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Widespread adoption of eddy covariance (EC) methods for methane (CH,) flux measurement has led to increased
availability of continuous high-frequency CH, data. However, unreliable data frequently occur during periods of
atmospheric stability, rain or instrument malfunction, requiring filtering prior to subsequent analyses. While
procedures for assessing CO, have matured, processes to filter and gap-fill CH, data are less studied, as their
range and controls are not as well-understood. Moreover, publications often fail to describe procedures for data
processing and filtering. Our primary objective was to study effects of common filtering thresholds and provide
insight on how size and timing of gaps produced by filtering affect CH, budgets. We utilized 4 years of data from
two freshwater wetlands under the same climate regime but different hydroperiods. We applied friction velocity
(U*) and signal strength filtering treatments to isolate site-specific effects and evaluate impacts of filtering on
subsequent gap-filling via Random Forests (RF). We also tested sensitivity of results to predictor datasets with an
“unrestricted predictors model” (using all possible predictors regardless of gaps), versus a *restricted predictors
model” (using gap-filled predictors with no missing values). Depending on filtering treatment, 7 - 50% of CH,
data were removed over the study period. Using higher signal strength thresholds introduced more small gaps.
U* filtering created small gaps (mostly nighttime), and corresponding annual budget estimates were generally
different from those filtered solely on signal strength but with higher uncertainty, especially at the long-
hydroperiod site. Regardless of filtering method, RF models using unrestricted predictors identified 2- to 32-
day average CH, flux as primary predictors, whereas heat and latent energy were most important when pre-
dictors were restricted. Although filtering may have less impact on CH4 budgets than selection and pre-
processing of predictor variables, it can significantly impact uncertainty and should be considered in data
curation protocols.

1. Introduction

Methane (CH,) is the third most abundant greenhouse gas in the
atmosphere and it is ~34 times more effective at warming the atmo-
sphere than carbon dioxide (COs) (IPCC), 2014. During 2020, CH,
surpassed 1875 ppb (https://www.esrl.noaa.gov/gmd/ccgg/trends_ch
4/), more than 2.5 times its pre-industrial concentration (Le Mer and
Roger 2001; Kirschke et al. 2013). About 40% of CH,4 emissions come
from natural sources (Carmichael et al. 2014, Saunois et al. 2016). Yet,
there is a great amount of uncertainty associated with estimates of
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interannual variation in methane emission which needs to be further
investigated (Ilrschke et al. 2013; Turner et al. 2019). Within these
estimates, the greatest uncertainties are thought to be associated with
wetlands and inland waterways (Carmichael et al. 2014; Saunois et al.
2020). Given that tropical and subtropical regions are the greatest
biogenic contributors to rising global atmospheric CH, concentration,
the greatest uncertainties in predicted future CHs budgets are therefore
in the freshwater systems in these regions (Saunois et al. 2020).
Methane in wetlands is generally produced under anaerobic condi-
tions in saturated soils (Le Mer and Roger 2001) and apparently within
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trees (Barba et al. 2019). Methane reaches the atmosphere via transport
through vascular plant aerenchyma and other vascular tissues, diffusion,
and as ebullition. When the water table is below the soil surface, sub-
stantial CH, consumption occurs in the aerated soil zone above the
anaerobic layers (Le Mer and Roger 2001; Sabrekov et al. 2016). Several
factors impede understanding of the components of biogenic CHs
cycling from local to global scales. These include, but are not limited to,
variation in local micrometeorological (e.g., temperature, radiation,
wind, humidity, ete.) and hydrological conditions that alter the sour-
ce/sink capacity of wetlands (Conrad 2009), the lack of an observation
network with continuous CHs measurements (e.g., eddy covariance)
across regions (Delwiche et al. 2021), heterogeneity in land cover and
land use (Chu et al. 2021), and human-induced changes in CH,4 budgets
(i.e., climate change, land management and land-use land cover change)
(Wong et al. 2020). Another increasingly important concern is the lack
of standardized measurement techniques, as well as data filtering and
processing criteria. The recent availability of open and closed path an-
alyzers, which are capable of continuous high frequency methane
measurements, has led to the adoption of CH,; eddy covariance (EC)
measurements and the production of ecosystem-scale CH4 flux datasets.
However, these continuous CH, flux datasets typically have gaps when
atmospheric conditions do not meet the assumptions of EC, the wind is
from an undesirable direction, sensors are fouled, rain interferes with
gas analyzers and/or sonic anemometers, power is lost, ete. (Baldocchi
2003; Kim et al. 2020; Irvin et al (2021). As a result, unsuitable data
need to be identified, removed (filtered) and gap-filled. For CO; fluxes,
the use of known processes and models to filter and fill data gaps, e.g., on
the basis of relationships between fluxes and concurrently measured
ancillary meteorological variables, such as light, temperature, pressure,
ete. (Falge et al. 2007; Kunwor et al. 2017), is well-studied. However, for
CH, fluxes, their range and controls are to a large extent not currently
well understood, and thus robust methods for filtering and gap-filling
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data are generally lacking (Dengel et al. 2013; Nemitz et al. 2018).
The situation is further exacerbated by lack of clarity in publications,
which often fail to describe what methods or criteria have been used for
data processing, filtering and gap-filling, and how they have been
applied across sites (see Table 1). In addition, many of these studies lack
full-year temporal coverage (Table 1), which further hinders our ability
to develop annual methane budgets with confidence. Improvement in
gap filling approaches was the subject of two recent studies which
compared MDS and several machine learning methods (Irvin et al. 2021;
Kim et al. 2020); however, these studies were focused exclusively on the
performance of gap-filling methods and relied solely on friction velocity
(U*) filtering derived from relationships between U* and CO, fluxes.

The importance of filtering approaches that are applied to CH; EC
data for the final estimates of fluxes seems to be greatly under-valued.
The decision to select site-specific filtering criteria should be justified
and presented transparently, as variation in filtering criteria and site
conditions can result in a total of 20 to 83% data loss (Table 1). The
removal of large amounts of data also imposes additional uncertainties
in annual methane budgets that will further propagate biases in efforts
to upscale and predict global methane budgets, though this uncertainty
is rarely acknowledged.

In this study, we evaluate the importance of data-processing of
continuous CHy measurements (net ecosystem exchange of CHy; Feus)
derived via the EC method in two subtropical wetlands, with the primary
objective to study the effects that data filtering has on gap-filled CHa in
these systems. Our second objective is to provide insight on how gaps in
predictor variables for gap-filling models —both their size and timing—
may affect the procedures used and subsequent annual budgets derived
from CH,4 data. We present a case study of two different wetlands under
the same climate regime but different hydroperiods to show how
filtering and gap-filling via Random Forest, using predictor datasets with
an “unrestricted predictors model” (using all possible predictors

Table 1
Filtering methods utilized in studies using open-path LI-7700 infrared gas analyzers (LI-COR Biosciences, Lincoln, NE).
Ecosystem Location Study RSSIT Quality U* (ms ") Weather Feasibility Post-filter % Reference
length flagst threshold threshold missing}
Rice field Philippines 178 d < 0-2 20-25% Alberto et al. (2014)
10%
Rice field China 7 mo < 0-2 0.12 36% Dai et al. (2019)
10%
Rice field China 6 mo < 0-2 Ge et al. (2018)
10%
Rice field China 4y < 19 0.12 Rainfall 28% -33% Li et al. (2019)
20%
Bog Canada 96 d < 19 0.2 Wind >3 SD and < -50 Nadeau et al. (2013){}
20% direction mg CHam™2d™!
Bog Japan 4y < / 0.15 (night) Rainfall 15-21% Ueyama et al. (2020)
15%
Peatland China 2 growing < 39%, 21% Yu et al. (2017)
seasons 20%
Peatland Finland 3y 0.1 65% Korrensalo et al. (2018)
Peatland USA 5 mo 0-2 0.08 Negative values Pypker et al. (2013)
Peatland Canada 46 mo < 0.17 Outliers 58% Helbig et al. (2017)
20%
Wetland USA 45 mo 0.2 summer, Morin et al. (2017)
0.15 winter
Tidal salt marsh China 22 mo < 19 0.15 Rainfall 66% Li et al. (2018)
20%
Pasture, com, rice, USA 1y 0.15- 0.2 Knox et al. (2015);
restored wetlands Knox et al. (2016)
Bog Forest Germany 14 mo < 0.124 64% Hommeltenberg et al.
20% (2014)
Meadow China 31 mo 0.1 (night) Rainfall, >-0.1 and >0.005 65% Chen et al. (2020)
wind dir. pmol m~ %!
Forest USA 3 growing 0.1 Iwata et al. (2015)
seasons

+ RSSI Relative Signal Strength Indicator,  CHs quality flags as defined in EddyPro flux processing software (version 6.2.1, LI-COR Inc., Lincoln, NE, USA), } The
percentage of total data missing after accounting for both filtering and technical failures, 1 Atmospheric stability parameter { = /L, where g is the measurement

height and L the Obukhov length.
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regardless of gaps), versus a “restricted predictors model” (using gap-
filled predictors or predictors with no missing values), influence CHs
budgets. With different hydrological conditions, the response of CHy
fluxes to environmental factors may vary among different wetlands. For
example, Yu et al (in review) found that seasonal water dynamics had a
much stronger impact on CHs fluxes in a long hydroperiod wetland
versus one with a short hydroperiod. Therefore, models for gap-filling
CH, flux data will likely need to be site-specific. By applying the same
filtering methods to sites with similar climate and contrasting hydrolo-
gy, we can better isolate site-specific effects to evaluate the impact of the
choice of filtering and gap-filling methods on derived CH4 budgets to
focus on the primary question: Are Everglades freshwater marshes a sink
or source for CH4? In doing so we intend to answer: 1) How does EC
filtering criteria influence the size and distribution of gaps? And 2) Do
filtering procedures influence annual budgets and prediction uncer-
tainty in these systems? Our case study will provide a framework to
support robust, transparent filtering criteria for subsequent research
utilizing EC-derived CH, data.

2. Methods
2.1. Study area

This study was conducted using data that was collected from January
2016 through December of 2019 at two freshwater marsh sites with
contrasting hydrology within Everglades National Park: Taylor Slough
(TS/Ph-1; 25° 26'16.5"N, 80° 35'40.68”W) and Shark River Slough
(SRS-2; 25° 33'6.72""N, 80° 46'57.36""W). Both are oligotrophic marshes
and are part of the Florida Coastal Everglades Long-Term Ecological
Research program (FCE-LTER). The TS/Ph-1 site is a short-hydroperiod
marsh that is flooded for 4-6 months each year, typically from June to
November. The site is characterized by shallow marl soils (mostly fine
particles of calcium carbonate as calcite, ~0.14 m deep) overlying
limestone bedrock. The site is co-dominated by the C; macrophyte
Cladium jamaicense Crantz (Armentano et al., 2006), commonly known
as sawgrass, with the C4 grass Muhlenbergia capillaris Lam (Muhly grass).
Abundant periphyton mats are present during the inundation period
(Gaiser et al., 2006; Gottlieb et al., 2006; Iwaniec et al., 2006). Mean
canopy height (Z) and surface roughness (zp) for this site are 0.73 and
~0.3 m, respectively. The long-hydroperiod SRS-2 site is inundated
year-round in most years. Soils are deep peat (>50 cm) above limestone
rock (Duever et al., 1976). The site is characterized by two different
vegetation types, ridge and slough. Ridge areas are slightly elevated and
dominated largely by monospecific, dense stands of robust sawgrass,
and sloughs are comparatively much less vegetated areas with open
water, water lilies (Nymphaeaaea), Sagittaria, and a mix of several spe-
cies of spikerush (Eliocharis), all of which have aerenchyma tissue. For
this site, Z and zg are 1.02 and ~0.4 m, respectively. For both sites, no
notable seasonality in the canopy heights are present.

The Everglades are located in a subtropical region; however, the
climate is classified as tropical with distinet annual wet and dry seasons
during the summer and winter, respectively (Duever et al., 1994; Beck
et al., 2006). Mean annual precipitation is 1430 mm (NCDC, 2019) with
~60% of rainfall occurring at the height of the rainy season (June to
September) and ~25% in the dry season (November to April) with
variability among transitional months (Duever et al., 1994). Mean
annual temperature of the Everglades is 23.9°C, with the mean monthly
minimum (18.1°C) in January and monthly maximum (29.4°C) in
August (NCDC 2019).

2.2. Eddy Covariance

At each site, open-path infrared gas analyzers (IRGA, LI-7500 and Li-
7700, LI-COR Inc., Lincoln, NE) were used to measure CO, (mg mol™),
water vapor molar density (mg mol_l], and CHs (pmol mol ™). The
IRGAs were paired with a sonic anemometer (CSAT3, Campbell
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Scientific Inc., Logan, UT) to measure sonic temperature (Tgop;e; K) and
3-dimensional wind speed (u, v and w, respectively; m s*). The sensors
were installed 0.09 m apart at 3.30 and 3.24 m above ground level (a.g.
L) at TS/Ph-1 and SRS-2, respectively. Data were logged at 10 Hz,
collected by the LI-COR 7550 analyzer interface unit (LI-COR Inc.,
Lincoln, NE) and stored on an industrial 16 GB USB drive. The LI-7500’s
were calibrated monthly using a trace gas standard for CO, in air
(£1.0%), dry N, gas and a portable dew point generator (LI-610, LI-COR
Inc.). Footprint analyses (Kljun, Rotach and Schmid, 2002; Kljun et al.,
2004) indicated that 80% of measured fluxes were within 100 m of the
tower during convective conditions at both sites. Other meteorological
variables were measured at 1-sec and collected as half-hourly averages
by a data logger (CR1000, Campbell Scientific Inc), and included: air
temperature, (Ty;;°C) and relative humidity (RH; %) (HMP45C, Vaisala,
Helsinki, Finland) mounted within an aspirated shield (43502, R.M.
Young Co., Traverse City, MI), and barometric pressure (P; atm)
(PTB110, Vaisala Corp., Helsinki, Finland). The T,;/RH sensors were
installed at the same height a.g.l. as the IRGA and CSAT.

At each site, additional meteorological data were measured at 15-sec
and collected as 30-min averages through a multiplexer (AM16/32A
Campbell Scientific Inc.) with another data logger (CR10X Campbell
Scientific Inc.). This included photosynthetically active radiation (PAR;
pmol m~2 s71) (PAR Lite, Kipp and Zonen Inc., Delft, Netherlands),
incident solar radiation (Rg; W m~ ) (LI-200SZ, LI-COR Inc.), and net
radiation (Rp; W m~2) (CNR2-L, Kipp and Zonen). Precipitation mea-
surements were made with tipping bucket rain gauges (mm) (TE525,
Texas Electronics Ine., Dallas, TX). Soil volumetric water content (VWC;
%) was calculated from equations developed for peat and marl soils
using the methodology of Veldkamp & O'Brien (2000), from the
dielectric constant using two soil moisture sensors (CS616, Campbell
Scientific Inc.) installed at a 45° angle at the soil surface at each site. Soil
temperature (Ts;°C) was measured at 5 ecm, 10 cm, and 20 cm depths at
two locations within each site using insulated thermocouples (Type-T,
Omega Engineering Inc., Stamford, CT). When inundated at SRS-2,
water temperature (Tw;*C) was measured using two pairs of insulated
thermocouples (Type-T, Omega Engineering Inc.), each pair located at a
fixed height 5 cm above the soil surface and another attached to shielded
floats that held the thermocouples 5 ecm below the water surface. At
TS/Ph-1, Tw was measured using insulated thermocouples (Type-T,
Omega Engineering Inc.) located at a fixed height 2 cm below the water
surface. Water level (WL; m) at both sites was recorded every half-hour
with a water level logger (HOBO U20-001-01, Onset Computer Corpo-
ration, Bourne, MA). Data gaps occurred during the study due to
equipment failures and weather anomalies (e.g., Hurricane Irma). Gaps
in WL data were filled using relationships derived from the three nearest
Everglades Depth Estimation Network stations (https://sofia.usgs.gov/
eden) and the site’s water level station. PAR was gap-filled with data
from nearby flux towers in the FCE-LTER for subsequent analyses.

Raw flux data were processed with EddyPro software (Advanced
mode, version 6.2.1, LI-COR Inc., Lincoln, NE, USA) over 30 min time
intervals. The raw CH, turbulence data were processed with the LI-7700
diagnostics turned off. Flux measurements for Fgoz, sensible heat flux
(H), and latent heat flux (LE) were filtered when systematic errors were
indicated, such as: (1) evidence of rainfall, condensation, or bird fouling
in the sampling path of the IRGA or sonic anemometer, (2) incomplete
half-hour datasets during system calibration or maintenance, (3)
excessive variation from the half-hourly mean based on an analysis of
standard deviation of the u wind component (std. dev. of u > 1.6), and
(4) poor coupling of the canopy with the external atmospheric condi-
tions, as defined by the friction velocity, U* (Goulden et al. 1996; Clark
et al. 1999), using a threshold of 0.15 m 571, The U* threshold was
determined using the CO, flux by site and year following Papale et al.
(2006) via the REddyProc package in R (Wutzer et al. 2018). While
estimated thresholds varied somewhat by year and site, the majority of
95% confidence intervals were in the range of 0.1-0.15; thus, our
threshold reflects a somewhat conservative approach. Quality assurance
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of the F¢go data was also maintained by examining plausibility tests (i.e.,
|Feoz| < 30 pmol m™2 ™), stationarity criteria, and integral turbulent
statistics (Foken and Wichura 1996; Foken and Leclerc 2004). At
TS/Ph-1, 38% and 77% of the day and nighttime data were removed,
respectively. At SRS-2, 34% of daytime data and 70% of nighttime data
were removed. Missing half hourly Fcos data were gap filled using
separate functions for day and night. When PAR was >10 pmol m™2571,
Fcoz data were gap-filled using a Michaelis-Menten approach (Michaelis
& Menten 1913) (Fgoz day; EQ. 1), and when PAR was <10 pmol m 2571,
Fcoz data were gap-filled using an Arrhenius approach (Arrhenius 1915)
(Fco2 nighe; Eq. 2):

a®P, .

P (Fa- 1

Feon day = Reco —

where: a is the apparent quantum efficiency, ® is PAR, R, is ecosystem
respiration (pmol CO2 m~2 s_l], and Pmay is the maximum ecosystem
CO, uptake rate (umol CO, m™2 571).

F{X)Z night — Reca = RU e-xp& (Eq 2)
where: Ry is the base respiration rate when Ty, is OC and b is an
empirical coefficient. In equation 1, R, is an estimated model param-
eter, whereas Re., measurements are the dependent variable in Eq. 2.
Following gap filling, gross ecosystem exchange (GEE) was calculated
from half hourly Fcoa and Reco data (Eq. 3).

GEE = Fcop — Reo (Eq.3)

Missing H and LE values were gap-filled using the linear relationship
between H or LE and net radiation (Ry) on a monthly, seasonal, or
annual basis following Cleverly et al. (2002). When R? values were less
than 70%, annual relationships between R, and H or LE were used to gap
fill data in that month. Less than 5% of filtered data were filled with

annual equations.

2.3. CHy Filtering treatments

Building on the work of previous CH4 studies, we evaluated the
amount of data lost and the quality (measures of variance, outliers,
feasible ranges) of gap-filling for six filtering treatments (Feasibility,
RSSI 10%, RSSI 20%, U*, RSSI 10% + U*, and RSSI 20% + U*; Table 1).
First, we considered that values of Fcus between -2 and +2 pmol m 257!
could be attainable in our sites by evaluating measurements under ideal
conditions. Moreover, this range encompassed ~95% of our Fcy, data.
Thus our “Feasibility” filtering treatment was to limit |Fepa|< 2 pmol
m~2 571, While this approach may remove ebullition signals that may be
accurate but sporadic, it captures the vast majority of valid data. All
other filtering treatments were applied following feasibility filtering. A
common parameter used for filtering is the Relative Signal Strength
Indicator (RSSI). A threshold of 10% is often used, as this value is often
reached when mirrors are fouled or objects are present in the IRGA
sample path (McDermitt et al 2011). We also tested a threshold of 20%
to encompass values commonly used in wetland CH, research (Table 1).
Thus, our next two filtering treatments removed Fcy, when RSSI was
less than 10% or 20%, respectively. U* thresholds have also been used in
CH, flux data processing and indicate whether air samples brought to
the sensor are well mixed and representative of ecosystem function at
the measurement time. The U* generally attains its lowest values at
night. Thresholds are typically set based on canopy height and rough-
ness, and based on our CO, studies, we set the U* threshold at 0.15 for
our fourth filtering treatment. The final two treatments combined this
U* threshold (0.15) with each of the RSSI thresholds (10%, 20%). While
some previous research has used quality flags as filtering criteria
(Table 1), we did not find different patterns of Feps under different
quality flags. Moreover, the use of these flags eliminated Feyy values
<-0.2, which was not appropriate based on previous studies in our sites.
Therefore, we did not consider CH, quality flags as a filtering method for
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our sites.
2.4. Development of CH4 Gap Filling Model

We employed the machine learning algorithm Random Forests (RF)
to gap-fill filtered Fcua for each filtering treatment. The RF algorithm
was first introduced by Breiman (2001), and uses an ensemble of
regression trees to predict target values. The prediction accuracy of RF
has been found to be superior to other algorithms in flux upscaling
studies (Bodesheim et al 2018; Tramontana et al 2015; Xu et al., 2018).
While few studies have utilized RF for gap-filling, Kim et al (2020) found
that RF out- performed other techniques across five sites, and Irvin et al
(2021) reported that median performance was better for RF across 17
FLUXNET wetland sites. In RF, a series of bootstrapped datasets are used
to generate independent regression trees; at each node, a random sample
of predictor variables is selected for use. The RF prediction is the
ensemble of multiple individual trees. We utilized the R package ran-
domForest (Liaw and Wiener 2002) to create 500 trees for each year and
site, using 80% of the data for model fitting and 20% for model vali-
dation. Variables included as predictors included other fluxes and the
suite of micrometeorological variables, but excluded variables which
were highly correlated with others (e.g., net radiation): PAR, RH, U*, air
pressure, vapor pressure deficit (VPD), net longwave radiation, Ta,
water level, LE, H, and Feos. Based on previous studies of Fga, we also
included the half-hourly change in water level, as well as several lagged
values (12-hour, 2-day, and 8-day differences) (Malone et al., 2014).
Since preliminary analyses indicated strong synoptic patterns in Fcya,
we also computed 2-day, 4-day, 8-day, 16-day, and 32-day moving av-
erages as predictors of half-hourly Feyy in RF models.

In a preliminary step, we first estimated RFs by site and year with a
series of subsets of the 20 candidate independent variables using a
modified backwards elimination procedure. The fit of each RF was
evaluated with the out-of-bag mean square error (OOB MSE), and var-
iable importance was computed as the amount the prediction error
increased when a particular predictor was permuted. Initially, 500 RF
trees per year and site were generated using all possible predictor var-
iables. Overall model fit was evaluated with the average of the 500 OOB
MSEs from the final model for each year and site, and variable impor-
tance was calculated as the average rank of each predictor variable for
the 500 models. Then, the variable with the least importance was
dropped as a predictor. This process was used to reduce the number of
variables considered from 20 to 11 (Table 2). In our sites, this eliminated
some variables which have been used for gap-filling in other sites (e.g.,
Tair, RH, air pressure, and radiation fluxes) (Irvin et al. 2021), empha-
sizing the need for site-specific variable selection.

Table 2
Predictor variables used in random forest (RF) models of Fgys. R=restricted
model, U=unrestricted model.

Variables Units Description Model
Feoz pmol m™* Net ecosystem exchange of CO, R, U
-1
s
GEE.-1d pmol m™3 Previous day’s gross ecosystem exchange R, U
d! rates
Feps-ma2d pmol m™* 2-day moving average of half hourly Fons* U
-1
s
Fepq-mald pmol m—2 8-day moving average of half hourly Fgy,* U
-1
s
Fena- pmol m™* 32-day moving average of half hourly u
ma32d st Fens*
WL m Water Level R, U
WL.12h m The difference in water level over 12 hours R, U
WL.2d m The difference in water level over 2 days R, U
H Wm? Sensible heat flux R, U
LE Wm™? Latent energy R, U
PAR pmol m™3 Photosynthetically active radiation R, U

-1
13

* Calculated when >10% of observations were non-missing.
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We further explored the amount of redundancy and relevance of the
remaining 11 variables used to gap-fill CH4 using the varrank (Kratzer
and Furrer 2018) package in R. This approach provides a general
implementation of the minimum redundancy maximum relevance
(mRMRe) model, that is based on information theory metrics. It is
compatible with discrete and continuous data which are discretized
using a large choice of possible rules and then a varrank analysis
sequentially compares relevance with redundancy. The columns of the
triangular matrix contain the scores at each selection step. The variable
with the highest score is considered the most important and the vari-
ables are listed in order of their importance. A negative score indicates
redundancy of information and a positive score is indicative of rele-
vance. We used the R function VSURF (Genuer et al. 2010) to perform a
two-stage variable selection procedure based on preliminary rankings of
the explanatory variables and a stepwise forward strategy following
Genuer and Poggi (2010). The procedure returns two subsets of
important variables; the first is used for interpretation, but includes
some redundancy, and the second eliminates redundant variables for
parsimonious prediction. While gap-filling models of Fcy, were esti-
mated using only non-missing predictors, our objective was to fill Fcus
data, even when predictor variables were missing. Thus, Fcp, gap-filling
was carried out in two steps that fit two types of models. The first type of
model, hereafter referred to as the “unrestricted predictors model”, used
all variables regardless of the gaps in the suite of predictors. The second
model, hereafter referred to as the “restricted predictors model”, used
variables that can be gap-filled with data from nearby sensors or that
contain no missing values (Table 2). The latter model thus did not
include variables describing synoptic patterns of Feyq, but did include
filled values of (for example) PAR and WL. This latter approach allows
for a two-step gap-filling process, whereby gaps in Fcua data are first
filled with the strongest predictors regardless of the capacity to fill all
gaps (unrestricted model), and then remaining gaps (i.e., those where
one or more predictors are missing) are filled with models that include
variables that were gap-filled (restricted model).

2.5. CHy Gap Filling Procedure

To fill gaps in Feyy4, we used the randomForestInfJack function in the
package randomForestCI (Wager et al. 2014). We also calculated model
uncertainty for random forest predictions. Two sources of variability
contribute to the variance of a RF prediction: sampling variability and
Monte Carlo noise. We estimated the prediction variance using an
infinitesimal jackknife estimate (Wager et al. 2014) based on boot-
strapped trees using the R package randomForestCIL. To estimate annual
CH4 budgets, we first filled gaps in Fcns with the unrestricted predictors
model and any remaining gaps were filled with the restricted predictors
model. To estimate annual budget prediction uncertainty, the standard
deviation of each prediction was summed for missing measurements
under each filtering treatment, and prediction uncertainties for half
hours with a measured value were assumed 0.

3. Results
3.1. Gap distributions

The inclusion of U* threshold filtering treatments resulted in a larger
decrease in observations than that of RSSI. For example, the inclusion of
a 0.15 U* filter decreased the number of available Fcy4 observations by
33% and 26%, respectively at TS/Ph-1 and SRS-2, versus only using a
feasibility filter (Table 3). While the inclusion of a U* filter did not have
an effect on larger gaps, its impact was to increase the number of gaps of
less than one day (<48 half-hourly Fcy, observations) (Table 4).

More rigorous filtering (U*, RSSI 10% + U*, and RSSI 20% + U*)
resulted in greater data loss (Table 3), although its effect on the number
of gaps created was not distributed evenly across all gap sizes. Stricter
filters created larger gaps, but not necessarily more gaps of all size
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Table 3

Number of non-missing Fgyy4 observations under each filtering treatment.
Treatment TS/Ph-1 SRS-2
Feasibility RSSI U*

58,753 64,237

(-2, 2) 53,991 59,573
(-2, 2) > 10% 49,221 50,634
(-2, 2) > 20% 43,865 41,683
(-2, 2) =0.15 34,889 42,791
(-2, 2) > 10% =0.15 33,152 37,774
(-2, 2) > 20% =0.15 30,742 32,074

classes (Table 4). Gaps that were larger than 7 days were rare and were
relatively unaffected by different filters. The very large gaps (i.e, > 1
month) at both sites were a result of Hurricane Irma, which made
landfall on 9 September 2017.

3.2. Redundancy between variables

When using only the feasibility, U*, or RSSI filtering methods in TS/
Ph-1, analyses showed that there was strong redundancy between Fega
and WL.2d (the two-day change in water level); however, this redun-
dancy was greatly reduced when a combination of U* and RSSI was used
to filter half-hourly Fcy4 data (Supplemental Information Fig. S1). With
RSSI filtering, redundancy was stronger between Fegs and all variables
except PAR and the 2-day moving average of Fchs (Fcas.ma2d), and
became stronger with greater RSSI limits; however, this redundancy was
reduced when RSSI filtering was combined with the U* filter. When
considering feasibility only, redundancy was strong between LE and
WL.2d. When combining RSSI at 10% with U*, the redundancy between
PAR and WL.12h was strong, but this dissipated when RSSI was
increased to 20%. Under the most stringent filtering method, including
both RSSI and U*, no pairs of variables showed redundancy.

Regardless of filtering method, analyses showed that there was
strong redundancy between Fgos and WL.12h at SRS-2; unlike in TS/Ph-
1, this redundancy was not reduced when filtering included both U* and
RSSI (Supplemental Information Fig. $2). Like TS/Ph-1, redundancy was
strong between Fegs and all variables except PAR and Feyy.ma2d, but it
was not reduced when combined with the U* filter. When considering
feasibility only, redundancy was strong between LE and WL.12h; when
combining RSSI at 10%, U*, or their combination, redundancy was also
strong.

3.3. Random forest models

Variable selection procedures showed that when using the unre-
stricted predictors model, which included both filled and unfilled vari-
ables, synoptic patterns of Feya, Feoa, and WL were the most important
predictors of Fcya in both sites (Fig. 2 and Fig. 3). Variables that tracked
multi-day synoptic patterns of Fcys (2-day, 8-day and 32-day moving
averages) were the most important in predicting half-hourly Fcna;
shorter term variables were more important (2-day and 8-day) than the
32-day. The next most important variable in predicting Feyg was Feoa,
followed by WL and short-term changes in water level (2-day and 12-
hour). At TS/Phl, the order of importance for water level variables
did not depend on the filtering treatment except with the strongest filter,
with the synchronous value more important than the change. At SRS-2
when using the unrestricted predictors model, variables quantifying
changes in water level were more important in predicting Feyq, versus
that of the synchronous value in all filtering treatments except feasibility
only.

When using restricted predictors, the subsets of variables selected
were quite different from those of the unrestricted predictors: F¢oa, GEE,
H and LE, PAR, and WL variables (12-hour and 2-day change, and
synchronous) (Fig. 4 and 5). Moreover, compared to restricted models
estimated with unfilled and filled predictors, the two sites indicated
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Table 4
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Number of gaps in Fcy, (proportion of total number of observations) under different filtering treatments. All treatments included Feasibility Filter.

Site Gap Length Hours (days) Feasibility (-2, 2) only R55I 10% RS5SI 20% u* RSSI 10% + U* RS55I 20% + U*
TS/Ph-1 05-4 1809 (5.4%) 1991 (6.7%) 2040 (7.2%) 2706 (10.4%) 2509 (9.8%) 2282 (8.9%)
4.5-24 101 (2.3%) 290 (6.8%) 448 (12.1%) 943 (24.4%) 994 (26.6%) 1020 (28.9%)
24.5-168 (1.01-7) 4 (0.9%) 10 (1.8%%) 20 (3.6%) 5 (1.0%) 10 (1.9%) 22 (4.0%)
168.5 - 672 (7.01 - 28) 4 (4.0%) 4 (4.0%) 4 (4.0%) 4 (4.0%) 4 (4.0%) 4 (4.0%)
672.5 - 1500 (28.01 - 63) 2 (6.1%) 2 (6.1%) 2 (6.19%) 2 (6.1%) 2 (6.1%) 2 (6.1%)
SR5-2 05-4 1439 (4.5%) 1829 (6.1%) 1779 (6.4%) 3239 (12.3%) 2912 (11.1%) 2442 (9.3%)
4.5-24 84 (1.79%) 318 (8.7%) 487 (14.3%) 780 (17.8%) 853 (22%) 874 (25.1%)
24.5-168 (1.01-7) 3 (0.7%) 20 (4.4%) 30 (6%) 3 (0.7%) 20 (4.4%) 30 (6.1%)
168.5 - 672 (7.01 - 28) 2 (1.6%) 3 (2.1%) 8 (7.3%) 2 (1.6%) 3 (2.1%) 8 (7.3%)
672.5 - 1500 (28.01 - 63) 2 (6.5%) 2 (6.5%) 2 (6.5%) 2 (6.5%) 2 (6.5%) 2 (6.5%)
a.
25.8°N
25.6°N —
254°N
25.2°N -
25°N -
I T T T | T 1
81.6°W 814'W 81.2°W 81"'w 80.8°W  80.6°W 804°W

Fig. 1. Eddy covariance tower sites in Everglades National Park, USA: (a) location map, (b) short-hydroperiod freshwater marl prairie site, and (c) long-hydroperiod

freshwater marsh site.

different orders of variable importance. For TS/Ph-1, Fcoz was consis-
tently the most important, regardless of filtering treatment (Fig. 4). Also,
variables that described synchronous WL and energy (H and LE) were
more important than those of water level change, PAR, and GEE. With
the U* filtering treatment, GEE.-1d became more important for predic-
tion of Feys when using restricted predictors only to estimate models,
except when added to the RSSI 20% treatment.

For SRS-2, Fcoo was consistently the most important predictor when
using restricted predictors, except when filtering treatments were more
relaxed, in which case synchronous water level was the most important
(Fig. 5). As with TS/Ph-1, energy variables (H and LE) were the next
most important, followed by GEE. Changes in water level and PAR, were
least important for prediction of Fcys when using the set of restricted
predictors in SRS-2.

3.4. Annual CHy budgets

At TS/Ph-1, using the feasibility filter only resulted in the lowest CH,
budget, except in 2019 when this filter resulted in the highest CH,4
budget (Fig. 6). There was no clear pattern in terms of which filtering
treatment resulted in the highest annual budget, except that it involved
U* in every year except 2019. The difference between the lowest and

highest CH, budgets varied by filtering treatment, from 14% (2017) to
45% (2019), although there was substantial overlap among treatments
when considering uncertainty. As filtering treatments became more
constraining, their prediction variance increased, such that the U* +
20% RSSI filter always had the highest prediction standard errors and
the feasibility only filter had the lowest standard errors in both sites.
Uncertainty in TS/Ph-1 CH, budgets also varied by year and the type of
predictor dataset used. In 2018, due to unusually good data coverage (i.
e., CHy 2-day, 8-day, and 32-day moving averages contained at least
10% data coverage), the restricted predictors model was unused in
predicting CH; in 2018 in TS/Ph-1 (Supplemental Information
Table S1), and therefore did not contribute to the annual budget (Fig. 6).
In all other years, errors due to using the unrestricted predictors model
in TS/Ph-1 were approximately half that of the restricted predictors
model when using RSSI filtering only, whereas they were 20-40% higher
when using U* or RSSI + U* filtering.

In SRS-2, CH4 budgets were more than twice as high as that of TS/Ph-
1 (Fig. 6; Supplemental Information Table S$2). There was no clear
pattern in annual budgets by filtering treatment; in 2017-18, the highest
budgets were attained using the 10% RSSI filter, whereas the highest
involved the U* filter in 2019, and U* plus 20% RSSI in 2016. In
contrast, the lowest budgets were attained with the U* filter in 2016-17,
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Fig. 2. Variable importance for random forest models of Fcy4 estimated with the unrestricted (both unfilled and filled) predictors at Taylor Slough (TS/Ph-1).
IncNodePurity denotes the variable importance based on the Gini impurity index used for calculating splits in trees. All filtering treatments included the Feasi-

bility filter.

and the 20% RSSI filter in 2018-19. The largest difference among
filtering treatments occurred during 2017, when RSSI 10% filtering was
63% higher than that of the feasibility only filter. The differences were
lowest the next year (2018; 7%). Unlike TS/Ph-1, errors due to using the
unrestricted predictors model in SRS-2 were on average three times as
high as those due to using the restrictive predictors in 2016 and 2018,
and more than ten times as high using the restrictive predictors in 2019
(Supplemental Information Table $3). During 2017, both models
contributed in roughly equal proportion to the total prediction error in
CH,4 budget. In all other years, errors due to using the unrestricted
predictors model in SRS-2 were always much higher than that of the
restricted predictors model and increased when applying U* filtering
versus RSSI only filtering only.

4. Discussion

While many studies have concluded that tropical/subtropical wet-
lands are an important natural source for CHs through remote sensing,
modeling and chamber measurements, CHs budget estimates reported
have been associated with large uncertainties (Saunois et al. 2016;
Zhang et al. 2017; Bloom et al. 2017; Parker et al. 2018; Jeffrey et al.
2019). This study confirmed that Everglades freshwater wetlands are a
source for CHa with budgets of 6.7-17.9 and 24.3-47.5 g Cm™ 2 yr™! for
the short-hydroperiod (TS/Ph-1) and long-hydroperiod wetlands
(SRS-2), respectively. The annual budget of SRS-2 is close to that of a

subtropical freshwater marsh in the Mississippi River Delta (Holm et al.
2016) and also matches the flux range of temperate wetlands (27.7 and
63.4+1.0gC m~2 yr_l) observed by Hermes et al. (2018), but it more
closely matches those of tropical wetlands (24.5 +20.7 gCm 2 yr™ ")
from the FLUXNET-CH4 database (Delwiche et al 2021). While annual
CH,4 emissions from TS/Ph-1 were also within this range, they were
substantially lower. However, we also found that using different data
filtering criteria in the EC technique could result in annual budget dif-
ferences up to 63%. Filtering criteria vary among different studies but
their effect on gap-filling results and budget estimates are hardly eval-
uated. Our results highlight the importance of the choice of filtering
criteria in CH, studies using the EC approach, as it can have a significant
effect on uncertainty in CH4 budget estimates.

Among the filtering criteria we used, U* introduced the most gaps
compared to RSSI and feasibility only filters. The U* filter is used to
remove EC data collected under atmospheric conditions that do not
generate sufficient turbulence to meet EC assumptions (Barr et al. 2013).
These conditions occur mostly at nighttime. Therefore, the U* filter did
not introduce many gaps that were larger than one day. Nonetheless,
due to the large number of gaps created by U*filtering (Table 4), the
medians of the annual budget estimates were either lower (in 2017) or
higher (in 2019) versus those based on RSSI filtering alone for the
long-hydroperiod site (SRS-2), but with larger uncertainties. RSSI
filtering could occasionally introduce small gaps when contaminants in
the optical path of the analyzer were removed by the built-in automatic
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Fig. 3. Variable importance for random forest models of F¢y, estimated with the unrestricted (both unfilled and filled) predictors at Shark River Slough (SRS-2).
IncNodePurity denotes the variable importance based on the Gini impurity index used for calculating splits in trees. All filtering treatments included the Feasi-

bility filter.

cleaning system at a 30-min interval (e.g., wet bird dropping, raindrops,
living animals). However, when the cleaning system could not effi-
ciently eliminate the contaminants (e.g., dry bird dropping, spiderwebs,
upper mirror contamination), large gaps were generated until on-site
cleaning was performed (Supplemental Information Table S4). Over-
all, different filtering criteria can generate gaps that can be heavily
biased towards a certain length or time of day, and subsequently influ-
ence the gap-filling model and the ultimate budget estimate.
According to Kim et al. (2020) and Irvin et al. (2021), RF has the best
performance in gap-filling Fcys from various ecosystems due to its ef-
ficiency in handling highly nonlinear relationships. In our RF models for
gap-filling, we found that water level and Fcoz were the strongest pre-
dictors, regardless of the gap size (Fig. 3-Fig. 6). Water level plays an
important role in controlling the soil aerobic/anaerobic condition that
determines the active levels of methanotrophs (i.e., CH,4 consumption)
and methanogens (i.e., CHy production) (Segers 1998), and is consid-
ered as an important control for CHg flux (Irvin et al. 2021; Knox et al.
2019). For example, plant aerenchyma tissues are an important pathway
for CH, emissions (Jeffrey et al., 2019); when water level is higher than
mean plant canopy height, plants are fully submerged and thus gas
transport is restricted. Feop is mainly linked to Feyy in the following
ways. First, carbon uptake by the ecosystem from the atmosphere can be
further transported to the soil as root exudates and used by methanogens
as substrates for CH; production (e.g., Waldo et al. 2019). Second,
vascular plants mediate both CH, release from soil to the atmosphere

(Bhullar et al. 2013) and COy uptake from the atmosphere. Hatala et al.
(2012) even found that the diurnal pattern in CH4 flux was driven by
GEE. On the other hand, depending on the soil aerobic condition, the
produced CH,4 can be oxidized before being released into the atmosphere
and, instead, emitted in the form of CO, (King 1990). However, rela-
tively few studies (~20%) included water status and Fegs (Supplemental
Information Table S5). Given that our findings show that these variables
are closely coupled with Fcyy, we suggest that water level and Feoo
should be essential factors to be included in gap-filling models for the
Fcua in wetlands.

Using the restricted predictors models, energy fluxes (i.e., H and LE)
became more important drivers, indicating that processes underlying
Fcpq are coupled with the ecosystem energy exchanges. This finding is
plausible because gas movement through aerenchyma is driven by
thermal processes (Dacey 19380). Interestingly, we also found that GEE of
the previous day showed substantial contributions to the RF models with
restricted predictors, suggesting there is a time lag for Fua to respond to
carbon substrate input through photosynthesis. This lagged effect has
seldom been considered in previous studies (but see e.g., Kim et al.
2020) and should be included in Fcys models. Irvin et al. (2021) re-
ported that the soil temperature and an indicator variable for season
were the most important predictors over a wide range of wetlands at
mid- and high- latitudes; however, temperatures at our sites showed
very minor effects on Feyg4, mainly due to the weak seasonal temperature
signal in the subtropical region, highlighting the need to consider
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Fig. 4. Variable importance for random forest models of Fcy4 using restricted predictors only at Taylor Slough (TS/Ph-1). IncNodePurity denotes variable importance
based on Gini impurity index used for calculating splits in trees. All filtering treatments included Feasibility filter.

site-specific variables in gap-filling models.

To gap-fill for annual budgets, we used two types of models (i.e.,
unrestricted and restricted predictors models). This hybrid approach
takes advantage of the observed values of predictors while still having
the flexibility to fill gaps even when predictors are associated with gaps
themselves. This approach is practical especially when Fcyy is also
included as a predictor in the model, which we found accounted for
synoptic patterns in CHy. While we found some studies that used aver-
ages of Fcyy in gap-filling, to our knowledge, this is the first study that
implemented a hybrid approach to gap-fill when those averages could
not be calculated due to missingness. We did not find particularly large
uncertainties associated with either of the two model types in the final
budget estimates, although generally the unrestricted predictors model
was a larger source of uncertainty than the restricted predictors model,
and the uncertainties depended largely on the amount of gaps that were
filled by them. Overall, this hybrid approach enabled us to fill data gaps
with predictors that themselves had gaps, which commonly occur in
most EC studies of Fpa.

In this study, we set the feasibility filter for Feyy to (-2, 2) pmol m™2
s~ L. It is noteworthy that this filter will exclude emissions from ebulli-
tion that are >2 pmol m™2 s™'. Ebullition is a pathway of releasing a
large amount of the produced CH, in the soil to the atmosphere, which
can account for ~20% of the annual CH4 budget in a subtropical wetland
(Jeffrey et al. 2019). Because ebullition occurs episodically, no approach
is currently available to partition the ebullition fluxes from outliers

caused by technical limitations of the EC method. Since the ebullition

fluxes are most likely removed and filled with relatively small values,
the annual CH; budget can be underestimated to a certain degree.
Despite this, our site-level estimates were similar to those of tropical
sites in the FLUXNET-CH4 network (Delwiche et al 2021). Future studies
to develop approaches to compensate for this underestimation are
needed.

Given the effect of data filtering criteria on final CH, budget esti-
mates and the fact that both the RSSI and U* filters address the limita-
tions of the EC technique, we recommend that both filters should be
applied in the standard workflow for Fcua data processing to increase
the confidence of CHy budget estimates. Rather than ignoring data
filtering procedures, publications should clearly and transparently
describe protocols for data processing. Furthermore, since different fil-
ters can generate gaps of different sizes, affecting gap-filling models as
well as final budget estimates, we also encourage studies to document
the size and frequency of gaps introduced during data processing.

5. Conclusions

Although EC data filtering is important in determining annual bud-
gets of Fepg, the filtering approaches for CH, flux are greatly under-
studied. The decision to select site-specific filtering criteria should be
justified and presented transparently, as variation in filtering ecriteria
and site conditions leads to the removal of a substantial amount of
collected data (Table 1). The removal of large amounts of data also
imposes additional uncertainties on annual CH, budgets that will further
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Fig. 5. Variable importance for random forest models of Fgya4 using restricted predictors only at Shark River Slough (SRS-2). IncNodePurity denotes variable
importance based on Gini impurity index used for calculating splits in trees. All filtering treatments included Feasibility filter.
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propagate biases in efforts to upscale and predict global CH,; budgets,
though this uncertainty is rarely acknowledged. In this study, we eval-
uated the effects that data filtering has on gap-filling of Feyy from EC
measurements in short- and long-hydroperiod freshwater wetlands in
the subtropical Florida Everglades. We show how filtering criteria in-
fluence annual CHs budget estimates through their impact on the size
and timing of the data gaps produced. How these gaps are filled is
further a function of the size of gaps in the predictor variables. In all, we
show that Feog, water level, and energy fluxes are effective at gap filling
Fcua, and that while annual budgets do vary, Everglades freshwater
wetlands are a small source of CHa.
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