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Cloud-Cluster Architecture for Detection 1n

Intermittently Connected Sensor Networks

Michal Yemini, Stephanie Gil, and Andrea J. Goldsmith

Abstract

We consider a centralized detection problem where sensors experience noisy measurements and
intermittent connectivity to a centralized fusion center. The sensors may collaborate locally within
predefined sensor clusters and fuse their noisy sensor data to reach a common local estimate of the
detected event in each cluster. The connectivity of each sensor cluster is intermittent and depends on the
available communication opportunities of the sensors to the fusion center. Upon receiving the estimates
from all the connected sensor clusters the fusion center fuses the received estimates to make a final
determination regarding the occurrence of the event across the deployment area. We refer to this hybrid
communication scheme as a cloud-cluster architecture. We propose a method for optimizing the decision
rule for each cluster and analyzing the expected detection performance resulting from our hybrid scheme.
Our method is tractable and addresses the high computational complexity caused by heterogeneous
sensors’ and clusters’ detection quality, heterogeneity in their communication opportunities, and non-
convexity of the loss function. Our analysis shows that clustering the sensors provides resilience to
noise in the case of low sensor communication probability with the cloud. For larger clusters, a steep
improvement in detection performance is possible even for a low communication probability by using

our cloud-cluster architecture.

I. INTRODUCTION

The next generation of wireless infrastructure enables cloud connectivity, and with it, powerful

centralized decision making based on sensor data. However, cloud connectivity of sensors cannot
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be guaranteed at all times, particularly for sensors operating over mmWave frequency bands or
in complex and potentially remote environments. Thus, a new paradigm that takes intermittent
connectivity of sensors into account is needed. Currently, the analysis for sensor networks
often adopts one of two extremes: i) a centralized architecture that is fully connected, or ii)
a distributed architecture, such as peer-to-cloud, where connectivity is intermittent. In reality,
a fully centralized case where sensors convey information directly to the cloud is faulty since
connectivity to the cloud is intermittent. Alternatively, a distributed architecture where a sensor
conveys its information directly to all of its neighbors to reach a common estimate distributively
is not always feasible [2] as this also suffers from long convergence time in large networks.
Therefore, adopting either of these extremes can be problematic when the assumption of a
continuously connected system is not practical, and alternatively, requiring fully distributed
communication leads to an overly conservative system.

The best way to fuse noisy data between sensors locally, and communicate this information to
the cloud on an intermittent and sporadic basis, requires a trade-off between accuracy and relia-
bility of transmission. Failure to correctly consolidate noisy information may sacrifice accuracy.
Alternatively, requiring raw sensory data to be submitted over the cloud may suffer from either
poor reliability due to sparse connectivity or high scheduling overhead due to a high connectivity
requirement. Thus, the question of how the communication infrastructure affects resilience to
noise and the decision making abilities of sensors presents a knowledge gap in our understanding
of the vulnerability of multi-robot decision making systems in real world environments. Design
questions for how to resolve this trade-off requires a formal analysis which is the subject of this
work.

A more realistic scenario for multi-sensor systems operating in environments with limited con-
nectivity is that they will have access to a combination of these two communication alternatives,
a hybrid local (i.e., clustered) network and a (sporadically available) cloud network. We call
this a cloud-cluster communication architecture. Such hybrid communication architectures give
rise to important questions such as, 1) how should the data be fused at a local level in order to
achieve the best global decision making ability at the cloud? and 2) what is the optimal size for
the sensor clusters that would provide some resilience to sensor noise and sporadic connectivity
of sensors to the cloud? Answering these questions would allow us the necessary insight to best
optimize a cloud-cluster communication architecture for multi-sensor decision making.

This paper investigates the best architecture to achieve reliable prediction in the case of mul-



tiple sensors detecting an event of interest in the environment. We employ a hybrid architecture
where clusters of sensors pre-process their noisy observations, sending a compressed lower-
dimensional aggregate observation to the cloud according to the probabilistic availability of the
link. We develop a parameterized understanding of the trade-offs involved between architectures;
either using larger clusters of sensors approaching a cluster-based (distributed) communication
scheme, or, using smaller clusters of sensors approaching a cloud based (centralized) commu-
nication scheme. We show that the cloud-cluster architecture can drastically improve resilience
to noise when communication to the cloud is sporadic such as in real-world environments.
We quantify the sensing noise of an individual sensor by its missed detection and false alarm
probabilities, and its intermittent connectivity to the cloud by a Bernoulli random variable.
Paper contributions: The main contribution of our work is an analysis of hybrid cloud-
cluster communication architectures to support multi-sensor decision making at the cloud when
connectivity is intermittent. Understanding the optimal cloud-cluster communication architecture
for multi-sensor systems allows us to optimally use communication opportunities to the cloud
and to control the size of sensor clusters in a way that improves the quality of fused sensor
data received at the cloud. We show that this lever is a powerful tool that can be used to arrive
at improved decision capabilities for the sensors, while combating intermittent connectivity and

noise in the sensing abilities of the individual sensors.

A. Related Work

There has been much work in the area of determining analytical rules for event detection in
clustered sensor networks. In particular, the works [3]-[11] consider clustered sensor networks
as a network organization scheme to reduce the communication overhead to the fusion center
(FC). Sensor networks are often characterized by extreme power and communication constraints
and thus the objective in decentralized detection for these systems is to perform well, in their
ability to detect an event, while transmitting the smallest number of bits possible. While these
works make a significant contribution to our understanding of the clustered sensor networks,
they do not consider the sporadic nature of the intermittent connectivity of sensors systems.
This aspect of the problem is very important, for example, in mmWave communication systems
[12]-[14] that are vulnerable to temporary blockages, also known as outages. When a channel
is blocked, no information can be passed through it, as its capacity is zero. These blockages

occur with positive and non-negligible probability as is modeled in [15]-[17] and they become



more frequent as the distance between the transmitter and receiver grows. Connectivity is also
a common problem in mobile robotic systems (see [18]-[21]), where robot location affects
both the robot connectivity to the FC, and its event-detection probability. To the best of our
knowledge, minimizing the expected loss function of cloud-cluster sensor networks where sensors
are intermittently connected to the cloud was not previously investigated. In this work we show
that, using recently improved concentration inequalities, we can approximate the expected loss
function caused by detection errors. We note that like prior works [3]-[10], we do not address the
problem of optimizing sensor placement, or how to cluster existing sensors, but rather analyze
the performance of existing system architectures.

Another related body of works analyzes the effect of the communication channel on the de-
tection performance [22]-[26]. These works study the effect of the quality of the communication
channel, available side information and transmission power constraints on the distortion of the
signals that are sent to the FC by the sensors. Our work considers a starkly different setup where
channels from sensors to the FC may be blocked, thereby causing intermittent connectivity. In this
case no information can be received by the FC from senors with blocked channels. Our system
architecture aims at improving connectivity to the FC using sensor clustering with optimized

decision rules.

B. Paper Organization

The rest of the paper is organized as follows: Section II presents the system model and problem
formulation. Section III analyzes the optimal cloud-cluster decision rules. Sections IV and V
include approximations to the optimal decision rules when they are intractable. In particular
Section IV presents system analysis and optimization for a homogeneous system setup, whereas
Section V includes tractable analysis and decision rules for heterogeneous setups. Section VI

presents numerical results. Finally, Section VII concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

This section presents the system model we study in this work and the technical details of the
associated system optimization problem we study. We provide a list of notable parameters used

in this paper in Table 1.



TABLE I: Table of Notable Parameters

H Notation ‘ Description H ne; number of sensors in cluster C;
communication probability of
N number of sensors Peom,C; cluster j to the FC
si Sensor % indicator for the event that cluster C;
communication probablhty of Tj can communicates with the FC
Deom, s; sensor ¢ to the FC Zj binary decision of cluster C;
Pras, false alarm probability of sensor 2 Prac; false alarm probability of cluster j
Pup,s; missed detection probability of senso.r v Pup,c; | missed detection probability of cluster j
indicator for the event that sensor ¢ /
t; can communicates with the FC Y5 decision threshold at cluster C;
Yi binary measurement of sensor s; Pra false alarm probability of the FC
P number of clusters Pwp missed detection probability of the FC
Cj the jth cluster of sensors 5 decision threshold at the FC

A. System Model

We consider a team of multiple sensors indexed by 4, i € {1,..., N}, that are deployed to
sense the environment and determine if the event of interest has occurred. We assume that the
sensors are noisy and their ability to detect the event is captured for sensor 7, by the probabilities
Pup s, of missed detection and Fya s, of false alarm. Suppose that there are two hypotheses H,
and H,, the first occurs with probability po = 1 — p; and the second with probability p;. We
denote the random variable that symbolizes the correct hypothesis by =, where = € {0,1}. We

assume for each sensor ¢ that the measured bit y; may be swapped with the following probabilities
PFA,si = PI‘(yz = ]-|E = 0)7

PMD,Si = Pr(yl = 0’5 = 1),

where Pea s, Pups; € (0,0.5) without loss of generality. We allow for heterogeneity in each
sensor’s ability to detect the event of interest. In practice these can arise due to characteristics
such as the quality of their sensors and their proximity to the measured event. The sensors have
intermittent connectivity to a centralized cloud server, or F'C. This intermittent connectivity is
modeled by a binary random variable ¢; that is equal to 1 if sensor s; can communicate with the
FC and 0 otherwise. We denote by pcom s, the probability that sensor s; can communicate with
the cloud (or FC), that is, peoms, = Pr(t; = 1). Upon obtaining a communication link to the
cloud server, a sensor will transmit sensed information from its cluster of sensors to the cloud.

Definition 1 (Cloud Architecture): In a cloud architecture all sensors transmit raw sensor data,

y;, to the cloud whenever a communication opportunity to the cloud exists. Connectivity to the
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Fig. 1: Multi-robot system with cloud architecture.

cloud is provided as a probability pcom s, The favorable case that peom s, = 1 for all ¢ is equivalent
to the classical centralized case since here all sensors have continual access to the cloud which
in turn has access to all sensed measurements for event detection.

In a cloud approach, depicted in Fig. 1, the FC has the objective of determining whether the
event has occurred after observing the measurements y; of all communicating sensors. The FC
gathers the information it receives from the sensors, and aims at estimating the correct hypothesis

by minimizing the following expected loss function:
E(L) = PT(E = O)PFAL10 + PT‘(E = 1)PMDL01a (1)

where Ly is the loss caused by false alarm, L, is the loss caused by missed detection, and Pr 4
and Py,p are the false alarm and missed detection probabilities resulting from the FC detection
decision, respectively. In the cloud approach, the FC may suffer from loss of connectivity to many
sensors when connectivity is low. On other hand, high connectivity incurs high communication
overhead such as scheduling that is undesirable. To reduce the communication overhead at the
FC and also improve network connectivity, we propose an alternative approach to overcome

these issues.

B. Problem Formulation

We study a different communication architecture where the sensors in the system are clustered
into teams, and the sensors in each of these teams communicate with one another to arrive at
a joint decision. This decision is then forwarded to the FC by a member of the cluster that
can communicate with the FC. In this way, a cluster’s decision can be forwarded to the FC if
at least one sensor in the cluster can communicate with the FC. Upon receiving the processed

measurement from the clusters, the FC estimates the correct hypothesis by minimizing (1) over
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Fig. 2: Multi-robot system with cluster architecture. ~ Fig. 3: Multi-robot system with cloud-cluster architecture.

all sensor clusters. We call this hybrid design of the sensor communication architecture a cloud-
cluster architecture. Along these lines we study three main communication architectures and
analytically study the performance of each as a function of probability of connectivity to the
cloud and sensor noise (see Fig. 3):

Definition 2 (Cluster Architecture): In a cluster architecture, depicted in Fig. 2, all sensors
have a fully connected local network and form a cluster where data is fused at a local level before
being transmitted to the cloud. Connectivity to the cloud exists if any sensor s; can communicate
with the cloud. In this case the fused sensor data is transmitted to the cloud by the sensor s;.

Definition 3 (Cloud-cluster Architecture): The cloud-cluster architecture is a hybrid between
a cloud and a cluster architecture where sensors are divided into several clusters. It is assumed
that sensors within a cluster are fully connected and can communicate locally. The number of
clusters in the system can range from 1 (cluster architecture) to N (cloud architecture) and is
often determined by the problem setting, i.e. sensors operating in the same room of a building
would constitute a cluster. Sensed data by sensors operating in a cluster is fused at a local level
before being transmitted to the cloud. Connectivity to the cloud exists for each cluster if there is
a sensor in the cluster that can communicate with the cloud. In this case the fused sensor data
for that cluster is transmitted to the cloud.

Since the cloud architecture and the cluster architecture are special cases of the cloud-cluster
architecture, our analysis is presented for the case of a cloud-cluster architecture.

We consider a hybrid cloud-cluster system that is composed of N, clusters, denoted by
Ci,...,Cn,.

Definition 4 (Cluster connectivity): A cluster C; communicates with the FC if at least one of

the sensors within the cluster can communicate with the FC.



Let 7; be a binary random variable that is equal to one if cluster C; is communicating with the
FC and zero otherwise and denote T = (74,...,7n,).

Every sensor cluster C; communicating with the cloud sends a pre-processed value z; that
captures the observations of all sensors in cluster j. If cluster C; cannot communicate with the
FC z; will take an arbitrary predefined deterministic value. We denote the vector of the pre-
processed values by z = (zy,...,2y.). The FC at the cloud determines its final decision of
whether an event has occurred or not by using the optimal decision rule to minimize (1). This
optimal decision rule' is to choose hypothesis H; if:

Pr(z|Hy, T) > Liopo
PI'(Z|H0,T) o L01p1

2

and H, otherwise.
We investigate the following questions:
1) how the data z is pre-processed at the cluster layer to reduce the expected loss at the FC,
2) how intermittent communication with the cloud impacts performance,
3) how the estimates of missed detection and false alarm probabilities are impacted by the
communication architecture (i.e., the number of clusters and the number of sensors per

cluster).

III. SYSTEM ANALYSIS AND OPTIMIZATION

In this section we optimize the decision at the cluster level and the FC. Additionally, we
obtain the expected number of clusters that can communicate with the FC under the cloud-

cluster architecture.

A. Cloud-Cluster Communication

Our cloud-cluster architecture is aimed at improving connectivity to FC when the probabilities
Peom,s; are small, and reducing scheduling and communication overheads when the probabilities
Peom,s; approach 1. We assume that the sensors are clustered into N, groups. As stated in
Definition 4, a cluster of sensors communicates with the FC if one of the sensors comprising
the cluster sees a communication opportunity to the FC. Each cluster estimates the hypothesis

and sends its estimation to the FC provided there is a communication opportunity to the FC.

"We refer the reader to [27, Chapter 3] for a primer on detection theory and hypothesis testing.



B. Communication probability of clusters and the expected number of communicating clusters

As we wrote before, a cluster of sensors C; communicates with the FC if at least one of the
sensors that comprises it can communicate with the FC. It follows that the probability that the
cluster C; can communicate with the FC, i.e., 7; = 1, is:

Peome; =1 = ] (1= peom,s.)- 3)

i:5,€C;
Let nc, be the number of sensors in cluster C;. We can see that as we increase the number of
sensors to the clusters, pecom c, increases. Therefore, peomc; 1s maximized in the cluster architecture
where ne, = N. On the other hand, peom c, 1s minimized in the cloud architecture where nc, = 1.
Additionally, as we increase the probability that a sensor can communicate with the FC, peom,c;
is increased. Denote (x;)Y.; = (x1,...,xy). From (3) we can calculate the following expected

number of communicating clusters:

1 (Ne, (C3) 721, (Deom,si 1er) = Ne — Z IT (* — peoms) 4

j=1 izs;€C;

The optimization of the term (4) is beyond the scope of this paper since we assume a given
clustering. Nonetheless, a closer look at the term (4) provides the following key observations.
First, the expected number of communicating clusters is affected by three factors, namely, the
number of clusters, the number of sensors in each cluster and the probability of connectivity to
the FC. Second, the function 7 is monotonically increasing with pcom s, However, the relationship
between NN, |C|; and 7 given a fixed number of sensors N is more intriguing. Considering, for

example, the homogeneous case where |C|; = N/N. and peom,s; = Pecom,s We have that:
1= Ne- (1= (1= peoms)¥/V)

Therefore, for small values of p.om s decreasing the number of clusters N, increases 7 instead of
decreasing it; this behavior is observed until the probability (1 — pcom’s)N /Ne becomes sufficiently
small. When peom s 1s large, decreasing the number of clusters V. decreases 7; in this scenario

clustering reduces the scheduling overhead at the FC.

C. Estimations in clusters

While the objective in the FC is to minimize (1) directly, the objective in the cluster level is
to find the optimal trade-off between the probabilities of false alarm and missed detection. That

is, the minimum probability of missed-detection that can be obtained for each value of the false



alarm probability. By the Neyman-Pearson Lemma [27, Chapter 3] the optimal trade-off can be
found by using the following likelihood ratio test with a desired threshold ~;:
Pr ((yi)i:siGleHl) %1 "
Pr ((yi)i:siecj|H0> Hy

In case of equality a random decision is made where hypothesis #; is chosen with probability

®)

p; and hypothesis H is chosen with probability 1 — p;, where p; is an additional parameter to

be optimized.

Let
1_PMD5'> (1_PFA5->
Wy, =In | —— |, Wy, =In | ———— | . (6)
" ( Pra,s, ’ Pyp,s,
We can rewrite the likelihood ratio test (5) for decision in cluster C; as follows:
Hy
> wisyi — wo (1 —y5)] 2 ;- (7
0

’i:SiGCj
In case of equality a random decision is made where hypothesis #; is chosen with probability
p; and hypothesis H, is chosen with probability 1 — p;.
Denote, Pesc, = Pr(z; = 1|Ho) and Pype, = Pr(z; = 0[H1). Then the choice of threshold

«v; and tiebreak probability p; results in the following detection error probabilities:

Peae; =Pr Z (W15, 9 — wo,s, (1 — yi)] > v;[Ho

i:5,€C;

+ p; Pr Z [wl,siyi - wO,Si(l - yl)] = 7j|HO )

1:5;€C;

Pupe, = Pr Z [w1,5,9i — wo.s, (1 = )] < 51Ha

1:5,€C;

+(L=p)Pr | > [wiau —wos(1—y:)] =M |- (8)

i:5,€C;
Generally, as we discuss in Section III-E, the calculation of the probabilities Prac; and Pypc,
is intractable except for special cases such as the homogeneous case analyzed in Section IV.
Therefore, our calculations for the general case, presented in Section V, rely on concentration

inequalities to approximate Prac; and Pyp;-



The threshold ~; and the probability p; are parameters that the system architecture aims at

optimizing to reduce the expected loss at the FC. Denote
buing =— 3 Wos,  Llomaxj = D Wi, ©)

ir5,€C; i:8,€C;

The threshold 7; can be optimized by searching over the interval £; = [(nin j, {max, ;| to minimize
(1). Additionally, the probability p; can be optimized by searching over the interval [0, 1]. We note
that the thresholds «y; and probabilities p; that dictate the clusters’ decisions do not depend on
the set of clusters whose measurements are successfully received and fused at the FC, using
the decision rule (2). This choice obviates the need to optimize the thresholds ~; and the
probabilities p; for all the possible 2" combinations of communicating clusters. It also reduces
the communication overhead that is caused by detecting the set of clusters that can communicate
with the FC and sending this information back to the clusters for the correct choice of the ;

and p; every time the FC makes a detection decision.

D. FC Final Decision

Suppose that the cluster C; is communicating with the FC and denote the data it sends to the
FC by z;. The optimal decision rule that minimizes (1) is choosing hypothesis H; whenever (2)

holds and hypothesis H, otherwise.

Let
1— Pupe. 1 — FPragc,
=In [ —"7 =In[ —2 ). 10
wie, = 1In < Fnc, ) ; woc, = In < Panc, (10)

The rule (2) can be written as:
Ne
]Z:;Tj [IULCJ-Z]' —woc; (1 — zj)} > In (%ﬁ?) =7
Note that in the case of equality, the expected loss due to detection error is equal for both the
false alarm and missed-detection errors. Thus, in the case of equality we may choose hypothesis
‘H1 arbitrarily since both hypotheses lead to the same loss.

Thus the sensing quality at the FC for a particular realization of the identity of communicating
clusters can be written as

N.
Pea(T) = Pr (Z 7 [wie,25 — woe, (1 — 2)] > 7|’Ho,7‘> :

=1



N.
PMD(T) =Pr (Z T [”LULCJ-Z]‘ — wo,cj(l — Z])} < ’7|7‘[1, T> .

Jj=1

The probability of that particular realization of the identity of communicating clusters is

Hpcomc pCOHLCj)l_Tj' (11)

This results in the following sensing probablhtles

Nc
Ppa =Pr (Z 7j (w12 — woe, (1 - 2)] > 7|HU> Z P(7)Bea(T

j=1 Te{0, 1}V

Nc
Pup = Pr (Z T [wwjzj —wo,e; (1 — z])} < 7\7—[1> = Z P(7)Pup(T). (12)

j=1 {0, 1}V

E. The Threshold Optimization Problem

Recall that E(L) = Pr(Z = 0)PraLio+Pr(Z = 1) Pyp Lo The global optimization problem
resulting from the cloud-cluster architecture is as follows:

e ) (4
where Pr4 and P,,p are defined as (12).

The complexity of calculating the optimal values p;,;,~ is high for the following reasons:
first, the function F(L) is not necessarily convex, thus the complexity can be exponential in the
number of variables, i.e., exponential in 2N, 4 1. Additionally, currently no close form method
is known to calculate (8) and (12) efficiently since the coefficient are heterogeneous irrational
numbers. We refer the reader to [28] for the case were the coefficients are rational numbers,
additionally, the case of homogeneous coefficients is tractable as well. It follows that the overall
complexity of optimizing F(L) can be exponential in 2N, + 1 + max{max;{|C;|}, N.}, where

the last term in the addition follows from the calculation of (8) and (12).

IV. TRACTABLE DECISION OPTIMIZATION IN HOMOGENEOUS SYSTEMS WITH EQUAL

THRESHOLDS

This section considers a special case of our system model that is homogeneous, i.e., all the
clusters comprises an equal number of sensors and all sensors are homogeneous, i.e., Pra s, =
Pras, Pups; = Pup.s, Peoms; = Peoms for all i € {1,..., N}. In this case, w; s, = w; s and
wWos, = Wos forall 4 € {1,..., N}.



For this setup, we consider the possibly suboptimal equal thresholds ~; and probabilities p;
of the clusters. That is, v; = 4¢ and p; = p¢ for all i € {1,..., N}, so that the calculation of

the expected loss is tractable. Denote w; s = In (%) and wy s = In (%) and let

o :}/C + Wo,s

Ye = .
W15 + Wo,s

Recall that P s, Pups; € (0,0.5), therefore, wy s > 0 and w; ; > 0. Under the assumptions of

a homogeneous system and equal thresholds, we can rewrite (8) as

Peac; = Pr Z%>7€’7’lo + pc Pr Zyz’:%’?‘lo

i:S»;GCj i:s¢€Cj
Pupe, =Pr | Y wi<elHa | + @ =pe)Pr| D wi=nclH |- (14)
i:8;€C; i:5,€C;

We can calculate the terms in (14) efficiently for each ~¢ since the term Zi:si cc; Yi is distributed
according to a binomial distribution for all j € {1,..., N.}.

The equal decision rules in the clusters create homogeneous clusters, i.e., PFA7CJ- = Prac and
Pyp,c; = Pupc for all j € {1,...,N.}. Let 1 denote the N-dimensional row vector with all
entries equal to 1. Then, Pea(71) = Bra(72) and Pyp(71) = Pup(72) for all 71,75 € {0, 1}
such that 7,17 = 7,17 where (-)T denotes the transpose operator. Denote

k
+ woc;
PFA,k = Pr (Z Zj > ry—O’C]H‘lo,T]_T = k) s
j=1

wy,c; + Woc,

k
+ woc,
Pyp, = Pr (Z 2 < TG Hy, 717 = k) .

o wi,c; + Wo,
Note that due to the homogeneity of the setup, the identity of the communicating clusters does
not affect the probabilities FPra ;, and Pyp .

Furthermore, due to the homogeneity of the clusters we have that
Pcom,Cj = Pcom,C =1- (Pcom,s)N/NC (15)
for all j € {1,..., N.}. Now, by (12) for each pair (pc,7c) we have that
Nc
Pea =) Pr (71" = k) Pea,
k=0
N

Pyp = Y _Pr (71" = k) Pupy, (16)
k=0



where 717 is a binomial random variable with N, experiments, each with probability of success

Deom,c- Therefore, the problem (13) can be upper bounded by

min E(L), (17)

pcyvey

under the homogeneity assumptions included in this section.

Recall that in a homogeneous setup all the clusters include an equal number of sensors.
Therefore, the number of sensors in each clusters is N/N.. Algo. 1 depicts the resulting algorithm.
It follows from (14) that the optimal value of v¢, under the homogeneity assumptions, is in the
set {0,1,..., N/N.}. Additionally, we perform a line search in the interval [0, 1] to optimize the

probability pc.

Algorithm 1 Optimization for homogeneous setup and equal cluster thresholds setup

1: Input: A set of N, homogeneous clusters, each comprises n/N. homogeneous sensors
Ci,...,Cn;

2: Input: 7, € N4

3: Set Pras, = Prass Pup.s; = Pup.ss Peom,s; = Peoms forall i € {1,...,N};

4 Set d, = 1/rp;

5: Set I'c =4{0,1,...,N/N.} and set I', = {0,d,,2d,, ..., 1};

6: Set Prac and Pypc as (14).

7: Solve

(pe,ve) =arg  min  E(L);

pcery,1c€le

8: Set p; = pc and v; = ¢ - (w15 + wos) —wos forall j € {1,...,N.};

V. TRACTABLE DECISION OPTIMIZATION IN HETEROGENEOUS SYSTEMS

This section optimizes the decision thresholds for heterogeneous systems at the cluster level
using the Gauss-Seidel iterative method? which iteratively reduces the expected loss function
at the FC. In the case that the terms (8) and (12) are intractable we approximate them via
concentration inequalities. Algo. 2 depicts the optimization scheme we develop in this section.
Additionally, we propose several initial values for Algo. 2 that we compare numerically in
Section VI. We note that for the sake of clarity of presentation we present proofs and analytical

analysis in Appendices A-E. Finally, hereafter we denote {z;}}_; £ {z1,...,zn}.

>The Gauss-Seidel iterative approach is considered in a relation to sensor network optimization in [4].



Algorithm 2 Optimization for heterogeneous setup

1: Input: A set of clusters of sensors Cy,...,Cn,;

2: Inputs: {7, } Yo, {p"})%:

Set 5&0) =

A A

Inputs: {émin,j};\fgl, {Emaxd};\gl, and 7,7y € Ny;

Inputs: 6, > 0, 6, >0, T > 0, ms > 0,m¢ > 0;

20, 6,(,0) =26,, and A, =26, and A, =26, forall j € {1,...,No};

Set dj = (Umax,j — lmin,j)/7~ for all j € {1,...,N.} and set d,, = 1/rp;

7: Set Fj = {Emin,ﬁgmin,j + djygmin,j + 2dj, e 7€max,j} and set Fp = {O, dp, 2dp, ey 1},
8 Sett=0,j=0,

9: while t < T do

10:  while 6 >3, or 6 >3, do

11: Sett=1t+1;

12: Set j = max{mod(j + 1, N.),1};

13: Set v = 'y,(ctfl) and p = p,(ffl) for all k € {1,..., N.} such that k # j;

14: if nc, > ms and N. > mc then

15: Substitute Pga,c, by its estimate U (ncj,ozFA,j, Mea,j, O'EA’J») in the calculation of E(L).

16 Substitute Pyp,¢; by its estimate U (nc,, amp,;, Mwp,j, 03p, ;) in the calculation of E(L).

17: Substitute Py by its estimate U (N, aopa, Mpa, 0, ) in the calculation of E(L).

18: Substitute Pyp ¢, by its estimate U (NC, amp, Myp, ‘71%41)) in the calculation of E(L).

19: Set pgt) =1 and 7]@ = min,, cr, E(L), where E(L) is calculated by using the estimation for the
terms Prac;, Pup,c;, Pra and Pyp in the calculation of E(L);

20: else if nc, < mgs and N, > mc then

21: Substitute Pga by its estimate U (Nc, apa, Mga, O’%A) in the calculation of E(L).

22: Substitute Pyp,c, by its estimate U (N, amp, Mmp, ogpp) in the calculation of E(L).

23: Set (yj(-t),p;t)) = min, er, p,er, E(L), where E(L) is calculated by using the estimation for the
terms Pra and Pyp in the calculation of F(L);

24: else if nc, > my and N. < m¢ then

25: Substitute Pea ¢, by its estimate U (nc,, aga,j, Mea,j, 07 ;) in the calculation of E(L).

26: Substitute Pyp ¢; by its estimate U (nc,, amp,j, Mwp,j, 03p ;) in the calculation of E(L).

27: Set pi-t) =1 and fyj(.t) = min,, cr, E(L), where E(L) is calculated by using the estimation for the
terms Pa ¢, and Pyp ¢, in the calculation of E(L);

28: else

29: Set (vj(-t),pgt)) = min,er; p;er, E(L);

30: end if

31 Set A, = \fyj(-t) — 7](@71)' and set (5.(yt) = max{A,, }1°;

32: Set A, = |p§.t) - p§t71)| and set 655) = max{A,, 1

33: end while

34: end while




A. From grid search to line search

We overcome the non-convexity of the objective function of (13) with respect to ~; and p;
by optimizing these variables using a combination of the Gauss-Seidel iterative method with
a line search at each iteration. Starting from chosen initial values for ~; and p;, this method
optimizes the thresholds iteratively until convergence, one cluster at a time, while fixing the
decision thresholds of all the other clusters. At each iteration a line search is performed over
a predefined bounded interval to minimize the overall expected loss. We propose four different

initial values for ; and p; in Section V-C.

B. Approximating (8) and (12) via concentration inequalities

Now, we explore optimizing the thresholds 7; via concentration inequalities, specifically, the
improved Bennet’s inequality that is stated in Theorem 2, Appendix A. We note that it is possible
to approximate the detection error probability using the normal approximation. However, it yields
smaller approximate probabilities than the true ones, which we want to upper bound, when the
false alarm and missed detection probabilities are small. Therefore, it is not suitable to use in
the estimation of the loss function at the FC when the clusters are large. Thus, for the clarity
of presentation, we use the improved Bennet’s inequality in our analysis, which upper bounds
the desired probability in all scenarios.

Next, we present the notations we use in this section. Let 1 (+) denote the Lambert W function.

Denote
U(n,oz,M,aQ)éexp[—E%—nln(l—l—g—z(e/\—l—/\))}, (18)
M M?
where
A:%;Jrﬂ—l, B:ﬂ—L A=A —W(Beh). (19)
o a a

We separate the concentration inequalities analysis into two scenarios, both of which are
intractable on their own.

1) Large number of sensors in cluster j (n¢; >> 1): In this case we approximate the false
alarm and missed detection probabilities of the decision of cluster j by applying the improved
Bennet’s inequality as follows.

Proposition 1: Let

QFaj = V) — Z (Pea,s,wi,s; — (1 — Pras;)Wo,s, ),

i:5,€C;



1
Tpnj = e Z Pras, (1 = Pras,) (wis, + woys,)?,

J Z'ZS@'EC]'

and Mga j = maX;.s,ec; {Mra, } Where

mea; = maxq{|(1 — Pras,) (W15, + Wos,; )|, | Pras; (W15, + wos;)| }-

Then,
Peac, <U (ncj,OZFA,j,MFA,j,U]%A,j) ; (20)
for every 7; such that 0 < ; — >, co. (Frasiwis, — (1= Pras, Jwos,) < ng; -
Proposition 2: Denote

OMD,j = Z (1 = Pup,s;)w1,s; — Pup,s;Wo,s;) — Vi

i:8,€C;

1
oMb = — Z Pup,s, (1 = Pup,s, ) (w5, + wo,s,)?,
an 1:5,€C;

and MMD,j = aX;:s;ec; {mMD,i} where

mmp,; = max{|Pup s, (w15, + Wos,)|, (1 — Pup.s; ) (W1,5; + wos;)|}-

Then,
Pup; <U (ncj> amp,j, Mwp, j; UI%/IDJ) ’ D

for every 7; such that 0 < Zi:siecj((l — Pup s, )W1,s; — Pup,s,Wo,s;) — 75 < ne; Mup,-
We prove Proposition 1 and Proposition 2 in Appendix B and Appendix C, respectively.

2) Large number of clusters (N. > 1): In this case we approximate the false alarm and missed
detection probabilities of the decision of the FC by Propositions 3 and 4 that are achieved by
applying the improved Bennet’s inequality.

Proposition 3: Let
N,

Qpg =7 — chom,cj [Prac,wie, — (1= Prac;)wog,]
j=1

N,
1 c
2 2 5
OFa = FE :pcom,Cj [PFA’CijCj + (1= PFA’Cj)wO’Cj]
c =
Jj=1

1 2
- F Zpgom,cj [PFA,cj Wie; — (1 - PFA,cj)wo,cj}



and MFA = maxje{17,,,7NC}{mpA7j} where
mea,; = max{|wic, — Peomc, [Prac,wic, — (1 — Prag,)wog,] |,
|w0,Cj + Peom,c; [PFA,Cjwl,Cj - (1 - PFA,Cj)w(),Cj} |}
Then
Prea < U (N, apa, Mya, 04) (22)
Ne
for every « such that 0 <y — 37"} Peomc; [Prac,wie; — (1= Prac,)woe, | < Ne - Ma.

Proposition 4: Denote

Ne
2 2
apMp = E Pcom,c; [(1 - PMD,cj)chj + PMD,cjwo,cJ -7
j=1

2 2
OMD — N, Pcom,c; [(1 - PMD,cj)chj + PMD,C]-w07Cj]

N,

1 2

N szom,cj [(1 = Pup,c;,)wic, — Pup.c,woc, |
j=1

and Myp = maxjeqi,. n.{mwmp,;} Where
Myp,; = Max{|wie;, — Peomc; [(1 — PMD,Cj)wiCj + PMD,cng,cj} l,
[wo,c; + Peom,c; [(1 — Pupc;)wic, + PMD,cng,cJ |}
Then
Pup < U (Ne, omp, Mup, o3p) 5 (23)

for every v such that 0 < Zjvzl Peom.c; [(1 - PMD,cj)wicj + PMD,cng,cJ — v < N.Myp.
We prove Proposition 3 and Proposition 4 in Appendix D and Appendix E, respectively.

Using the probability approximations in Propositions 1-4 we can evaluate and minimize the
expected loss function to optimize the quality of detection even when the exact calculations are

intractable.

C. Initial Inputs to Algorithm 2

Since Algo. 2 uses the Gauss-Seidel iterative algorithm it is required to provide it with the

Ne

initial values {’yj(-o) i1 {p§0) jvzl We consider the following four initial values:



1) For each cluster C; the choice of 7](-0) and p;0) is found using the equal threshold solution
as in Algo. 1 under the assumption that there is V.. clusters that are identical to cluster C,,
i.e. they include the same number of sensors as cluster C; with the same probabilities of
false alarm, missed-detection and communication to the cloud as the sensors in cluster C;.
The probabilities Pra ¢ and Pypc are calculated using the approximations we presented
in V-B if they are intractabe.

2) Middle point of the intervals [(iin j, max ;] and [0, 1], respectively. That is,

gmin, P+ gmax, j
2O = ming 7 mend P =0.5. (24)
3) 7](‘0) = lmin,; and p§-0) =1, thatis, Prac; = 1, Pupe; = 0.

4) 7]('0) = lmax,; and p§0) =0, that is, Faac; =0, Pupc; = 1.

VI. NUMERICAL RESULTS

This section presents numerical results in which we evaluate the performance of the proposed
cloud-cluster architecture. We consider a system with the following characteristics: 500 sensors,
to evaluate both the actual and approximate performance, p(= = 1) = 0.65, Ly; = 200 and
L,y = 100. To evaluate the performance of the proposed approach we compare two systems:
a homogeneous one in which pga s, = 0.2, pmp,s, = 0.35 for all the sensors in the network,
and a heterogeneous system in which for each sensor ¢ we have that pgs s, ~ U([0.16,0.24])
and pyp s, ~ U([0.28,0.42]), that is, both the false alarm and missed detection probabilities of
each sensor has a random deviation of 20% from their values in the homogeneous system. In
the heterogeneous setup we average the expected loss of each realization of the false alarm and
missed detection probabilities over 250 realizations. Additionally, in each grid search that we
perform for optimizing ; we use 50 points per sensor, i.e., a total of r, = 50 X n¢, points.
Finally, the line search resolution for the variable p; is 0.01, that is, , = 100.

First, we evaluate in Fig. 4 the communication probability of a cluster to the cloud as a function
of the number of sensors it comprises for three values of individual sensor communication
probability, FPoms, = 0.05,0.25,0.5. Fig. 4 validates that the communication probability of a
cluster grows monotonically with the number of sensors it includes. Additionally, it shows that
for higher values of Py s, the increase in communication probability occurs and saturates faster
than for lower values of Fiom,s, -

Figs. 5-6 evaluate the approximate loss that each of the initial inputs of Algo. 2 that we present

in Section V-C yields. Comparing the four initial thresholds for Algo. 2, we can see that the first
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Fig. 4: Communication probability to the cloud as a function of the number of sensors it includes.
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Fig. 5: The expected loss as a function of the communication probability of each sensor, for each of the initial
thresholds presented in Section V-C. The approximated expected loss values resulting from the different initial
thresholds are similar. Nevertheless, there is a small but persistent advantage for the “optimal homogeneous” initial

threshold that minimizes the expected loss function assuming identical clusters.

initial threshold that we propose in Section V-C, which chooses for each cluster the threshold
that minimizes the expected loss function assuming identical clusters, is consistently on-par or
outperforms the other three initial threshold values we propose in Section V-C.

To evaluate the exact performance achieved by thresholds that are optimized using the approx-
imations that we present in Section V, we use a homogeneous setup with equal cluster size as a
tractable setup for which we can calculate the expected loss exactly. We then compare the exact

calculation to its approximation that is calculated using Egs. (20)-(23). In the heterogeneous
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Fig. 6: The expected loss as a function of the number of the equal sized clusters, for each of the initial thresholds
presented in Section V-C. Similarly to Fig. 5 the “optimal homogeneous” initial threshold which minimizes the
expected loss function assuming identical clusters consistently outperforms or is on-par with the other three

candidates.

setup we choose the initial threshold +v; for each cluster C; using the first initial threshold
that we propose in SectionV-C. In the homogeneous setup we optimize the system by using
Algo. 1. Additionally, in both the heterogeneous setup and the approximate calculation in the
homogeneous setup we use the approximate missed detection and false alarm probabilities to
approximate PFA,cj and PMD,C]- presented in Section V-B if ne, > 20. Additionally, we use the
approximate missed detection and false alarm probabilities to approximate Fgy and Pyp, i.e.,
the error probabilities at the FC, presented in Section V-B if N, > 10. Otherwise we use exact
calculations.

Figs. 7-8 depict the expected loss as a function of the sensor communication probability
Peom,s for various values of N, (the number of clusters). Figs. 9-10 depict the expected loss as
a function of the number of clusters NV, that comprise the system for various values of sensor
communication probabilities p.m s. Each of the Figs. 7-10 includes five lines also denoted in
the legends. These are defined as:

Expected loss - exact calculation: the expected loss of the homogeneous system using exact
calculations in Algo. 1.

Expected loss - majority: the expected loss of the homogeneous system in which each cluster
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makes a majority rule decision where ; = |n¢, /2] + 1. The expected loss is calculated exactly.
Expected loss - ~; calculated using approximation: the exact expected loss that the choice
~v; yields, where ~y; is optimized using the concentration inequalities depicted in Section V-B in
Algo. 1 instead of the exact calculation of the loss function.

Approximate expected loss - homogeneous: the approximate expected loss that is calculated
using the concentration inequalities depicted in Section V-B in Algo. 1 instead of the exact
calculation of the loss function.

Approximate expected loss - heterogeneous: the approximate expected loss that is calculated
using Algo. 2 with the first initial threshold that is proposed in SectionV-C.

Figs. 7-8 show that when the number of clusters is large (i.e., each cluster consists of a small
number of sensors), the improvement in performance of a highly connected system compared
with that of a sparsely connected system is much more significant than the contrasting scenario
of a system with a small number of clusters. Additionally, Figs. 7-8 confirm that optimizing the
thresholds ~; using concentration inequalities yield an actual expected loss that is on par with
that of optimizing <; using exact calculations. Additionally, Figs. 7-8 depict the gap between
the approximate loss function and the exact one for the homogeneous setup and show that our
use of the improved Bennet’s inequality results in a good approximation for the expected loss
function. Therefore, while the heterogeneous setup is not tractable we can expect that our use of
the improved Bennet’s inequality results in a good approximation for the expected loss function
for the heterogeneous setup as well. Finally, Figs. 7-8 shows the large gain that optimizing the
threshold values provides instead of choosing a majority decision rule.

Figs. 9-10 show that when the communication probabilities of sensors to the FC are low, we
observe a monotonic decrease in the loss function as we decrease the number of clusters in the
exact loss function. This is also observed for the approximate loss function with the exception
of a small increase when the systems is composed of 4 clusters. When the communication
probabilities of sensors to the FC are higher, clustering may actually increase the expected loss.
This follows because of the single bit compression that occurs in the clusters’ single bit decisions.
That is, there is a trade-off between the error probabilities of the decisions in clusters and that of
the FC. Increasing the number of clusters reduces the number of measurements that the clusters
use to make their decisions, and also reduces the communication probability to the FC since
clusters include less sensors and thus reduced chances of seeing an opportunity to access the

cloud. However, if the communication probability is high, increasing the number of clusters can
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Fig. 7: The expected loss function of the communica- Fig. 8: The expected loss function vs. the communi-
tion probability of each sensor for a system with 10 cation probability of each sensor for a system with
clusters, each including 50 sensors. For cloud-cluster 50 clusters, each including 10 sensors. For small
architectures we attain a dramatic improvement in size clusters, approaching a distributed architecture,
performance due to clustering if sensor communica- higher probability of communication to the cloud is
tion probability to the cloud is at least 0.15. required for better performance.

result in the FC having more measurements to rely on upon making its final decision.

VII. CONCLUSION

We consider multi-sensor systems that operate in environments where cloud connectivity
is available intermittently. We provide an analytical study of the tradeoffs between different
information exchange architectures to support an event detection task. Our results show that if
cloud connectivity is reliable, directing sensors to share their sensed values to the cloud for event
detection at a centralized fusion center will always perform best. However, in the more likely
scenario where cloud connectivity is intermittent, clustering sensors into local neighborhoods
where their sensed values are processed and then sent to the cloud during sporadic communication
opportunities performs best. In particular, our results give insight into the optimal cluster sizes
needed to achieve minimum detection loss at the cloud even in the face of noisy sensor data
and intermittent communication. Future work can use the results presented here to optimize
the locations of sensors such that they attain the recommended cluster sizes for best detection

performance over the environment.
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Fig. 9: The expected loss function of the number Fig. 10: The expected loss function of the number
of equal size clusters N, for peom,s, = 0.1. Since of equal N, size clusters for peom,s, = 0.5. When
connectivity to the FC is low, reducing the number connectivity of sensors to the cloud is high, smaller
of clusters (more sensors per cluster) increases the clusters are favored for improving multi-sensor system
chances of communication to the cloud and improves performance since sensor fusion at the cluster level can

the overall performance. be thought of as a form of lossy compression.

APPENDIX A

PRIMER ON CONCENTRATION INEQUALITIES

We first provide a primer on key concentration inequality results that we will use for the
development of our analysis. Since we consider a heterogeneous setup in which the false alarm
and missed detection probabilities may vary, we cannot use the concentration inequality [29] for
the binomial distribution. Instead we use an improved Bennett’s inequality which is known to
outperform both Bernstein and Hoeffding’s inequalities as well as the Bennet’s inequality [30].

Theorem 1 (Bennet’s inequality [30]): Assume that x; ..., x, are independent random vari-
ables and FE(z;) =0, E(z?) = ¢ and |z;| < M almost surely. Then, for any 0 < ¢ < nM

Pr ;x, >a| <exp (_nﬁajh (%)) , (25)
where h(z) = (1 +z)In(l +z) — z and no* = > | o2.
Theorem 2 (The improved Bennet’s inequality [31]): Assume that x; ..., z, are independent
2

i

random variables and E(z;) = 0, E(2?) = o
o?=1%" of and
M? M M
A=—4+22 1, B="21, A=A-W(BeY), (26)

o2 o «

and |z;| < M almost surely. Additionally, let

1 50 100 150 200 250 300 350 400 450 500 1 50 100 150 200 250 300 350 400 450 500
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where W (-) is the Lambert W function. Denote

U(n,a, M,0°) = exp —%%—nln 1+U—2(6A—1—A) : (27)
Y Y ) M M2

Then for any 0 < o <nM
Pr (Zm, > a) <U(n,a,M,dc?).
i=1
APPENDIX B

PROOF OF PROPOSITION 1

Denote §; = w1 5,y; — Wo,s, (1 —y;). We can upper bound the false alarm probability in (8) by

P, <Pr| > [ii—E@lH)] > — > F (y Ho) Ho
i:siECj i:SiECj
Furthermore,
E (@i‘/Ho) = PFA,siwl,si - (1 - PFA,SZ-)UJO,S”
E(57|Ho) = Peas,wi, + (1 — Peas,)wj .. (28)

It follows that
Oon.s, 2 var (§; — E (5[ Ho) [Ho) = var (5| Ho) = E (72| Ho) — [E (5 Ho))?
== PFA,S»,;(l - PFA,si><w1,si + wO,si)Q- (29)

Now, we can use Theorem 2 to upper bound the false alarm probability of the decision of

cluster j by substituting

z; =0 — E (Ui Ho) = Ui — Pras,wi,s; + (1 — Pras,)Wos,

QFAj = V5 — Z E(gi|Ho) = v — Z (Pra,s;wi,s; — (1 — Pras;)Woss;)-
’i:SiECj i:SiECj
In this case,
1
Ota; =— Y Pras, (1= Pras) (Wi, +wos,), (30)
7 an i:5,€Cj

and MFA,j = MaX;:s,cc; {mFAﬂ-} where

mea,; = max {|wy s, — E (9| Ho)| , |wos, + £ (i Ho)| }

= max{|(1 — Peas,)(w1,s, + wos,)|, | Peas, (Wis, + wos, )|}
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We denote the resulting constants defined in Theorem 2 by Aga j, Bra ;j and Aga ;. Thus, by the

improved Bennett’s inequality we have that
2
Peae;, <U (ncj,&FA,j,MFA,j,UFA,j) ;

for every v; such that 0 < Vi — Z PFA,siwl,si — (1 — PFA,SZ.)’LU()’&.) < ne; MFA,j-

i:5,€C; (

APPENDIX C

PROOF OF PROPOSITION 2

Similarly to the proof presented in Appendix B, we can use Theorem 2 to upper bound the
missed detection probability of cluster j. Recall that 3; = w; s,y; — wo s, (1 — ;). We upper bound

the missed detection probability, Pyp.c;, in (8) as follows

PMD,Cj < Pr Z (£ (Gi|Ha) — 4] > Z E (gi|H1) - Vi Ha

1:8;€C; i:8;€C;

Furthermore,
E (Qz’|7'[1) = (1 - PMD,si)wl,si — Pup,s; Wo,s;
E(5|H1) = (1 — Pups,)wi ,, + Pup,s,wf s, -
It follows that
0., = Var (B (§i|Ha) — 5il#) = var (5:[Ha) = B (5 Ha) — [E (5:[#)]°
= Pup.s;(1 — Pup.s, ) (w16, + wo s, )*.

Now, we can use Theorem 2 to upper bound the missed detection probability of the decision

of cluster j by substituting

r;, = (gz’Hl) — Ui = (1 - PMD,si)wl,si - PMD,sin,si — Ui,

awp; = Y E([H1) =7 = Y (1 = Pups)wis, — Pup.s, o) — V-

i:5,€C; i:5;€C;

In this case,

1
OMpj = — Z Pup,s; (1 = Pup,s, ) (w15, + wo.s,)?,

J i:5;€C;

and MMD,j = maxizsl.ecj{mMDﬂ} where

myp,; = max {|wis, — E (7| H1)|, |wos, + E (9:|H1)|}
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1.

We denote the resulting constants defined in Theorem 2 by Amp j, Bwp,; and Awp . By the

- maX{|PMD,Si (wl,si + wO,si) Y |(]- - PMD,Si)(wl,Si + wo,&;)

improved Bennet’s inequality we have that
Pup; <U (an7aMD,j7 MMD,jaof/[DJ) ;
for every 7; such that 0 < >°, . .o ((1 — Fvp,s, ) w15, — Pup,s,wo,s,) — V; < 1e, Mu, ;-

APPENDIX D

PROOF OF PROPOSITION 3

Denote z; = 7; [wl,c]- 25 — wo,cj(l — zj)] We rewrite the false alarm probability in (12) as

Ne
Pea =Pr | Y [5 — E(|Ho)l > v — Y BE(%|Ho)|Ho
Jj=1 Z;,V:c

By the law of total expectation on 7;.
E (%;|Ho) = Peomc; [Prac,wie, — (1 — Prag,)wog, ] »
E(5]2|H0) = Peomc; [PFA,cjwicj +(1— PFA,cj)wg,cJ ;
It follows that
Oine, & var (% — E (3|Ho) [Ho) = var (3| Ho) = E (2|Ho) — [E (3| Ho)]*
= Pcom,C; PFA,cjwicj +(1— PFAycj)wg,cj] - pgom,cj [PFA,Cjwl,Cj - (1= PFA,Cj)IUO,Cj]Q :

We use Theorem 2 to upper bound the false alarm probability of the final decision of the FC

by substituting ;7 with ¢ in Theorem 2 and

I'J = 2] —F (2]|’)L[0) — ZJ - pcom,C]- [PFA,CijCj - (1 - PFA,C]')wo,Cj] )

Ne Ne
OpA =7 — Z E(z[Ho) = v — chom,cj [PFA,Cjwl,cj —(1- PFA,cj)wo,cj} .
j=1 j=1

In this case,

N, Nc
2 _ 1 Pin e 0> 1- B 2 2 B 1- R ?
OFA = N. Peome; [LFaC; Wi, + (1- FA=Cj>w0,Cj o Peom,c; [ FAC; Wi, — (1- FA,cj)wO,Cj]
C . .
]:]_ ]:]_

and MFA = maxje{l,._.7Nc}{mpA’j} where

; |w0,cj + LB (5j|7'[0)}}

MEpa,; = IMax { ‘chj —F (§j|H0)
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= max{|wi ¢, — Peomc; [Prac,wic; — (1 — Pragc;)wog,] |
lwo,e, + Peome, |Prac,wic, — (1 — Prag,)woe, | |}-

We denote the resulting constants defined in Theorem 2 by Aga, Bra and Aga. It follows from

the improved Bennett’s inequality that
Pra < U (Ne, apa, Mea, 04 )
Nc
for every ~ such that 0 < v — ijl Peom.c; [PFA,CijCj - (1- PFA,C].)U)()’Cj] < N, - Mga.

APPENDIX E

PROOF OF PROPOSITION 4

Similarly to the proof presented in Appendix D, we can use Theorem 2 to upper bound the

missed detection probability of the final decision of the FC. Recall that 2; = 7; [chj Zj — Wo e (1-— z])} .

— 7‘[1) .

E (Zj|H1) = Peomye; [(1- Pyp,c; )wie; — PMD,Cij,CJ ;

We can rewrite the missed detection probability in (12) as

PMD = Pr (ZC [E (5]’7‘[1) — 2]] > ZC FE (gj’/]‘ll)

J=1 Jj=1

By the law of total expectation on 7

E(532|7‘[1) = Peom,c; [(1 - PMD,cj)’LUicj + PMD,cng,cj] :
It follows that
Ovpe, 2 var (E (3|Ha) — Z[Ha) = var (3|Ha) = B (5 [Ha) — [E (5[H)]

_ 2 2 2 2
= Peom,C; (1 - PMD,Cj)ch]- + PMD,cjwo,c]—] ~ Peom,c; [(1 - PMD,Cj)wLCj - PMD,CJ' wU,Cj] :

We use Theorem 2 we upper bound the missed detection probability of the final decision of

the FC by substituting j with ¢ in Theorem 2 and
= E(%|H1) = 2 = peome; [(1 = Punc,)wie, — Pupe,woe,] — %,
MDD = Z E(z|H) — chomc [ (1- PMDvcj)wiCj T PMD’Cng’CJ} Lk
In this case,

O'MD = [chomc [ 1 — PMD,Cj)wicj + PMD,CjwaCj]
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N
2
- Zpgom,cj [(1 - PMD,cj)chj - PMD,cjwo,cj] )
j=1

and Myp = maxjeqi,... N} {mwmp,;} Where

Mmmp,; = Max { ’wl,cj - F (2]’H1)| 5 }’LUopj + E (gj‘Hl)‘}
= max {|wic; — Peomc, [(1 - PMD,Cj)wicj + PMD,cng,cj] B

’wO,Cj + Peom,c; [(1 - PMD,C]')w%7Cj + pMD,Cng,Cj:| ’}

We denote the resulting constants defined in Theorem 2 by Ayp, Byp and Ayp. By the improved

Bennet’s inequality we have that

for

(1]

(2]

(3]

(4]
(3]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

Pup < U (N, oo, My, oyp)

every vy such that 0 < Z;V:CI Deom,C; |:(1 — PMD,Cj)w%,Cj + PMD,Cng,Cj:| -7 < N . Mup.
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