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Abstract. Let G be a reductive group, and let X be a smooth quasiprojective complex
variety. We prove that any G-irreducible, G-cohomologically rigid local system on X with
finite order abelianization and quasi-unipotent local monodromies is integral. This general-
izes work of Esnault and Groechenig when G = GLn, and it answers positively a conjecture
of Simpson for G-cohomologically rigid local systems. Along the way we show that the con-
nected component of the Zariski-closure of the monodromy group of any such local system
is semisimple; this moreover holds when we relax cohomological rigidity to rigidity.

1. Introduction

A central question of arithmetic geometry is to identify which Galois representations arise,
via étale cohomology, from algebraic geometry. The Fontaine-Mazur conjecture ([FM95]),
asserting that all potentially semistable and almost everywhere unramified semisimple `-adic
representations of the absolute Galois group of a number field F do indeed appear in the co-
homology of smooth projective varieties over F , is the prototypical and most famous explicit
problem in this area. Carlos Simpson formulated in [Sim92, pg. 9 Conjecture] an analo-
gous conjecture that rigid complex representations of the topological fundamental group of
a smooth projective complex variety X necessarily appear in the cohomology of a family of
varieties over X. In particular (loc. cit.), rigid representations should be defined over the
ring of integers in some number field. Simpson raised these questions for representations
valued not just in GLn, but in general algebraic groups G.

WhenG = GLn, two striking general results are known. ForX an open subvariety of P1, Katz
has proven that any GLn-cohomologically rigid (see Definition 1.1) irreducible local system
on X with quasi-unipotent local monodromies is a subquotient of the monodromy repre-
sentation of a family of varieties over X ([Kat96, Theorem 8.4]). Esnault and Groechenig
([EG18, Theorem 1.1]; see also [EG17]) have proven Simpson’s integrality conjecture, for all
smooth quasi-projective varieties, for GLn-cohomologically rigid irreducible representations
with finite-order determinant and quasi-unipotent local monodromies.

In the present paper we generalize the main theorem of [EG18] to rigid representations valued
in general connected reductive groups G. We begin by making precise the basic terms.
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Definition 1.1. Let X be a connected smooth quasiprojective variety over C, and let
j : X ↪→ X be a good compactification: thus X is smooth projective, and the bound-
ary D = X \ X is a strict normal crossings divisor. Let x ∈ X(C) be any base-point,
and let πtop

1 (X, x) be the corresponding topological fundamental group. A homomorphism
ρ : πtop

1 (X, x) → G(C)

• is G-irreducible if the image of ρ is not contained in any proper parabolic subgroup
of G.1

• has quasi-unipotent local monodromy if for all points y in the smooth locus of D and
any sufficiently small ball ∆ ⊂ X around y, ρ(γ) is quasi-unipotent for a generator
γ of πtop

1 (∆ \D ∩∆) ∼= Z.

• is G-rigid if the orbit of ρ under the G(C)-conjugation action on the representa-
tion variety parameterizing G-valued representations of πtop

1 (X, x) (with the same
abelianization and local monodromy as ρ)2 is a connected component.

• is G-cohomologically rigid if H1(X, j!∗g
der) = 0, where gder is the Lie algebra of the

derived group of G, regarded as a local system on X via the composite Ad ◦ ρ.

Equivalently, ρ is rigid (respectively, cohomologically rigid) if it represents an isolated point
(respectively a smooth isolated point) on an appropriate moduli space of G-local systems;
see the discussion in §4.1. In particular, cohomologically rigid local systems are rigid. Note
that if ρ is either G-irreducible or G-cohomologically rigid, there need not exist a faithful
finite-dimensional representation r : G → GLn of G such that r ◦ ρ is either GLn-irreducible
or GLn-cohomologically rigid; thus the results of [EG18] cannot be used to bootstrap to the
case of general G.

We now state the main theorem:

Theorem 1.2. Let X/C be a connected smooth quasi-projective complex algebraic variety,
with a base-point x ∈ X(C). Let G be a split connected reductive group over Z, and let

ρ : πtop
1 (X, x) → G(C)

be a G-irreducible and G-cohomologically rigid local system such that

• ρ has quasi-unipotent local monodromy;

• the image of the composite homomorphism

πtop
1 (X, x)

ρ
−→ G(C) → A(C)

to the maximal abelian quotient A of G has finite order.

Then there is a number field L with ring of integers OL such that ρ is G(C)-conjugate to a

homomorphism πtop
1 (X, x) → G(OL); and im(ρ)

0
, the connected component of the identity

of the Zariski closure of the image im(ρ) of ρ, is semisimple.

1Replacing G(C) in this definition by G(K) for some field K, we will tend to abuse notation and say a
representation is G-irreducible if it is G-absolutely irreducible, i.e. the resulting homomorphism into G(K)
does not factor through a proper parabolic subgroup.

2See section 4 for details on this affine variety.
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Moreover, the semisimplicity of im(ρ)
0
holds if we weaken the assumption that ρ is G-

cohomologically rigid to ρ being G-rigid.

Remark 1.3. When G = GLn, and discounting the conclusion that im(ρ)
0
is semisimple, this

is precisely [EG18, Theorem 1.1]. If ρ comes from geometry, i.e. it arises as the monodromy
representation of a sub-local system of Rif∗C for a smooth map f : Y → X, then ρ satis-
fies the two conditions of the theorem. Indeed, it first follows from the local monodromy
theorem that ρ has quasi-unipotent local monodromy. That the abelianized monodromy
representation has finite image follows from [Del71, Corollaire 4.2.8.iii(b)].

Remark 1.4. Many naturally-occurring local systems are rigid and provably integral by other
means. For instance, let H be a connected semisimple Lie group with (real) rank at least 2
and having no compact factors, and let Γ ⊂ H be an irreducible lattice such that Γ ·H is is
dense in H, with H is the minimal connected normal subgroup such that H/H is is compact.
Then Margulis has proven in turn the following remarkable results (see [Mar91, Theorems
IX.6.5, IX.6.15], starting from his lattice superrigidity theorem:

• Γ is an arithmetic subgroup.

• For any homomorphism ρ : Γ → G(C), the Zariski-closure im(ρ) is semisimple.

• For every representation r : Γ → GLn(C), H
1(Γ, r) is trivial.

In particular, with r equal to the adjoint action of G on gder, if the associated locally
symmetric space Γ\H has the structure of a complex quasiprojective variety, we see that
ρ is cohomologically rigid in the sense of Definition 1.1. (See Propositions 4.6 and 4.7;
the vanishing condition here is in general stronger than what is needed for cohomological
rigidity.) Many interesting rigid representations, however, have monodromy groups that are
not lattices in their real Zariski-closures: this is the phenomenon of so-called thin monodromy
groups, and famous (hypergeometric) examples have been studied in [DM86], and more
recently [BT14]. In our algebro-geometric setting, the chain of reasoning is reversed: we
assume cohomological rigidity, and then deduce the semisimplicity of the monodromy group
and integrality (in place of arithmeticity) of the representation.

1.1. Overview of the proof. The proof follows the arguments of [EG18], and indeed our
debt to that paper will be evident throughout. The essential idea is, having shown the rigid
representation is defined over the ring of Σ-integers OK,Σ ⊂ K for some number field K and
finite set of places Σ, to check integrality at each λ ∈ Σ by specializing ρ to characteristic
p and using results of Drinfeld and Lafforgue on the existence of compatible systems of λ-
adic representations. Such arguments are considerably subtler for general G than for GLn,
since in general the semisimple conjugacy classes associated to Frobenius elements do not
uniquely characterize G-irreducible λ-adic representations. In particular, our argument must
keep track of monodromy groups in a way that [EG18] does not, and we rely on Drinfeld’s
work [Dri18] for the existence of the requisite compatible systems.

Here is a more detailed section-by-section outline of the proof, restricting for notational
simplicity to the case where X is projective. In §3, we prove the local integrality condition

needed for the main theorem: granted that ρ factors as πtop
1 (X, x)

ρ
−→ G(OK,Σ), this reduces
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us to checking that for each λ ∈ Σ, the composite

ρλ : π
top
1 (X, x)

ρ
−→ G(OK,Σ) → G(Kλ)

can be conjugated into G(OKλ
).

The initial factorization of ρ through some G(OK,Σ) is obtained, following [Sim92] and
[EG18], by studying a suitable moduli space of G-local systems on X. In §4, we recall
the construction and basic properties of these moduli spaces. Our proof begins in earnest in
§5. We consider a set S of (isomorphism classes of) G-local systems satisfying the hypotheses
of the theorem. Using that the moduli space of G-local systems is finite type, it is deduced
(here is the key input from rigidity) that S is finite, and that there exists a number field
K and a finite set of places Σ such that each element of S is conjugate to a representation
ρ : πtop

1 (X, x) → G(OK,Σ). For each ρ′ ∈ S and each place λ of K, we obtain, via extending
scalars, a representation ρ′λ : π

top
1 (X, x) → G(Kλ), and we denote the collection of these

homomorphisms by Sλ. The final step of the proof (and the most interesting) is to deduce
the integrality of our original ρλ, for each λ ∈ Σ, from the integrality of the members of Sλ′

for a fixed λ′ 6∈ Σ (note that in §5 and §6 the notational roles of λ and λ′ are reversed).

We indicate this last step in more detail. The crucial inputs are results of L. Lafforgue
([Laf02]) on the Langlands correspondence over function fields, and results of Drinfeld
([Dri18], building on [Dri12]) that promote Lafforgue’s work to construct λ-adic compan-
ions for λ′-adic representations—and even for suitable G(Kλ′)-representations—of the fun-
damental group of a smooth variety of any dimension over a finite field. To exploit these
results, following [EG18], we spread the complex variety X out and and take a fiber Xs over
a finite field. In the remainder of §5 we show that the collection Sλ′ can be specialized and
descended to (étale) G-local systems {ρ′λ′,s}ρ′∈S on Xs. This step is subtler than in the case
of GLn; it requires attending to the monodromy groups of the specialized representations
(Proposition 5.7), establishing along the way their (connected components’) semisimplicity
(Corollary 5.8).

In §6, we use the work of Lafforgue and Drinfeld mentioned above to produce a collection
{ρ′λ,s}ρ′∈S of λ-adic companions (which are necessarily integral) of these ρ′λ′,s. The semisim-
plicity of the monodromy groups is essential here too, in order to make use of [Dri18].
From the collection of ρ′λ,s on Xs, we construct via tame specialization G-local systems

ρ′λ : π
top
1 (X, x) → G(OKλ

) on our original X (over C). It is then shown that the #S local
systems ρ′λ constructed in this way are pairwise distinct and satisfy all of the defining prop-
erties of elements of S. By counting, our original ρλ must belong to this set, each member
of which is integral at λ (by virtue of arising from étale local systems). We conclude that
for all λ ∈ Σ, ρλ can be conjugated into G(OKλ

), and then we are done by the results of §3.

In §6.3, at the referee’s suggestion we extend an observation of Arapura ([Ara02]) to give
conditions (phrased as the vanishing of certain spaces of global symmetric differentials) under
which all G-completely reducible local systems on a smooth projective X are rigid, which
allows us to prove integrality in this setting as well.

2. Notation

For a connected reductive group G, we let Gder denote the derived group, Gad denote the
adjoint group, Gsc denote the simply-connected cover of Gder (equivalently, of Gad), and ZG
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denote the center. For a detailed treatment of how these constructions carry over to the case
of the base scheme Spec(Z), and indeed much more generally, we refer the reader to [Con14]
(or to the original constructions in [Gro64]), especially [Con14, Theorem 3.3.4, Example
5.1.7, Theorem 5.3.1 and following].

IfX is a complex variety and x ∈ X(C), we write πtop
1 (X, x) to denote the fundamental group

based at x of the topological space X(C) with its analytic topology. If X is a scheme, and
x : Spec(Ω) → X is a separably-closed base-point, we let πét

1 (X, x) denote the corresponding
étale fundamental group. If j : X ↪→ X is a good compactification, so that X is regular
and D = X \X is a strict normal crossings divisor, we let πét,t

1 (X, x) be the quotient of the
étale fundamental group corresponding to the fully faithful embedding of finite étale covers
Y → X tamely ramified along D (i.e. such that the valuation vDi

on k(X) of any irreducible
component Di of D is tamely ramified in k(Y )) into the category of all finite étale covers of
X. For a reference that this is a Galois category, we refer the reader to [GM06, Theorem
2.4.2]. This group is independent of the compactification used, as seen from [KS10, Theorem
1.2, Theorem 5.4].

If K is a number field or a local field, we denote its ring of integers by OK . In the number
field case, if Σ is a set of finite places of K, we let OK,Σ denote the localization away from
Σ of OK . We write K∞ for the product of the completions of K at its infinite places, and
we write A∞

K for the finite adèles of K.

3. Local integrality condition

The next proposition gives the criterion we will apply in §6 to deduce the main theorem.

Proposition 3.1. Let Γ be a finitely generated group, and let G be a connected reductive
group over Z. Let ρ : Γ → G(OK,Σ) be a homomorphism, where Σ is a finite set of finite
places of K. Assume that for each λ ∈ Σ, the representation ρλ : Γ → G(Kλ) is G(Kλ)-
conjugate to a representation Γ → G(OKλ

). Then there exists a finite extension L/K such
that ρ is G(L)-conjugate to a representation Γ → G(OL).

Proof. Each representation ρλ : Γ → G(Kλ) is conjugate to a G(OKλ
)-valued representation.

That is, for each λ ∈ Σ, there is some g′λ ∈ Gad(Kλ) such that g′λρg
′
λ
−1 : Γ → G(OKλ

) (also

writing g′λ for any lift to G(Kλ)). The map Gsc(Kλ) → Gad(Kλ) is surjective, so we can
find gλ ∈ Gsc(Kλ) lifting g′λ. It follows that the image of gλ in Gder(Kλ) conjugates ρλ into
a G(OKλ

)-valued representation. We denote this representation ρgλλ .

Each gλ lies in Gsc(L(λ)) for some finite extension L(λ) of Kλ, which we may assume to be
Galois. In particular, ρgλλ has image contained in G(L(λ))∩G(OKλ

) = G(OL(λ)). Since Σ is
finite, we can by class field theory find a Galois (in fact solvable) extension of number fields
L over K such that for all λ ∈ Σ, and all places ν of L above λ, Lν is isomorphic (over Kλ)
to L(λ), and moreover L has no real embeddings.

Consider the element gA∞

L
= (gν) ∈ Gsc(A∞

L ) whose ν-th component is, for ν above λ ∈ Σ,

the image of gλ defined above under any Kλ-isomorphism L(λ)
∼
−→ Lν , and the identity

otherwise. Then (the image in Gder of) gA∞

L
conjugates the representation

ρA∞

L
: Γ

ρ
−→ G(OK,Σ) → G(K) → G(L) → G(A∞

L )
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into a homomorphism Γ → G(
∏

OLν
). Now suppose that γ1, . . . , γn ∈ G(A∞

L ) are the images
under ρA∞

L
of a set of generators of Γ. Let π : Gsc → Gder be the quotient map and consider

the map

conj : Gsc(A∞
L ) →

n
∏

i=1

G(A∞
L ), g 7→ (π(g)γ1π(g)

−1, . . . , π(g)γnπ(g)
−1).

Then U = conj−1(G(
∏

OLν
)n) is open and non-empty since it contains gA∞

L
. Since Gsc is

simply-connected, and Gsc(L∞) is non-compact, the strong approximation theorem [Kne66]
implies there is an element g′ ∈ Gsc(L) ∩ U . Then the element π(g′) is the desired element
of G(L). �

4. Moduli of representations

In this section G is a split connected reductive group over a field K of characteristic zero,
with center ZG and adjoint group Gad = G/ZG. Let Γ be a finitely-generated group with
presentation

Γ = 〈r1, . . . , rk | {sα}α∈B〉,

where the set B indexes the relations sα. Let b : G → A be the maximal abelian quotient of
G, and fix a homomorphism θ : Γ → A(K). Let RepG(Γ, θ) be the affine K-variety of repre-
sentations of Γ with abelianization equal to θ, that is for a K-scheme T , RepG(Γ, θ)(T ) is the

inverse image of Γ
θ
−→ A(K) → A(T ) under Hom(Γ, G(T )) → Hom(Γ, A(T )). More explicitly,

the map RepG(Γ, θ)(T ) → Gk(T ) given by ρ 7→ (ρ(r1), . . . , ρ(rk)) identifies RepG(Γ, θ) with
the closed subscheme of Gk given by given by the conditions sα(g1, . . . , gk) = 1 for α ∈ B
and b(gi) = θ(gi) for i = 1, . . . , k. (Note that since Gk is Noetherian, finitely many of the
relations sα suffice to describe this subscheme.) There is an action of Gad on RepG(Γ, θ) by
conjugating homomorphisms. Let LocG(Γ, θ) be the resulting stack quotient,

LocG(Γ, θ) = [RepG(Γ, θ)/G
ad].

If T is a K-scheme then LocG(Γ, θ)(T ) is the groupoid with objects (E , f) and isomorphisms

(E ′, f ′)
∼
−→ (E , f) given respectively as commutative diagrams

E RepG(Γ, θ)

T

f
E ′ E RepG(Γ, θ)

T

f ′

' f

where E → T is a (left) Gad-torsor, and f : E → RepG(Γ, θ) is a Gad-equivariant morphism
(likewise for (E ′, f ′)). The isomorphism E ′ → E is required to be Gad-equivariant.

Definition 4.1. If T is a K-scheme, and ρ a representation ρ : Γ → G(T ) whose abelianiza-
tion is θ, we denote by [ρ] in LocG(Γ, θ)(T ) the object (G

ad
T , fρ), where fρ : G

ad
T → RepG(Γ, θ)

is given by fρ(g) = gρg−1.
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Lemma 4.2. If Ω is an algebraically closed field (containing K), then LocG(Γ, θ)(Ω) can be
identified with the groupoid of conjugacy classes of representations Γ → G(Ω) with abelian-
ization equal to θ.

Proof. The groupoid C of conjugacy classes of morphisms Γ → G(Ω) has objects being
representations Γ → G(Ω), whose abelianization is θ. A morphism ρ1 → ρ2 is given by inner
automorphisms Ad(g) : G(Ω) → G(Ω) for g ∈ Gad(Ω) such that ρ2 = Ad(g) ◦ ρ1, so there is
a morphism only when ρ2 = gρ1g

−1 for some g ∈ Gad(Ω).

Given a representation ρ : Γ → G(Ω) with abelianization θ, we have the associated G-local
system [ρ] = (Gad

Ω , fρ) in LocG(Γ, θ)(Ω). The isomorphism ρ → gρg−1 for g ∈ Gad(Ω) gives
a morphism of Gad

Ω -torsors Rg−1 : (Gad
Ω , fρ) → (Gad

Ω , fgρg−1) by Rg−1(h) = hg−1 on Ω-points.
This gives an isomorphism [ρ] → [gρg−1] in LocG(Γ, θ) since

fρ(h) = hρh−1 = hg−1gρg−1gh−1 = fgρg−1(hg−1).

Thus, ρ 7→ [ρ] is a functor C → LocG(Γ, θ)(Ω).

To see that it is fully faithful, notice that both Hom(ρ1, ρ2) and Hom([ρ1], [ρ2]) can naturally
be identified the the set of h ∈ Gad(Ω) such that ρ2 = hρ1h

−1.

We now show that the functor is fully faithful. By definition, an object of LocG(Γ, θ)(Ω)
is a Gad-torsor E → Spec(Ω) and a Gad-equivariant map ϕ : E → RepG(Γ, θ). Since Ω is
algebraically closed, there is a point s ∈ E(Ω), which gives a Gad-equivariant isomorphism

π : Gad
Ω

'
−→ E which is g 7→ gs on Ω points. Let ρ = f(s). Since ϕ(gs) = gϕ(s)g−1, π gives an

isomorphism [ρ] = (Gad, fρ)
'
−→ (E , ϕ). �

We define a substack IrrLocG(Γ, θ) of LocG(Γ, θ) consisting of the objects of LocG(Γ, θ)(S)
whose base change along any geometric point Spec(Ω) → S yields via the identification of
Lemma 4.2 a conjugacy class of G-irreducible representations. Recall that a representation
Γ → G(Ω) is G-irreducible if the image is not contained in any proper parabolic subgroup.

Proposition 4.3. The substack IrrLocG(Γ, θ) ⊂ LocG(Γ, θ) is open.

Proof. For a K-scheme S and (E , f) ∈ LocG(Γ, θ)(S) we say that (E , f) is G-reducible at
s ∈ S if for some (equivalently any) a geometric point s : Spec(Ω) → S lying over s, the
conjugacy class of representations Γ → G(Ω) corresponding to (Es, fs) is G-reducible. We
will show that the locus of s ∈ S for which (E , f) is G-reducible is closed.

Fix a maximal torus and Borel subgroup T ⊂ B ⊂ G, with corresponding positive roots Φ+

and simple roots ∆. For any finite set S ⊂ ∆, let PS be the associated standard parabolic,
and consider the bundle

π : Z = ZS(E , f) := Gad\ (E × (G/PS)) → S,

where Gad acts diagonally (using that the left multiplication action of G on G/PS factors
through Gad). We get a Γ action on Z via the map E → RepG(Γ, θ): if x ∈ E(U) maps via
f to ρx : Γ → G(U) in RepG(Γ, θ)(U) then for (x, y) ∈ (E ×G/PS)(U) define

γ · (x, y) := (x, ρx(γ)y) γ ∈ Γ.
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This descends to an action on Z(U) since if we change representatives to (gx, gy) then

γ · (gx, gy) = (gx, ρgx(γ)gy) = (gx, gρx(γ)g
−1gy) = (gx, gρx(γ)y).

We claim that the locus π(ZS(E , f)
Γ) ⊂ S consists of all of the points s ∈ S such that

for any (equivalently every) geometric point s : Spec(Ω) → S lying over s, the conjugacy
class im(fs : Es(Ω) → RepG(Γ, θ)(Ω)) contains a representation ρ : Γ → G(Ω) whose image
is contained in PS(Ω). Indeed, given s ∈ S and s a geometric point above s, we can write
s = π([x, y]) where [x, y] is the class of (x, y) ∈ (Es × G/PS)(Ω) in Zs(Ω). By multiplying
(x, y) by a suitable element of G(Ω), we can and do assume that y = e, the identity coset in
G/PS(Ω). Thus

s ∈ ZS(E , f)
Γ(Ω) ⇐⇒ (x, e) = γ(x, e) = (x, ρx(γ)e) for all γ ∈ Γ,

⇐⇒ ρx(γ) ∈ StabG(Ω)(e) = PS(Ω) for all γ ∈ Γ,

⇐⇒ im(fs(x) = ρx) ⊂ PS(Ω)

It follows from this description that the locus of s ∈ S where (E , f) is G-reducible is the set
⋃

S(∆

π(ZS(E , f)
Γ)

For each S the fixed point locus ZS(E , f)
Γ is closed, so π(ZS(E , f)

Γ) is closed (since Z → S
is proper), and hence the finite union of such sets is closed. �

Now suppose we are given γ1, . . . , γN ∈ Γ, and subschemes Ki ⊂ G that are finite unions of
conjugacy classes, and defined over K for i = 1, . . . , N . Note that these are locally closed
subschemes of G. We consider the locally closed substack

M = MG(Γ, θ, {(γi,Ki)}) ⊂ IrrLocG(Γ, θ), (1)

where an object (E , f) ∈ IrrLocG(Γ, θ)(T ) is in M(T ) if for every geometric point t ∈ T (Ω),
and any representation ρ : Γ → Gad(Ω) with [ρ] = (Gad

Ω , fρ) ' (Et, ft), we have that ρ(γi) ∈
Ki(Ω) for i = 1, . . . , N . Note that this is independent of the choice of ρ, since any other ρ′

satisfying (Gad
Ω , fρ′) ' (Et, ft) will be Gad(Ω) conjugate to ρ by lemma 4.2.

To see that the stack M is locally closed in IrrLocG(Γ, θ), argue as follows: Let (E , f) be an
object of IrrLocG(Γ, θ)(T ), and let T0 ⊂ T be set of points t ∈ T0 such that for any geometric
point t ∈ T (Ω) over t, (Et, ft) ∈ M(Ω). Let E0 = E ×T T0. This is G

ad stable, so it suffices to
show that E0 is locally closed. Let ρ : Γ → G(E) be the representation associated to f . Each
ρ(γi) is a map E → G and

E0 =
N
⋂

i=1

ρ(γi)
−1(Ki).

Since each Ki is locally closed in G, the intersection is locally closed. In summary, we have
the following proposition.

Proposition 4.4. Let Γ be a finitely-generated group, K a field, G a split connected reductive
group over K with maximal abelian quotient A. Fix

• θ : Γ → A(K) a representation;

• γ1, . . . , γN ∈ Γ;
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• subschemes Ki ⊂ G that are finite unions of conjugacy classes, and defined over K
(for i = 1, . . . , N).

Then the stack M of conjugacy classes of G-irreducible representations ρ : Γ → G with
abelianization θ, such that ρ(γi) ∈ Ki for all i = 1, . . . , N is an algebraic stack of finite type
over K.

Remark 4.5. The case of interest for this paper is when K is a number field.

Now suppose ρ0 : Γ → G(K) is a G-irreducible representation such that ρ0(γi) ∈ Ki(K). The
G-local system [ρ0] = (Gad, fρ0) associated to ρ0 is then an object of M(K) (for θ = ρab0 ).

Proposition 4.6. Let gder be the Lie algebra of Gder. Then the Zariski tangent space T[ρ0]M
is the kernel of

H1(Γ, gder(K))
res
−→

n
⊕

i=1

H1(γZ
i , g

der(K)).

Proof. For any point (E , f) ∈ M(K[ε]), let (E0, f0) = i∗(E , f) with i the closed immersion
Spec(K) → Spec(K[ε]). The tangent space T[ρ0]M consists of the points v = (E , f) in

M(K[ε]) such that (E0, f0)
'
−→ (Gad, fρ0) over K (the isomorphism not being part of the

data). Fix one such isomorphism ϕ0. By the formal criterion of smoothness, the section

Spec(K) −→ Gad ϕ−1
0−−→ E0 extends to give a section of E → Spec(K[ε]), hence E is trivial.

By choosing a trivialization ϕ : E
∼
−→ Gad

Spec(K[ε]) (extending ϕ0 on the closed fiber) we get a

representation ρ = f ◦ ϕ−1(1) : Γ → G(K[ε]) whose composition with G(K[ε]) → G(K) is
ρ0, and which also maps γi to an element of Ki(K[ε]).

The map α(γ) = ρ(γ)ρ0(γ)
−1 gives an element α ∈ Z1(Γ, gder(K)) (the “fixed determinant”

condition ensures that α is valued in gder(K) ⊂ g(K)). The manipulation

ρ(γβ)ρ0(γβ)
−1 = ρ(γ)ρ(β)ρ0(β)

−1ρ0(γ)
−1,

= ρ(γ)ρ0(γ)
−1 · Ad(ρ0)(γ)

(

ρ(β)ρ0(β)
−1
)

.

verifies the cocycle condition, and it is similarly easy to see that changing the trivialization
ϕ modifies α by a coboundary.

Therefore there is a well defined map T[ρ0]M → H1(Γ, gder(K)). It is injective because one
can reconstruct the point v from the class [α] by taking ρ = αρ0, and then v = [ρ]. On the
other hand, given a cocycle α the point [αρ0] is in T[ρ0]M if and only if for each i = 1, . . . , n
we have αρ0(γi) ∈ Ki(K[ε]). The restriction res([α]) is trivial if and only if for each i there
is some ξi ∈ gder(K) such that α(γi) = ξiρ0(γi)ξ

−1
i ρ−1

0 (γi), hence

αρ0(γi) = ξiρ0(γ)ξ
−1
i ,

and thus αρ0(γi) belongs toKi(K[ε]). We conclude that the image of T[ρ0]M inH1(Γ, gder(K))
is the kernel of res : H1(Γ, gder(K)) → ⊕n

i=1H
1(γZ

i , g
der(K)). �
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4.1. Back to geometry. We now specialize to the case of interest. Let X be a smooth
connected quasi-projective complex variety, fix a base-point x ∈ X(C), and let j : X ↪→ X
be a good compactification with D = X \ X the strict normal crossings divisor written as
the union D = ∪N

i=1Di of its irreducible components Di. Let Dsing be the singular locus of

D and U = X \ Dsing so there is a factorization j : X
a
↪−→ U

b
↪−→ X. For i = 1, . . . , N , fix

yi ∈ Di ∩ U , ∆i ⊂ U a small open ball around yi, and xi ∈ ∆×
i = ∆i \ (Di ∩ ∆i). Choose

Ti ∈ πtop
1 (X, x) that generates the image of Z ∼= πtop

1 (∆×
i , xi) → πtop

1 (X, x) (with the map
depending on a fixed choice of path from x ending in ∆×

i .

Let K be a characteristic zero field. Suppose Ki is finite union of conjugacy classes and is
defined over K for each i = 1, . . . , N , and fix a character θ : πtop

1 (X, x) → A(K). Define

M := MG(π
top
1 (X, x), θ, {(Ti,Ki)}) ⊂ LocG(π

top
1 (X, x), θ),

the moduli stack ofG-irreducibleG-local systems onX with abelianization θ and monodromy
Ki around Di, as constructed above. Let ρ0 : π

top
1 (X, x) → G(K) be a homomorphism

that is G-irreducible, has abelianization θ, and has monodromy ρ0(Ti) ∈ Ki(K). Then the
associated G-local system [ρ0] gives an element of M(K). Let gder be the locally constant
sheaf on X corresponding to the representation

πtop
1 (X, x)

ρ0
−→ G(K)

Ad
−→ GL(gder(K)).

Proposition 4.7. The tangent space of M at the point [ρ0] is the finite-dimensional K-vector
space H1(U, a∗g

der).

Proof. Giving the Lie algebra gder(K) the structure of a π1(X, x)-module vial Ad ◦ ρ0, there
is a commutative diagram

0 T[ρ0]M H1(πtop
1 (X), gder(K)) ⊕N

i=1H
1(π1(∆

×
i ), g

der(K))

H1(X, gder) ⊕N
i=1H

1(∆×
i , g

der|∆×

i
)

res

' '

res

and Proposition 4.6 shows that the top row is exact. The result follows from the identification
of the kernel of the map on the bottom row with H1(U, a∗g

der) (which can be seen using the
Leray spectral sequence for a). �

Remark 4.8. As was noted in [EG18, Remark 2.4], we have H1(U, a∗g
der) = H1(X, j!∗g

der),

where j!∗g
der is the intermediate extension.

Lemma 4.9. If ρ : πtop
1 (X, x) → G(C) is G-completely reducible and G-cohomologically rigid,

then it is G-rigid.

Proof. By Proposition 4.7 and Remark 4.8, ρ : πtop
1 (X, x) → G(C) is G-cohomologically rigid

if T[ρ]M = 0, for M the appropriate stack defined as above. We need to show that the image

of the map f = fρ : GC → RepG(π
top
1 (X, x), θ, {Ti,Kji}), given by g 7→ gρg−1, is a connected

component. By [Ric88], the image im(f) is closed since ρ is G-completely reducible.
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Suppose im(f) is not a connected component, and thus is contained in some closed connected
subspace Z ) im(f). Let v ∈ Tf(1)Z \ Tf(1)im(f). Then v corresponds to a cocycle αv ∈

Z1(πtop
1 (X, x), gder(C)), with action Ad ◦ ρ on gder(C). The cocycles from Tf(1)im(f) are

precisely the coboundaries, so our choice of v, along with Proposition 4.7 shows that the
cohomology class [αv] is a non zero element of H1(U, a∗g

der(C)). This contradicts the fact
that ρ is G-cohomologically rigid. �

Remark 4.10. Using GIT, we can construct coarse moduli spaces of representations over K.
Namely, using the notation of Proposition 4.4, suppose each Ki is closed and defined over
K, and that θ is defined over K.

Then R = RepG(Γ, θ, {γi,Ki}) is an affine scheme of finite type over K and we can form the
categorical quotient R�Gad whose global functions are the Gad-invariant global functions
on R. By Hilbert’s work on invariant theory, the affine scheme R�Gad is finite type over
K. The points of R�Gad over an algebraically closed field Ω ⊃ K are in bijection with
conjugacy classes of G-completely reducible representations ρ of Γ that have abelianization
θ and ρ(γi) ∈ Ki(Ω). Indeed, work of Seshadri [Ses77] shows that there is a unique closed
orbit in the fiber of

π : R(Ω) → R�Gad(Ω),

and [Ric88] shows that the orbit of such a ρ is closed if and only if it is G-completely
reducible.

In particular, when Γ = πtop
1 (X, x), then for fixed data θ, {γi,Ki}, there are only finitely

many conjugacy classes of G(C)-representations ρ with these fixed invariants that are G-
rigid: the conjugacy classes of G-rigid representations are the isolated points of the scheme
R�Gad, of which there are only finitely many as R�Gad is finite type over K. Further, each
such conjugacy class contains a G(Q)-valued representation.

5. Arithmetic descents

5.1. Reduction to the adjoint case. We begin the proof of Theorem 1.2 by reducing to
the case in which G is a simple (split, as we always assume) adjoint group:

Lemma 5.1. It suffices to prove Theorem 1.2 in the case where G is a simple adjoint group.

Proof. Consider ρ as in Theorem 1.2. The projectivization P(ρ) : πtop
1 (X, x)

ρ
−→ G(C) →

Gad(C) is Gad-irreducible, Gad-cohomologically rigid (or Gad-rigid, according to the assump-
tion on ρ), and has quasi-unipotent local monodromy (as is evident from the definitions).
Note that P(ρ) having these properties is equivalent to its projections to each simple factor
of Gad having these properties. Thus, under the assumption of the Lemma, we may assume
that after replacing ρ by a G(C)-conjugate, P(ρ) factors through Gad(OK) for some number
field K. We claim that ρ itself factors through G(OL) for some finite extension L/K. Indeed,
ρ of course factors through the preimage of im(P(ρ)) in G(C). By our assumption that ρ
has finite image in A(C), im(ρ) is further contained in Gder(C) · ZG(Z), since any point of
finite order in ZG(C) is contained in ZG(Z). Thus it suffices from the long-exact sequence in
cohomology to check that the image of each of the generators of the finitely-generated group
πtop
1 (X, x) in Gad(OK) is itself in the image of Gsc(OL) → Gad(OL) for some finite extension
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L/K. Since ker(Gsc → Gad) is a product (over the simple factors) of group schemes µr, it
suffices to find OL trivializing any given class in H1

fppf(Spec(OK), µr). The (fppf) Kummer
sequence yields a short-exact sequence

O×
K/(O

×
K)

r → H1
fppf(Spec(OK), µr) → Pic(OK)[r].

The desired L exists because every element of the class group of OK becomes trivial after
passage to some finite extension OL, and we can adjoin an rth root to trivialize an element
of O×

K/(O
×
K)

r. Finally, semisimplicity of the connected monodromy of P(ρ) clearly implies
that of ρ itself, as above using that ρ has finite image in A(C). �

In this section and §6, we will therefore prove:

Theorem 5.2. Theorem 1.2 is true if G is simple and adjoint.

In the remainder of this section, we will establish the existence of arithmetic descents
of G-rigid local systems and deduce in this generality the semisimplicity of their mon-
odromy groups (that is, the first statement in Theorem 1.2). In §6 we will restrict to
G-cohomologically rigid local systems in order to establish the deeper integrality result.

5.2. Algebraicity of the local system. Let X be a smooth quasi-projective variety over
C and (X,U,D, . . .) a compactification as in the first paragraph of 4.1. Let G be a split
simple adjoint group over Z, and let ρ0 : π

top
1 (X, x) → G(C) be a representation defining a

G-local system on X such that

• ρ0 is G-rigid.

• ρ0 is G-irreducible.

• The local monodromies (i.e. ρ0(T1), . . . , ρ0(TN) with Ti a small enough loop around
Di as in 4.1) are quasi-unipotent.

Richardson showed ([Ric88, Theorem 3.6, Theorem 4.1], valid over fields of characteristic
zero) that G-irreducibility of a closed subgroup H ⊂ G is equivalent to H being reductive
with centralizer CG(H) that is finite modulo the center ZG of G (in our case, simply finite).

In particular, im(ρ0) enjoys these two properties.

Choose an integer h ≥ 1 such that ρ0(Ti) is quasi-unipotent of index3 dividing h for all
i = 1, . . . , N . Our strategy, following [EG18], is to work with the finite set of allG-irreducible,
G-rigid (or G-cohomologically rigid) local systems with local monodromies of index dividing
h. To that end, for future use in §6 we let S = S(G, h) be the set of conjugacy classes of
representations ρ : πtop

1 (X, x) → G(C) that are G-irreducible, G-cohomologically rigid, and
such that each ρ(Ti) is quasi-unipotent of index dividing h. In the present section we will
work with the related set Srig = Srig(G, h) ⊇ S(G, h) for which we only require G-rigidity
instead of G-cohomological rigidity.

Lemma 5.3. The set Srig is finite, and there exist a number field K ⊂ C and a finite set
Σ of finite places of K such that each element of Srig is represented by some representation
ρ : πtop

1 (X, x) → G(OK,Σ).

3The index of a quasi-unipotent element g ∈ G(C) is the order of gs is the Jordan decomposition g = gsgu.
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Proof. There is a finite collection C1, . . . , CM ⊂ G(C) of conjugacy classes of quasi-unipotent
elements of index dividing h. Indeed, one can choose a finite number of semisimple elements
that represent any semisimple conjugacy class of elements of order dividing h (the h-torsion
in T (C), for T a maximal torus of G will do). The conjugacy classes with a fixed semisimple
part s correspond to unipotent conjugacy classes in CG(s). As CG(s)

0 is connected reductive
(since s is semisimple), it has finitely many unipotent conjugacy classes, and a fortiori the
same then holds for CG(s) (all unipotent elements of CG(s) belong to CG(s)

0).

The Ci are the complex points of a locally closed algebraic subvariety of GQ. By abuse of

notation, we write Ci ⊂ GQ for this variety. Let K = ∪M
i=1Ci, and note that K is closed. Thus

the conjugacy classes Srig give isolated points of the coarse moduli space of G-local systems
on X with local monodromies in K, as discussed in Remark 4.10. This moduli space is finite
type over Q, so Srig is finite, and each of its elements corresponds to a Q-point of the moduli
space. Therefore each conjugacy class in Srig contains a G(Q)-valued representation.

Since πtop
1 (X, x) is finitely generated, anyG(Q)-valued representation takes values inG(OK,Σ)

for K ⊂ Q a number field and Σ a finite set of finite places. There are only finitely many
conjugacy classes in Srig and therefore we may choose a common number field K and Σ so
that each conjugacy class of Srig contains a representation

ρ : πtop
1 (X, x) → G(OK,Σ).

�

Remark 5.4. Lemma 5.3 can also be proven without reference to the coarse moduli spaces
of Remark 4.10. Indeed, one can work directly with the moduli stack

N = IrrLocG(π
top
1 (X, x), {Ti,K})

of G-local systems on X with local monodromies in K. The set Srig is finite as it injects into
the finite set of connected components of RepG(π

top
1 (X, x), {Ti,K}). The group Aut(C/Q)

acts on the isomorphism classes of objects of N(C), and permutes the finite set Srig. We
claim that if ρ : πtop

1 (X, x) → G(C) represents a G-local system [ρ] ∈ Srig, then ρ is defined
over Q (and hence over a number field K since πtop

1 (X, x) is finitely-generated). This can be
seen using the pseudo-character tr ρ = (Θn)n≥1 of ρ (for background on pseudo-characters,
including the notation we use, see [BHKT19, §4]; the notion is due to V. Lafforgue in [Laf18]).
Here each Θn is the map Θn : Z[G

n]G → Map(πtop
1 (X, x)n,C) given by Θn(f)(γ1, . . . , γn) =

f(ρ(γ1), . . . , ρ(γn)). The pseudo-character of σρ is then (σΘn(f))(γ) = σ(Θn(f)(γ)) for γ =

(γ1, . . . , γn) ∈ πtop
1 (X, x)n. If ρ cannot be defined over Q, then by [Laf18, Proposition 11.7]

(see also [BHKT19, Theorem 4.5]) there is some f ∈ Z[Gn]G and some γ ∈ πtop
1 (X, x)n such

that Θn(f)(γ) is transcendental over Q. It follows that there is an infinite set H ⊂ Aut(C/Q)
such that (σΘn(f))(γ) 6= (τΘn(f))(γ) for any σ 6= τ ∈ H, and hence by loc. cit., σρ is not
conjugate to τρ. Thus the set of conjugacy classes of {σρ}σ∈H is infinite and contained in
Srig which contradicts finiteness of Srig.

By the previous lemma we choose once and for all representations

ρi : π
top
1 (X, x) → G(OK,Σ), i = 1, . . . ,M := #Srig(G, h),
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which form a complete set of representatives for the conjugacy classes in Srig(G, h), such
that for some N ≤ M, the ρ1, . . . , ρN are representatives for S(G, h).

Fix λ ∈ Spec(OK,Σ) a finite place. For each i = 1, . . . ,M, consider the representation

ρ◦,topi,λ : πtop
1 (X, x) → G(OK,Σ) → G(OKλ

).

Composing with G(OKλ
) → G(Kλ) we get a representation ρtopi,λ (and similarly we get repre-

sentations ρtopi,λ′ for λ′ ∈ Σ). Since G(OKλ
) is a profinite group, the representations ρ◦,topi,λ , ρtopi,λ

of πtop
1 (X, x) factor through πét

1 (X, x). We denote the factored representations by ρ◦i,λ and
ρi,λ.

The next step is to spread X out over a scheme S of finite type over Spec(Z) and then to
specialize to characteristic p as in [EG18]. More precisely, there exists S a connected regular
scheme of finite type over Spec(Z) with a complex generic point η : Spec(C) → S such that
(j : X ↪→ X, x,D,Di) is the fiber over η of (jS : XS ↪→ XS, xS, DS, Di,S), where XS is smooth
and projective over S, DS = ∪iDi,S ⊂ XS is a relative strict normal crossings divisor whose
complement is XS, and xS ∈ XS(S). If s ∈ S(k) let (js : Xs → Xs, xs, Ds, Di,s) be the data
over k obtained as the base change of the corresponding data over S via s.

Remark 5.5. Strictly speaking, for the proof of Proposition 6.2 we will need a little more:
Fix a curve C ⊂ X that is smooth and projective, does not meet Dsing and meets D \Dsing

transversely (for the existence of C, see [Jou79, Theorem 6.3]). We take x ∈ C, and choose
points yi ∈ Di ∩ C. We may (and do) choose S such that (j : X ↪→ X, x,D,Di, C, yi)
spreads out over S to (jS : XS ↪→ XS, xS, DS, Di,S, CS, yi,S) satisfying the above constraints
on jS, XS, DS, Di,S and such that CS is smooth and projective over S and CS intersects DS

transversely. Write Cs and yi,s for the fiber of CS and yi,S over s. The reader may safely
ignore the curve C until the proof of Proposition 6.2.

We now choose a finite field k and a closed point s ∈ S(k) such that p = char k is coprime
to

• the prime ` under λ;

• all places under Σ;

• for each i, the cardinality of the image of the reduction

ρ̄◦i,λ : π
ét
1 (X, x) → G(k(λ))

of ρ◦i,λ to the residue field k(λ) of OKλ
; and

• the index of quasi-unipotence of the ρi.

Given these choices, the p-part of πét
1 (X, x) is in the kernel of ρ◦i,λ, hence ρ

◦
i,λ factors through

the prime-to-p fundamental group πét
1 (X, x) → πét,p′

1 (X, x). If s is a geometric point over
s, there is a discrete valuation ring R and a map Spec(R) → S mapping the generic point
of Spec(R) to η and the special point to s. By pulling back XS to Spec(R), there is a
prime-to-p specialization map4 on prime-to-p fundamental groups giving an isomorphism

4There is also a surjective tame specialization map πét
1
(X,x) = π

ét,t

1
(X,x) → π

ét,t

1
(Xs, xs) (see [LO10,

Corollary A.12]) which we will use later (particularly in the proof of Proposition 6.2).
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Sp: πét,p′

1 (X, x)
∼
−→ πét,p′

1 (Xs, xs) (see [LO10, Corollary A.12], or originally [sga71]). Thus we
get representations

ρ◦i,λ,s : π
ét
1 (Xs, xs) � πét,p′

1 (Xs, xs)
Sp−1

−−−→ πét,p′

1 (X, x)
ρ◦
i,λ

−−→ G(OKλ
)

and again denote by

ρi,λ,s : π
ét,p′

1 (Xs, xs) → G(OKλ
) → G(Kλ)

the composites into G(Kλ).

Remark 5.6. We say that ρi,λ,s has quasi-unipotent local monodromy with index dividing h
along Dj (j = 1, . . . , N) if it maps any pro-generator of the tame inertia group at Dj (i.e.,
the absolute Galois group of the fraction field of the strict henselization of the DVR OX s̄,Dj,s̄

)

to a quasi-unipotent element whose hth power is unipotent. This property is inherited from
the corresponding property of ρi. Indeed, the monodromy of ρi at Dj is the same as the
monodromy of ρi|C at yj for our chosen curve C above. Similarly, the the monodromy of ρi,λ,s
at Dj,s is the same as the monodromy of it’s restriction ρi,λ,s|Cs

to Cs at yi,s by Abhyankar’s
lemma [sga71, XIII Proposition 5.2] (noting that these local systems are tamely ramified).
Thus we reduce to showing that the monodromy of ρi,λ,s|Cs

at yi,s is quasi-unipotent of index
dividing h, which follows from [EG18, Lemma 3.2] (or [DK73, XIV 1.1.10]).

5.3. Arithmetic descent. We would like to say that the G-local system [ρi,λ,s] on Xs is
the pullback of a local system on Xs, or equivalently that there exists a representation ρi,λ,s
making the diagram commute

πét
1 (Xs, xs)

πét
1 (Xs, xs) G(Kλ)

ρi,λ,s

ρi,λ,s

The next proposition (a variant on [EG18, Proposition 3.1], [Sim92, Theorem 4]) says that
this indeed can be arranged, after possibly replacing k by a finite extension.

Proposition 5.7. After replacing k by a finite extension there is a representation

ρi,λ,s : π
ét,p′

1 (Xs, xs) → G(Qλ)

whose restriction to πét

1 (Xs, xs) is ρi,λ,s and whose image has the same Zariski-closure as
ρi,λ,s̄.

Proof. The point xs ∈ Xs is rational, so it splits the “prime-to-p homotopy sequence”

1 → πét,p′

1 (Xs, xs) → πét,p′

1 (Xs, xs) → πét
1 (s, s) → 1,

which is by definition the pushout of the homotopy exact sequence for πét
1 (Xs, xs) along

πét
1 (Xs̄, xs̄) → πét,p′

1 (Xs̄, xs̄). For σ ∈ πét
1 (s, s) we also denote by σ its image in πét,p′

1 (Xs, xs)
under the splitting from xs. Let

ρσi,λ : π
ét
1 (X, x) → G(Kλ), γ 7→ ρi,λ,s(σ · Sp(γ) · σ−1),

where Sp: πét
1 (X, x) → πét,p′

1 (Xs, xs) is the specialization map. We claim that the G-local
system [ρσ,topi,λ ] represented by ρσ,topi,λ , the pullback of ρσi,λ to πtop

1 (X, x), has quasi-unipotent
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local monodromies of index dividing h (i.e. [ρσ,topi,λ ] ∈ N(Kλ)). Indeed, the proof of [EG18,
Lemma 3.2] (which proves the claim when G = GLn) goes through verbatim for G, since the
only thing that is used about GLn is that the union of conjugacy classes of quasi-unipotent
elements of index dividing h is closed; and this is true for G also.

Let Rep denote RepG(π
top
1 (X, x), {Ti,K}), and consider the composition

πét
1 (s, s)

σ 7→ρσ,top
i,λ

−−−−−→ Rep(Kλ) → π0 (Rep) .

This is continuous, so enlarging s we can assume that ρσ,topi,λ is in the same connected com-

ponent of ρtopi,λ for each σ ∈ πét
1 (s, s). But since ρtopi,λ is G-rigid, we have that ρσ,topi,λ is

G(Qλ)-conjugate to ρtopi,λ (we fix an extension of λ to Q). By specializing, we see that

ρσi,λ,s = T (σ)ρi,λ,sT (σ)
−1 for some T (σ) ∈ G(Qλ), where ρσi,λ,s(γ) = ρi,λ,s(σγσ

−1).

The element T (σ) is determined up to multiplication by an element of the centralizer
CG(ρi,λ,s). Note that G-irreducibility of ρi,λ,s̄ implies that the geometric monodromy group

Gi,λ := im(ρi,λ,s̄) is reductive, and that its centralizer CG(Gi,λ) is finite (by [Ric88, Theorem
4.1], using also that G is semisimple, so has finite center). T (σ) normalizes Gi,λ, and it
follows formally that σ 7→ T (σ) defines a homomorphism

πét
1 (s, s̄) → NG(Gi,λ)/CG(Gi,λ).

We claim that, after replacing k by a finite extension, we may assume T (σ) is an inner
automorphism of Gi,λ. We use part of the argument of [Del80, Corollaire 1.3.9]. Indeed,
any automorphism of Gi,λ induces, arguing successively, automorphisms of G0

i,λ, ZG0
i,λ
, and

(to abbreviate) Z0 = Z0
G0

i,λ

. Let r : G → GLV be a faithful finite-dimensional represen-

tation, and consider the finite set of characters X of Z0 in V . Although T (σ) is only
defined up to CG(Gi,λ), conjugating by any representative T ∈ NG(Gi,λ) of T (σ) shows
that as Z0-representations, r|Z0 and rT |Z0 are isomorphic (as before, the notation means
rT (z) = r(TzT−1); this is independent of the choice of representative T ). Thus T (σ) acts
by permutations on the finite set X, and it follows that a finite power T (σ)n fixes X point-
wise. Faithfulness of the representation r implies that these characters generate the character
lattice X•(Z0), and therefore T (σ)n = T (σn) acts trivially on Z0. The set of outer automor-
phism of a (not necessarily connected) reductive group that are trivial on the maximal central
torus is finite, so enlarging n we have that T (σn) acts on Gi,λ as an inner automorphism.
Replacing k by its degree n extension, we then conclude that σ 7→ T (σ) factors

πét
1 (s, s̄) → Gi,λ · CG(Gi,λ)/CG(Gi,λ)

∼
−→ Gi,λ/ZGi,λ

.

We then obtain a “projective” representation

P(ρi,λ,s) : π
ét,p′

1 (Xs, xs̄) → Gi,λ/ZGi,λ
(Qλ)

whose restriction to πét
1 (Xs̄, s̄) is P(ρi,λ,s̄) as follows: the rational point xs induces a semi-

direct product decomposition πét
1 (Xs, s) ∼= πét

1 (Xs̄, s̄)o πét
1 (s, s̄), and then we set

P(ρi,λ,s)(g, σ) = P(ρi,λ,s̄)(g) · T (σ).

The obstruction to lifting P(ρi,λ,s) to aGi,λ-valued representation lies inH2(πét,p′

1 (Xs, xs̄), ZGi,λ
),

which we analyze using the Hochschild-Serre spectral sequence. The key observation is that
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the existence of ρi,λ,s̄ to begin with implies that the obstruction vanishes after restriction to

πét,p′

1 (Xs̄, xs̄). Since k has cohomological dimension 1, vanishing of the full obstruction follows

after possibly enlarging k once more to kill a class in H1(πét
1 (s, s̄), H

1(πét,p′

1 (Xs̄, xs̄), ZGi,λ
)).

Finally, by once more enlarging k we may assume that our lift

ρi,λ,s : π
ét,p′

1 (Xs, xs̄) → Gi,λ(Qλ)

restricts to the given ρi,λ,s̄: the two differ by an element of the finite groupH1(πét,p′

1 (Xs̄, xs̄), ZGi,λ
),

and after enlarging k any such homomorphism extends to πét,p′

1 (Xs, xs̄) (the outer-action of
πét
1 (s, s̄) on this H1 trivializes after a finite restriction, and then we apply the inf-res se-

quence). By construction, this descended representation has image with Zariski closure
equal to Gi,λ. �

Having established the arithmetic descent, we deduce the following important consequence,
completing the proof of the semisimplicity claim of Theorem 1.2:

Corollary 5.8. The identity component G0
i,λ is semisimple.

Proof. The descent ρi,λ,s has (not necessarily connected) reductive monodromy group Gi,λ.
It follows from [Del80, Corollaire 1.3.9] that G0

i,λ is semisimple, since it is also the identity
component of the geometric monodromy group. �

6. Constructing Companions

In this section we restrict to the G-cohomologically rigid local systems S ⊆ Srig, enumer-
ating these ρ1, . . . , ρN as before. We will presently construct the λ′-adic companions of the
representations ρi,λ,s constructed in Proposition 5.7. This companion construction makes
sense for the larger set of G-rigid representations, but it is not clear whether it preserves
G-rigidity; it is this gap in our understanding that forces the restriction to G-cohomologically
rigid local systems (c.f. Proposition 6.2 and §6.3).

6.1. Application of results of Drinfeld. We have for each i = 1, . . . ,N the representa-
tions

ρi,λ,s : π
ét
1 (Xs, xs̄) → G(Kλ) ⊂ G(Qλ),

whose images have Zariski-closures equal to the semisimple (not necessarily connected) sub-
groups Gi,λ ⊂ G over Qλ; recall that by construction im(ρi,λ,s) has the same Zariski-closure
as im(ρi,λ,s̄). Also, since i ranges over a finite set, we may assume that the same s works for

all i. For any place λ′ of Q not above p, we will construct a λ′-companion ρi,λ′,s with “the
same” algebraic monodromy group as ρi,λ,s. Let (Gi, φλ) be a pair consisting of a reductive

group Gi over Q and an isomorphism Gi⊗QQλ
φλ−→ Gi,λ. We also fix an embedding of groups

over Q, α : Gi → GQ, such that (α⊗Qλ) ◦ φ
−1
λ is G(Qλ)-conjugate to the given Gi,λ ⊂ G.

We recall the main theorem of [Dri18]. For a characteristic zero field E, let Pro-ss(E)
denote the groupoid whose objects are pro-semisimple (not necessarily connected) group
schemes over E, and whose morphisms are group scheme isomorphisms modulo conjugation
by the connected component of the identity. There is an extension of scalars equivalence
of categories Pro-ss(Q)

∼
−→ Pro-ss(Qλ) when λ is any place of Q (see [Dri18, Proposition

2.2.5] for details). To the smooth variety X over the finite field k, Drinfeld associates for
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each λ an object of Pro-ss(Q) as follows: consider the inverse limit (Π̂λ, rλ) over all pairs
(H, r) consisting of a semisimple group H over Qλ and a continuous homomorphism with

Zariski-dense image r : πét
1 (Xs, xs̄) → H(Qλ). Via the above equivalence, we descend Π̂λ

to an object Π̂(λ) of Pro-ss(Q). If we let ΠFr denote the set of all Frobenius elements in
πét
1 (Xs, xs̄) as in [Dri18, §1.1.2], then the work of L. Lafforgue ([Laf02, Proposition VII.7]

implies that the universal homomorphism rλ induces a diagram of sets

ΠFr → (Π̂(λ) � Π̂0
(λ))(Q) → πét

1 (Xs, xs̄). (2)

(Note that the GIT quotient, which as in [Dri18] we will also denote by [Π̂(λ)], is actually well-

defined, even though Π̂(λ) is only defined up to conjugation by the connected component.)

The main theorem of [Dri18] is then:

Theorem 6.1 ([Dri18]). For any two non-archimedean places λ and λ′ of Q not above p,

there is a unique isomorphism Π̂(λ)
∼
−→ Π̂(λ′) in Pro-ss(Q) carrying diagram (2) for λ to the

analogous diagram for λ′.

We now return to our representations ρi,λ,s. By construction and [Dri18, Proposition 2.3.3],

ρi,λ,s induces a surjection of (pro-)semisimple groups over Q, Π̂(λ) → Gi, well-defined up to
G0

i -conjugation.

Composing with the inverse of the isomorphism in Theorem 6.1 and extending scalars Q →
Qλ′ , we obtain a surjection Π̂λ′ → Gi,λ′ , where we abbreviate Gi,λ′ = Gi ⊗Q Qλ′ ; this map is

also defined up to G0
i,Qλ′

-conjugation. This furnishes us with the desired companion, namely

the composite

πét
1 (Xs, xs̄) Π̂λ′(Qλ′) Gi,λ′(Qλ′).

rλ′

ρi,λ′,s

It is evident from the construction that the Zariski-closure im(ρi,λ′,s) is equal to Gi,λ′ , and
that ρi,λ,s and ρi,λ′,s are everywhere locally compatible (in the sense made precise by diagram
(2)). For the following proposition, we restrict to the G-cohomologically rigid local systems
S ⊆ Srig.

Proposition 6.2. As i = 1, . . . ,N varies, the representations ρi,λ′,s̄ : π
ét

1 (Xs̄, xs̄) → Gi,λ′(Qλ′)

(1) are tamely ramified;

(2) are G-cohomologically rigid;

(3) are pair-wise distinct as G(Qλ′)-conjugacy classes; and

(4) have quasi-unipotent local monodromies with index dividing h (in the sense of Remark
5.6).

Proof. (1): By [KS10, Proposition 4.2], it is enough to check all restrictions of ρi,λ′,s to
regular curves mapping to Xs, and with image not contained in D, are tamely ramified. Let



G-COHOMOLOGICALLY RIGID LOCAL SYSTEMS ARE INTEGRAL 19

Z → Xs be one such curve and fix a geometric base point z ∈ Z and path from (the image
of) z to xs̄ in Xs. Choose a faithful representation R : Gi → GLn over Q and write Ri,λ,s for
the composition

πét
1 (Z, z) → πét

1 (Xs, xs̄)
ρi,λ,s
−−−→ G(Qλ)

R
−→ GLn(Qλ),

and similarly for Ri,λ′,s. These are, by the compatibility of ρi,λ,s and ρi,λ′,s, compatible
representations. Considering them as representations of the Galois group of the function field
k(Z) of Z, [Del73, Théorème 9.8] shows that the local representations of Ri,λ,s and Ri,λ′,s at
each place of k(Z) have isomorphic semisimplified Weil-Deligne representations; regarding
a Weil-Deligne representation as a pair consisting of a Weil group representation r (smooth
on the inertia subgroup) and a nilpotent matrix N , this semisimplification remembers the
restriction of r to the inertia subgroup, and in particular it detects whether or not the
representation is tamely ramified. As ρi,λ,s factors through the prime-to-p quotient, it is
tame, so [KS10, Proposition 4.2] (which is a corollary of Abhyankar’s lemma [sga71, XIII
Proposition 5.2]) shows that Ri,λ,s is tamely ramified. We conclude from [Del73] that Ri,λ′,s

is also tamely ramified. Since this holds for all such Z → Xs, we conclude again by [KS10,
Proposition 4.2] that ρi,λ′,s (equivalently, R ◦ ρi,λ′,s) is tamely ramified.

(4): As explained in Remark 5.5, we have a smooth curve C ⊂ X that is a complete
intersection with smooth complement; C does not meet the singular locus of D and intersects
each Dj transversely. We also have points x ∈ X \ D and yj ∈ Dj ∩ C. Recall that S is
chosen as in Remark 5.5 so that (C, yj) (along with these good properties) spreads out to
(CS, yj,S) over S, and (Cs, yj,s) is the fiber over s. As in (1), choose a faithful representation

R : Gi → GLn over Q. Write Ri,λ,s for the λ-adic local system on the curve Cs given by
restricting ρi,λ,s to Cs and then composing with R (and similarly for Ri,λ′,s). The index of

quasi-unipotence around Dj of a representation of πét,t
1 (Xs, xs̄) is equal to the index around

yj of its restriction to πét,t
1 (Cs, xs̄): indeed, locally at yj the divisor Dj is the vanishing locus

of a function fj that restricts (via OX s̄,yj
→ OC s̄,yj

) to a uniformizer of C s̄ at yj (since the

intersection is transverse). The claim then follows by Abhyankar’s Lemma ([sga71, XIII
Proposition 5.2]) upon noting that a Kummer cover ramified along Dj of degree n pulls back
to a Kummer cover ramified along yj of degree n.

As noted in 5.6, the index of quasi-unipotence of ρi,λ,s around Dj divides h, so the same
holds for Ri,λ,s around yj. We again invoke Deligne’s theorem [Del73, Théorème 9.8] and
find that Ri,λ′,s has the same index of quasi-unipotence around yj, dividing h. Finally, the
same observation just used implies that ρi,λ′,s has index of quasi-unipotence along Dj also
dividing h.

(2): Let Ai,λ,s be the local system on Xs corresponding to the representation

πét
1 (Xs, xs)

ρi,λ,s
−−−→ G(Qλ) → GL(gder(Qλ))

and likewise for Ai,λ′,s. The determinant of each irreducible component of Ai,λ,s is finite
order since Gi,λ is semisimple, and hence Ai,λ,s is pure of weight zero by Lafforgue [Laf02].
The sheaves Ai,λ,s and Ai,λ′,s are compatible by the remark above.

We argue as in the proof of Theorem 1.1 of [EG18]. Compatibility gives an equality of
L-functions

L(Xs,Ai,λ,s) = L(Xs,Ai,λ′,s)
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and since Ai,λ,s is tame and weight 0, [EG18, Lemma 3.4] shows that

h1(Xs, j!∗Ai,λ′,s) = h1(Xs, j!∗Ai,λ,s).

The latter is 0, as a consequence of local acyclicity and the fact that ρtopi,λ is cohomologically
rigid. Thus ρi,λ′,s is cohomologically rigid as required.

(3): If ρi,λ′,s wereG(Qλ′)-conjugate to ρj,λ′,s, then again invoking [Dri18, Proposition 2.3.3] we

find that these maps are induced by homomorphisms Π̂(λ′) → GQ that are G(Q)-conjugate,

and hence that ρi,λ,s and ρj,λ,s are G(Qλ)-conjugate (note that G is connected). Moreover, the
same argument works if we replace k(s) by any finite extension. We claim the same for the
representations ρi,λ′,s̄. We will first check that ρi,λ′,s and ρi,λ′,s̄ have the same Zariski-closure
(namely Gi,λ′), by the corresponding property for the λ-companions. Write Gi,λ′,s̄ for the
Zariski-closure of the image of ρi,λ′,s̄ (for any λ

′, including λ). Since the commutator subgroup

of Gi,λ′ is contained in Gi,λ′,s̄, and G0
i,λ′ is semisimple, G0,der

i,λ′ = G0
i,λ′ is equal to G0

i,λ′,s̄.
Thus Gi,λ′/Gi,λ′,s̄ is isomorphic to the quotient of component groups π0(Gi,λ′)/π0(Gi,λ′,s̄).
If this were non-trivial, it would be generated by the image of the geometric Frobenius
Fs ∈ πét

1 (s, s̄)
xs−→ πét

1 (Xs, xs̄), and, for some integer n, F n
s would have image in π0(Gi,λ′,s̄).

Thus after replacing k(s) by a finite extension, we may assume Gi,λ′,s̄ = Gi,λ′ , as desired.

Now assume that ρi,λ′,s̄ and ρj,λ′,s̄ are conjugate by an element of G(Qλ′). Replacing ρi,λ′,s̄

by such a conjugate, we may assume the two homomorphisms ρi,λ′,s and ρj,λ′,s are literally
equal on πét

1 (Xs̄, xs̄). Let Fs ∈ πét
1 (Xs, xs̄) be the image of the generating geometric Frobenius

element of πét
1 (s, s̄). Then for all γ ∈ πét

1 (Xs̄, xs̄), ρi,λ′,s̄(FsγF
−1
s ) = ρj,λ′,s̄(FsγF

−1
s ), hence

ρj,λ′,s(Fs)
−1ρi,λ′,s(Fs) belongs to the center ZGj,λ′

(we have used the above assertion about

equality of arithmetic and geometric monodromy groups). As this center is finite, replacing
k(s) by a finite extension we have ρi,λ′,s = ρj,λ′,s, a contradiction: indeed, then their λ-
companions, and consequently ρi,λ,s̄ and ρj,λ,s̄, would then be equivalent. �

6.2. Deduction of the main theorem.

Proof of Theorem 1.2. Now, since the companions ρi,λ′,s̄ are tamely ramified, we can pull

them back along the tame specialization map ([LO10, Corollary A.12]) πét,t
1 (X, x) � πét,t

1 (Xs̄, xs̄)
to obtain complex local systems

ρtopi,λ′ : π
top
1 (X, x) → Gi,λ′(Qλ′) ⊂ G(Qλ′)

with image in fact contained in G(Zλ′) (because they are constructed from étale local sys-
tems). The Zariski closure of im(ρtopi,λ′) is Gi,λ′ since this is true for im(ρi,λ′,s) and the tame

specilization map is surjective. Thus ρtopi,λ′ has (not necessarily connected) semisimple mon-

odromy. By the Betti-étale comparison isomorphism, the ρtopi,λ′ are still cohomologically rigid
(now as local systems on X), and they are still inequivalent and G-irreducible with quasi-

unipotent local monodromy of index dividing h. If we apply a field isomorphism ι : C
∼
−→
/Q

Qλ′

to the elements of the finite set S(G, h), we obtain a set of N distinct G(Qλ′)-local systems
on X that are G-irreducible, G-cohomologically rigid, and with monodromy at infinity quasi-
unipotent of index dividing h, and these are by construction a complete set of such local
systems. Our ρtopi,λ′ , for i = 1, . . . ,N, are thus up to G(Qλ′)-isomorphism a full collection of
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representatives of this set ιS(G, h). Returning to our original ρ : πtop
1 (X, x) → G(OK,Σ), we

see that for any λ′ above a place in Σ, the composite

πtop
1 (X, x)

ρ
−→ G(OK,Σ) ⊂ G(Qλ′)

is also a member of ιS(G, h). We conclude that ρ can be conjugated by an element of G(Qλ′)
into G(Zλ′), since this holds for each ρtopi,λ′ . Combining this argument for all places in Σ with
our integrality criterion, Lemma 3.1, we deduce that for some finite extension L/K, ρ is
G(L)-conjugate to a homomorphism πtop

1 (X, x) → G(OL), concluding the proof. �

6.3. Another example of integrality. At the suggestion of the referee, we give one setting
in which an integrality result follows, by the same method, for all G-rigid and G-irreducible
local systems on X. Suppose that every G-irreducible G(C)-local system on X is G-rigid.
Then the analogue of part (2), Proposition 6.2 is trivial: when we construct the λ′-adic
companions ρi,λ′,s and unspecialize to the πtop

1 (X, x) representations ρtopi,λ′ , the latter are au-

tomatically G-rigid, and therefore belong to Srig. The argument of §6.2 then applies to show
all ρ ∈ Srig are integral.

Arapura ([Ara02]) has noted one context in which, for G = GLn, this seemingly unlikely
condition prevails: when X is projective, and the spaces of global symmetric differentials
H0(X,Si(Ω1

X)) vanish for i = 1, . . . , n, then ([Ara02, Proposition 2.4]) all semisimple rep-
resentations πtop

1 (X, x) → GLn(C) are GLn-rigid. This observation extends to general G in
the following way:

Proposition 6.3. Assume X is projective. Let G be a split connected reductive group of
rank n, and let e1, . . . , en be the invariant degrees of G, i.e. the degrees of the algebraically
independent homogeneous polynomials generating the ring of invariants C[g]G. Assume that

n
⊕

i=1

H0(X,Sei(Ω1
X)) = 0.

Then every completely reducible representation πtop
1 (X, x) → G(C) is G-rigid and is integral

in the sense of Theorem 1.2.

Proof. The Hitchin map

MDol(X,G) →
n

⊕

i=1

H0(X,Sei(Ω1
X)),

from the moduli space MDol(X,G) of G-Higgs bundles of harmonic type on X (as defined in
[Sim94, §9]), is proper. Simpson proves this for G = GLn in [Sim94, Theorem 6.11], and for
lack of a reference we explain the general case. Choose a faithful representation G → GLr.
There is then a commutative diagram

MDol(X,G)
⊕n

i=1 H
0(X,Sei(Ω1

X))

MDol(X,GLr)
⊕r

i=1 H
0(X,Si(Ω1

X)),
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where the horizontal arrows are the respective Hitchin maps, the left vertical arrow takes
the associated GLr-bundle (and similarly for the Higgs field), and the right vertical arrow is
induced by the map C[glr]

GLr → C[g]G: note that even identifying the base of the Hitchin
maps as we have requires choosing independent homogeneous polynomials generating these
invariant rings, so the right vertical arrow is expressing the choices for GLr, once restricted
to functions on g, as polynomial combinations of the choice for G. Now, Simpson proves
([Sim94, Corollary 9.15]) that the left vertical map is proper, so both composite arrows
are proper, and we conclude that the top horizontal arrow is also proper. By hypothesis
⊕n

i=1 H
0(X,Sei(Ω1

X)) is trivial, so MDol(X,G) is compact. But Simpson ([Sim94, Theorem
9.11, Lemma 9.14]) has proven that MDol(X,G) is homeomorphic to the coarse moduli space
of representations πtop

1 (X, x) → G(C), hence the latter, being an affine scheme finite-type
over C with compact underlying topological space, is just a finite set. The result follows by
the discussion preceding the Proposition. �
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