G-COHOMOLOGICALLY RIGID LOCAL SYSTEMS ARE INTEGRAL

CHRISTIAN KLEVDAL AND STEFAN PATRIKIS

ABSTRACT. Let G be a reductive group, and let X be a smooth quasiprojective complex
variety. We prove that any G-irreducible, G-cohomologically rigid local system on X with
finite order abelianization and quasi-unipotent local monodromies is integral. This general-
izes work of Esnault and Groechenig when G = GL,,, and it answers positively a conjecture
of Simpson for G-cohomologically rigid local systems. Along the way we show that the con-
nected component of the Zariski-closure of the monodromy group of any such local system
is semisimple; this moreover holds when we relax cohomological rigidity to rigidity.

1. INTRODUCTION

A central question of arithmetic geometry is to identify which Galois representations arise,
via étale cohomology, from algebraic geometry. The Fontaine-Mazur conjecture ([FM95]),
asserting that all potentially semistable and almost everywhere unramified semisimple /-adic
representations of the absolute Galois group of a number field F' do indeed appear in the co-
homology of smooth projective varieties over F', is the prototypical and most famous explicit
problem in this area. Carlos Simpson formulated in [Sim92, pg. 9 Conjecture] an analo-
gous conjecture that rigid complex representations of the topological fundamental group of
a smooth projective complex variety X necessarily appear in the cohomology of a family of
varieties over X. In particular (loc. cit.), rigid representations should be defined over the
ring of integers in some number field. Simpson raised these questions for representations
valued not just in GL,,, but in general algebraic groups G.

When G = GL,,, two striking general results are known. For X an open subvariety of P!, Katz
has proven that any GL,-cohomologically rigid (see Definition 1.1) irreducible local system
on X with quasi-unipotent local monodromies is a subquotient of the monodromy repre-
sentation of a family of varieties over X ([Kat96, Theorem 8.4]). Esnault and Groechenig
([EG18, Theorem 1.1]; see also [EG17]) have proven Simpson’s integrality conjecture, for all
smooth quasi-projective varieties, for GL,-cohomologically rigid irreducible representations
with finite-order determinant and quasi-unipotent local monodromies.

In the present paper we generalize the main theorem of [EG18] to rigid representations valued
in general connected reductive groups G. We begin by making precise the basic terms.
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2 C. KLEVDAL AND S. PATRIKIS

Definition 1.1. Let X be a connected smooth quasiprojective variety over C, and let
J: X <= X be a good compactification: thus X is smooth projective, and the bound-
ary D = X \ X is a strict normal crossings divisor. Let z € X(C) be any base-point,
and let 7T§°p (X, x) be the corresponding topological fundamental group. A homomorphism
p: mP(X,z) = G(C)

e is G-irreducible if the image of p is not contained in any proper parabolic subgroup

of G.

e has quasi-unipotent local monodromy if for all points y in the smooth locus of D and
any sufficiently small ball A C X around y, p() is quasi-unipotent for a generator
yof mMP(A\ DNA)2Z.

e is G-rigid if the orbit of p under the G(C)-conjugation action on the representa-
tion variety parameterizing G-valued representations of 7;°?(X,z) (with the same
abelianization and local monodromy as p)” is a connected component.

e is G-cohomologically rigid if H*(X, ji.g*") = 0, where g% is the Lie algebra of the
derived group of G, regarded as a local system on X via the composite Ad o p.

Equivalently, p is rigid (respectively, cohomologically rigid) if it represents an isolated point
(respectively a smooth isolated point) on an appropriate moduli space of G-local systems;
see the discussion in §4.1. In particular, cohomologically rigid local systems are rigid. Note
that if p is either G-irreducible or G-cohomologically rigid, there need not exist a faithful
finite-dimensional representation r: G — GL,, of G such that r o p is either GL,-irreducible
or GL,,-cohomologically rigid; thus the results of [EG18] cannot be used to bootstrap to the
case of general G.

We now state the main theorem:
Theorem 1.2. Let X/C be a connected smooth quasi-projective complex algebraic variety,
with a base-point x € X (C). Let G be a split connected reductive group over Z, and let
p: TP (X, z) = G(C)

be a G-irreducible and G-cohomologically rigid local system such that

e p has quasi-unipotent local monodromy;

e the image of the composite homomorphism

(X, z) & G(C) — A(C)
to the maximal abelian quotient A of G has finite order.

Then there is a number field L with ring of integers Oy, such that p is G(C)-conjugate to a

——0
homomorphism m*(X,z) — G(Op); and im(p) , the connected component of the identity
of the Zariski closure of the image im(p) of p, is semisimple.

'Replacing G(C) in this definition by G(K) for some field K, we will tend to abuse notation and say a
representation is G-irreducible if it is G-absolutely irreducible, i.e. the resulting homomorphism into G(K)
does not factor through a proper parabolic subgroup.

2See section 4 for details on this affine variety.
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Moreover, the semisimplicity of im(p)o holds if we weaken the assumption that p is G-
cohomologically rigid to p being G-rigid.

Remark 1.3. When G = GL,,, and discounting the conclusion that im(p)O is semisimple, this
is precisely [EG18, Theorem 1.1]. If p comes from geometry, i.e. it arises as the monodromy
representation of a sub-local system of R'f,C for a smooth map f: Y — X, then p satis-
fies the two conditions of the theorem. Indeed, it first follows from the local monodromy
theorem that p has quasi-unipotent local monodromy. That the abelianized monodromy
representation has finite image follows from [Del71, Corollaire 4.2.8.iii(b)].

Remark 1.4. Many naturally-occurring local systems are rigid and provably integral by other
means. For instance, let H be a connected semisimple Lie group with (real) rank at least 2
and having no compact factors, and let I' C H be an irreducible lattice such that I - H™S is
dense in H, with H™ the minimal connected normal subgroup such that H/H™ is compact.
Then Margulis has proven in turn the following remarkable results (see [Mar91, Theorems
[X.6.5, IX.6.15], starting from his lattice superrigidity theorem:

e ['is an arithmetic subgroup.
e For any homomorphism p: I' = G(C), the Zariski-closure im(p) is semisimple.
e For every representation 7: I' = GL,(C), H*(T,r) is trivial.

In particular, with r equal to the adjoint action of G on g, if the associated locally
symmetric space I'\ H has the structure of a complex quasiprojective variety, we see that
p is cohomologically rigid in the sense of Definition 1.1. (See Propositions 4.6 and 4.7;
the vanishing condition here is in general stronger than what is needed for cohomological
rigidity.) Many interesting rigid representations, however, have monodromy groups that are
not lattices in their real Zariski-closures: this is the phenomenon of so-called thin monodromy
groups, and famous (hypergeometric) examples have been studied in [DM86], and more
recently [BT14]. In our algebro-geometric setting, the chain of reasoning is reversed: we
assume cohomological rigidity, and then deduce the semisimplicity of the monodromy group
and integrality (in place of arithmeticity) of the representation.

1.1. Overview of the proof. The proof follows the arguments of [EG18|, and indeed our
debt to that paper will be evident throughout. The essential idea is, having shown the rigid
representation is defined over the ring of ¥-integers Ok 5, C K for some number field K and
finite set of places X, to check integrality at each A € 3 by specializing p to characteristic
p and using results of Drinfeld and Lafforgue on the existence of compatible systems of \-
adic representations. Such arguments are considerably subtler for general G than for GL,,
since in general the semisimple conjugacy classes associated to Frobenius elements do not
uniquely characterize G-irreducible A-adic representations. In particular, our argument must
keep track of monodromy groups in a way that [EG18] does not, and we rely on Drinfeld’s
work [Dril8] for the existence of the requisite compatible systems.

Here is a more detailed section-by-section outline of the proof, restricting for notational
simplicity to the case where X is projective. In §3, we prove the local integrality condition

needed for the main theorem: granted that p factors as 7;°°(X, x) & G(Ok.x), this reduces
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us to checking that for each \ € ¥, the composite
Px: W;OP(X, .T) i> G(O[gz) — G(F)\)
can be conjugated into G(O%, ).

The initial factorization of p through some G(Ofgy) is obtained, following [Sim92] and
[EG18], by studying a suitable moduli space of G-local systems on X. In §4, we recall
the construction and basic properties of these moduli spaces. Our proof begins in earnest in
§5. We consider a set S of (isomorphism classes of ) G-local systems satisfying the hypotheses
of the theorem. Using that the moduli space of G-local systems is finite type, it is deduced
(here is the key input from rigidity) that S is finite, and that there exists a number field
K and a finite set of places X such that each element of S is conjugate to a representation
p: (X, 7) = G(Okys). For each p’ € S and each place A of K, we obtain, via extending
scalars, a representation ph: m°(X,2) — G(K,), and we denote the collection of these
homomorphisms by Sy. The final step of the proof (and the most interesting) is to deduce
the integrality of our original p,, for each A € X, from the integrality of the members of Sy
for a fixed \' ¢ 3 (note that in §5 and §6 the notational roles of A and X are reversed).

We indicate this last step in more detail. The crucial inputs are results of L. Lafforgue
([Laf02]) on the Langlands correspondence over function fields, and results of Drinfeld
([Dril8], building on [Dril2]) that promote Lafforgue’s work to construct A-adic compan-
ions for N-adic representations—and even for suitable G(K y/)-representations—of the fun-
damental group of a smooth variety of any dimension over a finite field. To exploit these
results, following [EG18], we spread the complex variety X out and and take a fiber X over
a finite field. In the remainder of §5 we show that the collection Sy can be specialized and
descended to (étale) G-local systems {p), ,}es on X,. This step is subtler than in the case
of GL,; it requires attending to the monodromy groups of the specialized representations
(Proposition 5.7), establishing along the way their (connected components’) semisimplicity
(Corollary 5.8).

In §6, we use the work of Lafforgue and Drinfeld mentioned above to produce a collection
{0\ s}pres of A-adic companions (which are necessarily integral) of these p), ,. The semisim-
plicity of the monodromy groups is essential here too, in order to make use of [Dril8].
From the collection of p’m on X,, we construct via tame specialization G-local systems
P M (X, 1) — G(Og,) on our original X (over C). It is then shown that the #S local
systems p/, constructed in this way are pairwise distinct and satisfy all of the defining prop-
erties of elements of S. By counting, our original p) must belong to this set, each member
of which is integral at A (by virtue of arising from étale local systems). We conclude that
for all A € ¥, px can be conjugated into G(O%, ), and then we are done by the results of §3.

In §6.3, at the referee’s suggestion we extend an observation of Arapura ([Ara02]) to give
conditions (phrased as the vanishing of certain spaces of global symmetric differentials) under
which all G-completely reducible local systems on a smooth projective X are rigid, which
allows us to prove integrality in this setting as well.

2. NOTATION

For a connected reductive group G, we let G denote the derived group, G® denote the
adjoint group, G*¢ denote the simply-connected cover of G4 (equivalently, of G*4), and Zg
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denote the center. For a detailed treatment of how these constructions carry over to the case
of the base scheme Spec(Z), and indeed much more generally, we refer the reader to [Conl4]
(or to the original constructions in [Gro64]), especially [Conl4, Theorem 3.3.4, Example
5.1.7, Theorem 5.3.1 and following].

If X is a complex variety and 2 € X (C), we write 7;°° (X, ) to denote the fundamental group

based at x of the topological space X (C) with its analytic topology. If X is a scheme, and
x: Spec(2) — X is a separably-closed base-point, we let 7¢*(X, z) denote the corresponding
étale fundamental group. If j: X — X is a good compactification, so that X is regular
and D = X \ X is a strict normal crossings divisor, we let Wft’t(X ,x) be the quotient of the
étale fundamental group corresponding to the fully faithful embedding of finite étale covers
Y — X tamely ramified along D (i.e. such that the valuation vp, on k(X) of any irreducible
component D; of D is tamely ramified in £(Y")) into the category of all finite étale covers of
X. For a reference that this is a Galois category, we refer the reader to [GM06, Theorem
2.4.2]. This group is independent of the compactification used, as seen from [KS10, Theorem
1.2, Theorem 5.4].

If K is a number field or a local field, we denote its ring of integers by Of. In the number
field case, if X is a set of finite places of K, we let Ok »; denote the localization away from
Y of Og. We write K, for the product of the completions of K at its infinite places, and
we write A% for the finite adeles of K.

3. LOCAL INTEGRALITY CONDITION

The next proposition gives the criterion we will apply in §6 to deduce the main theorem.

Proposition 3.1. Let I' be a finitely generated group, and let G be a connected reductive
group over Z. Let p: I' = G(Okyx) be a homomorphism, where ¥ is a finite set of finite
places of K. Assume that for each X € X, the representation py: I' — G(Ky) is G(Ky)-
conjugate to a representation I' — G(Og, ). Then there exists a finite extension L/K such
that p is G(L)-conjugate to a representation I' — G(Op).

Proof. Each representation py: I' — G(K) is conjugate to a G(Og, )-valued representation.
That is, for each A € ¥, there is some g} € G*4(K ) such that gipgh~': T — G(Ozx,) (also
writing ¢} for any lift to G(K))). The map G*(K,) — G*(K,) is surjective, so we can
find gy € G*¢(K,) lifting ¢4. It follows that the image of gy in G9(K)) conjugates py into
a G(Og, )-valued representation. We denote this representation p3*.

Each gy lies in G*°(L()\)) for some finite extension L(\) of K, which we may assume to be
Galois. In particular, p{* has image contained in G(L(A\)) N G(O%, ) = G(OLy)). Since X is
finite, we can by class field theory find a Galois (in fact solvable) extension of number fields
L over K such that for all A € ¥ and all places v of L above A, L, is isomorphic (over K))
to L()), and moreover L has no real embeddings.

Consider the element ga= = (g,) € G**(A7°) whose v-th component is, for v above A € ¥,

the image of g, defined above under any Kj-isomorphism L(\) = L,, and the identity
otherwise. Then (the image in G4 of) gase conjugates the representation
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into a homomorphism I' = G([[ OL,). Now suppose that v, ...,7v, € G(A) are the images
under ppe of a set of generators of I'. Let m: G* — G be the quotient map and consider
the map

n

conj: G(AY) = [[GAY), g+ (r(gmm(9) ™., 7(9)wm(9) ™).

i=1

Then U = conj ' (G([ Or,)") is open and non-empty since it contains gae. Since G* is
simply-connected, and G* (L) is non-compact, the strong approximation theorem [Kne66]
implies there is an element ¢’ € G*(L) N U. Then the element 7(g’) is the desired element
of G(L). O

4. MODULI OF REPRESENTATIONS

In this section G is a split connected reductive group over a field K of characteristic zero,
with center Zg and adjoint group G*! = G/Zg. Let T' be a finitely-generated group with
presentation

I'= <7“1,- - Tk ‘ {Sa}a€B>7

where the set B indexes the relations s,. Let b: G — A be the maximal abelian quotient of
G, and fix a homomorphism 6: I' — A(K). Let Repg(T', 0) be the affine K-variety of repre-
sentations of I" with abelianization equal to 6, that is for a K-scheme T', Rep (T, 8)(T) is the
inverse image of I' LN A(K) — A(T) under Hom(I', G(T")) — Hom(I", A(T)). More explicitly,
the map Repg(T, 0)(T) — G*(T) given by p +— (p(r1), ..., p(ry)) identifies Reps(T, #) with
the closed subscheme of G* given by given by the conditions s,(g1,...,g9x) = 1 for a € B
and b(g;) = 0(g;) for i = 1,..., k. (Note that since G* is Noetherian, finitely many of the
relations s, suffice to describe this subscheme.) There is an action of G* on Repg(T, 6) by
conjugating homomorphisms. Let Locg (T, 8) be the resulting stack quotient,

Locg(T, 0) = [Repg (T, 0)/G™).

If T is a K-scheme then Locg (T, 0)(T) is the groupoid with objects (&, f) and isomorphisms
(&', f) = (€, f) given respectively as commutative diagrams

f/
& —1 Repy(T,0) g =5 & —L 5 Repu(T, )
T T

where & — T is a (left) G*-torsor, and f: & — Repy(T,0) is a G*-equivariant morphism
(likewise for (£, f')). The isomorphism & — £ is required to be G#-equivariant.

Definition 4.1. If T'is a K-scheme, and p a representation p: I' — G(T') whose abelianiza-
tion is 6, we denote by [p] in Locg (I, 8)(T) the object (G234, f,), where f,: G2 — Repg (T, 0)
is given by f,(g) = gpg~".
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Lemma 4.2. If Q is an algebraically closed field (containing K ), then Locg (T, 8)(2) can be
identified with the groupoid of conjugacy classes of representations I' — G(§) with abelian-
1zation equal to 6.

Proof. The groupoid C of conjugacy classes of morphisms I' — G(€2) has objects being
representations I' — G(£2), whose abelianization is #. A morphism p; — ps is given by inner
automorphisms Ad(g): G(Q2) — G(Q) for g € G*4(Q) such that py = Ad(g) o py, so there is
a morphism only when p, = gp1g~! for some g € G*(Q).

Given a representation p: I' — G(2) with abelianization 6, we have the associated G-local
system [p] = (G, f,) in Locg(T,0)(2). The isomorphism p — gpg~* for g € G*(Q) gives
a morphism of G-torsors R,-1: (GX, f,) — (GX, fype-1) by Ry-1(h) = hg™' on Q-points.
This gives an isomorphism [p] — [gpg~!] in Locg(T, 6) since

fo(h) = hph™" = hg~'gpg~"gh™" = fypg-1(hg™).
Thus, p — [p] is a functor C — Locg(T, 0)(£2).

To see that it is fully faithful, notice that both Hom(p1, p2) and Hom([p1], [p2]) can naturally
be identified the the set of h € G*(Q) such that py = hpih™!.

We now show that the functor is fully faithful. By definition, an object of Locg(T, 8)(2)
is a G*-torsor & — Spec(€)) and a G*-equivariant map ¢: & — Repg(T,6). Since Q is
algebraically closed, there is a point s € £(Q), which gives a G*-equivariant isomorphism
7: G& = & which is g — gs on Q points. Let p = f(s). Since ¢(gs) = gp(s)g~", 7 gives an
isomorphism [p] = (G, £,) = (&, ¢). O

We define a substack IrrLocg (T, ) of Locg (I, 0) consisting of the objects of Locg (T, 0)(.S)
whose base change along any geometric point Spec(€2) — S yields via the identification of
Lemma 4.2 a conjugacy class of G-irreducible representations. Recall that a representation
' = G(Q) is G-irreducible if the image is not contained in any proper parabolic subgroup.

Proposition 4.3. The substack IrrLocg (T, 0) C Locg(T', 0) is open.

Proof. For a K-scheme S and (€, f) € Locg(T',0)(S) we say that (£, f) is G-reducible at
s € S if for some (equivalently any) a geometric point s: Spec(2) — S lying over s, the
conjugacy class of representations I' — G(£2) corresponding to (&, f5) is G-reducible. We
will show that the locus of s € S for which (&, f) is G-reducible is closed.

Fix a maximal torus and Borel subgroup T'C B C G, with corresponding positive roots ®*
and simple roots A. For any finite set S C A, let Pg be the associated standard parabolic,
and consider the bundle

m: Z = Zg(E, f) := G*\ (€ x (G/Ps)) — S,

where G*! acts diagonally (using that the left multiplication action of G' on G/Ps factors
through Gd). We get a ' action on Z via the map & — Repg (T, 0): if z € £(U) maps via
ftop.: T — G(U) in Repg(T,0)(U) then for (z,y) € (€ x G/Ps)(U) define

v (x,y) = (z,p.(7)y) ~yeT.
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This descends to an action on Z(U) since if we change representatives to (gz, gy) then

v (97, 9y) = (92, pge(7)gy) = (9, 90:(7)9 " 9y) = (92, 9p=(7)y).

We claim that the locus m(Zs(€, f)¥') C S consists of all of the points s € S such that
for any (equivalently every) geometric point 5: Spec(£2) — S lying over s, the conjugacy
class im(fs: &(2) — Repg (T, 0)(£2)) contains a representation p: I' — G(2) whose image
is contained in Pg(€2). Indeed, given s € S and 5 a geometric point above s, we can write
s = m([x,y]) where [z,y] is the class of (z,y) € (& x G/Ps)(Q) in Z5(Q2). By multiplying
(x,y) by a suitable element of G(£2), we can and do assume that y = e, the identity coset in
G/Ps(2). Thus
5 € Zs(E, FN(Q) <= (1,€) = 1(r,¢) = (2, pa(1)e) for all 7 €T,
< p.(7) € Stabga)(e) = Ps(?) for all v € T,
= im(fs(x) = pz) C Ps(Q)

It follows from this description that the locus of s € S where (&€, f) is G-reducible is the set

U =(Zs(€, 1Y)

SCA
For each S the fixed point locus Zs(€, f) is closed, so w(Zs(&, f)F) is closed (since Z — S
is proper), and hence the finite union of such sets is closed. O
Now suppose we are given 7y, ...,y € I', and subschemes IC; C G that are finite unions of
conjugacy classes, and defined over K for ¢« = 1,..., N. Note that these are locally closed
subschemes of G. We consider the locally closed substack
M =M.T,0,{(v,K;)}) C IrrLocs (T, 6), (1)

where an object (€, f) € IrrLocg (T, 0)(T) is in M(T) if for every geometric point ¢t € T'(2),
and any representation p: I' — G*(Q) with [p] = (G, f,) ~ (&, f;), we have that p(v;) €
ICi(Q) for i = 1,..., N. Note that this is independent of the choice of p, since any other p/
satisfying (GX, f,0) =~ (&, fz) will be G*(Q) conjugate to p by lemma 4.2.

To see that the stack M is locally closed in IrrLocg (I, #), argue as follows: Let (£, f) be an
object of IrrLocg (T, 8)(T'), and let Tj, C T be set of points t € T}, such that for any geometric
point ¢ € T(Q) over t, (&, f;) € M(Q). Let & = & x1 Ty. This is G* stable, so it suffices to
show that & is locally closed. Let p: I' — G(€) be the representation associated to f. Each
p(7;) is a map € — G and

& = ﬂp(%)_l(’@)-

Since each IC; is locally closed in G, the intersection is locally closed. In summary, we have
the following proposition.

Proposition 4.4. Let " be a finitely-generated group, K a field, G a split connected reductive
group over K with mazimal abelian quotient A. Fix

e 0: ' > A(K) a representation;
® V-5 IN GF)
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e subschemes K; C G that are finite unions of conjugacy classes, and defined over K

(fori=1,...,N).

Then the stack M of conjugacy classes of G-irreducible representations p: I' — G with
abelianization 0, such that p(;) € K; for alli=1,..., N is an algebraic stack of finite type
over K.

Remark 4.5. The case of interest for this paper is when K is a number field.

Now suppose po: I' = G(K) is a G-irreducible representation such that po(7;) € K;(K). The
G-local system [po] = (G, f,,) associated to po is then an object of M (K) (for 6 = pg°).

Proposition 4.6. Let g be the Lie algebra of G, Then the Zariski tangent space 11y M
1s the kernel of

HY(T, g™ (K)) &= @ H' (7, 6" (K)).
=1

Proof. For any point (€, f) € M(K[e]), let (&, fo) = i*(€, f) with i the closed immersion
Spec(K) — Spec(K[e]). The tangent space Tj,y consists of the points v = (&€, f) in
M(K[e]) such that (&, fo) = (G, f,,) over K (the isomorphism not being part of the
data). Fix one such isomorphism ¢y. By the formal criterion of smoothness, the section

—1
Spec(K) — G* £y £ extends to give a section of & — Spec(Ke]), hence &€ is trivial.

By choosing a trivialization ¢: & = Gg‘;ec( (o)) (extending ¢o on the closed fiber) we get a
representation p = f o 1(1): ' — G(K]|e]) whose composition with G(K[e]) — G(K) is
po, and which also maps ; to an element of KC;(K[e]).

The map a(y) = p(v)po(7) " gives an element o € Z'(T', g9 (K)) (the “fixed determinant”
condition ensures that « is valued in g4 (K) C g(K)). The manipulation

p(vB)po(¥3) "t = p()p(B)po(B) po(y)
= p(7)po(y) " - Ad(po) () (p(B)po(B) ") -

verifies the cocycle condition, and it is similarly easy to see that changing the trivialization
» modifies o by a coboundary.

Therefore there is a well defined map T}, M — H*(T, g% (K)). It is injective because one
can reconstruct the point v from the class [a] by taking p = apg, and then v = [p]. On the
other hand, given a cocycle o the point [apo] is in T}, M if and only if for each i = 1,...,n
we have apg(7;) € K;(K[e]). The restriction res([«]) is trivial if and only if for each ¢ there
is some & € g? (K) such that a(v;) = &po(7:)& po (i), hence

apo(7i) = &po(V)E T,

and thus apg(v;) belongs to K;(Ke]). We conclude that the image of Tj, M in H*(T', g (K))
is the kernel of res: HY (T, g4 (K)) — @, H'(vZ, g9 (K)). O
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4.1. Back to geometry. We now specialize to the case of interest. Let X be a smooth
connected quasi-projective complex variety, fix a base-point z € X (C), and let j: X — X
be a good compactification with D = X \ X the strict normal crossings divisor written as
the union D = UY, D; of its irreducible components D;. Let D¢ be the singular locus of
D and U = X \ D" 50 there is a factorization j: X % U % X, Fori = 1,..., N, fix
y; € D;NU, A; C U asmall open ball around y;, and z; € A = A; \ (D; N 4;). Choose
T; € 7°"(X, x) that generates the image of Z = m®(AX, ;) — (X, x) (with the map
depending on a fixed choice of path from z ending in A}*.

Let K be a characteristic zero field. Suppose IC; is finite union of conjugacy classes and is
defined over K for each i = 1,..., N, and fix a character §: 7°°(X,2) — A(K). Define

M = M (miP(X,2),0, {(T}, K)}) € Locg(miP(X,2),0),

the moduli stack of G-irreducible G-local systems on X with abelianization § and monodromy
K; around D;, as constructed above. Let po: m"(X,z) — G(K) be a homomorphism
that is G-irreducible, has abelianization 6, and has monodromy po(7;) € K;(K). Then the
associated G-local system [po] gives an element of M(K). Let g be the locally constant
sheaf on X corresponding to the representation B

mP(X, 2) £ G(K) 2% GL(g% (K)).

Proposition 4.7. The tangent space of M at the point [po] is the finite-dimensional K -vector

space H' (U, a,g%").

Proof. Giving the Lie algebra g'(K) the structure of a (X, z)-module vial Ad o py, there
is a commutative diagram

0 —— Ty M —— H'(m™(X), g% (K)) === &L H'(m(A]), g (K))

! l:

Hl( 7gder) I o @i]ilHl(Afvgder|A;<)

and Proposition 4.6 shows that the top row is exact. The result follows from the identification
of the kernel of the map on the bottom row with H*(U, a,g%") (which can be seen using the
Leray spectral sequence for a). [l

Remark 4.8. As was noted in [EG18, Remark 2.4], we have H'(U, a,g"") = H' (X, ji.g""),
where j;*gder is the intermediate extension.

Lemma 4.9. If p: m{°°(X,z) — G(C) is G-completely reducible and G -cohomologically rigid,
then it is G-rigid.

Proof. By Proposition 4.7 and Remark 4.8, p: m{°°(X, z) — G(C) is G-cohomologically rigid
if Tj; M = 0, for M the appropriate stack defined as above. We need to show that the image
top

of the map f = f,: Gc — Repg(m™(X, z),0,{T;,K;,}), given by g — gpg™*, is a connected
component. By [Ric88], the image im(f) is closed since p is G-completely reducible.
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Suppose im(f) is not a connected component, and thus is contained in some closed connected
subspace Z 2 im(f). Let v € Tyq)Z \ Tyqyim(f). Then v corresponds to a cocycle a, €
ZH (X, ), g% (C)), with action Ad o p on g% (C). The cocycles from Ty)im(f) are
precisely the coboundaries, so our choice of v, along with Proposition 4.7 shows that the
cohomology class [a,] is a non zero element of H*(U, a,g% (C)). This contradicts the fact
that p is G-cohomologically rigid. O

Remark 4.10. Using GIT, we can construct coarse moduli spaces of representations over K.
Namely, using the notation of Proposition 4.4, suppose each K; is closed and defined over
K, and that 6 is defined over K.

Then R = Repg(I', 0, {7, K;}) is an affine scheme of finite type over K and we can form the
categorical quotient R /G* whose global functions are the G*d-invariant global functions
on R. By Hilbert’s work on invariant theory, the affine scheme R /G2 is finite type over
K. The points of R/G* over an algebraically closed field 2 D K are in bijection with
conjugacy classes of G-completely reducible representations p of I that have abelianization
6 and p(v;) € K;(€2). Indeed, work of Seshadri [Ses77] shows that there is a unique closed
orbit in the fiber of

T R(Q) — RJG(Q),

and [Ric88] shows that the orbit of such a p is closed if and only if it is G-completely
reducible.

In particular, when T' = 7;°°(X, z), then for fixed data 6, {v;, K;}, there are only finitely
many conjugacy classes of G(C)-representations p with these fixed invariants that are G-
rigid: the conjugacy classes of G-rigid representations are the isolated points of the scheme
R /G, of which there are only finitely many as R /G is finite type over K. Further, each

such conjugacy class contains a G(Q)-valued representation.

5. ARITHMETIC DESCENTS

5.1. Reduction to the adjoint case. We begin the proof of Theorem 1.2 by reducing to
the case in which G is a simple (split, as we always assume) adjoint group:

Lemma 5.1. It suffices to prove Theorem 1.2 in the case where G is a simple adjoint group.

Proof. Consider p as in Theorem 1.2. The projectivization P(p): m*(X,z) & G(C) —
G*(C) is G*-irreducible, G*-cohomologically rigid (or G*d-rigid, according to the assump-
tion on p), and has quasi-unipotent local monodromy (as is evident from the definitions).
Note that P(p) having these properties is equivalent to its projections to each simple factor
of G having these properties. Thus, under the assumption of the Lemma, we may assume
that after replacing p by a G(C)-conjugate, P(p) factors through G®(Og) for some number
field K. We claim that p itself factors through G(Op) for some finite extension L/K. Indeed,
p of course factors through the preimage of im(P(p)) in G(C). By our assumption that p
has finite image in A(C), im(p) is further contained in G (C) - Z4(Z), since any point of
finite order in Z5(C) is contained in Z¢(Z). Thus it suffices from the long-exact sequence in
cohomology to check that the image of each of the generators of the finitely-generated group

(X, z) in G*(Ok) is itself in the image of G%¢(O}) — G*3(O},) for some finite extension
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L/K. Since ker(G* — G*) is a product (over the simple factors) of group schemes p,., it
suffices to find Oy, trivializing any given class in Hg (Spec(Ok), i) The (fppf) Kummer
sequence yields a short-exact sequence

O /(OF)" = Hyi(Spec(Ok), i) = Pic(Ok)[r].

The desired L exists because every element of the class group of Ok becomes trivial after
passage to some finite extension O;, and we can adjoin an 7 root to trivialize an element
of O /(OF)". Finally, semisimplicity of the connected monodromy of P(p) clearly implies
that of p itself, as above using that p has finite image in A(C). O

In this section and §6, we will therefore prove:
Theorem 5.2. Theorem 1.2 is true if G is simple and adjoint.

In the remainder of this section, we will establish the existence of arithmetic descents
of G-rigid local systems and deduce in this generality the semisimplicity of their mon-
odromy groups (that is, the first statement in Theorem 1.2). In §6 we will restrict to
G-cohomologically rigid local systems in order to establish the deeper integrality result.

5.2. Algebraicity of the local system. Let X be a smooth quasi-projective variety over
C and (X,U,D,...) a compactification as in the first paragraph of 4.1. Let G be a split
simple adjoint group over Z, and let po: 7;°°(X, ) — G(C) be a representation defining a

G-local system on X such that
® pg is G-rigid.
® pg is G-irreducible.

e The local monodromies (i.e. po(T}), ..., po(Tn) with T; a small enough loop around
D; as in 4.1) are quasi-unipotent.

Richardson showed ([Ric88, Theorem 3.6, Theorem 4.1], valid over fields of characteristic
zero) that G-irreducibility of a closed subgroup H C G is equivalent to H being reductive
with centralizer C(H) that is finite modulo the center Z of G (in our case, simply finite).

In particular, im(pg) enjoys these two properties.

Choose an integer h > 1 such that po(7T}) is quasi-unipotent of index® dividing h for all
i=1,...,N. Our strategy, following [EG18], is to work with the finite set of all G-irreducible,
G-rigid (or G-cohomologically rigid) local systems with local monodromies of index dividing
h. To that end, for future use in §6 we let S = S(G, h) be the set of conjugacy classes of
representations p: m°°(X,2) — G(C) that are G-irreducible, G-cohomologically rigid, and
such that each p(7;) is quasi-unipotent of index dividing h. In the present section we will
work with the related set S"8 = S"¢(G,h) 2 S(G, h) for which we only require G-rigidity
instead of G-cohomological rigidity.

Lemma 5.3. The set S is finite, and there exist a number field K C C and a finite set
Y of finite places of K such that each element of S™® is represented by some representation
p: TP (X, 1) - G(Oxs).

3The index of a quasi-unipotent element g € G (C) is the order of g5 is the Jordan decomposition g = gsg.
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Proof. There is a finite collection Cy, . ..,Cy C G(C) of conjugacy classes of quasi-unipotent
elements of index dividing h. Indeed, one can choose a finite number of semisimple elements
that represent any semisimple conjugacy class of elements of order dividing h (the h-torsion
in T'(C), for T' a maximal torus of G will do). The conjugacy classes with a fixed semisimple
part s correspond to unipotent conjugacy classes in Cg(s). As Cg(s)? is connected reductive
(since s is semisimple), it has finitely many unipotent conjugacy classes, and a fortiori the
same then holds for C(s) (all unipotent elements of Cg(s) belong to C(s)?).

The C; are the complex points of a locally closed algebraic subvariety of Gg. By abuse of
notation, we write C; C G for this variety. Let K = UM, C;, and note that K is closed. Thus
the conjugacy classes S™8 give isolated points of the coarse moduli space of G-local systems
on X with local monodromies in I, as discussed in Remark 4.10. This moduli space is finite
type over Q, so S"¢ is finite, and each of its elements corresponds to a Q-point of the moduli
space. Therefore each conjugacy class in S™ contains a G(Q)-valued representation.

Since 7P (X, z) is finitely generated, any G/(Q)-valued representation takes values in G(Ok.x)

for K C Q a number field and ¥ a finite set of finite places. There are only finitely many
conjugacy classes in S™® and therefore we may choose a common number field K and ¥ so
that each conjugacy class of S™® contains a representation

p: TP (X, ) = G(Okx).
U

Remark 5.4. Lemma 5.3 can also be proven without reference to the coarse moduli spaces
of Remark 4.10. Indeed, one can work directly with the moduli stack

N = IrrLocg (7} (X, x), {T}, K})

of G-local systems on X with local monodromies in K. The set S™# is finite as it injects into
the finite set of connected components of Repq (7 (X, z), {T;,K}). The group Aut(C/Q)
acts on the isomorphism classes of objects of N(C), and permutes the finite set S". We
claim that if p: 7}°°(X,z) — G(C) represents a G-local system [p] € S™®, then p is defined
over Q (and hence over a number field K since 7}°°(X, x) is finitely-generated). This can be
seen using the pseudo-character trp = (0,,),>1 of p (for background on pseudo-characters,
including the notation we use, see [BHKT19, §4]; the notion is due to V. Lafforgue in [Laf18]).
Here each O, is the map 6,,: Z[G"]¢ — Map(m,°"(X, z)", C) given by 0,,(f)(71,..-,m) =
f(p(71),--.,p(7)). The pseudo-character of “p is then (“©,(f))(v) = a(O,(f)(7)) for v =
(Y1, ,7m) € m°P(X, x)". If p cannot be defined over @, then by [Laf18, Proposition 11.7]
(see also [BHKT19, Theorem 4.5]) there is some f € Z[G"]“ and some v € m°P(X, z)" such
that ©,,(f)(7) is transcendental over Q. It follows that there is an infinite set H C Aut(C/Q)
such that (U_@n(f))(l) # ("0,(f))(7) for any o # 7 € H, and hence by loc. cit., “p is not

conjugate to "p. Thus the set of conjugacy classes of {?p},cy is infinite and contained in
S"8 which contradicts finiteness of S™e.

By the previous lemma we choose once and for all representations

pi: WEOP(X@) — G(Oky), i=1,...., MM := #Srig(G, h),
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which form a complete set of representatives for the conjugacy classes in S"8(G, h), such
that for some 91 < 9M, the py,. .., pn are representatives for S(G, h).

Fix A € Spec(Ok x) a finite place. For each i = 1,... 9, consider the representation
p;,)t\op; 71';01)<X7 z) = G(Okyx) = G(Ok,).

Composing with G(Og, ) — G(K),) we get a representation pzi\p (and similarly we get repre-
sentations p;% for \' € ). Since G(Ok, ) is a profinite group, the representations p;3", p;¥
of 7°P(X, ) factor through 7$*(X, x). We denote the factored representations by p; and
Pi-

The next step is to spread X out over a scheme S of finite type over Spec(Z) and then to
specialize to characteristic p as in [EG18]. More precisely, there exists S a connected regular
scheme of finite type over Spec(Z) with a complex generic point 7: Spec(C) — S such that
(j: X = X,x, D, D;) is the fiber over 1) of (js: X5 — Xg,2s, Ds, D s), where X g is smooth
and projective over S, Dg = U;D; ¢ C X g is a relative strict normal crossings divisor whose
complement is Xg, and 15 € Xg(S). If s € S(k) let (j,: X, — X, 25, Dy, D;s) be the data
over k obtained as the base change of the corresponding data over S via s.

Remark 5.5. Strictly speaking, for the proof of Proposition 6.2 we will need a little more:
Fix a curve C' C X that is smooth and projective, does not meet D& and meets D \ D*™8
transversely (for the existence of C, see [Jou79, Theorem 6.3]). We take z € C, and choose
points y; € D; N C. We may (and do) choose S such that (j: X — X,z, D, D;,C,y;)
spreads out over S to (js: Xs — Xg,7s, Ds, D;s,Cs, i) satisfying the above constraints
on jg, Xg, Dg, D, ¢ and such that C's is smooth and projective over S and Cy intersects Dg
transversely. Write C and y; , for the fiber of C's and y; 5 over s. The reader may safely
ignore the curve C until the proof of Proposition 6.2.

We now choose a finite field k& and a closed point s € S(k) such that p = char k is coprime
to

e the prime ¢ under \;
e all places under ¥;
e for each 7, the cardinality of the image of the reduction
pin: (X, x) = G(k(N))
of pf to the residue field k(A) of Of,; and
e the index of quasi-unipotence of the p;.
Given these choices, the p-part of 7{"(X, z) is in the kernel of pf ,, hence pf , factors through

the prime-to-p fundamental group 7é(X,z) — 7" (X, z). If 5 is a geometric point over

s, there is a discrete valuation ring R and a map Spec(R) — S mapping the generic point
of Spec(R) to n and the special point to 5. By pulling back Xg to Spec(R), there is a
prime-to-p specialization map” on prime-to-p fundamental groups giving an isomorphism

4There is also a surjective tame specialization map (X, z) = 7i"! (X, z) — 7" (X5, z5) (see [LO10,
Corollary A.12]) which we will use later (particularly in the proof of Proposition 6.2).
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Sp: Wft’p/ (X,z) > Wft’pl (X5, z5) (see [LO10, Corollary A.12], or originally [sga71]). Thus we
get representations

pZ)\,EZ Wft(ng l’s) - T‘-Tt’p (X§7 'TS) —> ﬂ_et,p (X7 27) F)Z—A> G<OK>\)
and again denote by )
PiNs: P (X5, 75) = G(Ok,) — G(K))
the composites into G(Ky).

Remark 5.6. We say that p; )5 has quasi-unipotent local monodromy with index dividing A
along D; (j =1,...,N) if it maps any pro-generator of the tame inertia group at D; (i.e.,
the absolute Galois group of the fraction field of the strict henselization of the DVR Ox, . )
to a quasi-unipotent element whose h'* power is unipotent. This property is inherited from
the corresponding property of p;. Indeed, the monodromy of p; at D; is the same as the
monodromy of p;|¢ at y; for our chosen curve C' above. Similarly, the the monodromy of p; » 5
at D;5 is the same as the monodromy of it’s restriction p; » s|c. 5 by Abhyankar’s
lemma [sga71, XIII Proposition 5.2] (noting that these local systems are tamely ramified).
Thus we reduce to showing that the monodromy of p; ) s|c. at y; 5 is quasi-unipotent of index
dividing h, which follows from [EG18, Lemma 3.2] (or [DK73, XIV 1.1.10]).

5.3. Arithmetic descent. We would like to say that the G-local system [p; 5] on X5 is
the pullback of a local system on Xj, or equivalently that there exists a representation p; x s
making the diagram commute

X$7 ‘7“8

O \

(ijxs) Pi\,s )\)

The next proposition (a variant on [EG18, Proposition 3.1], [Sim92, Theorem 4]) says that
this indeed can be arranged, after possibly replacing k by a finite extension.

Proposition 5.7. After replacing k by a finite extension there is a representation
Pirs T et7p (stxg) — G(@)\)

whose restriction to w{'(Xs, x5) is pias and whose image has the same Zariski-closure as
Pi N5

Proof. The point z, € X is rational, so it splits the “prime-to-p homotopy sequence”
1— Wetp (X5, 25) — W‘ftp (X, ) = 75(s,3) — 1,

Wthh is by definition the pushout of the homotopy exact sequence for 7§ (Xs,xs) along

(X5, x5) = TP (X, x5). For o0 € 7¢(s,5) we also denote by o its image in 7% (X, )

under the splitting from z,. Let
Pl (X, x) = G(KY), v pias(o-Sp(y) -o7h),

et,p

where Sp: 7'(X,x) — 7,7 (X5, x5) is the specialization map. We claim that the G-local
o,top

system [p;\°"] represented by p; ;Op the pullback of pf, to % (X, x), has quasi-unipotent
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local monodromies of index dividing A (i.e. [pZ’AtOp] € N(K))). Indeed, the proof of [EG1S,
Lemma 3.2] (which proves the claim when G' = GL,,) goes through verbatim for G, since the
only thing that is used about GL,, is that the union of conjugacy classes of quasi-unipotent
elements of index dividing h is closed; and this is true for G also.

Let Rep denote Repg (7" (X, z), {T},K}), and consider the composition

7(5,5) 72", Rep(Ky) = mo (Rep)
This is continuous, so enlarging s we can assume that p;f,}fOp is in the same connected com-
ponent of pf/\p for each 0 € 7%(s,5). But since pz,of is G-rigid, we have that pZ’/\mp is
G(Q,)-conjugate to p;f’/\p (we fix an extension of A to Q). By specializing, we see that
ons = T(0)pirsT() " for some T(o) € G(@y), where o7, 4(7) = pias(o70).

The element T'(o) is determined up to multiplication by an element of the centralizer
Ca(pirs). Note that G-irreducibility of p; » 5 implies that the geometric monodromy group
G :=1m(p; 5) is reductive, and that its centralizer C(G; 5 ) is finite (by [Ric88, Theorem
4.1], using also that G is semisimple, so has finite center). 7'(¢) normalizes G;, and it
follows formally that o — T'(0) defines a homomorphism

Wft(s, 5) — Ng(G@)\)/Og(GZ',)\).

We claim that, after replacing k& by a finite extension, we may assume 7'(o) is an inner

automorphism of G; . We use part of the argument of [Del80, Corollaire 1.3.9]. Indeed,

any automorphism of G; , induces, arguing successively, automorphisms of G?’ A1 ZG?A, and

(to abbreviate) Z° = Z%, . Let r: G — GLy be a faithful finite-dimensional represen-
A

tation, and consider the finite set of characters X of Z° in V. Although T'(o) is only
defined up to Cg(G;), conjugating by any representative T € Ng(G; ) of T'(o) shows
that as Z%-representations, r|z0 and rT |z are isomorphic (as before, the notation means
rT(z) = r(TzT~'); this is independent of the choice of representative T'). Thus T'(c) acts
by permutations on the finite set X, and it follows that a finite power T'(c)™ fixes X point-
wise. Faithfulness of the representation r implies that these characters generate the character
lattice X*(Z?), and therefore T'(0)" = T'(¢") acts trivially on Z°. The set of outer automor-
phism of a (not necessarily connected) reductive group that are trivial on the maximal central
torus is finite, so enlarging n we have that 7'(¢™) acts on G, as an inner automorphism.
Replacing k by its degree n extension, we then conclude that o — T'(o) factors

Wft(s, 5) — Gi,A . Cg(Gi,)\>/Cg(Gi’)\) :> Gi,)\/ZGi,)\'

We then obtain a “projective” representation
P(pixs): Wft’p (Xs,25) = Gin/Za, Q)

whose restriction to 7¢(X5, 5) is P(p;5) as follows: the rational point 4 induces a semi-
direct product decomposition 7¢(X,, s) & 7¢¢(X5, 5) x 7¢t(s, 5), and then we set

P(pirs)(g,0) =P(pirs)(g) - T(o).

The obstruction to lifting P(p; » s) to a G; \-valued representation lies in H2(7r(1§t’p/ (Xs,75), Za, )
which we analyze using the Hochschild-Serre spectral sequence. The key observation is that
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the existence of p; » 5 to begin with implies that the obstruction vanishes after restriction to
Wft’p / (X5, x5). Since k has cohomological dimension 1, vanishing of the full obstruction follows
after possibly enlarging k once more to kill a class in H'(7¢t(s, 5), H (72" (X5, x5), 7))
Finally, by once more enlarging k£ we may assume that our lift

pirs: T (X, 25) = Gin(Qy)

restricts to the given p; ) 5: the two differ by an element of the finite group H'! (Wft’p/ (Xs,25), Za, ),
and after enlarging k& any such homomorphism extends to Wft’p / (Xs,x5) (the outer-action of
7¢%(s,5) on this H! trivializes after a finite restriction, and then we apply the inf-res se-
quence). By construction, this descended representation has image with Zariski closure

equal to G ». O

Having established the arithmetic descent, we deduce the following important consequence,
completing the proof of the semisimplicity claim of Theorem 1.2:

Corollary 5.8. The identity component G?,/\ 18 semusimple.

Proof. The descent p; ) s has (not necessarily connected) reductive monodromy group G; ».
It follows from [Del80, Corollaire 1.3.9] that Gg/\ is semisimple, since it is also the identity
component of the geometric monodromy group. O

6. CONSTRUCTING COMPANIONS

In this section we restrict to the G-cohomologically rigid local systems S C S8, enumer-
ating these p1,..., pn as before. We will presently construct the \-adic companions of the
representations p; » s constructed in Proposition 5.7. This companion construction makes
sense for the larger set of G-rigid representations, but it is not clear whether it preserves
G-rigidity; it is this gap in our understanding that forces the restriction to G-cohomologically
rigid local systems (c.f. Proposition 6.2 and §6.3).

6.1. Application of results of Drinfeld. We have for each ¢ = 1,...,91 the representa-
tions ,
PiXs- WTt(XSa‘TE) — G(KX> C G(QA)v

whose images have Zariski-closures equal to the semisimple (not necessarily connected) sub-
groups G » C G over Q,; recall that by construction im(p; ;) has the same Zariski-closure
as im(p; »5). Also, since ¢ ranges over a finite set, we may assume that the same s works for
all 4. For any place ) of Q not above p, we will construct a N-companion p; y, with “the
same” algebraic monodromy group as p; »s. Let (Gj, ¢x) be a pair consisting of a reductive

group G; over Q and an isomorphism G, ®@@,\ 2N G;x. We also fix an embedding of groups
over Q, a: G; — Gg, such that (o ® Q,) 0 ¢y " is G(Q,)-conjugate to the given G;, C G.

We recall the main theorem of [Dril8]. For a characteristic zero field E, let Pro-ss(F)
denote the groupoid whose objects are pro-semisimple (not necessarily connected) group
schemes over F, and whose morphisms are group scheme isomorphisms modulo conjugation
by the connected component of the identity. There is an extension of scalars equivalence
of categories Pro-ss(Q) = Pro-ss(Q,) when ) is any place of Q (see [Dril8, Proposition
2.2.5] for details). To the smooth variety X over the finite field &k, Drinfeld associates for
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each A an object of Pro—ss(@) as follows: consider the inverse limit (f[,\,r,\) over all pairs
(H,r) consisting of a semisimple group H over Q, and a continuous homomorphism with
Zariski-dense image r: 7} “(X,,x5) — H(Q,). Via the above equivalence, we descend II,
to an object H y of Pro- ss(Q). If we let Il denote the set of all Frobenius elements in

¢ (X,, v5) as in [Dr118 §1.1.2], then the work of L. Lafforgue ([Laf02, Proposition VIL.7]
implies that the universal homomorphism 7, induces a diagram of sets

M = (o / I))(@Q) = 7' (X, ) (2)

(Note that the GIT quotient, which as in [Dri18] we will also denote by [IT(y], is actually well-
defined, even though fI( ») is only defined up to conjugation by the connected component.)

The main theorem of [Dril8] is then:

Theorem 6.1 ([Dril8]). For any two non- archimedean places X and N of Q not above p,
there is a unique isomorphism H( N — H(A/) in Pro-ss(Q) carrying diagram (2) for X to the
analogous diagram for X .

We now return to our representations p; » s. By construction and [Dril8, Proposition 2.3.3],
pixs induces a surjection of (pro-)semisimple groups over Q, Iy — G;, well-defined up to
GY-conjugation.

Composing with the inverse of the isomorphism in Theorem 6.1 and extending scalars Q —
Qy, we obtain a surjection Iy — G; y, where we abbreviate G; » = G; ®g Q)/; this map is
also defined up to G?@ -conjugation. This furnishes us with the desired companion, namely
NS
the composite
pi,)\’,s

T,

(X, 25) — Iy (Qy) —— Gin(@y).

It is evident from the construction that the Zariski-closure im(p; v ) is equal to G; y, and
that p; » s and p; v s are everywhere locally compatible (in the sense made precise by diagram
(2)). For the following proposition, we restrict to the G-cohomologically rigid local systems
S C Svis,
Proposition 6.2. Asi = 1,...,M varies, the representations p; r5: 78X, x5) — Gyn (Qy)

(1) are tamely ramified;

(2) are G-cohomologically rigid;

(3) are pair-wise distinct as G(Q,/)-conjugacy classes; and

(4) have quasi-unipotent local monodromies with index dividing h (in the sense of Remark

5.6).

Proof. (1): By [KS10, Proposition 4.2], it is enough to check all restrictions of p; s to
regular curves mapping to X, and with image not contained in D, are tamely ramified. Let
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Z — X, be one such curve and fix a geometric base point z € Z and path from (the image
of) z to zz in X;. Choose a faithful representation R: G; — GL,, over Q and write R; » s for
the composition

m'(Z,2) = m' (X, 25) 25 G(Q) = GLa(Q)),
and similarly for R,y s. These are, by the compatibility of p; s and p; v s, compatible
representations. Considering them as representations of the Galois group of the function field
k(Z) of Z, [Del73, Théoreme 9.8] shows that the local representations of R; 5 s and R; v s at
each place of k(Z) have isomorphic semisimplified Weil-Deligne representations; regarding
a Weil-Deligne representation as a pair consisting of a Weil group representation r (smooth
on the inertia subgroup) and a nilpotent matrix N, this semisimplification remembers the
restriction of r to the inertia subgroup, and in particular it detects whether or not the
representation is tamely ramified. As p; ), factors through the prime-to-p quotient, it is
tame, so [KS10, Proposition 4.2] (which is a corollary of Abhyankar’s lemma [sga71, XIII
Proposition 5.2]) shows that R; ) s is tamely ramified. We conclude from [Del73] that R; v s
is also tamely ramified. Since this holds for all such Z — X, we conclude again by [KS10,
Proposition 4.2] that p; v s (equivalently, R o p; v ) is tamely ramified.

(4): As explained in Remark 5.5, we have a smooth curve C' C X that is a complete
intersection with smooth complement; C' does not meet the singular locus of D and intersects
each D; transversely. We also have points z € X \ D and y; € D; N C. Recall that S is
chosen as in Remark 5.5 so that (C,y;) (along with these good properties) spreads out to
(Cs,y;5) over S, and (Cj,y;) is the fiber over s. Asin (1), choose a faithful representation
R: G; — GL,, over Q. Write R; s for the A-adic local system on the curve Cy given by
restricting p; xs to Cs and then composing with R (and similarly for R;y ). The index of
quasi-unipotence around D; of a representation of Wft’t(Xs, x3) is equal to the index around
y; of its restriction to Wft’t(CS, xs): indeed, locally at y; the divisor D; is the vanishing locus
of a function f; that restricts (via Ox, , — Ofg’yj) to a uniformizer of Cs at y; (since the
intersection is transverse). The claim then follows by Abhyankar’s Lemma ([sga71, XIII
Proposition 5.2]) upon noting that a Kummer cover ramified along D; of degree n pulls back

to a Kummer cover ramified along y; of degree n.

As noted in 5.6, the index of quasi-unipotence of p; s around D; divides h, so the same
holds for R; ) s around y;. We again invoke Deligne’s theorem [Del73, Théoreme 9.8] and
find that R; y s has the same index of quasi-unipotence around y;, dividing h. Finally, the
same observation just used implies that p; » s has index of quasi-unipotence along D; also
dividing h.

(2): Let A; s be the local system on X, corresponding to the representation
é Pi, ,S v~ er /v
(X, z5) =5 G(Q,) — GL(g™(Qy))

and likewise for A; y 5. The determinant of each irreducible component of A;  ; is finite
order since G is semisimple, and hence A, , s is pure of weight zero by Lafforgue [Laf02].
The sheaves A, » s and A, x s are compatible by the remark above.

We argue as in the proof of Theorem 1.1 of [EG18]. Compatibility gives an equality of
L-functions

L(X§7 AL/\,S) = L(X§7 A’i,)\’,s)
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and since A, , ¢ is tame and weight 0, [EG18, Lemma 3.4] shows that
hl <Y§7 j!*Ai,)\’,§> = h1(7§7 j!*Ai,)\,E)-
top

The latter is 0, as a consequence of local acyclicity and the fact that p; \" is cohomologically
rigid. Thus p; y 5 is cohomologically rigid as required.

(3): If p;n.s were G(Qy )-conjugate to p; s, then again invoking [Dril8, Proposition 2.3.3] we
find that these maps are induced by homomorphisms 12[(,\/) — G that are G(Q)-conjugate,
and hence that p; » , and p;  ; are G(Q, )-conjugate (note that G is connected). Moreover, the
same argument works if we replace k(s) by any finite extension. We claim the same for the
representations p; ;. We will first check that p; s and p; » 5 have the same Zariski-closure
(namely G; ), by the corresponding property for the A-companions. Write G 5 for the
Zariski-closure of the image of p; 5 (for any X, including A). Since the commutator subgroup
of Gi is contained in Gy s, and G, is semisimple, G{y" = G?,, is equal to GY, .
Thus G;x/G; s is isomorphic to the quotient of component groups mo(Gix)/mo(Gix 5)-
If this were non-trivial, it would be generated by the image of the geometric Frobenius
F, € 7%(s,5) = (X, z5), and, for some integer n, F™ would have image in m(Gj v 5).
Thus after replacing k(s) by a finite extension, we may assume G, 5 = G; v, as desired.

Now assume that p; v 5 and p; v 5 are conjugate by an element of G(@A/). Replacing p; x5
by such a conjugate, we may assume the two homomorphisms p; » s and p; v s are literally
equal on 7 (X5, 25). Let Fy € n¢*(X,, x5) be the image of the generating geometric Frobenius
element of 7$*(s,5). Then for all v € 7"(X5, x5), pivs(FyF ') = pjvs(FsyF 1), hence
pix.s(Fs) 1 pin.s(Fs) belongs to the center Zg, (we have used the above assertion about
equality of arithmetic and geometric monodromy groups). As this center is finite, replacing
k(s) by a finite extension we have p; s = pjn.s, a contradiction: indeed, then their A-
companions, and consequently p; » s and p; s, would then be equivalent. 0

6.2. Deduction of the main theorem.

Proof of Theorem 1.2. Now, since the companions p; y s are tamely ramified, we can pull
étt étt

them back along the tame specialization map ([LO10, Corollary A.12]) 77" (X, z) — 77" (X5, x5)
to obtain complex local systems

piv: M (X, 2) = Gin(Qy) € G(Qy)

with image in fact contained in G(Zy /) (because they are constructed from étale local sys-
tems). The Zariski closure of 1m(p:°§) is G, n since this is true for im(p; v 5) and the tame
specilization map is surjective. Thus pgf’/\p, has (not necessarily connected) semisimple mon-
odromy. By the Betti-étale comparison isomorphism, the pzf}fi are still cohomologically rigid
(now as local systems on X ), and they are still inequivalent and G-irreducible with quasi-

unipotent local monodromy of index dividing h. If we apply a field isomorphism ¢: C = Q,,
/Q

to the elements of the finite set S(G, h), we obtain a set of 9N distinct G(Q,,)-local systems
on X that are G-irreducible, G-cohomologically rigid, and with monodromy at infinity quasi-
unipotent of index dividing h, and these are by construction a complete set of such local
systems. Our pfﬁ, for i = 1,...,M, are thus up to G(Q, )-isomorphism a full collection of
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representatives of this set (S(G, h). Returning to our original p: 7°>(X,z) — G(Ogx), we
see that for any N\ above a place in X, the composite

mP(X,z) & G(Okx) C G(Qy)

is also a member of tS(G, h). We Conclude that p can be conjugated by an element of G(Q,,)
into G(Zy), since this holds for each pl . Combining this argument for all places in ¥ with
our integrality criterion, Lemma 3.1, we deduce that for some finite extension L/K, p is
G(L)-conjugate to a homomorphism 7;°°(X, 2) — G(Op), concluding the proof. O

6.3. Another example of integrality. At the suggestion of the referee, we give one setting
in which an integrality result follows, by the same method, for all G-rigid and G-irreducible
local systems on X. Suppose that every G-irreducible G(C)-local system on X is G-rigid.
Then the analogue of part (2), Proposition 6.2 is trivial: when we Construct the N-adic
companions p; y s and unspecialize to the 7T§OP(X , ) representations pl v, the latter are au-
tomatically G-rigid, and therefore belong to S™. The argument of §6.2 then applies to show
all p € S"¢ are integral.

Arapura ([Ara02]) has noted one context in which, for G = GL,, this seemingly unlikely
condition prevails: when X is projective, and the spaces of global symmetric differentials
H°(X, S (Q)) vanish for i = 1,...,n, then ([Ara02, Proposition 2.4]) all semisimple rep-
resentations 7,°°(X, ) — GL,(C) are GL,-rigid. This observation extends to general G in
the following way:

Proposition 6.3. Assume X is projective. Let G be a split connected reductive group of
rank n, and let ey, ... e, be the invariant degrees of G, i.e. the degrees of the algebraically
independent homogeneous polynomials generating the ring of invariants C[g|®. Assume that

@HO L Se(0L)) = 0.

Then every completely reducible representation m°>(X, z) — G(C) is G-rigid and is integral
in the sense of Theorem 1.2.

Proof. The Hitchin map

Mpa(X,G) — @ HO(X, S°(Q)),
i=1
from the moduli space Mp, (X, G) of G-Higgs bundles of harmonic type on X (as defined in
[Sim94, §9]), is proper. Simpson proves this for G = GL,, in [Sim94, Theorem 6.11], and for
lack of a reference we explain the general case. Choose a faithful representation G — GL,.
There is then a commutative diagram

Mpa(X,G) —— @i, H(X, 5%(Q))

! !

MDOI(X7 GLT) — @::1 HO(X7 S’L(Q}())a
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where the horizontal arrows are the respective Hitchin maps, the left vertical arrow takes
the associated GL,-bundle (and similarly for the Higgs field), and the right vertical arrow is
induced by the map C[gl,]%* — C[g]®: note that even identifying the base of the Hitchin
maps as we have requires choosing independent homogeneous polynomials generating these
invariant rings, so the right vertical arrow is expressing the choices for GL,., once restricted
to functions on g, as polynomial combinations of the choice for G. Now, Simpson proves
([Sim94, Corollary 9.15]) that the left vertical map is proper, so both composite arrows
are proper, and we conclude that the top horizontal arrow is also proper. By hypothesis
@, H°(X, S%(QY)) is trivial, so Mpu (X, G) is compact. But Simpson ([Sim94, Theorem
9.11, Lemma 9.14]) has proven that Mpy (X, G) is homeomorphic to the coarse moduli space
of representations 7;°°(X, ) — G(C), hence the latter, being an affine scheme finite-type
over C with compact underlying topological space, is just a finite set. The result follows by
the discussion preceding the Proposition. O
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