed G-invariant subsets of V can 
be separated by an invariant, i.e., an invariant polynomial P exists which vanishes on 
one but not the other. Since {0} is certainly a Zariski closed, G-invariant subset of V , it 
suffices to establish that the G-orbit of Π is Zariski closed and does not contain zero. By 
(34), Π 	= 0. The criterion (34) indicates that Π is by definition a minimum vector in the 
sense of Richardson and Slodowy [20], and consequently Theorem 4.4 of [20] guarantees 
that the G-orbit of Π is indeed Zariski closed. But the G-orbit of Π cannot contain 0
(because 0 = ρgΠ for some g ∈ G implies that 0 = ρg−1(ρgΠ) = Π). Thus there must be 
a polynomial P which vanishes at 0 and is nonvanishing at Π. If P is not homogeneous, 
we can express P as a sum of homogeneous polynomials of distinct degrees, each of which 
must be G-invariant (which can be easily seen by an induction argument and comparing 
highest-degree terms before and after an application of ρg); at least one will vanish at 0
and not at Π, at which point it may be trivially rescaled to equal 1 at Π. �
3.2. Invariant polynomials and the Caley Ω process

While Lemma 2 is the theoretical foundation upon which much of this paper rests, it 
is necessary to have a more concrete way of describing polynomials in the class IP. To 
that end, it is useful to appeal to the very old and well-known fact in invariant theory 
that invariants associated to the group SLn are generated by application of the “Cayley 
Ω process,” which is briefly described here as it applies to the more general situation of 
Brascamp-Lieb invariant polynomials satisfying (22), (23) and (24). As before, it will be 
assumed that the exponents pj are positive, rational, and satisfy the scaling condition 
(18).

If Φ is any polynomial in {πj}mj=1 satisfying (22), (23) and (24), then for any matrices 
A1, . . . , Am, A with strictly positive determinants, by homogeneity and ρ-invariance it 
must be the case that

Φ({AjπjA
∗}mj=1) =

⎡⎣(detA)sΦ
m∏
j=1

(detAj)pjsΦ

⎤⎦Φ({πj}mj=1). (35)
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Since matrices with positive determinant form an open set in Rn×n for all n and since 
the left-hand side of the identity (35) must be a polynomial function in the entries of 
each Aj , this forces sΦ and pjsΦ to be positive integers and it further forces (35) to hold 
for all matrices A1, . . . , Am and A even if some of the determinants are zero or negative.

Let ΩA be the Cayley Ω operator associated to A, i.e.,

ΩA :=
∑

σ∈Sn

(−1)σ ∂

∂A1σ1

· · · ∂

∂Anσn

.

(Here and throughout the remainder of Section 3, σ will denote a permutation rather 
than referring to the measure (3).) The Cayley Ω operator associated to A satisfies the 
identity

Ωs
A(detA)s = cn,s > 0

for all positive integers s and also satisfies ΩAf(BA) = (detB)(ΩÃf)(Ã)|Ã=BA for any 
n × n matrix B and any Cn function f of Rn×n (for both facts, see Theorem 4.3.4 of 
Sturmfels [24]). These facts together imply that

ΩsΦ
A Ωp1sΦ

A1
· · ·ΩpmsΦ

Am
Φ({AjπjA

∗}mj=1) = cΦ({πj}mj=1) (36)

for some nonzero constant c depending only on the exponents dj , pj , and nj when Φ
satisfies (22), (23) and (24). They also imply that for any Φ satisfying (22) and (24) only, 
the function Φ̃ of {πj}mj=1 given by

Φ̃({πj}mj=1) := ΩsΦ
A Ωp1sΦ

A1
· · ·ΩpmsΦ

Am
Φ({AjπjA

∗}mj=1) (37)

necessarily satisfies each of (22), (23), and (24) (note there is no dependence of Φ̃ on A
or the Aj ’s because the orders of differentiation are chosen specifically to balance the 
degrees of dependence of Φ({AjπjA

∗}mj=1) on these matrices). To see why (23) holds, note 
that one must also have that ΩAf(AB) = (detB)(ΩÃf)(Ã)|Ã=AB because ΩA∗ = ΩA, 
so it follows that

ΩAf(AB) = ΩA∗f(AB) = ΩA∗f((B∗A∗)∗) = (detB)ΩÃ∗f((Ã∗)∗)|Ã∗=B∗A∗

= (detB)ΩÃf((Ã∗)∗)|Ã∗=B∗A∗ = (detB)ΩÃf(Ã)|Ã∗=B∗A∗

= (detB)ΩÃf(Ã)|Ã=AB .

Consequently

Φ̃({BjπjB}mj=1) = ΩsΦ
A Ωp1sΦ

A1
· · ·ΩpmsΦ

Am
Φ({AjBjπjB

∗A∗}mj=1)

=

⎡⎣(detB)sΦ
m∏
j=1

(detBj)pjsΦ

⎤⎦
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· ΩsΦ
Ã

Ωp1sΦ
Ã1

· · ·ΩpmsΦ
Ãm

Φ({ÃjπjÃ
∗}mj=1)

∣∣∣
Ã=AB,Ãj=AjBj

=

⎡⎣(detB)sΦ
m∏
j=1

(detBj)pjsΦ

⎤⎦ Φ̃({πj}mj=1)

because the expression on the next to last line above is independent of the choice of Ã
and Ãj at which it is evaluated. Thus to understand the space of homogeneous invariant 
polynomials of a given multi-degree (d1, . . . , dm), then, it suffices to understand the image 
of the map Φ �→ ΩsΦ

A Ωp1sΦ
A1

· · ·ΩpmsΦ
Am

Φ({AjπjA
∗}mj=1) for polynomials Φ satisfying (22)

and (24) only.

3.3. Polynomial invariants of Brascamp-Lieb data

We come now to the main result of this section, which gives a concrete characterization 
of the class IP in terms of polynomials which are expressible as determinants of block-
form matrices. In light of Lemma 2, these determinants can be reasonably regarded as 
quantifying various sorts of transversality of the maps {πj}mj=1 which allow for finiteness 
of the Brascamp-Lieb constant for any desired rational exponents {pj}mj=1 ∈ (0, 1]m. This 
approach to understanding the Brascamp-Lieb constant is complementary to the work 
of Bennett, Carbery, and Tao [4] and Bennett, Carbery, Christ, and Tao [3] in exactly 
the same way that direct computations with invariant polynomials complement charac-
terizations of the nullcone in Geometric Invariant Theory. The strength of the finiteness 
criteria established in [3] is that one need only show that a single (cleverly-chosen) in-
equality is violated to deduce that the Brascamp-Lieb constant is infinite. Lemma 2, 
in contrast, allows one to deduce the finiteness of the constant by demonstrating the 
nonvanishing of a single (cleverly-chosen) invariant polynomial.

Lemma 3. Suppose {pj}mj=1 ∈ (0, 1]m are rational exponents satisfying the scaling con-
dition (18). Let s be an integer such that pjs is an integer for all j = 1, . . . , m. Let 
Vs be the vector space of all polynomials Φ satisfying (22), (23), and (24) for sΦ = s. 
Then Vs is spanned by polynomials of the form detM({πj}mj=1), where M({πj}mj=1) is 
an ns × ns matrix consisting of block elements of size nj × n for j = 1, . . . , m arranged 
in the following way:

• Each block entry is a constant multiple of πj for some j = 1, . . . , m.
• For each j = 1, . . . , m, there are pjs block rows of height nj (i.e., the block row is 

a group of nj adjacent rows of M). In each such block row, all block entries are 
multiples of πj. At most nj of these block entries are nonzero.

• There are s block columns of width n. In each block column, there are at most n
nonzero block entries.

Fig. 1 illustrates the structure of all such matrices M .
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c111π1 c11sπ1· · ·

· · ·

...
...

. . .

c1(p1s)1π1 c1(p1s)sπ1

...
...

. . .

cm11πm cm1sπm· · ·

· · ·

...
...

. . .

cm(pms)1πm cm(pms)sπm

p1s block rows of 
height n1

...

pms block rows of 
height nm

s block columns of width n

Fig. 1. Block structure of ns × ns matrices M whose determinants span the space of invariant polynomials 
of Brascamp-Lieb data satisfying (22), (23), and (24) for sΦ = s. Here each ci1i2i3 is a scalar.

Proof. The proof proceeds by an analysis of the action of the Cayley Ω operator on 
general multilinear functionals. One could instead formulate this problem as a quiver 
representation and appeal to a number of general results concerning the structure of 
semi-invariants (see, for example Domokos and Zubikov [8]), but for the present purposes 
the Ω operator will yield a more elementary and transparent proof from the standpoint 
of analysis. Readers should also note the similarity of the matrices M({πj}mj=1) and the 
Brascamp-Lieb operator as defined in [9].

Suppose that Π : (Rn)n → R is a multilinear functional on Rn. This Π is expressed 
in the standard basis by the formula

Π({xi}ni=1) :=
n∑

j1,...,jn=1
Πj1···jnx1,j1 · · ·xn,jn

where xi,j is the j-th coordinate of xi. For any n × n matrix A,

Π({Axi}ni=1) =
n∑

j1,...,jn=1
k1,...,kn=1

Πj1···jnAj1k1 · · ·Ajnkn
x1,k1 · · ·xn,kn

.

If this sum is differentiated by ∂n/∂A1σ1 · · · ∂Anσn
, the result will equal zero unless 

j1, . . . , jn are distinct and ki = σji for each i = 1, . . . , n. Thus
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∂n

∂A1σ1 · · · ∂Anσn

Π({Axi}ni=1) =
n∑

j1,...,jn=1
distinct

Πj1···jnx1,σj1
· · ·xn,σjn

. (38)

Multiplying (38) by (−1)σ and summing over σ ∈ Sn gives that

ΩAΠ({Axi}ni=1) =
( ∑

τ∈Sn

(−1)τΠτ1···τn

)( ∑
σ∈Sn

(−1)σx1,σ1 · · ·xn,σn

)

=
( ∑

τ∈Sn

(−1)τΠτ1···τn

)
[x1 · · ·xn].

The notation [x1 · · ·xn] is simply shorthand for the determinant of the n ×n matrix whose 
columns are given by the vectors x1, . . . , xn. The quantity in parentheses on the last line 
above will be called the alternating contraction of Π in the indices (1, . . . , n) and will 
be denoted Π|(1,...,n). Suppose now that Π has some arbitrary degree of multilinearity, 
i.e., Π : (Rn)Λ → R for some ordered index set Λ. If #Λ < n, then ΩAΠ({Axi}i∈Λ) = 0
trivially. If instead k > n, then by the product rule it must be the case that

ΩAΠ({Axi}i∈Λ) =
∑
I⊂Λ

#I=n

Π|I ({Axi}i∈Λ\I)[x]I

where Π|I is the multilinear functional with index set Λ \ I obtained by performing 
an alternating contraction in the indices I (arranged in the usual order) and where 
[x]I := [xi1 · · ·xin ] with i1 < · · · < in being the elements of I. By induction, for any s
such that #Λ ≥ ns,

Ωs
AΠ({Axi}i∈Λ)

=
∑

#I1=n

· · ·
∑

#Is=n

I1,...Is pairwise disjoint

Π|I1 · · · |Is ({Axi}i∈Λ\
⋃s

j=1 Ij))[x]I1 · · · [x]Is . (39)

When #Λ = ns and Λ = I1∪· · ·∪Is for pairwise disjoint Ij ’s, the quantity Π|I1 · · · |Is is 
simply a scalar obtained by performing an alternating contraction in each of the index 
subsets I1, . . . , Is.

Now consider the multilinear functional

Π({x1
i , y

1
i }q1i=1, . . . , {xm

i , ymi }qmi=1) :=
m∏
j=1

qj∏
i=1

〈
xj
i , πjy

j
i

〉
(40)

where pjnj = qj/q and where the πj are as in the previous section; this is exactly the 
same construction as (30). If A ∈ SLn and Aj ∈ SLnj

for each j = 1, . . . , m, then we 
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seek homogeneous polynomials of degree d in the entries of Π which are invariant under 
the action of these matrices given by

Π({A1x
1
i , Ay1

i }q1i=1, . . . , {Amxm
i , Aymi }qmi=1).

(Note that this action differs from ρ by replacing A∗
j and A∗ by Aj and A; since the 

special linear group is closed under adjoints, this change is inconsequential and simplifies 
notation.) Any polynomial function of Π must belong to the span of d-fold products of 
the expressions (40), where in each term of the product, the xj

i ’s and yji ’s are regarded as 
fixed but may change from factor to factor (which is to say that evaluating Π on specific 
tuples of xj

i ’s and yji ’s gives a basis of functions from which the algebra of polynomial 
functions of Π can be generated). If this polynomial happens to be invariant under the 
action of the matrices (A1, . . . , Am, A), recall from (36) that polynomial must be pre-
served (up to multiplication by a nonzero constant) by the operator ΩsΦ

A Ωp1sΦ
A1

· · ·ΩpmsΦ
Am

when sΦ := dq. Moreover, as observed in (37), this compound Cayley operator maps 
all homogeneous polynomials of Π satisfying (22) and (24) into the space of invariant 
polynomials satisfying (22), (23), and (24). By virtue of the calculations above, the space 
of all such invariant homogeneous polynomials of a fixed degree is spanned by repeated 
alternating contractions of tensor powers of Π, where the contractions take place with 
respect to compatible entries. Specifically this means forming alternating contractions of 
the multilinear functional

Πd({x1
i , y

1
i }dq1i=1, . . . , {xm

i , ymi }dqmi=1 ) :=
m∏
j=1

dqj∏
i=1

〈
xi
j , πjy

i
j

〉
(41)

in such a way that contractions are in n-tuples of indices corresponding to the variables 
yij for any values of i and j and in nj-tuples of indices corresponding to the variables xi

j

for each j = 1, . . . , m. After performing such an operation, the object that remains is a 
scalar quantity because dqj = njpjsΦ is an integer multiple of nj and d(q1 + · · ·+ qm) =
dq(p1n1 + · · · + pmnm) = sΦn is an integer multiple of n.

Let

Λ :=
{
(i, j) ∈ Z2 | i ∈ {1, . . . , dqj}, j ∈ {1, . . . ,m}

}
and suppose Λ is given the lexicographic ordering. This is the index set associated to the 
product (41). For any λ ∈ Λ, let its coordinates be denoted iλ and jλ, i.e., λ := (iλ, jλ). 
The structure of the expansion of

ΩsΦ
A Ωp1sΦ

A1
· · ·ΩpmsΦ

Am
Πd({A1x

1
i , Ay1

i }dq1i=1, . . . , {Amxm
i , Aymi }dqmi=1 ) (42)

will include a sum over all partitions J := {J1, . . . , JsΦ} of Λ into pairwise disjoint 
sets of cardinality n, where alternating contractions of length n are performed over the 
groups of variables yij indexed by each of the subsets J1, . . . , JsΦ . Summing over all 
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such partitions will yield the expansion of the ΩsΦ
A factor. The expansions of all the 

remaining factors of Ω can be expressed as a sum over a different type of partition 
I := {I1, . . . , IsΦ(p1+···+pm)} of Λ. In this case, the alternating contractions will involve 

nj indices and variables xi1
j , . . . , x

inj

j for values of j between 1 and m. In other words, each 
I1, . . . , IsΦ(p1+···+pm) must consist of indices of the form {(i1, j), . . . , (inj

, j)} for some j. 
While it is perhaps clear what one means by applying the formula (39) to compute the 
alternating contraction of (41) with respect to these partitions I and J , carefully carrying 
out this computation explicitly and compactly requires some additional notation. First, 
for any λ ∈ Λ, let [λ]I denote the unique subset I� ∈ I such that λ ∈ I�. Likewise let [λ]J
be the unique element of the partition J containing λ. Let SI be all permutations σ of Λ
such that [σλ]I = [λ]I for all I (i.e., SI is restricted to permutations of Λ which preserve 
the partition I) and analogously for SJ . Lastly, let rI(λ) be the total number of indices 
λ′ ∈ [λ]I such that λ′ ≤ λ and similarly let cJ(�) be the total number of indices λ′ ∈ [λ]J
such that λ′ ≤ λ. It follows that the repeated alternating contraction of Πd associated 
to the partitions I and J is given exactly by∑

σ∈SI ,τ∈SJ

(−1)σ+τ
∏
λ∈Λ

(πjλ)rI(σλ)cJ (τλ) (43)

where (πj)��′ is the ��′-entry of the matrix of πj in the standard basis. The formula 
(43) can be seen to be an alternating contraction precisely because inside each I� ∈ I, 
σ merely permutes elements of I�, which means that the values of rI(σλ) for λ ∈ I�
are merely permutations of {1, . . . , njλ} and similarly for the partition J . The identity 
(39) guarantees that (42) is expressible of a linear combination of terms of the form 
(43) with coefficients which depend on the xi

j and the yij ; moreover, it can be some-
what easily checked that each term of the form (43) is invariant under the action of 
(A1, . . . , Am, A) precisely because (43) is expressible in terms of alternating contractions 
and such contractions themselves have the desired invariance properties.

Now for each λ ∈ Λ, let πλ be a #Λ ×#Λ matrix with rows and columns indexed by 
Λ whose entries are

(πλ)λ′λ′′ :=
{

(πjλ)rI(λ′)cJ (λ′′) if [λ]I = [λ′]I and [λ]J = [λ′′]J
0 otherwise

.

With this definition, it must be the case that (43) is equal to∑
σ,τ∈SΛ

(−1)σ+τ
∏
λ∈Λ

(πλ)σλτλ (44)

where the sums are now over all permutations σ and τ of Λ because the terms of the sum 
(44) simply vanish for all permutations σ ∈ SΛ \SI and τ ∈ SΛ \SJ (simply because 
there will necessarily be some λ such that [λ]I 	= [σλ]I or [λ]J 	= [τλ]J , which means that 
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one of the entries of πλ in the product (πλ)σλτλ will necessarily be zero by definition of 
(πλ)λ′λ′′). The expression (44) is itself exactly equal to the expression(∏

λ∈Λ

∂

∂tλ

)
det

∑
λ∈Λ

tλπλ

for real parameters tλ, since by the product rule(∏
λ∈Λ

∂

∂tλ

)
det

∑
λ∈Λ

tλπλ =
(∏

λ∈Λ

∂

∂tλ

) ∑
τ∈SΛ

(−1)τ
∏
λ′∈Λ

(∑
λ∈Λ

tλπλ

)
λ′τλ′

=
∑

σ,τ∈SΛ

(−1)τ
∏
λ′∈Λ

(πσλ′ )λ′τλ′

(where the permutation σ comes from all orderings of the partial derivatives) which can 
be seen to equal (44) by replacing τ by τ ◦ σ, reordering the terms in the product, and 
then replacing σ by σ−1. Derivatives of polynomials can always be evaluated exactly 
as finite differences, which means that (43) itself be realized as a linear combination of 
determinants det

∑
λ∈Λ tλπλ for various values of the parameters tλ.

To finish, observe that the matrices πλ have common block structure. To be precise, 
each row λ′ of the full matrix is uniquely associated with a unique element of I, namely, 
[λ′]I ∈ I, in the sense that πλ will be identically zero in row λ′ unless [λ]I = [λ′]I . 
The same goes for columns: πλ is zero in column λ′ unless [λ′]J = [λ]J . By reordering 
rows so that rows associated to the same set in I are adjacent and likewise bringing 
columns associated to the same set in J together to be adjacent, it follows that the 
alternating contraction (43) is expressible as a linear combination of determinants of 
#Λ × #Λ = nsΦ × nsΦ matrices of the exact form described in the statement of the 
lemma. To see that every block row associated to πj for fixed j contains no more than nj

nonzero copies of πj , simply note that this block row is associated to exactly nj literal 
rows λ′ of the large matrix, and there are exactly nj values of λ such that πλ is not 
automatically zero in this row (namely, the values of λ such that [λ]I = [λ′]I). If each 
such λ belongs to a different element of the column partition J , then there can be at 
most nj nonzero block entries in this block row. The argument for block entries in block 
columns is similar. �
4. Radon-like operators: proof of Theorem 2

This section contains the proof of Theorem 2. The general structure is to combine 
three elements: the characterization of the Brascamp-Lieb constant given by Lemma 2, 
the continuous Kakeya-Brascamp-Lieb inequality as it is formulated in Theorem 1, and 
key ideas from [11] formulated for the study of nonconcentration inequalities. The initial 
step is to observe that the quantity in the integrand on the left-hand side of (4) is an 
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integral nonconcentration quantity and so may be directly estimated from below via a 
supremum:

Lemma 4. Suppose π is a continuous map from some �-dimensional manifold M into 
R(n−k)×n. For any Borel set F ⊂ M and any finite nonnegative Borel measure σ on M , 
there is a Borel subset F ′ ⊂ F with σ(F ′) ≥ σ(F )/2 such that∫

Fm

[
W({π(tj)}mj=1)

] 1
p dσ(t1) · · · dσ(tm) � (σ(F ))m sup

t1∈F ′,...,
tm∈F ′

[
W({π(tj)}mj=1)

] 1
p

with an implicit constant which depends only on n, k, and m.

The proof of Lemma 4 is based on the following proposition, which is a mild extension 
of Lemma 1 from [11]:

Proposition 4. Let V be a normed vector space. For any positive integer d, any topological 
space X, any nonnegative finite Borel measure μ on X, any d-dimensional vector space 
F of continuous functions f : X → V , and any δ ∈ (0, 1), there is a closed subset 
Xδ ⊂ X with μ(Xδ) ≥ (1 − δ)μ(X) such that

μ

({
x ∈ X

∣∣∣∣ |f(x)| ≥ d−1 sup
y∈Xδ

|f(y)|
})

≥ δd−1μ(X) (45)

for all f ∈ F . The set Xδ has the form

Xδ := {x ∈ X | fj(x) = 0 ∀j < j0 and |fj(x)| ≤ 1,∀j ≥ j0 } (46)

for some functions f1, . . . , fd ∈ F and some j0 ∈ {0, . . . , d + 1}.

Proof. Informally, the content of (45) is that there must always be a relatively large 
subset Xδ ⊂ X (large as a fraction of X with respect to the measure μ) such that each 
f ∈ F exceeds d−1 supy∈Xδ

|f(y)| on some nontrivial fraction of X. In essence, it allows 
one to approximately reverse the usual inequalities of Lp-norms on X if one is allowed 
to compute the L∞ norm over a slightly smaller set than all of X. The main challenge is 
to show that the set Xδ can be defined independently of the particular choice of f ∈ F .

By homogeneity of (45) and homogeneity of the inequality μ(Xδ) ≥ (1 − δ)μ(X) with 
respect to the measure μ, it may be assumed that μ is a probability measure since (45)
is clearly true for the zero measure. For any positive ε, let

Fε := {f ∈ F | μ({x ∈ X | |f(x)| > 1}) ≤ ε} .

The first task is to establish a number of elementary facts about the sets Fε. The most 
basic of such facts are that 0 ∈ Fε and that Fε is star-shaped at the origin, i.e., f ∈ Fε
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implies tf ∈ Fε for all t ∈ [0, 1]. This follows directly from the inequality |tf(x)| ≤ |f(x)|
when t ∈ (0, 1). Moreover, for any f ∈ F , tf ∈ Fε for all sufficiently small t > 0, since

lim
t→0+

μ({|tf | > 1}) =
∫
X

lim
t→0+

χ|tf |>1dμ = 0

by virtue of Dominated Convergence and the fact that tf(x) → 0 for all x. A fourth 
important simple fact is that Fε is closed in the vector space topology on F . To see this, 
observe that for any sequence of functions fn → f as n → ∞, at every point x ∈ X

where |f(x)| > 1, it will always be the case that |fn(x)| > 1 for all n sufficiently large, 
simply by continuity of | · |. Thus by Dominated Convergence,

μ({|fn| > 1} ∩ {|f | > 1}) → μ({|f | > 1}) as n → ∞.

In particular, if μ({|fn| > 1}) ≤ ε for all n, then necessarily μ({|f | > 1}) ≤ ε.
Fix a norm || · ||F on F , and for all f on the unit sphere {||f ||F = 1}, let

Lε(f) := sup {t > 0 | tf ∈ Fε } .

This function Lε(f) is necessarily upper semicontinuous on the unit sphere because Fε

is closed: if Lε(f) < a for some a > 0 and some f with ||f ||F = 1, then (a − η)f ∈ Fc
ε

for all sufficiently small η > 0. Because Fε is closed, (a − η)g ∈ Fc
ε for all g sufficiently 

close to f , yielding Lε(g) < a. Because the unit sphere is compact, there is a dichotomy: 
either Lε is bounded on the unit sphere and Fε is a compact set (since in this case || · ||F
is necessarily a bounded function on Fε), or Lε is unbounded and there exists a nonzero 
f ∈ F such that tf ∈ Fε for all t > 0. By Dominated Convergence, any such f must 
satisfy

μ({f 	= 0}) ≤ ε (47)

because limt→∞ χ|tf(x)|>1 = 1 at every point x where f(x) 	= 0.
Now fix any δ ∈ (0, 1). From here forward, fix ε := d−1δ. Suppose there exists a nonzero 

f1 ∈ Fε satisfying (47) when d = 1. In this case, setting Xδ := {x ∈ X | f1(x) = 0} will 
satisfy the hypotheses of the lemma because all functions f ∈ F will be identically zero 
on Xδ. This forces (45) to be vacuously true because the supremum over Xδ will always 
be zero. If d = 1 and (47) does not hold for any nonzero f1 ∈ Fε, one can instead let 
f1 := Lε(f)f for some nonzero f ∈ Fε and define Xδ := {x ∈ X | |f1(x)| ≤ 1}. Since 
f1 ∈ Fε, it must be that μ(Xδ) ≥ 1 − ε = (1 − δ)μ(X). Now

μ({x ∈ X | |f1(x)| ≥ 1}) = lim
s→1−

μ({x ∈ X | |f1(x)| > s})

by Dominated Convergence. If the value of the limit on the right-hand side were strictly 
less than ε, s−1f1 would belong to Fε for some s < 1, which would mean that s−1Lεf ∈
Fε, contradicting the maximality of the supremum Lε(f). Thus
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μ({x ∈ X | |f1(x)| ≥ 1}) ≥ ε = d−1δμ(X),

which implies (45) because 1 ≥ supy∈Xδ
|f1(y)|. By homogeneity of (45) in f (and trivi-

ality of (45) when applied to the zero function), the lemma must hold when d = 1.
Thus it suffices to assume that d > 1. If Fε is not compact, let f1 be taken to equal 

any nonzero f satisfying (47), let X̃ := {x ∈ X | f1(x) = 0}, and let F̃ be any maximal 
subspace of F which is linearly independent when restricted to X̃. Because f1 = 0 on X̃, 
the dimension d̃ of F̃ is at most d − 1; if F̃ is trivial, then the lemma follows by fixing 
Xδ := X̃. Thus it may be assumed that 1 ≤ d̃ ≤ d − 1. By induction on dimension, 
setting δ̃ := d̃δ/(d − δ) ∈ (0, 1) gives that there exists a set X̃δ̃ ⊂ X̃ of the form (46)
with measure at least (1 − δ̃)(1 − ε) ≥ (1 − δ)μ(X) such that

μ

({
x ∈ X̃

∣∣∣∣∣ |f(x)| ≥ d̃−1 sup
y∈X̃δ̃

|f(y)|
})

≥ δ̃(1 − ε)
d̃

= δ

d
μ(X)

for all f ∈ F̃ ; however, every function in F restricts to a function in F̃ on X̃, so without 
loss of generality, the inequality also holds for all f ∈ F with the same constants. Thus 
(45) must be true if one defines Xδ := X̃ ∩ X̃δ̃, which also has the form (46) because X̃
is merely equal to the set {x ∈ X | f1(x) = 0} for some f .

It now suffices to assume that Fε is compact. Let det be any nontrivial alternating 
d-linear functional on F (which is unique up to scalar multiples). By compactness of Fε, 
there exist f1, . . . , fd ∈ Fε such that

|det(f1, . . . , fd)| = sup
h1,...,hd∈Fε

|det(h1, . . . , hd)|.

The supremum must be strictly positive because | det(h1, . . . , hd)| 	= 0 for any linearly 
independent set {h1, . . . , hd} ⊂ Fε and for any such set, there must exist a small positive 
constant t such that thi ∈ Fε for all i. Now by Cramer’s rule, for any f∗ ∈ Fε,

f∗ =
d∑

j=1
(−1)j−1 det(f∗, f1, . . . , f̂j , . . . , fd)

det(f1, . . . , fd)
fi (48)

where ·̂ denotes omission. By the choice of f1, . . . , fd, the coefficient of each fi in the 
sum on the right-hand side of (48) has magnitude at most 1. If one defines

Xδ := {x ∈ X | |fj(x)| ≤ 1 ∀j = 1, . . . , d} ,

then Xc
δ is contained in the union of sets {x ∈ X | |fj(x)| > 1} for j = 1, . . . , d; each of 

these sets has measure at most ε, so μ(Xc
δ ) ≤ dε = δ. At any point x ∈ Xδ, each term in 

the sum (48) has magnitude at most 1. Thus

sup |f(y)| ≤ d (49)

y∈Xδ
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for all f ∈ Fε.
Now suppose f ∈ F is any function which is not identically zero on Xδ and let α > 0

be any number such that

α < d−1 sup
y∈Xδ

|f(y)|, i.e., sup
y∈X

|α−1f(y)| > d. (50)

By (49), α−1f ∈ F cannot belong to Fε. This means that

μ({|f | > α}) = μ({|α−1f | > 1}) ≥ ε = d−1δ.

Taking a supremum over all α satisfying (50) and applying Dominated Convergence a 
final time gives that

μ

({
|f | ≥ d−1 sup

y∈Xδ

|f(y)|
})

≥ d−1δ,

which is exactly the desired inequality (45). �
Proof of Lemma 4. By Lemma 2, there is some finite collection {Φi}Ni=1 of polynomial 
functions of {πj}mj=1 such that

[W({π(tj)}mj=1)]
1
p ≈

N∑
i=1

|Φi({π(tj)}mj=1)|
n−k
di , (51)

where di is the degree of Φi as in (22). Apply Proposition 4 to the vector space F of 
polynomial functions of π of degree at most di, where the measure μ is σ restricted to 
F . It follows, fixing δ := 1/2, that there exists F ′ with σ(F ′) ≥ σ(F )/2 such that∫

F

|Φi({π(tj)}mj=1)|
n−k
di dσ(t1)

≥
∫
F

|Φi({π(tj)}mj=1)|
n−k
di χ

|Φi({π(tj)}m
j=1)|≥

sup
t1∈F ′ |Φi({π(tj )}mj=1)|

dim F
dσ(t1)

≥
( supt1∈F ′ |Φi({π(tj)}mj=1)|

dimF

)n−k
di

· σ
({

t1 ∈ F

∣∣∣∣ |Φi({π(tj)}mj=1)| ≥
supt1∈F ′ |Φi({π(tj)}mj=1)|

dimF

})
≥ 1

2(dimF)−1−n−k
di σ(F )

(
|Φi({π(tj)}mj=1)|

)n−k
di χF ′(t1)

for any values of t1, t2, . . . , tm. Note the slight abuse of notation in the inequality just 
derived: on the top line (which becomes the left-hand side), t1 denotes a variable of 
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integration, while on the final line (the new right-hand side), t1 denotes a point which 
can be chosen arbitrarily (but yields a trivial inequality unless t1 ∈ F ′). We proceed 
inductively, integrating this inequality over t2 and deriving a new inequality, etc.; the 
final result of this process yields the inequality∫

Fm

|Φi({π(tj)}mj=1)|
n−k
di dσ(t1) · · · dσ(tm)

�
(
|Φi({π(tj)}mj=1)|

)n−k
di (σ(F ))m

m∏
j=1

χF ′(tj),

where the implicit constant is a function of dimF . Summing over i and taking a supre-
mum of the right-hand side over all t1, . . . , tm ∈ F ′ completes the lemma by virtue of 
(51). �

With the proof of Lemma 4 in hand, the proof of Theorem 2 follows rather easily as 
well:

Proof of Theorem 2. Suppose that Σ ⊂ Ω ⊂ Rn×Rn is a left-algebraic incidence relation 
with defining function ρ : Ω → Rn−k. By Theorem 1, for any Borel measurable set 
E ⊂ Rn, the function

T̃mχE(x) :=
∫

xΣ∩E

· · ·
∫

xΣ∩E

[W({Dxρ(x, yj)}mj=1)]
1
p dσ(y1) · · · dσ(ym)

belongs to Lp(Rn) with p := n/(m(n − k)) and satisfies

||T̃mχE ||Lp(Rn) � |E|m

with implicit constant which is independent of E. Now apply Lemma 4 by fixing F to 
be any subset of xΣ ∩E on which σ is finite; this gives that

T̃mχF (x) � (σ(F ))m sup
y1,...,ym∈F ′

[W({Dxρ(x, yj)}mj=1)]
1
p

for some Borel set F ′ ⊂ F ⊂ E ∩ xΣ with σ(F ′) ≥ σ(F )/2 and some implicit constant 
which is independent of E and x. The main hypothesis of Theorem 2 gives that

sup
y1,...,ym∈F ′

[W({Dxρ(x, yj)}mj=1)]
1
p � (σ(F ′))s � (σ(F ))s

for some exponent s and an implicit constant independent of x and F ′ and consequently 
independent of E. But σ(E ∩ xΣ) = TχE(x) for the Radon-like operator (6), and also 
σ is σ-finite on the manifold xΣ since it has smooth density with respect to Lebesgue 
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measure there, so by applying the newly-derived inequality T̃mχF (x) � (σ(F ))m+s to a 
sequence of choices of F selected so that σ(F ) → σ(E ∩ xΣ) in the limit, it follows that

T̃mχE(x) � (TχE(x))m+s

with implicit constant that is independent of x and E. It follows that

||(TχE)m+s||Lp(Rn) � ||T̃mχE ||Lp(Rn) � |E|m.

Raising both sides to the power 1/(m + s) gives (7). �
5. Applications of Theorem 2

This final main section looks at various applications of Theorem 2, which includes 
the proof of Theorem 3. It begins with some basic computations which show how to 
compute a suitable defining function and the measures (3) for a Radon-like operator 
whose incidence relation is given parametrically. Following that is an example application 
of Theorem 2 which yields an alternative to Christ’s proof of the Lp-improving properties 
of the moment curve [7]. Then comes the proof of Theorem 3, followed by a few extensions 
and generalizations.

5.1. A preliminary observation about parametrized incidence relations

Proposition 5. Let x, y ∈ Rn be regarded as ordered pairs (x′, x′′), (y′, y′′) ∈ Rk × Rn−k

and let γ : Rk ×Rn → Rn−k be any polynomial function. Then the Radon-like operator 
given by

Tf(x) :=
∫
Rk

f(x′ + t, x′′ + γ(t, x))dt

is exactly the operator (6) from Theorem 2 for the defining function

ρ(x, y) = y′′ − x′′ − γ(y′ − x′, x). (52)

In particular, the measure dσ defined by (3) equals Lebesgue measure dt.

Proof. Let B(t, x) be the (n − k) × k matrix given by

⎡⎢⎢⎣
∂γ1
∂t1

(t, x) · · · ∂γ1
∂tk

(t, x)
...

...
...

∂γn−k (t, x) · · · ∂γn−k (t, x)

⎤⎥⎥⎦ ,
∂t1 ∂tk



36 P.T. Gressman / Advances in Mathematics 387 (2021) 107831
where γ1, . . . , γn−k are the coordinate functions of γ in the standard basis and t1, . . . , tk
are the coordinates of t. Taking (52) as the definition of ρ, the right derivative matrix 
Dyρ (recall (2)) has the block structure

[−B(y′ − x′, x) In−k]

where In−k is the (n −k) × (n −k) identity. The induced Riemannian metric 〈·, ·〉 on the 
graph xΣ satisfies

〈
∂

∂ti
,
∂

∂tj

〉
= δi,j + ∂γ

∂ti
· ∂γ
∂tj

, (53)

where · is the usual dot product on Rn−k and δi,j is the Kronecker delta. When the right-
hand side of (53) is regarded as a matrix, the square root of the determinant equals the 
density of Hausdorff measure with respect to coordinate measure, i.e.,

dHk = det(Ik + BTB)1/2dt.

Similarly,

det(Dyρ(Dyρ)T )1/2 = det(In−k + BBT )1/2.

Therefore

dHk

det(Dyρ(Dyρ)T )1/2
= det(Ik + BTB)1/2

det(In−k + BBT )1/2
dt.

Now both det(Ik+BTB)1/2 and det(In−k+BBT )1/2 are invariant under the transforma-
tion B �→ On−kBOk where On−k and Ok are orthogonal matrices of size (n −k) ×(n −k)
and k×k, respectively. Thus by the Singular Value Decomposition, to compute the ratio

det(Ik + BTB)1/2

det(In−k + BBT )1/2
,

it suffices to assume that the only nonzero entries of B appear on the diagonal and that 
Bii ≥ 0 for all i, in which case

det(Ik + BTB)1/2 = det(In−k + BBT )1/2 =
min{k,n−k}∏

i=1
(1 + B2

ii)1/2.

It follows that dσ = dt. �
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5.2. Warm-up application: the moment curve

As a first example of how Theorem 2 can be applied in practice, consider the case 
of convolution with the standard measure on the so-called moment curve. In Rn this is 
exactly the Radon-like transform given by

Tf(x) :=
∫

f(x1 + t, x2 + t2, . . . , xn + tn)dt. (54)

This operator was the titular case study of Christ’s seminar work on the combinatorial 
approach to Lp-improving inequalities [7]. In particular, Christ established that this op-
erator satisfies a restricted weak type (n+1

2 , n(n+1)
2(n−1) ) and a corresponding dual inequality. 

Christ’s method was later extended by Stovall to arrive at a full Lebesgue space bound 
for this and more general polynomial curves [22,23]. The arguments below show that 
Theorem 2 provides a rather direct route to an intermediate result, namely that (54)
satisfies a restricted strong type (n+1

2 , n(n+1)
2(n−1) ) inequality.

As implied above, let x := (x1, . . . , xn) and y := (y1, . . . , yn). The incidence relation 
associated to (54) has an algebraic defining function which is given by

ρ(x, y) := (x2 − y2 + (y1 − x1)2, . . . , xn − yn + (y1 − x1)n).

Proposition 5 guarantees that the operator (54) equals the operator (6) specified by 
Theorem 2. A simple computation gives that Dxρ(x, y) = π(y1 − x1), where

π(t) :=

⎡⎢⎢⎢⎢⎣
2t 1 0 · · · 0

−3t2 0 1
. . .

...
...

...
. . . . . . 0

(−1)nntn−1 0 · · · 0 1

⎤⎥⎥⎥⎥⎦
There is a centrally-important polynomial function Φ(t(1), . . . , t(n)) which depends only 
on π(t(1)), . . . , π(t(n)) and satisfies the invariance properties (22) and (23), given (as in 
Lemma 3) by a block-form determinant:

Φ(t(1), . . . , t(n)) := det

⎡⎢⎢⎢⎢⎢⎢⎢⎣

π(t(1)) 0 · · · 0

0 π(t(2))
. . .

...
...

. . . . . .
...

0 · · · 0 π(t(n−1))
π(t(n)) π(t(n)) · · · π(t(n))

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Subtracting upper block rows from the bottom block row results in individual block 
entries which are zero in all but their first columns. Expanding the determinant in the 
columns which vanish in the last block row gives that Φ must equal ±(n!) times
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det

⎡⎢⎣ t(1) − t(n) · · · t(n−1) − t(n)

...
. . .

...
(t(1))n−1 − (t(n))n−1 · · · (t(1))n−1 − (t(n))n−1

⎤⎥⎦ ,

which is equal to

(−1)n det

⎡⎢⎢⎢⎢⎣
1 · · · 1
t(1) · · · t(n)

...
. . .

...
(t(1))n−1 · · · (t(n))n−1

⎤⎥⎥⎥⎥⎦ .

This is simply the classical Vandermonde determinant. Now if F ⊂ R is any Borel 
measurable set with positive Lebesgue measure, it is always possible to find n distinct 
points t(1), . . . , t(n) ∈ F such that |t(i) − t(j)| ≥ |F |/(2n − 1) whenever i 	= j. This is 
because one can always partition R into nonoverlapping intervals of length |F |/(2n − 1); 
the set F must intersect at least (2n − 1) of these intervals in a set of positive measure, 
so one can always take t(1), . . . , t(n) from n such intervals which are not adjacent. Thus

sup
t(1),...,t(n)∈F

|Φ(t(1), . . . , t(n))|
n! = sup

t(1),...,t(n)∈F

∏
1≤i<j≤n

|t(i) − t(j)| ≥ |F |n(n−1)
2

(2n− 1)
n(n−1)

2
.

Since Φ is a degree n − 1 function of each π(t(j)) in the sense of (22), the inequality (25)
gives that

sup
t(1),...,t(n)∈F

[
W({π(t(j))}nj=1)

] 1
p � |F |

n(n−1)
2 .

Thus Theorem 2 implies that (54) satisfies a restricted strong type (n+1
2 , n(n+1)

2(n−1) ) in-
equality.

5.3. Results concerning nonconcentration inequalities

Before proceeding with the proof of Theorem 3, it is necessary to recall the main 
result from [11] concerning nonconcentration inequalities. The point of doing so is to give 
sufficient conditions of a quantitative nature which guarantee that the main hypothesis 
(5) of Theorem 2 is true. This will involve identifying certain invariant quantities which 
generalize the notion of rotational curvature, first introduced by Phong and Stein [18].

From [11], recall that a multisystem ∂ of size N on an open set Ω ⊂ Rn−k is a 
collection of smooth vector fields {Xi

j}j=1,...,n−k, i=1,...,N such that for each i = 1, . . . , N , 
the vector fields {Xi

j}j=1,...,n−k commute and are linearly independent at every point 
in Ω. The collection of all such multisystems is denoted M(N). For any fixed vectors 
X1, . . . , Xn−k at a point t ∈ Ω and any function α : {1, . . . , �} → {1, . . . , n − k}, where 
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� ≤ N , the differential operator (X · ∂)α is defined to equal Z�
α�

· · ·Z1
α1

, where Zi
j is the 

unique constant-coefficient linear combination of Xi
1, . . . , X

i
n−k which equals Xj at the 

point t. Such α will be called ordered multiindices in n variables and |α| will be used to 
denote the order of differentiation of (X · ∂)α, i.e., |α| = �. Matrices T ∈ GLn−k act on 
these differential operators by defining

(T ∗X)i :=
n−k∑
j=1

TjiXj

and taking (T ∗X ·∂)α := ((T ∗X) ·∂)α. The main result from [11] that will be used here 
is the following:

Theorem 4 (cf. Theorem 4 of [11]1). Suppose Ω ⊂ Rn−k is an open set and that 
Φ(t1, . . . , tm) is a polynomial function of t1, . . . , tm ∈ Rn−k. For any s > 0, let

ω(t) := inf
∂∈M(N)

T∈GLn−k

max
|α1|,...,|αm|≤N

|(T ∗e · ∂)α1
1 · · · (T ∗e · ∂)αm

m Φ(t, . . . , t)|
1
s

|detT | (55)

where e := {ej}n−k
j=1 is the collection of standard coordinate vectors at t and (T ∗e · ∂)αj

j

denotes the differential operator (T ∗e · ∂)αj applied in the variable tj. If σ is any non-
negative Borel measure which is absolutely continuous with respect to Lebesgue measure 
such that

dσ

dt
(t) ≤ ω(t)

at each point t ∈ Ω, where dσ
dt is the Radon-Nikodym derivative of σ with respect to 

Lebesgue measure, then for any Borel set F ⊂ Ω,

sup
t1,...,tm∈F

|Φ(t1, . . . , tm)| � [σ(F )]s (56)

with implicit constant depending only on (n − k, m, s, deg Φ, N).

Suppose Φ(t1, . . . , tm) is a polynomial function of t1, . . . , tm ∈ Rn−k and that 
c1, . . . , cm are nonnegative integers such that

∂α1
t1 · · · ∂αm

tm Φ(t1, . . . , tm) ≡ 0 (57)

1 Theorem 4 of [11], unlike the other main theorems of that paper, does not actually require one to assume 
that Φ vanishes to some positive order on the diagonal, but there is likewise no harm in doing so, since in 
the present case the Theorem will only be applied to polynomials which do indeed vanish to some positive 
order on the diagonal.
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identically on the diagonal t1 = · · · = tm for all choices of α1, . . . , αm satisfying |αj | ≤ cj
for each j and |αj | < cj for at least one j = 1, . . . , m. By definition of (T ∗e · ∂)α,

(T ∗e · ∂)α = Z�
α�

· · ·Z1
α1

where Z1
α1

is a linear combination of X1
1 , . . . , X

1
n−k which equals 

∑n−k
j=1 Tjα1∂j at the 

point t and so on through Z�
α�

, which is a linear combination of X�
1, . . . , X

�
n−k that 

equals 
∑n−k

j=1 Tjα�
∂j at the base point t. For convenience, let T ∗∂ denote the tuple

⎛⎝n−k∑
j=1

Tj1∂j , . . . ,
n−k∑
j=1

Tj(n−k)∂j

⎞⎠
and let (T ∗∂)α be the composition⎛⎝n−k∑

j=1
Tjα1∂j

⎞⎠ · · ·

⎛⎝n−k∑
j=1

Tjα�
∂j

⎞⎠ .

The difference (T ∗e · ∂)α − (T ∗∂)α is a differential operator of order strictly less than �
at that distinguished point t where each Z�

i is fixed to equal 
∑n−k

j=1 Tji∂j . By hypothesis 
on the vanishing of derivatives of Φ on the diagonal, then, it follows that

(T ∗e · ∂)α1
1 · · · (T ∗e · ∂)αm

m Φ(t, . . . , t) = (T ∗∂)α1
1 · · · (T ∗∂)αm

m Φ(t, . . . , t)

when |αj | = cj for each j = 1, . . . , m. As before, the subscript j in the expression (T ∗∂)j
refers to the partial derivative as it is applied in the variable tj . It follows that

ω(t) ≥ inf
T∈GLn−k

max
|α1|=c1,...,|αm|=cm

|(T ∗∂)α1
1 · · · (T ∗∂)αm

m Φ(t, . . . , t)|
1
s

|detT | . (58)

To further aid in the estimation of the right-hand side of (58), one may assume without 
loss of generality that the infimum over T is taken only over those T which are upper-
triangular. The reason for this is that we may always write TE = U for some matrix E
of determinant 1 with uniformly bounded entries (i.e., a bound independent of T ) and 
some upper-triangular matrix U , which then implies that

|(U∗∂)α1
1 · · · (U∗∂)αm

m Φ(t, . . . , t)|
� max

|β1|=|α1|,...,|βm|=|αm|
|(T ∗∂)α1

1 · · · (T ∗∂)αm
m Φ(t, . . . , t)| (59)

with universal implicit constants depending only on n. The proof of this fact is a direct 
application of the following proposition:
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Proposition 6. For every positive integer d and every T ∈ Rd×d, there exist U, E ∈ Rd×d

such that U = TE, U is upper-triangular, detE = 1, and

d∑
�=1

d∑
i=1

|E�i| ≤ 2d − 1.

Proof. If d = 1, the proposition is trivially true simply by fixing E to be the 1 ×1 identity 
matrix. When d > 1, suppose that the final row of T has at least one nonzero entry. 
Let i be an index which maximizes |Tdi|. Without loss of generality, it may be assumed 
that i = d, since otherwise we may permute columns of T to make it so, and compensate 
with a corresponding permutation of the rows of the matrix E to be constructed shortly 
(and if the permutation leaves detE negative, simply multiply a single column of E
by −1 to restore positivity). Under this assumption, let T ′

ji = Tji − TdiT
−1
dd Tjd for all 

i, j ∈ {1, . . . , d − 1}. By induction, there exists E′ ∈ R(d−1)×(d−1) with determinant 1
such that T ′E′ is upper triangular. Now let E be defined so that

E�i :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
E′

�i �, i ∈ {1, . . . , d− 1}
−
∑d−1

j=1 TdjT
−1
dd E′

ji � = d and i ∈ {1, . . . , d− 1}
0 i = d and � ∈ {1, . . . , d− 1}
1 i = � = d

.

Then for i ∈ {1, . . . , d − 1}, we have

d∑
�=1

Tj�E�i =
(

d−1∑
�=1

Tj�E
′
�i

)
− Tjd

d−1∑
�=1

Td�

Tdd
E′

�i =
{∑d−1

�=1 T ′
j�E

′
�i j 	= d

0 j = d
,

which ensures that TE is indeed an upper-triangular matrix. We have that detE = detE′

by expanding the determinant of E with respect to its d-th column. Lastly, if i < d, we 
have

d∑
�=1

|E�i| =
d−1∑
�=1

|E′
�i| +

∣∣∣∣∣
d−1∑
�=1

Td�

Tdd
E′

�i

∣∣∣∣∣ ≤ 2
d−1∑
�=1

|E′
�i|

because |Td�/Tdd| ≤ 1 for each � ∈ {1, . . . , d − 1}. Thus

d∑
i,�=1

|E�i| ≤ 2
d−1∑
i,�=1

|E′
�i| +

d∑
�=1

|E�d| ≤ 2(2d−1 − 1) + 1 = 2d − 1.

If Tdi = 0 for all i, one can instead take E just as above with the exception that 
Edi := 0 for i ∈ {1, . . . , d − 1}. The desired conclusion follows after a minor modification 
of the above argument.
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As a final remark, it may be of interest to note that a modification of this argument 
which involves a further step of multiplying both U and E on the right by a suitably 
optimized diagonal matrix yields the stronger inequality maxi

∑
� |E�i| ≤ 2(d−1)/2. The 

extent to which this upper bound can be improved as a function of d is not immediately 
clear, but this will not be a concern under the present circumstances. �
5.4. Quadratic submanifolds: proof of Theorem 3

Just as was done for the moment curve, the main idea behind the proof of Theorem 3
is to apply Theorem 2; to do so, one establishes the nonconcentration inequality (5) by 
studying a well-chosen invariant polynomial Φ and applying Lemma 2.

To be more specific, the proof proceeds by applying Theorem 2 to the operator (8). 
The parameter s in Theorem 2 will be fixed to equal n − k and m will be taken equal to 
n. For an appropriate defining function ρ, the problem reduces to proving that

sup
y1,...,ym∈F

|W({Dxρ(x, yj)}nj=1)|
1
p � (σ(F ∩ xΣ))n−k

uniformly for all x ∈ Rn and all Borel F ⊂ xΣ. To accomplish this, it suffices to identify a 
suitable invariant polynomial function Φ of the matrices {Dxρ(x, yj)}nj=1 which satisfies 
the inequality

|W({Dxρ(x, yj)}nj=1)|
1
p � |Φ({Dxρ(x, yj)}nj=1)|

uniformly in x and y1, . . . , yn. Since Dxρ(x, y) will depend only on the first k coordinates 
of y and since Proposition 5 guarantees that σ agrees with Lebesgue measure in these 
first k-coordinates, it will suffice by Theorem 4 and the inequalities (58) and (59) to 
show that (with c := n − k here and throughout the rest of the section)

max
|α1|=···=|αk|=c

|(U∗∂)α1
1 · · · (U∗∂)αk

k Φ(Dxρ(x, y), . . . , Dxρ(x, y))|

≥ |detU |c

∣∣∣∣∣∣∣
k−1∏
j=0

det

⎡⎢⎣ λ1(jc+1) · · · λ1(jc+c)
...

. . .
...

λc(jc+1) · · · λc(jc+c)

⎤⎥⎦
∣∣∣∣∣∣∣

(60)

for any upper-triangular matrix U ∈ Rk×k, where as before, the operator (U∗∂)αj

j is 
applied with respect to the variables of yj prior to restricting to the diagonal.

To arrive at the final goal (60), one must first be precise about the defining function 
ρ and the polynomial Φ to be used. As for ρ, it is convenient to use (52) multiplied by 
a factor of −1 to simplify computation:

ρj(u, v) := −vk+j + uk+j + 1
2

k∑
λji(vi − ui)2
i=1
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for j = 1, . . . , c. Here u := (u1, . . . , un) ∈ Rn and v := (v1, . . . , vn) ∈ Rn (where the 
symbols u and v are used to simply avoid the need to temporarily redefine the meaning 
of the subscripted variables y1, . . . , yn). Taking the unusual but harmless convention of 
ordering the entries of u as uk+1, . . . , un, u1, . . . , uk, the corresponding left derivative 
matrix of ρ is given by

Duρ =

⎡⎢⎢⎢⎢⎣
1 0 · · · 0 (u1 − v1)λ11 · · · (uk − vk)λ1k

0 1
. . .

...
...

. . .
...

...
. . . . . . 0

...
. . .

...
0 · · · 0 1 (u1 − v1)λc1 · · · (uk − vk)λck

⎤⎥⎥⎥⎥⎦ . (61)

As already noted, the case m := n of Theorem 2 is the one of interest here, and the 
quantity W ({Dxρ(x, yj)}nj=1 will be estimated from below in terms of well-chosen in-
variant polynomials (where once again it should be emphasized that each yj is still to 
be understood as an element of Rn for each j = 1, . . . , n as opposed simply a coordinate 
entry of some single vector). In particular, by Lemma 1 and specifically using (26), it 
will be the case that[

W ({Dxρ(x, yj)}nj=1
] 1

p � |Φ({Dxρ(x, yj)}nj=1)| (62)

whenever Φ satisfies (23) and (22) with d1 = · · · = dn = d − k, as shall be the case for 
the specific Φ constructed below.

As in earlier sections, suppose that π1, . . . , πn are real c ×n matrices. To these matrices 
one may associate an nc × nc matrix M(π1, . . . , πn) as follows. First, regard each πj as 
possessing c × c block Aj and a c × k block Bj by fixing Aj to consist of the first c
columns of πj and Bj to consist of the final k columns of πj . The matrix M will have a 
nested block structure:

• an upper left block MUL of size kc × c2 which itself is divided into smaller blocks of 
size c × c which are denoted MUL

ij for i = 1, . . . , k, j = 1, . . . , c,
• a lower left block MLL of size c2 × c2 which is itself divided into smaller c × c blocks 

MUR
ij for i, j = 1, . . . , c,

• an upper right block MUR of size kc × kc consisting of smaller c × k blocks MUR
ij for 

i = 1, . . . , k, j = 1, . . . , c, and
• a lower right block MLR of size c2 × kc consisting of smaller c × k blocks MLR

ij for 
i, j = 1, . . . , c.

The various sub-blocks of M are derived from the matrices Aj and Bj as follows:

• Let MUR
ij = Bi if the diagonal of MUR passes through MUR

ij and let MUR
ij = 0

otherwise. (Here the diagonal is understood as the literal diagonal of the kc × kc

matrix MUR.)
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B1

B2 B2

B3 B3

B4

B5 B5

. . .

Bk

Bk+1

Bk+2

Bk+3

. . .

Bn

A1

A2 A2

A3 A3

A4

A5 A5

. . .

Ak

Ak+1

Ak+2

Ak+3

. . .

An

Fig. 2. Illustration of the structure of the matrix M(π1, . . . , πn).

• Let MUL
ij = Ai if (i, j) is a pair for which MUR

ij lies on the diagonal of MUR and 
MUL = 0 otherwise. The layout of MUL matches the layout of MUR with the Bi

blocks replaced by Ai blocks.
• Let MLL

ii = Ak+i and MLL
ij = 0 when i 	= j.

• Let MLR
ii = Bk+i and MLR

ij = 0 when i 	= j.

Fig. 2 illustrates the structure of this matrix M(π1, . . . , πn). With the matrix M(π1, . . . ,
πn) defined, let

Φ(π1, . . . , πn) := detM(π1, . . . , πn). (63)

(To apply Φ in the case of (60), one need only specify that πj = Dxρ(x, yj) for each 
j = 1, . . . , n.) Permuting the columns of M(π1, . . . , πn) brings it exactly into the form 
identified in Section 3.3, so in particular (63) defines a polynomial Φ which has the 
invariance property (23) and is homogeneous of degree c in each of the matrices π1, . . . , πn

(so m = n and d1, . . . , dn = c in (22)). In particular, this quantity (63) will satisfy (62)
when πj := Dxρ(x, yj) for each j = 1, . . . , n.

When (61) is used for the matrices π1, . . . , πn as described above, it will be the case 
that A1 = · · · = An = Ic×c and Bj = B(x − yj) for each j = 1, . . . , n with
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B(t) :=

⎡⎢⎣ t1λ11 · · · tkλ1k
...

. . .
...

t1λc1 · · · tkλck

⎤⎥⎦ ,

under the convention that t = (t1, . . . , tk) ∈ Rk and that each x − yj is understood to 
be projected down to Rk by retaining only the first k coordinates of each x − yj ∈ Rn. 
Restricting to the situation in which yk+1 = · · · = yn, it will be the case that πk+1 =
· · · = πn. By elementary row operations and expanding the determinant of M , it follows 
that

Φ(π1, . . . , πk, πn, . . . , πn) = (−1)c
3k detMUR(B1 −Bn, . . . , Bk −Bn).

For convenience, define

ΦUR(B1, . . . , Bk, Bn) := detMUR(B1 −Bn, . . . , Bk −Bn),

where by MUR(B1−Bn, . . . , Bk−Bn), we mean simply the matrix with the same struc-
ture as MUR but with each B1, . . . , Bk replaced by B1 −Bn, . . . , Bk −Bn, respectively. 
On the full diagonal y1 = · · · = yn, the matrix MUR will be identically zero, and so ΦUR

will be zero as well.
Since B(t) is some c ×k real matrix which depends smoothly on the parameter t ∈ Rk, 

one can precisely understand the low-order derivatives of ΦUR on the diagonal. For each 
j = 1, . . . , n, let t(j) ∈ Rk denote the first k coordinates of x − yj . The immediate goal is 
to compute ΦUR and its low-order derivatives at a point t(1) = · · · = t(n) = t(0) for some 
fixed value of t(0). Since Bk+1 = · · · = Bn = B(t(0)) on the diagonal, for each index j ∈
{1, . . . , k}, there is a unique collection of c rows of the matrix MUR(B1−Bn, . . . , Bk−Bn)
which vanish identically when t(j) = t(0); consequently

∂α1
t(1)

· · · ∂αk

t(k)ΦUR(B(t(1)), . . . , B(t(k)), B(t(0))) = 0

when t(1) = · · · = t(k) = t(0) if |αj | < c for any j = 1, . . . , k. This is precisely the 
situation anticipated by (57): taking c1 = · · · = ck = c and ck+1 = · · · = cn = 0 in (58)
establishes that the inequality (60) would in principle be sufficient to prove Theorem 3
by the application of Theorem 2.

A precise analysis of higher derivatives of ΦUR on the diagonal is more delicate. By 
linearity of B as a function of t, it suffices to assume t(0) = 0. To establish a lower 
bound for quantity ω(t) from (55), one may use (58) and (59). After these reductions, it 
suffices to compute or otherwise estimate the derivatives of ΦUR(B(t(1)), . . . , B(t(k)), 0)
with respect to constant-coefficient vector fields X1, . . . , Xk of the form

X
(i)
j =

j∑
cj�∂t(i)�

.

�=1



46 P.T. Gressman / Advances in Mathematics 387 (2021) 107831
These are just the vector fields determined by U∗∂ in (60). In particular, X(i)
j denotes the 

j-th operator among those defining U∗∂, applied to the variable t(i). Note in particular 
that X(i)

1 points in the first coordinate direction in the variables t(i), X(i)
2 lies in the 

span of the first two coordinate directions, and so on. To simplify computations, it will 
be assumed for the moment that the diagonal entries c�� = U�� are all equal to 1. It 
will also be useful to take the periodicity convention X(i)

j+Nk := X
(i)
j for any positive 

integer N . When j and j′ are both integer subscripts of the vector fields just defined, 
the relation j < j′ will be said to hold when this inequality holds in the usual sense 
for the representatives of j, j′ taken from the interval {1, . . . , k} (i.e., the relation j <

j′ will mean that the representative of j which belongs to {1, . . . , k} is less than the 
corresponding representative of j′).

It will be shown by induction on � that for any � ≤ k, one has

X
(�)
�c · · ·X(�)

(�−1)c+1 · · ·X
(1)
c · · ·X(1)

1 ΦUR(B(t(1)), . . . , B(t(k)), 0)

= detMUR
�

�−1∏
j=0

det

⎡⎢⎣ λ1(jc+1) · · · λ1(jc+c)
...

. . .
...

λc(jc+1) · · · λc(jc+c)

⎤⎥⎦ ,
(64)

where MUR
� is the (k − �)c × (k − �)c lower-right minor of the matrix MUR and where 

the columns of the matrix λ of coefficients associated to the operator (8) are regarded as 
periodic with period k just as was the case for the index j of the vectors X(i)

j . There are 
two cases to consider: one case when the block B�+1 appears exactly once in the matrix 
MUR (e.g., B1 or B4 in Fig. 2) and another case when the block appears twice in MUR

with one copy appearing immediately to the right of the other (e.g., B2 or B3 in Fig. 2). 
In the first case, the truncated matrix MUR

� has the c × 1 block

[
t
(�+1)
�c+1 λ1(�c+1) · · · t

(�+1)
�c+1 λc(�c+1)

]T
in its upper left-hand corner. As a function of t(�+1), the determinant detMUR

� does not 
depend on t(�+1)

i for any i < �c + 1 (interpreted periodically), since all such columns of 
MUR that do depend on these variables lie outside the minor MUR

� . This means that 
the derivative of detMUR

� with respect to X(�+1)
�c+1 must simply equal the derivative with 

respect to t(�)�c+1, the effect of which is to replace the upper left block in the first column 
with the new block [

λ1(�c+1) · · · λc(�c+1)

]T
and to replace all other entries in the first column with zeros (if they do not vanish 
already) because they are constant with respect to t(�+1). The argument then repeats for 
all the remaining derivatives X(�+1)

�c+1 through X(�+1)
(�+1)c by advancing to the second column 

and so on. At each stage, there is no dependence on t(�) with respect to any “lower” 
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coordinate directions. Once all derivatives of detMUR
� with respect to t(�+1) have been 

taken, the result is that

X
(�+1)
�c+c · · ·X(�+1)

�c+1 detMUR
�

may be expressed as the determinant of a matrix with a c × c minor in the upper-left 
corner equalling ⎡⎢⎣ λ1(�c+1) · · · λ1(�c+c)

...
. . .

...
λc(�c+1) · · · λc(�c+c)

⎤⎥⎦
and the matrix MUR

�+1 in the lower right corner.
On the other hand, if the block B�+1 appears twice in MUR, then the argument above 

requires slight modification. First, there must be an index p in the range {�c +1, . . . , (� +
1)c} which is equivalent to 1 modulo periodicity. If any columns of the leftmost B�+1
block appear in the minor MUR

� , they must appear alone on their own column since no 
block in MUR can have neighbors both on the right and below. This would mean that 
MUR

� has a block in the upper left hand corner with the form⎡⎢⎢⎣
t
(�+1)
�c+1 λ1(�c+1) · · · t

(�+1)
p−1 λ1(p−1)

...
. . .

...
t
(�+1)
�c+1 λc(�c+1) · · · t

(�+1)
p−1 λc(p−1)

⎤⎥⎥⎦
and all other entries in these same columns must be zero. It follows when taking the de-
terminant of MUR

� that factors of t(�+1)
�c+1 , . . . , t(�+1)

p−1 appearing on their own rows simply 
factor out by multilinearity of the determinant as a function of the columns. Further-
more, although these same columns of the leftmost B�+1 appear again in the rightmost 
B�+1 block, elementary column operations allow one to subtract the leftmost copy of 
these columns from the rightmost block without changing the determinant of MUR

� . 
Thus it may be assumed without loss of generality that detMUR

� has no dependence 
on t(�+1)

�c+1 , . . . , t(�+1)
p−1 beyond the factors already obtained from the initial columns. By 

exactly the same argument as above, then, it follows that

X
(�+1)
(�+1)c · · ·X

(�+1)
p detMUR

�

= t
(�−1)
�c+1 · · · t(�+1)

p−1 detMUR
�+1 det

⎡⎢⎣ λ1(�c+1) · · · λ1(�c+c)
...

. . .
...

λc(�c+1) · · · λc(�c+c)

⎤⎥⎦,

and from this identity the desired conclusion holds after differentiating once again with 
respect to the remaining derivatives X(�+1)

�c+1 , . . . , X(�+1)
p−1 in order just listed (X(�+1)

�c+1 first, 
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etc.), once again using the fact that at every step, there is no dependence on variables 
from the “lower” coordinate directions. Finally, because the X vector fields are constant-
coefficient linear combinations of coordinate vector fields, we see that while the order of 
differentiation was extremely useful to exploit for computational purposes, it does not 
have an effect on the final result. Therefore in both cases we conclude that

X
(�+1)
(�+1)c · · ·X

(�+1)
�c+1 detMUR

� = detMUR
�+1 det

⎡⎢⎣ λ1(�c+1) · · · λ1(�c+c)
...

. . .
...

λc(�c+1) · · · λc(�c+c)

⎤⎥⎦ .

Now (64) with � = k gives the final conclusion that

X
(1)
1 · · ·X(1)

c · · ·X(k)
(k−1)c+1 · · ·X

(k)
kc ΦUR(B(t(1)), . . . , B(t(k)), 0)

=
k−1∏
j=0

det

⎡⎢⎣ λ1(jc+1) · · · λ1(jc+c)
...

. . .
...

λc(jc+1) · · · λc(jc+c)

⎤⎥⎦ .
(65)

The inequality (65) gives exactly the desired inequality (60), i.e.,

max
|α1|=···=|αk|=c

|(U∗∂)α1
1 · · · (U∗)αk

k Φ(Dxρ(x, y), . . . , Dxρ(x, y))|

≥

∣∣∣∣∣∣∣
k−1∏
j=0

det

⎡⎢⎣ λ1(jc+1) · · · λ1(jc+c)
...

. . .
...

λc(jc+1) · · · λc(jc+c)

⎤⎥⎦
∣∣∣∣∣∣∣

under the assumption that Uii = 1 for each i. When the diagonal elements of U are not
all 1, one may instead apply (65) by choosing

X
(i)
j =

j∑
�=1

U−1
jj Uj�∂t(i)�

for each i = 1, . . . , k and j = 1, . . . , k. Because each subscript index in the set {1, . . . , k}
appears exactly c times among the derivatives on the left-hand side of (65), multiplying 
both sides of (65) by | detU |c (which is simply the c-fold product of the absolute value 
of the diagonal elements of U) gives the more general inequality

max
|α1|=···=|αk|=c

|(U∗∂)α1
1 · · · (U∗)αk

k Φ(Dxρ(x, y), . . . , Dxρ(x, y))|

≥ |detU |c

∣∣∣∣∣∣∣
k−1∏
j=0

det

⎡⎢⎣ λ1(jc+1) · · · λ1(jc+c)
...

. . .
...

λc(jc+1) · · · λc(jc+c)

⎤⎥⎦
∣∣∣∣∣∣∣



P.T. Gressman / Advances in Mathematics 387 (2021) 107831 49
for arbitrary invertible upper-triangular matrix U ; if U is not invertible, the inequality 
just established is trivially true. This is exactly the desired inequality (60).

By (58) and (59) (fixing s = c), it follows that the appropriate density ω(t) from (58)
is at least bounded below by a fixed implicit constant (depending only on n) times K1/c, 
where

K :=

∣∣∣∣∣∣∣
k−1∏
j=0

det

⎡⎢⎣ λ1(jc+1) · · · λ1(jc+c)
...

. . .
...

λc(jc+1) · · · λc(jc+c)

⎤⎥⎦
∣∣∣∣∣∣∣ .

By Theorem 4, the measure K1/cdt satisfies K1/cdt ≤ ωdt, so that

sup
y1,...,ym∈F∩xΣ

|Φ({Dxρ(x, yj)})| �
[
K1/cσ(F ∩ xΣ)

]c
for all Borel sets F ⊂ Rn. Assuming that K > 0, the inequality (7) must hold by 
Theorem 2 after fixing m = n and s = n − k. This is exactly the desired conclusion of 
Theorem 3.

5.5. A generalization

The nature of nonconcentration inequalities such as the main hypothesis (5) of Theo-
rem 2 is that when (5) can be shown to for some model operator, this can often be used 
to show that it must hold for some generic class of operators and that there must exist 
some nontrivial polynomial functions of the data which govern the sort of nondegeneracy 
which (5) implicitly requires. The following result gives such an example:

Theorem 5. Let k and n be positive integers satisfying the inequalities k < n ≤ 2k and let 
all vectors x, y ∈ Rn be regarded as pairs (x′, x′′) ∈ Rk×Rn−k and (y′, y′′) ∈ Rk×Rn−k, 
respectively. There exists a nonempty collection of nontrivial polynomials {P1, . . . , PN}
on the space (Rk×k)n−k (i.e., on the space of (n − k)-tuples of k× k real matrices) such 
that the following holds: For any incidence relation ρ of the form

ρ(x, y) := y′′ − x′′ −Q(x′, y′)

where Q : Rk ×Rk → Rn−k is a polynomial in x′ and y′, if Ω′ ⊂ Rk ×Rk is an open set 
such that

N∑
i=1

|Pi(∂2
x′y′Q(x′, y′)))|2 ≥ c

at every point (x′, y′) ∈ Ω′ for some constant c > 0, then for any Borel set E ⊂ Rn, the 
Radon-like operator
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Tf(x) :=
∫

(x′,y′)∈Ω′

f(y′, x′′ + Q(x′, y′))dy′

satisfies

||TχE ||
L

2n−k
n−k (Rn)

≤ C|E| n
2n−k

for some C < ∞ independent of E (where |E| denotes Lebesgue measure of E).

Proof. As noted above, let x = (x′, x′′) ∈ Rk × Rn−k and similarly for y. Consider the 
Radon-like operator parametrized by y = x + (t, Q(x′, x′ + t)) for t ∈ Rk, which has 
defining function ρ(x, y) := y′′−x′′−Q(x′, y′) as noted in the statement of the theorem. 
Using Theorem 4 and following the same initial derivation as in the proof of Theorem 3, 
to verify the main hypothesis of Theorem 2, it suffices to show that

Φ({Dxρ(x, yj)}nj=1)

= detMUR(Dx′Q(x′, y′1) −Dx′Q(x′, y′), . . . , Dx′Q(x′, x′ + y′k −Dx′Q(x′, y′))

has the property that

max
T∈GLn−k

max
|α1|=···=|αk|=n−k

|(T ∗∂′)α1
1 · · · (T ∗∂′)αk

k Φ({Dxρ(x, y)}nj=1)|
1

n−k

|detT | (66)

is uniformly bounded below for all (x′, y′) ∈ Ω′ ⊂ Rk×k, where ∂′ represents the partial 
derivatives with respect to the single-primed y′-variables. As before, note once again that 
|αj | < n − k for some j ∈ {1, . . . , k}, the matrix MUR will have a row which is identi-
cally zero when it is evaluated on the diagonal y1 = · · · = yn = y; when |αj | = n − k for 
each j ∈ {1, . . . , n − k}, the resulting derivative (T ∗∂′)α1

1 · · · (T ∗∂′)αk

k Φ({Dxρ(x, y)}nj=1)
is expressible on the diagonal as a polynomial function of ∂2

x′y′Q simply because each 
derivative must fall on a distinct row of MUR for the determinant to be nonzero, which 
means that no higher-order derivatives in y′ occur in nonzero terms. If R is any polyno-
mial function of the quantities

{∂′
1
α1 · · · ∂′

k
αkΦ({Dxρ(x, y)})}|α1|=···=|αk|=m

which is invariant under the natural action of T ∈ SLn−k, then just as in the proof of 
Theorem 3, it must be the case that

max
T∈GLn−k

max
|α1|=···=|αk|=n−k

|(T ∗∂′)α1
1 · · · (T ∗∂′)αk

k Φ({Dxρ(x, y)}nj=1)|
1

n−k

|detT |

� |R({∂′
1
α1 · · · ∂′

k
αkΦ({Dxρ(x, y)})}|α1|=···=|αk|=m)| 1

n−k
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for some implicit constant that depends only on n, k, and R. Because we know that 
the quantity (66) on the left-hand side is nonzero for some choice of ρ (namely, the 
case established by Theorem 3), this guarantees that it is possible to find a nontriv-
ial invariant polynomial R because the null cone of the SLn−k representation associ-
ated to (66) does not trivially contain all vectors. Taking P (∂2

x′y′Q(x′, y′))) to equal 
R({∂′

1
α1 · · · ∂′

k
αkΦ({Dxρ(x, y)})}|α1|=···=|αk|=m) for all possible nontrivial R establishes 

the conclusion of this theorem. �
5.6. Maximal codimension

The final application of Theorem 2 is to establish boundedness of certain non-
translation-invariant quadratic model operators which have the maximum possible codi-
mension for the given dimension. When the dimension of the underlying submanifold 
is k, the codimension cannot exceed k2, which is simply equal to the number of mixed 
partial derivatives ∂2

x′y′ .
Let x := (x′, x′′) for x′ ∈ Rk and x′′ ∈ Rk2 . For convenience, x′

i will denote the 
coordinates of x′ in the standard basis and x′′

ij will be the coordinates of x′′, where i, j
range over {1, . . . , k}. The operator which will be studied here is given by the definition

Tf(x) :=
∫
Rk

f(x′ + t, {xij + x′
i(tj + xj)}ni,j=1)dt (67)

for all measurable functions on Rk ×Rk2 . The associated defining function ρ(x, y) maps 
into Rk2 and has

ρ(x, y) := −y′′ + x′′ + {x′
iy

′
j}ki,j=1.

Theorem 6. The Radon-like operator given by (67) is of restricted strong type (2k+1
k+1 , 2k+1

k ).

Proof. The matrix Dxρ(x, y) consists of two blocks: one k2 × k block on the left and a 
k2 × k2 block on the right which simply equals the k2 × k2 identity matrix. The block 
on the left can itself be understood as composed of k × 1 sub-blocks which equal y′
(interpreted as a column matrix) along the block diagonal and 0 elsewhere, i.e., in row 
(i, j) and column �, the entry of this matrix is y′jδi,� with δ being the Kronecker δ. The 
simplest invariant polynomial which may be used to estimate the Brascamp-Lieb weight 
is the following:

Φ({Dxρ(x, yj)}k+1
j=1 ) := det

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Dxρ(x, y1) 0 · · · 0

0 Dxρ(x, y2)
. . .

...
...

. . . . . . 0
0 · · · 0 Dxρ(x, yk)

Dxρ(x, yk+1) · · · · · · Dxρ(x, yk+1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.
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To compute this determinant, subtract one copy of each of the upper block rows from 
the bottom block row and expand the determinant in those columns corresponding to 
the k2 × k2 identity blocks of Dxρ(x, y1), . . . , Dxρ(x, yk); since there are now no nonzero 
entries in these columns in the final block row, the expansion is trivial and one concludes 
that, up to a possible factor of ±1, the determinant equals

det

⎡⎢⎢⎢⎢⎣
yk+1 − y1 0 · · · 0 yk+1 − yk 0 · · · 0

0
. . . . . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . . . . . 0
0 · · · 0 yk+1 − y1 0 · · · 0 yk+1 − yk

⎤⎥⎥⎥⎥⎦
where each yk+1 − yj is understood as a k× 1 block, as is each 0. Rearranging columns, 
this matrix can itself be brought into block form, and consequently

|Φ({Dxρ(x, yj)}k+1
j=1 )| =

∣∣∣det
[
yk+1 − y1 · · · yk+1 − yk

]∣∣∣k .
This Φ corresponds to the case of a multilinear determinant functional, which has been 
studied in a variety of contexts [10]. In particular, it is known (see [11]) that

sup
y1,...,yk+1∈F

|det
[
yk+1 − y1 · · · yk+1 − yk

]
| � |F |

for any Borel set F ∈ Rk, so it follows that

sup
y1,...,yk+1∈F∩xΣ

|Φ({Dxρ(x, yj)})| � |σ(xΣ ∩ F )|k.

By (26) with m = k + 1, n = k(k + 1) and d1 = · · · = dk+1 = k2 (one can see that 
the exponent is k2 by using multilinearity of the determinant defining Φ as a function 
of its rows), it follows that |W({Dxρ(x, yj)}k+1

j=1 | � |Φ({Dxρ(x, yj)}k+1
j=1 )|, so Theorem 2

applies when s = k to give that

||TχE ||
L

2k+1
k (Rk×Rk2 )

� |E|
k+1
2k+1

for all Borel E ⊂ Rk ×Rk2 . �
6. Appendix

This Appendix contains the proof of Lemma 5, which establishes the existence of a 
“normalized” defining function which satisfies a number of desirable properties. Lemma 5
was used in Section 2.3 to complete the proof of Theorem 1. The proof of Lemma 5 is 
essentially a consequence of a quantitative version of the Implicit Function Theorem.
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To simplify matters somewhat, it is useful to adopt some additional notation. For any 
x ∈ Rn and any r > 0, let Qx,r := x + (−r, r)n. Fix | · | to be the �∞ norm Rn in the 
standard coordinates and further fix || · || to be the �∞ → �∞ operator norm on matrices 
in Rn×n. There is no intrinsic reason why such a choice is required, but having norm 
balls equal to product boxes makes the application of these results somewhat simpler.

Proposition 7. Let Φ be an everywhere differentiable map from the ball Qx0,r into Rn−k, 
where 0 ≤ k < n. Let DΦx be the (n − k) × n derivative matrix of Φ at x and let R be 
an n × (n − k) matrix such that

sup
x∈Qx0,r

||DΦxR− I|| ≤ c < 1.

If |Φ(x0)| < r||R||−1(1 − c), there exists some u ∈ Rn such that the point x = x0 + Ru

satisfies x ∈ Qx0,r, Φ(x) = 0, and |x − x0| ≤ ||R||(1 − c)−1|Φ(x0)|.

Proof. The point x will be the limit of the sequence given by

xj+1 := xj −RΦ(xj)

for all j ≥ 0. By assumption, |Φ(x0)| < r||R||−1(1 − c). Suppose that for some value of 
the index j, it is known that the following inequalities hold:

|Φ(xj)| ≤ cj |Φ(x0)|,

|xj − x0| ≤ ||R||1 − cj

1 − c
|Φ(x0)| < r(1 − cj).

By definition of xj+1 and the above inequality for |Φ(xj)|,

|xj+1 − xj | ≤ ||R||cj |Φ(x0)| (68)

which gives that

|xj+1 − x0| ≤ |xj − x0| + ||R||cj |Φ(x0)| ≤ ||R||1 − cj+1

1 − c
|Φ(x0)| < r(1 − cj+1).

One implication of this inequality is that the line segment joining xj and xj+1 belongs 
to Qx0,r. Consequently, the function

t �→ Φ(xj − tRΦ(xj))

is well-defined and differentiable for all t in some open interval containing [0, 1]. By the 
chain rule and the Mean Value Theorem, for any z ∈ Rn, there is some t ∈ [0, 1] such 
that
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〈
z,−DΦxj−tRΦ(xj)RΦ(xj)

〉
= 〈z,Φ(xj+1) − Φ(xj)〉 ,

where 〈·, ·〉 is the usual inner product in standard coordinates. For convenience, let x∗ :=
xj − tRΦ(xj). Rearranging terms in the above expression yields

〈z,Φ(xj+1)〉 = −〈z, (DΦx∗R− I)Φ(xj)〉 .

Taking absolute values and a supremum over all z with coordinates whose magnitudes 
sum to 1 and applying the main hypothesis of this proposition gives that |Φ(xj+1)| ≤
c|Φ(xj)|, which implies that the induction hypotheses continue to hold when the index j is 
replaced by j+1. By (68), the sequence {xj} must be Cauchy; by continuity of Φ, defining 
x := limj→∞ xj gives that Φ(x) = limj→∞ Φ(xj) = 0. The definition of the sequence 
and continuity of matrix multiplication gives that x − x0 = Ru for some u ∈ Rn, and 
the limit of the induction hypotheses gives that |x −x0| ≤ ||R||(1 − c)−1|Φ(x0)| < r. �
Proposition 8. Let Φ, R, x0, and r be as in Proposition 7 and suppose k > 0. Let V be 
the orthogonal complement of the image space of R and suppose

sup
x∈Qx0,r

|v|≤1, v∈V

|DΦxv| ≤ C.

If |Φ(x0)| < r
3 ||R||−1(1 − c), then

Hk({x ∈ Qx0,r | Φ(x) = 0}) ≥ cnr
k

(
min

{
1
2 ,

1 − c

6C||R||

})k

for some constant cn > 0 that depends only on n.

Proof. The new hypothesis guarantees that |Φ(x0 + v) −Φ(x0)| ≤ C|v| whenever v ∈ V

and |v| < r. The proof is by the Mean Value Theorem as it just appeared:

|〈z,Φ(x0 + v) − Φ(x0)〉| = |〈z,DΦx∗v〉|

for some x∗ ∈ Qx0,r; applying the new hypothesis of this proposition and taking a 
supremum over z gives |Φ(x0 + v) − Φ(x0)| ≤ C|v|.

Suppose now that |Φ(x0)| < r
3 ||R||−1(1 − c) as assumed in the statement of this 

proposition. For any v ∈ V such that |v| ≤ min{ r
2 , 

r
6C ||R||−1(1 − c)},

|Φ(x0 + v) − Φ(x0)| ≤ C|v| ≤ r

6 ||R||−1(1 − c),

which means that |Φ(x0 + v)| ≤ |Φ(x0)| + r
6 ||R||−1(1 − c) < r

2 ||R||−1(1 − c). Moreover, 
Qx0+v,r/2 ⊂ Qx0,r, so the previous proposition applies on the box with new center 
x0 + v and new radius r/2. This implies that there exists u ∈ Rn such that Φ(x0 +
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v + Ru) = 0 and |Ru| ≤ r
2 . In other words, the zero set {x ∈ Qx0,r | Φ(x) = 0} must 

contain a graph over the k-dimensional set 
{
v ∈ V

∣∣ |v| ≤ min{ r
2 ,

r
6C ||R||−1(1 − c)}

}
, 

which forces the graph to have k-dimensional Hausdorff measure at least as large as the k-
dimensional Hausdorff measure of the parametrizing set. This establishes the conclusion 
of the proposition. �
Lemma 5. Suppose ρ is a smooth defining function on some open set Ω of an incidence 
relation Σ. There exists some open set Ω̃ ⊂ Ω containing Σ and another smooth defining 
function ρ̃ of Σ such that the following hold:

1. At every point (x, y) ∈ Σ, the matrix Dxρ̃(x, y) has rows which are orthonormal 
vectors in Rn.

2. At every point (x, y) ∈ Σ,

1 = detDxρ̃(Dxρ̃)T and detDyρ(Dyρ)T

detDxρ(Dxρ)T
= detDyρ̃(Dyρ̃)T .

3. For every compact subset K ⊂ Σ, there is an open set U ⊂ Ω̃ containing K and a 
positive δ0 such that for any (x, y) ∈ U , |ρ̃(x, y)| < δκn for any δ ≤ δ0 (where κn is 
some fixed constant depending only on n) implies that

Hk(Qx,δ ∩ Σy) ≥ cnδ
k

for some positive cn depending only on n.

Proof. For any real symmetric positive-definite matrix A, let A−1/2 be the matrix such 
that every eigenvector e of A with eigenvector λ > 0 of A is also an eigenvector with 
eigenvalue λ−1/2 of A−1/2. It is relatively easy to see that the mapping A �→ A−1/2 is a 
smooth function of A; the standard way to see this is to use the identity

A−1/2 = 1
2πi

∫
γ

z1/2(zI −A)−1dz

where z1/2 is a branch of the square root on the right half space Rez > 0 which equals 
the positive square root on the real axis and γ is, for example, a closed circular contour 
in the right half space which encloses all eigenvalues of A.

Let Ω̃ ⊂ Ω be the neighborhood of Σ on which detDxρ(Dxρ)T > 0; the function

ρ̃(x, y) := (Dxρ(Dxρ)T )−1/2ρ(x, y)

is well-defined and smooth on Ω̃ provided that ρ is smooth. This mapping ρ̃ vanishes 
if and only if ρ vanishes (so that Σ is also the set of points (x, y) where ρ̃(x, y) = 0), 
and by the product rule, Dxρ̃ = (Dxρ(Dxρ)T )−1/2Dxρ at all points of Σ (since all terms 
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in which derivatives fall on (Dxρ(Dxρ)T )−1/2 vanish because ρ vanishes). This implies 
that Dxρ̃(Dxρ̃)T is the identity matrix at all points (x, y) ∈ Σ, which means that the 
rows of Dxρ̃ are mutually orthogonal unit vectors when (x, y) ∈ Σ. The formula for 
detDyρ̃(Dyρ̃)T also follows directly from the definition of ρ̃.

Now fix any compact subset K ⊂ Σ. Because K is compact, there must exist some 
r > 0 such that Qx0,3r × Qy0,3r ⊂ Ω̃ for any (x0, y0) ∈ K. It may further be assumed 
(after possibly reducing the value of r) that

||Dxρ̃(x′, y′)(Dxρ̃(x0, y0))T − I|| < 1
2

and

|Dxρ̃(x′, y′)v| ≤ 1
2 for all v ∈ kerDxρ̃(x0, y0) such that |v| ≤ 1

whenever (x0, y0) ∈ K and (x′, y′) ∈ Ω̃ are any points that satisfy |x0 − x′| < 2r and 
|y0 − y′| < 2r (simply because the quantities on the left-hand sides of these inequalities 
will be identically zero when (x0, y0) = (x′, y′) and are continuous functions on compact 
sets, so are consequently uniformly continuous).

Now suppose U is the open set of pairs (x, y) such that |x − x0| < r and |y − y0| < r

for some (x0, y0) ∈ K. For any (x, y) ∈ U , fixing R := (Dxρ̃(x0, y0))T gives that

sup
x′∈Qx,δ

||Dxρ(x′, y)R− I|| ≤ 1
2 and sup

x′∈Qx,δ

|v|≤1,v∈kerRT

|Dxρ(x′, y)v| ≤ 1
2

for any δ < r. Because R consists of orthonormal columns, there must be a constant 
κ′
n > 0 depending only on n such that ||R||−1 ≥ κ′

n. By Propositions 7 and 8 (taking 
c = C = 1

2) It follows that

|ρ̃(x, y)| < δκ′
n

6 ⇒ Hk(Qx,δ ∩ Σy) ≥ cnδ
k.

The lemma is complete by simply fixing δ0 := r and κn := κ′
n/6. �
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