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Characterizing Trust and Resilience in Distributed
Consensus for Cyberphysical Systems

Michal Yemini , Angelia Nedić , Andrea J. Goldsmith , Fellow, IEEE, and Stephanie Gil

Abstract—This work considers the problem of resilient consen-
sus, where stochastic values of trust between agents are available.
Specifically, we derive a unified mathematical framework to char-
acterize convergence, deviation of the consensus from the true
consensus value, and expected convergence rate, when there exists
additional information of trust between agents.We show that under
certain conditions on the stochastic trust values and consensus
protocol: First, almost sure convergence to a common limit value is
possible evenwhenmalicious agents constitutemore thanhalf of the
network connectivity; second, the deviation of the converged limit,
from the casewhere there is no attack, i.e., the true consensus value,
can be bounded with probability that approaches 1 exponentially;
and third correct classification of malicious and legitimate agents
can be attained in finite time almost surely. Furthermore, the
expected convergence rate decays exponentially as a function of
the quality of the trust observations between agents.

Index Terms—Agents’ trust values, Byzantine agents, consensus
systems, cyberphysical systems (CPSs),malicious agents, resilience.

I. INTRODUCTION

IN THIS article, we address the problem of multiagent dis-
tributed consensus in the presence of malicious agents. The

consensus problem is of core importance tomany algorithms and
coordinated behaviors in multiagent systems. It is well known,
however, that these algorithms are vulnerable to malicious ac-
tivity and/or noncooperating agents [1]–[5] and that several of
the existing performance guarantees for the nominal case fail in
the absence of cooperation [6], [7].
Many works have investigated the possibility of attaining

resilient consensus or consensus in the face of noncooperating
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or malicious agents. However, achieving resilience often relies
on conservative assumptions of connectivity and bounds on the
maximum number of malicious actors. A classical result for
consensus in networks with noncooperating agents (faulty or
malicious) holds from [1] and [6]:
Well-behaving agents can always agree upon a parameter if

and only if the number of malicious agents is less than 1/2 of
the network connectivity.1

This result has long been held as a fundamental requirement
for achieving consensus in unreliable networks [1], [6], [8].
For purely cyber systems, where data are used to validate

information, these limitations are difficult to circumvent. Cy-
berphysical systems (CPSs), however, are becoming prevalent
in many fields, from robotics to power systems to traffic sys-
tems and beyond [9]. These systems provide new opportunities
to additionally use physical channels of information for data
validation. These physical channel data can be exploited to un-
derstand “trust,” or the trustworthiness of data, among the agents
in the system. Examples include using observers to compare
against systemmodels [10], [11], using camera or other physical
channel data [12], or using transmitted communication channels
by comparing against a known carrier signal to find whether a
message has been manipulated [13], [14]. Wireless channels
are of particular interest since they often exist in multiagent
systems as a medium for information exchange and can also be
used to extract useful information such as, for example, tracking
motion [15], [16], localizing robot agents [17], [18], as well as
providing security to wireless systems [19].
Our recent work in [20] derives the characterization of a

stochastic value of trust, αij ∈ (0, 1), that approaches 1 for
trusted transmission and 0 for an untrusted transmission between
any two agents i and j in the case of a Sybil attack. Importantly,
these recent results show that information capturing the trustwor-
thiness of communicating agents can be obtained fromanalyzing
the communication signals themselves—alluding to the fact that
the probability of trust between agents canbe characterizedusing
information that already exists in multiagent networks.
However, there remains a need for a unified mathematical

framework to guide how a probabilistic understanding of trust
between agents can be used to arrive at important performance
guarantees for resilient coordination and consensus.
We are motivated by these recent works to derive consensus

results that take trust into account. This article provides a unified

1The connectivity of a graph is themaximumnumber of disjoint paths between
any two vertices of the graph.
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Fig. 1. Schematic of a multirobot system with a consensus protocol modified
to use agent transmitted values xi and xj as well as observations of interagent
trust αij .

framework that characterizes the value of trust when it comes
to achieving resilient consensus in adversarial settings.
We generalize the concept of trust between agents by consid-

ering the availability of stochastic observations αij that can be
thought of as a probability of trust between any two agents i and
j in a system (see Fig. 1). We show that using this additional
information can lead to strong results for resilience. Namely,
under certain conditions onαij thatwe characterize,we establish
the following results.
1) Convergence: We show that convergence to a common

limit value is possible almost surely, even when the number
of malicious agents is larger than less than 1/2 of the network
connectivity.
2)Deviation fromnominal average consensus:Whereaswith-

out additional information of trust between agents, the presence
of malicious agents comprising more than 1/2 of the network
connectivity could take the consensus value to any limit, we
show that by using αijs, the influence of malicious agents can
be bounded and that this bound can be characterized.
3) Convergence rate: We show that convergence can be at-

tained in finite time with arbitrarily high probability, and that
the expected convergence rate decays exponentially with the
quality of the observations αij and other problem parameters
that we characterize.
A roadmap of our article is as follows. We begin by provid-

ing some background and context for the resilient consensus
problem in Section I-A. In Section II, we present our con-
sensus model, our model of trust between agents and the αij

observations, and we characterize the influence of malicious
agents on multiagent consensus. In Section III, we provide our
theoretical results and analysis of convergence, deviation, and
the convergence rate for consensus with malicious agents. In
Section IV,we present simulation results, followed by SectionV
that provides a discussion and future work directions. Finally,
Section VI concludes this article.

A. Related Work

The problem of coordination in multiagent systems and con-
sensus has a long history [21]–[24]. In particular, the consensus
problem has enjoyed the development of many fundamental

results providing insights into conditions for convergence [25]–
[29], convergence rate [30]–[32], and general analysis and im-
plementation [33], [34]. Similarly, in the current article, we hope
to start building a more general mathematical foundation for
resilient consensus using the concept of interagent trust.
Resilient consensus refers to consensus in the case, where

agents are noncooperative due to either faulty or malicious
behavior. This is an important problem due to the prevalence of
the noncooperative case. For multirobot systems for example,
security is of utmost importance as these robot systems enter
the world as autonomous vehicles, delivery drones, or partners
in security and defense [7], [35], [36]. For CPSs, the issue of
security is a highly investigated topic due to the increasing role
that CPSs play in critical infrastructure such as power grids,
traffic management systems, and beyond [37]–[42]. As a result,
there has been increased attention on exposing the vulnerabilities
of consensus in multiagent systems [1]–[4] and on developing
new theory to support resilient consensus for these systems [5],
[6], [8], [10], [43]. A common theme in these works is to use
transmitted data to identify and thwart attacks, and as a result,
they are often accompanied by important constraints on the
minimum connectivity needed in the graph or requirements on
the maximum number of malicious agents that can be tolerated.
Take, for example, the classical result from [1], which states that
well-behaving agents can always agree upon a parameter if and
only if the number of malicious agents comprises less than 1/2
of the network connectivity. Additionally, the work [8] presents
conditions for an asymptotic convergence to an arbitrary point
in the convex hull of the initial values of the legitimate agents.
CPSs, including multirobot systems as a prominent example,

offer more physical channels of information that can be used
for data validation and for quantifying “trust” between agents
(robots, sensors, autonomous vehicles, and more). Camera data,
communicated wireless signals, lidar, and radar are a few exam-
ples of physical channels of information that often exist in CPSs
and can be used to validate data transmitted between agents.
Indeed, many works have exploited the physics of CPSs to
validate transmitted data, which present great promise for the
security of these systems [11]–[14], [44], [45].
Advances in sensing using wireless signals is especially

promising in this domain as many multiagent systems transmit
messages over a wireless medium [46], [47]. The wireless com-
munity has demonstrated that these wireless signals themselves
contain important information that can be fruitfully exploited for
security. For example, it has been shown thatwireless signals can
be analyzed to provide tracking and localization of agents [15],
[16], [18], [48]–[50], authentication [19], [51], [52], and thwart-
ing of spoofing attacks [53].
1) Deriving Trust Values Using Wireless Signals: Here, we

provide some intuition on one particular example of quantifying
trust between agents by exploiting physical channels of infor-
mation, specifically using wireless channels. Our previous work
developed a method for measuring directional signal profiles
using channel state information from thewirelessmessages over
each link (i, j) in the network [49], [54]. These profiles measure
signal strength arriving from every direction in the 3-D plane.
Directional signal profiles display two important properties: 1)
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transmissions originating from the same physical agent have
very similar profiles; and 2) energy can be measured coming
from thedirect-line path betweenphysical agents. Thepaper [20]
quantifies these properties, providing an analysis that shows,
both analytically and experimentally, that a single scalar value
αij ∈ (−0.5, 0.5) (shifted by−0.5 from [20]) can be computed
for each signal profile that quantifies the likelihood that the
transmission is coming from the same physical (spoofed) node
or a unique (legitimate) node, a property critical for thwarting
Sybil attacks. Intuitively, αij was shown experimentally and
theoretically to be close to −0.5 if one of the agents j is a
spoofed node and close to 0.5 if both agents are legitimate nodes
in the network [20]. This is captured quantitatively by the bounds
on the expectation of αij . The current article takes inspiration
from this previous work, which shows the existence of such αij

variables for stochastically characterizing trust between agents,
but goes beyond to define a unified mathematical framework
for using trust to obtain certain performance guarantees for
consensus in multiagent systems. As such, Definition II.2 spec-
ifies the mildest characteristics of such an αij term in order
to achieve strong performance guarantees. Thus, the results
contained herein would be compatible with stochastic variables,
as derived in [20], or any other physical channels that satisfy
Definition II.2. We note, however, that the focus of this article
is not on the derivation of stochastic trust values. Rather, we
focus on the development of the mathematical foundations for
why and how such values can be key to achieving certain
performance guarantees that would be difficult or impossible
to obtain otherwise.
2) Contributions in the Context of Previous Work: This arti-

cle builds most closely off of our previous work in [20] and [55],
which shows that a stochastic variable αij(t) can be extracted
from wireless signals between agents to verify the validity of an
agent’s identity (in a probabilistic sense) during a Sybil attack.
Furthermore, Gil et al. [55], [56] show the potential of using
these values to arrive at resilient consensus. In the current work,
we assume the availability of such probabilistic observations of
trust between agents, αij , and focus on the development of the
mathematical machinery that can utilize these trust values to ar-
rive at strong results for resilient consensus. Key differentiating
results include the following.
1) We provide convergence rate results for the case where

the number of malicious agents is larger than 1/2 of the
network connectivity, showing that convergence in finite
time is possible with arbitrarily high probability. To the
best of our knowledge, this is the first time that this result
has been formally proven.

2) We divide the consensus algorithm into two critical stages
with broad consequences for the attainable performance
guarantees. In the first stage, the agents observe the net-
work, i.e., they collect values of αij to detect malicious
agents but do not start running the consensus protocol.
In the second stage, agents continue to collect values of
αij and also adapt their data values using a modified
consensus protocol that includes received data only from
agents they classify as trustworthy. We show that the
impact of observing the network for some time window

T0 is highly consequential for deviation and convergence,
where convergence rate and deviation amount decreases
exponentially with increasing T0.

3) We use weights that define a switching topology allowing
for arbitrarily small deviation in the final consensus value.

4) The current work allows for the use of nonsymmetric
weights, which can accommodate larger classes of multi-
agent systems.

Finally, the results in this article are general to many classes
of attacks so long as certain characteristics on the probability
of trust between agents, αij , are met. We establish these key
characteristics and define their roles in convergence, deviation,
and convergence rate to consensus.

II. PROBLEM DESCRIPTION

We consider the problem of consensus for multiagent sys-
tems. The agents in the system communicate over a network,
which is represented by anundirected graph,G = (V ,E),where
V = {1, . . . , n} denotes the set of node indices for the agents
and E ⊂ V × V denotes the set of undirected edges. We use
{i, j} to denote the edge connecting agents i and j. The set of
neighbors of node i is denoted by Ni = {j ∈ V | {i, j} ∈ E}.
Note that, by this definition, if i is neighbor of j, then j is also a
neighbor of i. With the graphG, we will associate time-varying
nonnegative weights wij(t), {i, j} ∈ E, which capture the in-
formation exchange process among the agents at a given time
t. We use wij(t) to denote the ijth entry of the weight matrix
W (t). For these matrices, we have wij(t) ≥ 0 and wji(t) ≥ 0
only if {i, j} ∈ E, and wij(t) = wji(t) = 0 otherwise. In this
way, the positive entries of the matrices W (t) are associated
only with the edges in the set E. Additionally, the matrices
W (t) need not be symmetric. We consider the case where a
subset of nodes with indices denoted by the setM,M ⊂ V , is
either malicious or malfunctioning and, thus, does not reliably
cooperate in the consensus protocol. The set M is assumed to
be unknown, with the cardinality |M|. An agent that is not
malicious or malfunctioning is termed legitimate, and the set
of legitimate agents is denoted L, L ⊂ V , with the cardinality
|L|.
In what follows, we use 0 to denote the zero matrix, where

the dimension of 0 is to be understood from the context. We
say that a matrix A is nonnegative if its entries are nonnegative,
i.e., Aij > 0 for all i, j, and we write A ≥ 0 to denote that A
is nonnegative. We write A > 0 to denote a matrix having all
entries positive, i.e., Aij > 0 for all i, j. A nonnegative matrix
is row-stochastic if the sum of its entries in every row is equal
to 1, and it is row-substochastic if the sum of its entries in every
row is equal to or less than 1. We use 1 to denote the vector with
all entries equal to 1. Given a vector x, we use xi or [x]i (when
x has a subscript) to denote its ith entry. A similar notation is
used for the entries of a matrix.

A. Model

We are concerned with the problem of consensus, where each
legitimate agent updates its value according to the following
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update equation (see [5]) for all t ≥ T0 − 1:

xi(t+ 1) = wii(t)xi(t) +
∑
j∈Ni

wij(t)xj(t), (1)

where xi(t) ∈ R, while the weights wij(t) are nonnegative and
sum to 1, i.e., wii(t) > 0, wij(t) ≥ 0 for j ∈ Ni and wii(t) +∑

j∈Ni
wij(t) = 1. The process is initiated at some time T0 ≥ 0

with the agents’ initial values xi(T0 − 1) = xi(0) for all i ∈ V .
Definition II.1 (Malicious agent): Agent i is said to be mali-

cious if it does not follow the rule in (1) for updating its value
xi(t) at some time t ≥ T0 − 1.
Letx(t) ∈ Rn denote the vector of valuesxi(t) ∈ R for all the

agents at time t. Without loss of generality, we assume that the
agent indices are ordered in such away that the vectorx(t) can be
separated in two components: the first component representing
the legitimate agent values xL(t) and the second component
representing the malicious agent values xM(t). In this way, the
consensus dynamics takes the following form:[

xL(t+ 1)

xM(t+ 1)

]
=

[
WL(t) WM(t)

Θ(t) Ω(t)

][
xL(t)
xM(t)

]
(2)

where WL(t) ∈ R|L|×|L| is the matrix multiplying the state
component corresponding to the legitimate agents’ values, and
WM(t) ∈ R|L|×|M| is the matrix multiplying the state compo-
nent corresponding to themalicious agents’ values. Thematrices
Θ(t) and Ω(t) dictate the dynamics of the malicious agents’
values and are assumed to be unknown. For the sake of sim-
plicity, we assume that a malicious agent sends the same data
value to all of its neighbors; however, our analysis holds for the
case where a malicious agent can send different data values to
different neighbors at each iteration. We consider the case when
a parameter η > 0 is known to all legitimate agents and it is
known that the values |xi(t)| should not exceed η at any time.
The assumption |xj(t)| ≤ η for all t and j ∈ M is reasonable,
since an agent j can be classified as malicious based on its value
(i.e., if |xj(t)| > η at some time t). Thus, in this article, our focus
is on the update rule in (2), where |xj(t)| ≤ η for all j ∈ L ∪M
and time instants t.
In this article, we are interested in the case where each

transmission from agent j to agent i can be taggedwith a random
observation αij(t) ∈ [0, 1] of a random variable αij ∈ [0, 1].
The random variable αij represents a probability of trust that
agent i can give to its neighbor j ∈ Ni.
Definition II.2 (αij): For every i ∈ L and j ∈ Ni, the ran-

dom variable αij taking values in the interval [0,1] represents
the probability that agent j ∈ Ni is a trustworthy neighbor of
agent i. We assume the availability of such observations αij(t)
throughout this article.
We refer to [20] for an example of such an αij value. In-

tuitively, a random realization αij(t) of αij contains useful
trust information if the legitimacy of the transmission can be
thresholded.
In this article, we assume that a value of αij(t) > 1/2 in-

dicates a legitimate transmission and αij(t) < 1/2 indicates a
malicious transmission in a stochastic sense (misclassifications
are possible). Note thatαij(t) = 1/2means that the observation

is completely ambiguous and contains no useful trust informa-
tion for the transmission at time t.
Our ultimate goal is to understand the convergence and con-

vergence rate properties of consensus under the influence of a
malicious attack if such observations of trust are available. To-
ward this goal, our first objective is to construct the appropriate
weight matrix W (t) = [WL(t) WM(t)] for legitimate agents’
state dynamics in (2) by using some function of the observations
αij(t), αij(t− 1), . . . , αij(0), where i is a legitimate agent so
that i ∈ L and j is a neighbor of i so that j ∈ Ni. In this way,
the legitimate agents’ ability to isolate the malicious agents is
reflected in the convergence of theweightmatricesWM(t) to the
zero matrix and the convergence of the weight matrices WL(t)
to a row-stochastic matrix, where the convergence is in a prob-
abilistic sense (to be defined shortly). Necessary characteristics
of αij to allow for the convergence of the linear protocol in (2),
possibly including its distribution, bounds on expectation, etc.,
will be derived in this work.
In line with this model, in addition to broadcasting its value

xi(t) at each time t, we assume that a message from each
agent i ∈ V is tagged with an observation αij(t) for every
neighboring agent j, i.e., {i, j} ∈ E (see Fig. 1). The purpose of
this work is to develop the necessary properties of αij(t) such
that consensus can be maintained in the presence of malicious
or malfunctioning agents.
Suppose that, in the interval of time [0, T0 − 1), the legitimate

agents only use their measurement of the trustworthiness values
αij , j ∈ Ni, i ∈ L. We refer to this interval of time as an obser-
vation window, where agents can amass a history of trust values
αij before starting the consensus. At time T0 − 1, the agents
start the data passing phase with the weights wij(T0 − 1) =
f(αij(0), . . . , αij(T0 − 1)) · 1{j∈Ni}, where f is some function
capturing the history of all observations αij(0), . . . , αij(T0 −
1) and 1{·} denotes the indicator function. Our goal is to study
the resulting consensus dynamics over time. Since we start the
consensus algorithm (2) from time t = T0 − 1, we have that
xL(t) = xL(0) for all t ∈ [0, T0 − 1].

Let
∏r

k=p Hk denote the backward product of the matrices
Hp, . . . , Hr, i.e.,

r∏
k=p

Hk =

{
Hr · · ·Hp+1Hp, if r ≥ p
I, if r < p

where I denotes the identity matrix. Following (2), the value
of the legitimate agents at any point in time t has two salient
influence terms: the values contributed byother legitimate agents
x̃L(T0, t) and the values contributed by other malicious agents
φM(T0, t) so that for all t ≥ T0

xL(T0, t) = x̃L(T0, t) + φM(T0, t) (3)

where

x̃L(T0, t) =

(
t−1∏

k=T0−1

WL(k)

)
xL(0) (4)
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and

φM(T0, t) =

t−1∑
k=T0−1

(
t−1∏

l=k+1

WL(l)

)
WM(k)xM(k). (5)

Relation (3) shows explicitly how the states of legitimate
agents depend on their initial states at time T0 and on the states
of malicious agents. The term φM(T0, t) given in (5) captures
the total influence of the malicious agents on the states of the
legitimate agents from the initial time T0 to the current time t
and will be the primary subject of study. Specifically, we will
study attainable bounds on the malicious agents’ influence term
φM(T0, t).
Remark (Arbitrary starting time T0 of the consensus)

We emphasize that the consensus updates from (2) begin at an
arbitrary time T0 ≥ 0, and that before this time, agent values
xi(t) are not updated for i ∈ L. In other words, for t ∈ [0 : T0),
only observations αij(t) are collected by each agent i for its
neighbors j ∈ Ni. The choice of T0 is a user-selected parameter
that affects the overall influence of malicious agents in the
network and the convergence rate according to a relationship
that we later characterize.
We now construct a modified weight matrix W (t) =

[WL(t) WM(t)] that governs the state dynamics of legitimate
agents [cf. (2)] and utilizes the α observations. Intuitively, we
wish to assign largerweights to transmissions that aremost likely
to originate from legitimate agents, and smaller or zero weights
to transmissions that are most likely to originate frommalicious
agents as dictated by the observations αij(t) for every neighbor
j of i. Toward this end, recalling that Ni is the complete set
of neighbors of legitimate agent i, we define the following two
quantities.
For the function f that captures the history of observations

αij(t), we choose the sum and define βij(t) as follows:

βij(t) =

t∑
k=0

(αij(k)− 1/2) for t ≥ 0, i ∈ L, j ∈ Ni. (6)

Intuitively, following the discussion after Definition II.2 of
αij , the βij(t) will tend toward positive values for legiti-
mate agent transmissions i ∈ L, j ∈ Ni ∩ L, and will tend to-
ward negative values for malicious agent transmissions, where
i ∈ L, j ∈ Ni ∩M.

We also define a time-dependent trusted neighborhood for
each agent i as

Ni(t) = {j ∈ Ni : βij(t) ≥ 0}. (7)

This is the set of neighbors that legitimate agent i classifies as
its legitimate neighbors at time t. Denote

nwi
(t) = max{κ, |Ni(t)|+ 1} ≥ 1 for all i ∈ L

where κ > 0 can be thought of as a parameter limiting the
maximum influence that the neighbors of agent i are allowed
to have on agent i’s update values (i.e., a value of κ approaching
infinity would preclude neighbors from influencing agent i’s
updated values). Using these quantities, we define the weight
matrixW (t) by choosing its entries wij(t) as follows: for every

i ∈ L, j ∈ Ni, we have

wij(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
nwi

(t) , if , j ∈ Ni(t)

0, if , j /∈ Ni(t) ∪ {i}
1−

∑
m∈Ni

wim(t), if j = i.
(8)

Note that the dependence of the weights wij(t) on the trust
observation history βij(t) comes in through the choice of time-
dependent trusted neighborhood Ni(t) [cf. (7)]. Note also that
thematrixW (t) is (rectangular) row-stochastic, by construction.
Furthermore, since αij(t) are random, so are the quantities
βij(t) and the set of neighbors of agents i, Ni(t), that agent
i classifies as legitimate at time t. Consequently, some entries of
the matrix W (t) are also random, as seen from (8). We use the
parameter κ later on, in our analysis of the dynamics in (2), to
obtain an upper bound on the entries of the matrix W (t).
We define convergence as follows.
Definition II.3 (Convergence of the consensus protocol): We

define consensus to be achieved if:
1) Limit values:There exists, almost surely, a random variable

y(T0) such that

lim
t→∞ x̃L(T0, t) = y(T0)1 (9)

where 1 ∈ R|L|×1, and y(T0) is in the convex hull of the le-
gitimate agent values xi(0), i ∈ L, and its distribution depends
on the starting time T0 of the consensus algorithm. Furthermore,
almost surely, a limit exists for the legitimate agent values,which
is a random variable z(T0) such that

lim
t→∞xL(T0, t) = z(T0)1. (10)

Here, z(T0) is in the convex hull of the legitimate and malicious
agent values xi(T0), i = 1, . . . , n, and its deviation from the
nominal consensus value (the case with no malicious agents)
depends on the starting time T0 of the consensus algorithm. See
Definition II.3.2.
2) Deviation: There is a probabilistic upper bound on the

asymptotic distance between the legitimate agent values and a
suitably defined weighted average of their initial values, i.e.,

P

(
max
i∈L

limsup
t→∞

|[xL(T0, t)− 1v′xL(0)]i| ≤ Δ(T0, δ)

)

≥ 1− δ,

for some finite Δ(T0, δ) ≤ Δmax(T0, δ) (11)

where δ > 0 is a user-defined error probability, while v is the
Perron–Frobenius left eigenvector of the matrix WL defined
in (12) such that v′1 = 1. Fig. 2 depicts an example for the
distance between the the true consensus value and the legitimate
agents’ values under the influence of malicious agents.
We next discuss the assumptions that we use in the following.

For this, we let GL = (L,EL) be the subgraph of the graph
G that is induced by the legitimate agents, where EL ⊂ E is
given by EL = {{i, j} | {i, j} ∈ E, i ∈ L, j ∈ L}. We use the
following assumptions throughout this article.
Assumption 1: Suppose that the following hold.
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Fig. 2. Schematic showing the deviation from the nominal average in the case
of a malicious agent attack and no resilience in the consensus protocol.

1) (Sufficiently connected graph) The subgraph GL induced
by the legitimate agents is connected.
2) (Homogeneity of trust variables) The expectation of the

variablesαij are constant for the case ofmalicious transmissions
and legitimate transmissions, respectively, i.e., for some scalars
c, d with c �= d, we have

c = E(αij(t))− 1/2 for all i ∈ L, j ∈ Ni ∩M

d = E(αij(t))− 1/2 for all i ∈ L, j ∈ Ni ∩ L.
3) (Independence of trust observations) The observations αij(t)
are independent for all t and all pairs of agents i and j,with i ∈ L,
j ∈ Ni. Moreover, for any i ∈ L and j ∈ Ni, the observation
sequence {αij(t)} is identically distributed.
Assumption1.1 captures the general connectivity requirement

in consensus networks with a fixed topology. The assumption
on the homogeneity of trust variables (cf. Assumption 1.2) is
made only for the ease of exposition. The assumption can be
generalized to the heterogeneous case, as discussed in SectionV.

B. Problem Definition

In the following, we summarize the three main problems that
we aim to address under the assumptions in Assumption 1.
Problem 1 (Convergence of the consensus protocol): We aim

to show that in the presence of an adversarial attack, consensus
to a common limit value is attainable even when malicious
agents comprise > 1/2 of the network connectivity if obser-
vations αij(t) are available. We seek conditions on αij(t) and a
definition of the weights W (t) that allow convergence.

Problem 2 (Bounded deviation for average consensus): For
the case of average consensus, we aim to find a bound on
deviation from the average consensus value, Δ(T0, δ) that can
be achieved with a probability at least 1− δ, where the bound is
given as a function of problem parameters (such as the number
of legitimate and the number of malicious agents) and the
characteristics of αij (such as bounds on its expected value
E(αij)).

Problem 3 (Characterization of convergence rate τ ): We
aim to determine a finite convergence time for the correct

Fig. 3. Depiction of the βij(t) values for legitimate and malicious nodes
becoming more separated and accurately classifiable with higher probability as
a longer history of αij(t) becomes available (i.e., as t gets larger).

classification of legitimate and malicious agents almost surely.
Additionally, we aim to identify the rate of convergence as a
function of the stochastic observations αij and other problem
parameters that we characterize.

III. ANALYSIS

A. Convergence of Consensus of Legitimate Agent Inputs

In this section, we analyze the state dynamics among the le-
gitimate agents, which is governed by the weight matrixWL(k),
as seen from (2). Recalling that W (t) = [WL(t)WM(t)], from
the definition of the matrix W (t) [cf. (8)], we see that the
matrix WL(t) is a substochastic matrix, since the sum of some
rows may be strictly less than 1. This section analyzes the con-
vergence of the (backward) product

∏t
k=0 WL(k), as t → ∞.

We prove the strong ergodicity of this product and show that
the limit matrix

∏∞
k=0 WL(k) has strictly positive entries, i.e.,∏∞

k=0 WL(k) > 0.
Our goal here is to show convergence of the consensus system

in (2) using the choice of weights from (8) that exploit the
observations αij(t). Specifically, we aim to characterize the
conditions on αij(t) necessary to achieve consensus in the
presence ofmalicious agents even when the number of malicious
agents is arbitrarily high.
We will achieve this in three parts: first, we show that for a

sufficiently connected network (cf. Assumption 1.1), the weight
matrix in (8) reaches its limit described in (12) in finite time
Tf almost surely, and that this limit is a primitive matrix (cf.
Lemma 1 and Proposition 1). We depict this limiting behavior
in Fig. 3. Second, we show that this, in turn, implies that the
legitimate agents’ influence captured in (4) approaches a finite
limit almost surely (cf. Proposition 2). By the same token, the
malicious agents’ influence captured in (5) also approaches a fi-
nite limit almost surely (cf. Proposition 3). Finally, putting these
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limits together, we show that the values of the legitimate agents,
xL(T0, t), approach a finite limit, i.e., we achieve convergence.
Inwhat follows,we use the notion of a primitivematrix,which

is provided next.
Definition III.1 (Primitivematrix): Anonnegative squarema-

trix A is said to be a primitive matrix if there exists an integer
k ≥ 1 such that Ak > 0.

Let us define a matrixWL with the entries given as: for every
i, j ∈ L, we have

[WL]ij =

⎧⎪⎨
⎪⎩

1
max{|Ni∩L|+1,κ} , if j ∈ Ni ∩ L
1− |Ni∩L|

max{|Ni∩L|+1,κ} , if j = i

0, otherwise.

(12)

For the matrix WL, we have the following result.
Lemma 1: The matrix WL is primitive.
Proof: The result follows directly by the definition of the

matrix WL in (12) and the assumption that the graph GL is
connected (cf. Assumption 1.1).
Under Assumptions 1.2 and 1.3, we next provide a result for

the random quantities βij(t) defining the weight matrixW (t).
Lemma 2: Consider the random variables βij(t) as defined

in (6). Then, for every t ≥ 0 and every i ∈ L, j ∈ Ni ∩ L, we
have

P (βij(t) < 0) ≤ max{exp(−2(t+ 1)d2),1{d<0}}.
Additionally, for every t ≥ 0 and every i ∈ L, j ∈ Ni ∩M, we
have

P (βij(t) ≥ 0) ≤ max{exp(−2(t+ 1)c2),1{c>0}}.
Proof: By the linearity of the expectation, we have

E(βij(t)) =
∑t

k=0(E(αij(k))− 1/2). For every k ≥ 0, and
for all i, j with i ∈ L, j ∈ Ni ∩ L, by Assumptions 1.2 and 1.3,
we have d = E(αij(k))− 1/2. Additionally, for every k ≥ 0
and i ∈ L, j ∈ Ni ∩M, by Assumptions 1.2 and 1.3, we have
c = E(αij(k))− 1/2. The result then follows directly from the
Chernoff–Hoeffding inequality (see [57, Th. 1.1]).
From Lemma 2, one can observe the following.
Corollary 1 (Bounds on expectation of αij(t)): For the

choice βij(t) =
∑t

k=0[αij(k)− 1/2], we must have that
c = E(αij(k))− 1/2 < 0 for all i ∈ L, j ∈ M, k ≥ 0 and
d = E(αij(k))− 1/2 > 0, for all i, j ∈ L, k ≥ 0 in order to
have a decaying misclassification probabilities.
We provide some intuition about this corollary as it has sig-

nificant implications for the characteristics of αij(t) necessary
for obtaining several important results. The condition that c and
d be bounded away from zero in Corollary 1 intuitively means
that there is information captured by the αij(t) observations.
The case of c = 0 and d = 0 is equivalent to saying that, in ex-
pectation, the observations αij(t)will be the same regardless of
the transmission being legitimate or malicious (the observations
αij(t) contain no useful information). Hereafter, we assume
that c < 0 and d > 0, which means that αij(t) tends to be less
than 1/2 for malicious transmissions (has expectation value less
than 1/2) and αij(t) tends to be greater than 1/2 for legitimate
transmissions (has expectation value greater than 1/2).

Proposition 1: There exists a finite time instant Tf > 0 such
thatWL(k) = WL for all k ≥ Tf almost surely.Moreover, there
exists a stochastic vector v > 0 such that

lim
k→∞

W
k
L = 1v′.

In particular,
∏∞

k=T0−1 WL(k) > 0 for every T0 ≥ 0 almost
surely.
Proof: By Lemma 2, for every k ≥ 0 and i ∈ L, j ∈ Ni ∩ L,

we have that

P (βij(k) < 0) ≤ exp
(−2(k + 1)d2

)
. (13)

Additionally, for every k ≥ 0 and i ∈ L, j ∈ Ni ∩M, we have

P (βij(k) ≥ 0) ≤ exp
(−2(k + 1)c2

)
. (14)

Note that we have
∑∞

k=0 exp(−2(k + 1)c2) < ∞ and∑∞
k=0 exp(−2(k + 1)d2) < ∞. Thus, by the Borel–Cantelli

lemma, the events {βij(k) ≥ 0 ∀ i ∈ L, j ∈ Ni ∩M} and
{βij(k) < 0 ∀ i ∈ L, j ∈ Ni ∩ L} occur only finitely often
almost surely. Therefore, there exists a (random) finite time
Tf > 0 such that WL(k) = WL for all k ≥ Tf almost surely.

Now, almost surely, we have

∞∏
k=T0−1

WL(k) =
∞∏

k=max{Tf ,T0}
WL(k)

max{Tf ,T0}−1∏
k=T0−1

WL(k)

=

∞∏
k=max{Tf ,T0}

WL
max{Tf ,T0}−1∏

k=T0−1

WL(k)

= lim
k→∞

W
k−max{Tf ,T0}
L

max{Tf ,T0}−1∏
k=T0−1

WL(k).

By Lemma 1, the matrix WL is primitive. Therefore, by the
Perron–Frobenius theorem (see [58]), there exists a stochastic
column vector v > 0 such that limk→∞ W

k
L = 1v′.

Consequently, almost surely, we have

∞∏
k=T0−1

WL(k) = 1v′

⎛
⎝max{Tf ,T0}−1∏

k=T0−1

WL(k)

⎞
⎠ .

Since v > 0 and the diagonal entries of the matri-
ces WL(k) are positive (by construction), it follows that

v′(
∏max{Tf ,T0}−1

k=T0−1 WL(k)) > 0, implying that almost surely∏∞
k=T0−1 WL(k) > 0.
Our next results are aimed at proving that the legitimate

agents’ values reach consensus almost surely. In particular,
using the decomposition xL(T0, t) = x̃L(T0, t) + φM(T0, t) of
the legitimate agent states [see (3)], we focus on the limiting
behavior of x̃L(T0, t), as defined in (4). We show that x̃L(T0, t)
converges almost surely to a consensus value, as t → ∞, as seen
in the following proposition.
Proposition 2 (Convergence of legitimate agents’ values):

Consider the dynamics in (2). Let xL(0) be the vector of initial
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values of legitimate agents, and define

x̃∞
L (T0) =

( ∞∏
k=T0−1

WL(k)

)
xL(0). (15)

Then, we have [x̃∞
L (T0)]i = [x̃∞

L (T0)]j for every i, j ∈ L, al-
most surely.
Proof: By Proposition 1, there exists a finite time instant

Tf such that WL(k) = WL for all k ≥ Tf almost surely, and

limk→∞ W
k
L = 1v′ for a stochastic vector v > 0. Hence, it

follows that almost surely

x̃∞
L (T0) =

( ∞∏
k=T0−1

WL(k)

)
xL(0)

=

⎛
⎝ ∞∏

k=max{Tf ,T0}
WL(k)

max{Tf ,T0}−1∏
k=T0−1

WL(k)

⎞
⎠xL(0)

=

⎛
⎝ ∞∏

k=max{Tf ,T0}
WL

max{Tf ,T0}−1∏
k=T0−1

WL(k)

⎞
⎠xL(0)

= 1v′

⎛
⎝max{Tf ,T0}−1∏

k=T0−1

WL(k)

⎞
⎠xL(0). (16)

By letting x̃Tf

L (T0) = (
∏max{Tf ,T0}−1

k=T0−1 WL(k))xL(0), we ob-

tain that x̃∞
L (T0) = 1v′x̃Tf

L (T0), almost surely.
We next consider the limiting effect that malicious agents’

states have on the legitimate agents’ states. Specifically,
in the state decomposition relation xL(T0, t) = x̃L(T0, t) +
φM(T0, t) for the legitimate agents’ states [see (3)], we focus
on the limiting behavior of φM(T0, t) defined in (5), as t → ∞.
We show that φM(T0, t) converges to a consensus almost surely
given our choice of weight matrices, as seen in the following
proposition.
Proposition 3: Consider the vector φ∞

M(T0) defined by

φ∞
M(T0) =

∞∑
k=T0−1

( ∞∏
l=k+1

WL(l)

)
WM(k)xM(k). (17)

Then, the entries of this vector are all the same almost surely,
i.e., [φ∞

M(T0)]i = [φ∞
M(T0)]j almost surely for every i, j ∈ L.

Proof: ByProposition 1, there exists afinite time instantTf >
0 such that almost surely

WL(k) = WL for all k ≥ Tf . (18)

This implies that WM(k) = 0 for all k ≥ Tf almost surely.
Therefore, we have

φ∞
M(T0) =

∞∑
k=T0−1

( ∞∏
l=k+1

WL(l)

)
WM(k)xM(k)

=

Tf−1∑
k=T0−1

( ∞∏
l=k+1

WL(l)

)
WM(k)xM(k). (19)

Now, for the product
∏∞

l=k+1 WL(l), we have that almost surely

∞∏
l=k+1

WL(l) =
∞∏

l=max{Tf ,k+1}
WL(l)

max{Tf ,k+1}−1∏
l=k+1

WL(l)

= lim
t→∞W

t−max{Tf ,k+1}
L

max{Tf ,k+1}−1∏
l=k+1

WL(l)

where the second relation follows from (18).
By Proposition 1, we also have for a stochastic vector v > 0,

such that limk→∞ W
k
L = 1v′. Hence, almost surely, we have

φ∞
M(T0) =

Tf−1∑
k=T0−1

( ∞∏
l=k+1

WL(l)

)
WM(k)xM(k)

= 1v′

⎡
⎣ Tf−1∑
k=T0−1

⎛
⎝max{Tf ,k+1}−1∏

l=k+1

WL(l)

⎞
⎠WM(k)xM(k)

⎤
⎦

for some finite Tf , implying that all the coordinates of the vector
φ∞
M(T0) are identical almost surely.
As a direct consequence of Propositions 2 and 3, we have the

following result.
Corollary 2: There exists, almost surely, a random variable

y(T0) such that

lim
t→∞ x̃L(T0, t) = y(T0)1 (20)

where y(T0) is in the convex hull of the legitimate agents’ initial
values xi(T0), i ∈ L, and its distribution depends on the starting
time T0 of the consensus algorithm in (2). Furthermore, almost
surely, there exists a random variable z(T0) such that

lim
t→∞xL(T0, t) = z(T0)1 (21)

where z(T0) is in the convex hull of the initial values xi(T0), i =
1, . . . , n, of the legitimate andmalicious agents, and its distribu-
tion depends on the starting time T0 of the consensus algorithm.

Proof: The results follow directly from Propositions 2 and 3,
and the consensus algorithm in (2).
We note that, in the view of the fact that the legitimate agents

start consensus protocol at time T0, we have that the random
variable y(T0) is in the convex hull of the initial valuesxi(0), i ∈
L, of legitimate agents. The random variable z(T0) is in the
convex hull of xi(0), i ∈ L, and the values xm(T0), m ∈ M,
since the malicious agents may have deviated from their initial
values at time t = 0.

We are now ready to state our main convergence result.
Theorem 1 (Convergence of resilient consensus): Consider

the consensus system described by the dynamics in (2) with an
arbitrary start time of T0 ≥ 0 and weights, as described by (8).
Given that 1) G is a sufficiently connected network, and that
2) bounds on the expected values of the observations αij(k)
(see Definition II.2) satisfy c = E(αij(k)− 1/2 < 0 for all
i ∈ L, j ∈ Ni ∩M, k ≥ 0 and d = E(αij(k)− 1/2 > 0 for all
i ∈ L, j ∈ Ni ∩ L, k ≥ 0, the consensus algorithm converges
almost surely, i.e.,

lim
t→∞xL(T0, t) = z(T0)1
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almost surely, independently of the number of malicious agents
in the network. The value z(T0) is in the convex hull of the initial
valuesxi(T0), i = 1, . . . , n, of both the legitimate andmalicious
agents.
Proof: The proof follows from Propositions 2 and 3 and

Corollary 2. Specifically, we have that the legitimate agent val-
ues satisfy xL(T0, t) = x̃L(T0, t) + φM(T0, t), where the first
term x̃L(T0, t) converges by Proposition 2 and the second term
φM(T0, t) converges by Proposition 3.

Note that this result asserts convergence in the presence
of an arbitrary number of malicious nodes and characterizes
necessary conditions on the observations αij(t) to attain this
convergence. However, the distance of the limit value z(T0) to
the nominal average consensus value in the ideal case (when
the malicious agents are known at the start time) has not been
discussed. The characterization of this distance is the subject of
the following section.

B. Deviation From Nominal Consensus Value

In this section, we characterize the deviation from the nominal
consensus value under our consensus model in the presence of a
malicious attack. The nominal consensus value is the consensus
value over the graph GL of legitimate agents in the case of no
malicious agents in the network. More specifically, by Propo-
sition 1, we know that there exists a finite time instant Tf > 0
such that WL(k) = WL for all k ≥ Tf almost surely, where
WL is given in (12). The nominal consensus value corresponds
to consensus that would have been reached among the legitimate
agents if the dynamics in (2)were governed by [W L 0] instead of
[WL(k)WM(k)]. Hence, in view of Proposition 1, the nominal
consensus value over the graph GL of legitimate agents is
1v′xL(0).
In what follows, we investigate the deviation of the consensus

value limt→∞ xL(T0, t) reached by the legitimate agents (as
predicted by Theorem 1) from the nominal value 1v′xL(0). The
user-defined start time T0, for running the consensus dynamics
in (2), plays a major role in determining the amount of the
resulting deviation due to the malicious agents’ inputs to the
system. Intuitively, the longer αij(t) values are observed for all
pairs {i, j} ∈ E before starting the consensus; the probability of
making a misclassification error (classifying a legitimate agent
as malicious and vice versa) decays exponentially.
Our approach in this section is to show that for larger values

of T0, the probability of our weight matrix not having reached
its limit value decays exponentially (see Lemma 3). The im-
plication of this manifests itself as a smaller overall deviation.
Specifically, deviation of the convergence limit (cf. Theorem 1)
from the nominal average consensus value can be bounded by
the deviation introduced by legitimate agents beingmisclassified
as malicious and by malicious agents being misclassified as
legitimate. Propositions 4 and 5 proven in this section provide
definitive bounds for these deviations with probability p(T0),
which is characterized as a function of T0.

We begin by showing that the probability of the weights from
(8) not taking their ideal form WL decays exponentially with
T0.

Lemma 3: For every T0 ≥ 1, we have

P
(∃k ≥ T0 − 1 : WL(k) �= WL

)
≤ |L|2 · exp(−2T0d

2)

1− exp(−2d2)
+ |L||M| · exp(−2T0c

2)

1− exp(−2c2)
.

Proof: For every T0 ≥ 1, we have

P
(∃k ≥ T0 − 1 : WL(k) �= WL

)
= Pr

( ⋃
k≥T0−1

{WL(k) �= WL}
)

≤
∞∑

k=T0−1

P
(
WL(k) �= WL

)
(22)

where the inequality follows from applying the union bound to
the event

⋃
k≥T0−1{WL(k) �= WL}. Furthermore, for every k,

we have that

{WL(k) �= WL} =
⋃
i∈L,

j∈Ni∩L

{βij(k) < 0}
⋃
i∈L,

j∈Ni∩M

{βij(k) ≥ 0}.

(23)

Therefore, by the union bound

P
(
WL(k) �= WL

)
≤

∑
i∈L,j∈Ni∩L

P (βij(k) < 0) +
∑

i∈L,j∈Ni∩M
P (βij(k) ≥ 0)

≤ |L|2 · exp(−2(k + 1)d2) + |L||M| · exp(−2(k + 1)c2)

where the last inequality follows from Lemma 2. The result then
follows by combining relations (22) and (23).
Next, we consider the deviation contributed bymisclassifying

legitimate agents as malicious at some times and, thus, discard-
ing their values. In the following, we use the bound of Lemma 3
and the bound we present next in Lemma 4 to ultimately bound
the deviation, in Proposition 4, which is caused by its incorrect
classification of the legitimate agents.
Lemma 4: Let X̃,X ∈ Rm×m

+ be two row-substochastic ma-
trices, and let γ > 0 be such that X̃ii ≥ γ > 0 and Xii ≥ γ for
all i. Then, [|X̃ −X|1]i ≤ 2(1− γ), for all i, where |X| denote
the matrix with entries |xij |.
Proof: Let coordinate index i be arbitrary, 1 ≤ i ≤ m. First,

we prove that |x̃ii − xii|+ 2γ ≤ x̃ii + xii. By the triangle in-
equality, we obtain

|x̃ii − xii|+ 2γ = |(x̃ii − γ)− (xii − γ)|+ 2γ

= |x̃ii − γ|+ |xii − γ|+ 2γ.

Since x̃ii − γ ≥ 0 and xii − γ ≥ 0, we have that

|x̃ii − γ|+ |xii − γ|+ 2γ = x̃ii + xii.

Therefore, it follows that

[∣∣∣X̃ −X
∣∣∣1]

i
+ 2γ =

m∑
j=1

|x̃ij − xij |+ 2γ
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= x̃ii + xii +

m∑
j=1, j �=i

|x̃ij − xij |

≤ x̃ii + xii +

m∑
j=1, j �=i

(x̃ij + xij)

where the last inequality is obtained by using the triangle in-
equality and the fact that the matrices X and X̃ have nonneg-
ative entries. Since both X̃ and X are stochastic matrices, we
further have that

∑m
j=1[x̃ij + xij ] ≤ 2. From the preceding two

relations, it follows that [|X̃ −X|1]i ≤ 2(1− γ).
Denote byϕi(T0, t) the deviation suffered by legitimate agent

i that is caused by its incorrect classification of the legitimate
agents, i.e., for all i ∈ L, we have

ϕi(T0, t) =

∣∣∣∣∣∣
[
x̃L(T0, t)−

(
t−1∏
k=T0

WL

)
xL(0)

]
i

∣∣∣∣∣∣ . (24)

Then, we have the following probabilistic bound on the
deviation.
Proposition 4: Given an error tolerance δ > 0, for the devia-

tions ϕi(T0, t), i ∈ L, as defined in (24), we have

P

(
max
i∈L

limsup
t→∞

ϕi(T0, t) > g̃L(T0, δ)

)
< δ

where

g̃L(T0, δ) =
2η|L|2

δ
· exp(−2T0d

2)

1− exp(−2d2)

+
2η|L| |M|

δ
· exp(−2T0c

2)

1− exp(−2c2)
(25)

and η ≥ supi∈L∪M,t∈N |xi(t)| is a finite upper bound on the
absolute input value.
Proof: Let Tf (T0, t) be a random variable equal to

0 if WL(k) = WL for all k ∈ [T0 − 1, t− 1], and equal
to sup{l + 1 : WL(l + T0 − 1) = WL, l ∈ [0, t− T0]}, other-
wise. In view of the evolution of x̃L(T0, t) as given in (4), we
have

ϕi(T0, t) =

∣∣∣∣∣∣
[((

t−1∏
k=T0−1

WL(k)

)
−W

t−T0

L

)
xL(0)

]
i

∣∣∣∣∣∣ .
Define

Δ(WL, Tf )=

⎛
⎝T0+Tf (T0,t)−2∏

k=T0−1

WL(k)

⎞
⎠−

⎛
⎝T0+Tf (T0,t)−2∏

k=T0−1

WL

⎞
⎠.

Then, we have

ϕi(T0, t) =

∣∣∣∣∣∣
⎡
⎣
⎛
⎝ t−1∏

k=T0+Tf (T0,t)−1

WL

⎞
⎠Δ(WL, Tf )xL(0)

⎤
⎦
i

∣∣∣∣∣∣
(a)

≤ max
i∈L

∣∣[Δ(WL, Tf )xL(0)]i
∣∣ , (26)

where (a) follows sinceWL is a row-stochastic matrix. Further-
more, since |xL(0)| ≤ η, it follows that

max
i∈L

∣∣[Δ(WL, Tf )xL(0)]i
∣∣ ≤ ηmax

i∈L
[|Δ(WL, Tf )|1]i

where for a matrix A = [aij ], we use |A| to denote the matrix
with entries |aij |. Therefore, we have

ϕi(T0, t) ≤ ηmax
i∈L

[|Δ(WL, Tf )|1]i .

Let nw = max{|L|+ |M|, κ} and note thatWL is a stochas-
tic matrix with [WL]ii ≥ 1

nw
[see (12)]. Additionally, for every

k, the matrix WL(k) is substochastic with [WL(k)]ii ≥ 1
nw

for
every i ∈ L. Therefore, by Lemma 4, we have

[|Δ(WL, Tf )|1]i ≤ 2

[
1−

(
1

nw

)Tf (T0,t)
]
.

Define

ϕ(T0, t) =

[
1−

(
1

nw

)Tf (T0,t)
]
2η.

Then, we have ϕi(T0, t) ≤ ϕ(T0, t) for all i ∈ L and t ≥ T0,
thus implying that

max
i∈L

limsup
t→∞

ϕi(T0, t) ≤ lim
t→∞ϕ(T0, t).

By Proposition 1, for t ≥ Tf , we have Tf (T0, t) = t almost
surely, implying that ϕ(T0, t) almost surely converges as t →
∞. By Markov’s inequality, it follows that

P
(
lim
t→∞ϕ(T0, t) > g̃L(T0, δ)

)
≤ E (limt→∞ ϕ(T0, t))

g̃L(T0, δ)
.

By definition, for every t ≥ T0, we have that 0 ≤ Tf (T0, t) ≤
Tf (T0, t+ 1); therefore, 0 ≤ ϕ(T0, t) ≤ ϕ(T0, t+ 1) ≤ 2 for
every t ≥ T0. Hence, by the monotone convergence theorem
(see [59]), it follows that

E
(
lim
t→∞ϕ(T0, t)

)
= lim

t→∞E (ϕ(T0, t))

= 2η

[
1− lim

t→∞E

((
1

nw

)Tf (T0,t)
)]

≤ 2η
[
1− lim

t→∞P (Tf (T0, t) = 0)
]

= 2η lim
t→∞ [1− P (Tf (T0, t) = 0)] .

Since 1− P (Tf (T0, t) = 0) = P (Tf (T0, t) > 0), it further fol-
lows that

E
(
lim
t→∞ϕ(T0, t)

)
= 2η lim

t→∞P (Tf (T0, t) > 0)

≤ 2ηP
(∃k ≥ T0 : WL(k) �= WL

)
≤ δ · g̃L(T0, δ)

where the last inequality follows from Lemma 3 and the defini-
tion of g̃L(T0, δ) in (25).
Now, we consider the deviation contributed by malicious

agents that are misclassified as legitimate. We denote by
φi(T0, t), i ∈ L, the worst-case effect on legitimate agent i
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due to its incorrect malicious agents’ classification (labeling
an untrustworthy agent as trustworthy) at some time t ≥ T0.
Specifically, let η = maxi∈L∪M |[xL(0)]i| and define

φi(T0, t) = η
t−1∑

k=T0−1

∑
j∈Ni∩M:
βij(k)≥0

[(
t−1∏

l=k+1

WL(l)

)
WM(k)

]
ij

(27)

for all i ∈ L. We note that these quantities are nonnegative,
since the matrices WL(k) and WM(k) are nonnegative for all
k. Looking at the malicious agents’ influence vector φM(T0, t)
defined in (5), we see that

| [φM(T0, t)]i | ≤ max
j∈L

φj(T0, t) ∀ i ∈ L.

Our next result provides a probabilistic bound on the maximal
influence maxj∈L φj(T0, t) of malicious agent inputs on the
legitimate agents’ values. To do so, given δ > 0, we define

g̃M(T0, δ) =
η|L||M|
δ · κ · exp(−2T0c

2)

1− exp(−2c2)
(28)

where η ≥ supi∈L∪M,t∈N |xi(t)|.
Proposition 5: Given an error tolerance δ > 0, for the devia-

tions φi(T0, t), i ∈ L, as defined in (27), we have

P

(
max
i∈L

limsup
t→∞

φi(T0, t) > g̃M(T0, δ)

)
< δ (29)

where g̃M(T0, δ) is given by (28).
Proof: First, observe that

P

(
max
i∈L

limsup
t→∞

φi(T0, t) > g̃M(T0, δ)

)

≤
∑
i∈L

P

(
limsup
t→∞

φi(T0, t) > g̃M(T0, δ)

)
.

It follows by Markov’s inequality and the linearity of the expec-
tation operator that

P

(
limsup
t→∞

φi(T0, t) > g̃M(T0, δ)

)

≤ E (limsupt→∞ φi(T0, t))

g̃M(T0, δ)
.

In view the definition of g̃M(T0, δ), to complete the proof, it
suffices to show that

E

(
limsup
t→∞

φi(T0, t)

)
≤ η|M|

κ
· exp(−2T0c

2)

1− exp(−2c2)
. (30)

The rest of the proof deals with establishing relation (30). By
the definition of φi(T0, t), i ∈ L in (27), we have that

φi(T0, t) = η
t−1∑

k=T0−1

∑
j∈Ni∩M:
βij(k)≥0

[(
t−1∏
l=k

WL(l)

)
WM(k)

]
ij

≤ η

t−1∑
k=T0−1

∑
j∈Ni∩M:
βij(k)≥0

[WM(k)]ij ,

where the inequality is obtained by using the fact thatWL(k) is a
row-substochasticmatrix.Moreover, we have that [WM(k)]ij ≤
1/κ [see (8)], implying that

φi(T0, t) ≤ η

t−1∑
k=T0−1

∑
j∈Ni∩Mi:
βij(k)≥0

1

κ

= η

t−1∑
k=T0−1

∑
j∈Ni∩M

1{βij(k)≥0}
1

κ
� φi(T0, t). (31)

Hence, we have

E

(
limsup
t→∞

φi(T0, t)

)
≤ E

(
limsup
t→∞

φi(T0, t)

)
. (32)

By the definition of φi(T0, t) in (31), the sequence {φi(T0, t)}
is a nonnegative nondecreasing sequence with t. Therefore, by
the monotone convergence theorem [59], we have

E

(
limsup
t→∞

φi(T0, t)

)
= E

(
lim
t→∞φi(T0, t)

)
= lim

t→∞E
(
φi(T0, t)

)
. (33)

We further have that

lim
t→∞E

(
φi(T0, t)

)
= lim

t→∞E

⎛
⎝η

κ

t−1∑
k=T0−1

∑
j∈Ni∩M

1{βij(k)≥0}

⎞
⎠

=
η

κ
lim
t→∞

t−1∑
k=T0−1

∑
j∈Ni∩M

E
(
1{βij(k)≥0}

)
.

Since E(1{βij(k)≥0}) = P (βij(k) ≥ 0), we obtain that

lim
t→∞E

(
φi(T0, t)

)
=

η

κ
lim
t→∞

t−1∑
k=T0−1

∑
j∈Ni∩M

P (βij(k) ≥ 0)

≤ η

κ
lim
t→∞

t−1∑
k=T0−1

∑
j∈Ni∩M

exp(−2(k + 1)c2),

where the last inequality follows by Lemma 2. Hence, we have

lim
t→∞E

(
φi(T0, t)

) ≤ η|M|
κ

lim
t→∞

t−1∑
k=T0−1

exp(−2(k + 1)c2)

=
η|M|
κ

lim
t→∞

exp(−2T0c
2)− exp(−tc2)

1− exp(−2c2)

=
η|M|
κ

· exp(−2T0c
2)

1− exp(−2c2)
.

(34)

By combining estimates in (32)–(34), the desired relation in (30)
follows.
We are now ready to prove our main deviation result, which

states that the maximum deviation of the converged consensus
value following the dynamics in (2) with the weights described
in (8) can be bounded by a finite value Δmax(T0, δ) that we
characterize.
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Theorem 2 (Deviation from nominal average consensus):
Consider the consensus system described by the dynamics in
(2) with an arbitrary start time of t = T0 ≥ 0 and weights
as described by (8). Given that 1) G is a sufficiently con-
nected network and that 2) bounds on the expected values
of the observations αij(k) (see Definition II.2) satisfy c =
E(αij(k)− 1/2 < 0 for all i ∈ L, j ∈ Ni ∩M, k ≥ 0, and
d = E(αij(k)− 1/2 > 0 for all i ∈ L, j ∈ Ni ∩ L, k ≥ 0, for
a given error probability δ > 0, we have the following result:

P

(
max
i∈L

limsup
t→∞

|[xL(T0, t)− 1v′xL(0)]i| ≤ Δmax(T0, δ)

)

≥ 1− δ,

where

Δmax(T0, δ) = 2 [g̃L(T0, δ) + g̃M(T0, δ)] (35)

with g̃L(T0, δ) and g̃M(T0, δ), respectively, given by

g̃L(T0, δ)

=
η|L|2
δ

· exp(−2T0d
2)

1− exp(−2d2)
+

η|L||M|
δ

· exp(−2T0c
2)

1− exp(−2c2)

and

g̃M(T0, δ) =
η|L||M|
δ · κ · exp(−2T0c

2)

1− exp(−2c2)
.

Proof: First, note that by the triangle inequality, we have

|[xL(T0, t)− 1v′xL(0)]i|

≤
∣∣∣∣∣∣
[
xL(T0, t)−

(
t−1∏
k=T0

WL

)
xL(0)

]
i

∣∣∣∣∣∣
+

∣∣∣∣∣∣
[(

t−1∏
k=T0

WL

)
xL(0)− 1v′xL(0)

]
i

∣∣∣∣∣∣ .
Since WL is a primitive stochastic matrix, by the Perron–
Frobenius theorem, it follows that

lim
t→∞

∣∣∣∣∣∣
[(

t−1∏
k=T0

WL

)
xL(0)− 1v′xL(0)

]
i

∣∣∣∣∣∣ = 0.

Thus, we have

P

(
max
i∈L

limsup
t→∞

|[xL(T0, t)− 1v′xL(0)]i| ≥ Δmax(T0, δ)

)

= P

(
max
i∈L

limsup
t→∞

∣∣∣∣∣∣
[
xL(T0, t)−

(
t−1∏
k=T0

WL

)
xL(0)

]
i

∣∣∣∣∣∣
≥ Δmax(T0, δ)

)
.

Now, since xL(T0, t) = x̃L(T0, t) + φM(T0, t), by the triangle
inequality, we have∣∣∣∣∣∣

[
xL(T0, t)−

(
t−1∏
k=T0

WL

)
xL(0)

]
i

∣∣∣∣∣∣
≤
∣∣∣∣∣∣
[
x̃L(T0, t)−

(
t−1∏
k=T0

WL

)
xL(0)

]
i

∣∣∣∣∣∣+ |[φM(T0, t)]i| .

It follows by the definition ofΔmax(T0, δ) in (35) and the union
bound that

P

(
max
i∈L

limsup
t→∞

|[xL(T0, t)− 1v′xL(0)]i| ≥ Δmax(T0, δ)

)

≤ P

⎛
⎝max

i∈L
limsup
t→∞

∣∣∣∣∣
[
x̃L(T0, t)−

(
t−1∏
k=T0

WL

)
xL(0)

]
i

∣∣∣∣∣∣
≥ 2g̃L(T0, δ)

)

+ P

(
max
i∈L

limsup
t→∞

|[φM(T0, t)]i| ≥ 2g̃M(T0, δ)

)
.

Since 2g̃L(T0, δ) = g̃L(T0, δ/2) and 2g̃M(T0, δ) =
g̃M(T0, δ/2), it follows that

P

(
max
i∈L

limsup
t→∞

|[xL(T0, t)− 1v′xL(0)]i| ≥ Δmax(T0, δ)

)

≤ P

⎛
⎝max

i∈L
limsup
t→∞

∣∣∣∣∣
[
x̃L(T0, t)−

(
t−1∏
k=T0

WL

)
xL(0)

]
i

∣∣∣∣∣∣
≥ g̃L(T0, δ/2)

)

+ P

(
max
i∈L

limsup
t→∞

|[φM(T0, t)]i| ≥ g̃M(T0, δ/2)

)
.

Finally, by Proposition 4, we have

δ

2
≥ P

⎛
⎝max

i∈L
limsup
t→∞

∣∣∣∣∣
[
x̃L(T0, t)−

(
t−1∏
k=T0

WL

)
xL(0)

]
i

∣∣∣∣∣∣
≥ g̃L(T0, δ/2)

)

while, similarly, by Proposition 5, we have

δ

2
≥ P

(
max
i∈L

limsup
t→∞

|[φM(T0, t)]i| ≥ g̃M(T0, δ/2)

)
.

Thus, we have solved Problem 2 by showing that beyond
achieving convergence of consensus in the face of a malicious
attack, the deviation of the converged value from the nominal
average consensus value (in the case of no malicious agents)
can be characterized as a function of user-defined parameters
T0 and failure probability δ. In the next section, we characterize
convergence rate of our consensus protocol.
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C. Convergence Rate of Resilient Consensus

In this section, we discuss convergence rate for the consensus
protocol in (2) using the weights as defined in (8). Let

‖z‖v =

√√√√ nL∑
i=1

viz2i .

We start by presenting a useful lemma showing a contraction
property for a consensus step using a primitive matrix that we
will later employ.
Lemma 5: Assume that j ∈ Ni if and only if i ∈ Nj for every

i, j ∈ L (i.e., bidirectional links between legitimate agents). Let
ρ2 denote the second largest eigenvalue modulus2 of WL and
let v > 0 be the stochastic Perron vector satisfying v′WL = v′.
Then, we have

‖W t
Lx(0)− 1v′x(0)‖v ≤ ρt2 · ‖x(0)− 1v′x(0)‖v.

Proof: It can be seen that the Perron vector v has entries
vi =

max{|Ni∩L|+1,κ}∑
j∈L max{|Nj∩L|+1,κ} for all i, implying that (WL, v) is

reversible Markov chain. Thus, the result follows from the
convergence rate of reversible Markov chains (see [60]).
We are now ready to prove our convergence rate results.

Namely, we show that the rate of convergence of legitimate
agents to their limit value is governed by the second largest
eigenvalue modulus of the ideal weight matrix WL with a
probability that approaches 1 exponentially, as T0 increases.

Theorem 3 (Convergence rate of resilient consensus): Con-
sider the consensus system described by the dynamics in (2)
with an arbitrary start time of T0 ≥ 0 and weights, as described
by (8). Assume that 1) G is a sufficiently connected network
and that 2) bounds on the expected values of the observations
αij (seeDefinition II.2) satisfy c = E(αij(k))− 1/2 < 0 for all
i ∈ L, j ∈ Ni ∩M, for all k ≥ 0, and d = E(αij(k))− 1/2 >
0 for all i ∈ L, j ∈ Ni ∩ L, for all k ≥ 0. Let ρ2 denote the
second largest eigenvalue modulus of WL and let v > 0 be the
stochastic Perron vector satisfying v′WL = v′. Additionally, let
η ≥ supi∈L∪M,t∈N |xi(t)| and assume that j ∈ Ni if and only
if i ∈ Nj for every i, j ∈ L. For every T0 > 0, if we start the
consensus protocol from time T0, then for every t ≥ T0 − 1 and
m = T0 − 1, . . . , t, we have

‖xL(T0, t)− z(T0)1‖v ≤ 2(m− T0 + 1)ρt−m
2 η (36)

with a probability greater than

1− |L|2 · exp(−2(m+ 1)d2)

1− exp(−2d2)
− |L||M| · exp(−2(m+ 1)c2)

1− exp(−2c2)
.

(37)

Proof: Recall that limt→∞ xL(T0, t) = z(T0)1 almost surely.
Since xL(T0, t) = x̃L(T0, t) + φM(T0, t), it follows by the tri-
angle inequality that

‖xL(T0, t)− z(T0)1‖v
=
∥∥∥xL(T0, t)− lim

τ→∞xL(T0, τ)
∥∥∥
v

2The second largest absolute value of the eigenvalues.

≤
∥∥∥x̃L(T0, t)− lim

τ→∞ x̃L(T0, τ)
∥∥∥
v

+
∥∥∥φM(T0, t)− lim

τ→∞φM(T0, τ)
∥∥∥
v
.

Now, assume that for all k ≥ m, WL(k) = WL and WM(k) =
0. Then, by the Perron–Frobenius theorem and the definition of
η, we have∥∥∥x̃L(T0, t)− lim

τ→∞ x̃L(T0, τ)
∥∥∥
v

=

∥∥∥∥∥
(
W

t−m
L − 1v

)( m−1∏
k=T0−1

WL(k)

)
xL(0)

∥∥∥∥∥
v

≤ ρt−m
2 2η.

Additionally, we have∥∥∥φM(T0, t)− lim
τ→∞φM(T0, τ)

∥∥∥
v

=

∥∥∥∥∥
m−1∑

k=T0−1

(
t−1∏

l=k+1

WL(l)

)
WM(k)xM(k)

− lim
τ→∞

m−1∑
k=T0−1

(
τ−1∏

l=k+1

WL(l)

)
WM(k)xM(k)

∥∥∥∥∥
v

=

∥∥∥∥∥
m−1∑

k=T0−1

(
W

t−m
L − 1v

)( m−1∏
k=T0−1

WL(k)

)
WM(k)xM(k)

∥∥∥∥∥
v

≤ (m− T0)ρ
t−m
2 2η.

Finally, following the proof of Lemma 3, we can lower bound
the probability of the event thatWL(k) = WL andWM(k) = 0
for all k ≥ m by (37).
As an immediate consequence of Theorem 3, we have the

following result.
Corollary 3: Under the conditions of Theorem 3, for every

T0 ≥ 0 and t ≥ T0, we have

E (‖xL(T0, t)− 1v′xL(0)‖v)

≤ min
m∈{T0−1,...,t−1}

{
2(m− T0 + 1)ρt−m

2 η + 2η·
( |L|2 exp(−2(m+ 1)d2)

1− exp(−2d2)
+
|L||M| exp(−2(m+ 1)c2)

1− exp(−2c2)

)}
.

Note that choosing m = t+T0

2 yields the bound

E (‖xL(T0, t)− 1v′xL(0)‖v)

≤ 2

(
t− T0

2
+ 1

)
ρ

t−T0
2

2 η +

( |L|2 exp(−(t+ T0 + 2)d2)

1− exp(−2d2)

+
|L||M| exp(−(t+ T0 + 2)c2)

1− exp(−2c2)

)
2η

= O
(|L| ·max {|L|, |M|} te−γt

)
where γ > 0.
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D. Tightening the Probabilistic Bounds

Upuntil this point,wehaveplaced amild information assump-
tion on the αij (this was a consequence of Lemma 2), namely
that the expected values of αij are strictly bounded away from
1/2, as required in Corollary 1. In words, this means that there
is some information contained in the observations αij such that
in expectation, these values are closer to 0 for transmissions
from legitimate agents and closer to 1 for transmissions from
malicious agents. An expected value ofαij equal to 1/2would be
the case of no information. Thus, this is the mildest assumption
possible for αij and is the key to the decaying probabilities from
Lemma 2 that underpin the majority of our presented results in
this article. However, if it is possible to obtain more information
on αij , for example knowing a bound on its variance, then
the probabilistic bounds can be made tighter, and the resulting
performance guarantees such as bounds on the deviation can be
made stronger. This observation is substantiated with analysis
in the current section.
Lemma 2 lays the foundation for deriving the convergence

of consensus of legitimate agents presented in Theorem 1, the
deviation probabilistic bound presented in Theorem 2, and the
probabilistic upper bound on the convergence rate presented
in Theorem 3. Lemma 2 considers a large family of probabil-
ity measures for the random variables αij(t), where only the
expectation of the variables are fixed to known values. While
the bounds derived in Lemma 2 decay exponentially over time,
they are somewhat loose when higher moments of the random
variables αij(t) are known. In the special case when the random
variables αij(t) belong to a family of probability measures of
knownvariance values,we can use the concentration inequalities
that consider both the first and second moments, instead of
the Chernoff–Hoeffding concentration inequality used in the
proof of Lemma 2. Prominent examples of such inequalities are
the Berstein inequality, Bennet’s inequality, and the improved
Bennet’s inequality, providing more refined results than the
Chernoff–Hoeffding inequality, are included here for complete-
ness.
Theorem 4 (Berstein inequality): Assume that x1, . . . , xn are

independent random variables andE(xi) = 0,E(x2
i ) = σ2

i and
|xi| ≤ M almost surely. Then, we have

P

(
n∑

i=1

xi ≥ b

)
≤ exp

( 1
2b

2∑n
i=1 σ

2
i +

1
3Mb

)
.

Theorem 5 (Bennet’s inequality [61]): Assume that
x1, . . ., xn are independent random variables and E(xi) = 0,
E(x2

i ) = σ2
i and |xi| ≤ M almost surely. Then, for any

0 ≤ t < nM , we have

P

(
n∑

i=1

xi ≥ b

)
≤ exp

(
−nσ2

M2
h

(
bM

nσ2

))

where h(x) = (1 + x) ln(1 + x)− x and nσ2 =
∑n

i=1 σ
2
i .

Theorem 6 (Improved Bennet’s inequality [62]): Assume that
x1 . . . , xn are independent random variables and E(xi) = 0,

E(x2
i ) = σ2

i and |xi| ≤ M almost surely. Additionally, let

A =
M2

σ2
+

nM

b
− 1 and B =

nM

b
− 1

andΛ = A−W (BeA), whereW (·) is theLambertW function.
Let σ2 = 1

n

∑n
i=1 σ

2
i ; then, for any 0 ≤ b < nM , we have

P

(
n∑

i=1

xi ≥ b

)

≤ exp

[
−Λb

M
+ n ln

(
1 +

σ2

M2

(
eΛ − 1− Λ

))]
.

As stated in [63], Bennet’s inequality yields strictly tighter
approximation than Bernstein’s inequality. Bennet’s inequality,
in turn, is tightened by the improved Bennet’s inequality. For
this reason, we present in Lemma 6 refined concentration in-
equalities that improve those presented in Lemma 2 using the
improved Bennet’s inequality. Recall Assumptions 1.2 and 1.3
and additionally assume that

var(αij(t)− 1/2) = σ2
d for all t ≥ 0, i ∈ L, j ∈ Ni ∩ L

and that

var(αij(t)− 1/2) = σ2
c for all t ≥ 0, i ∈ L, j ∈ Ni ∩M.

Applying these tighter concentration inequalities to the his-
tory of observations βij(t) =

∑t
k=0(αij(k)− 1/2), we can ob-

tain a faster exponential rate result for the decay ofmisclassifica-
tion probabilities (misclassifying a legitimate agent asmalicious
or a malicious agent as legitimate) than that of Lemma 2, as seen
in the following.
Lemma 6: Consider the random variables βij(t) defined in

(6) for every legitimate node i ∈ L and every neighbor j ∈ Ni.
Then, for every t ≥ 0 and every i ∈ L, j ∈ Ni ∩ L, we have

P (βij(t) < 0) ≤ max

{
1{d<0},

exp
[−d(t+ 1)Λd + (t+ 1) ln

(
1 + σ2

d

(
eΛd − 1− Λd

))]}

where d = E(αij(t)− 1/2) for i ∈ L, j ∈ Ni ∩ L, and
Λd = Ad −W (Bde

Ad)

withW (·) being the Lambert W function, and

Ad =
1

σ2
d

+
1

d
− 1, Bd =

1

d
− 1.

Moreover, for every t ≥ 0 and every i ∈ L, j ∈ Ni ∩M, we
have

P (βij(t) ≥ 0) ≤ max

{
1{c>0},

exp
[
c(t+ 1)Λc + (t+ 1) ln

(
1 + σ2

c

(
eΛc − 1− Λc

))]}
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where c = E(αij(t)− 1/2) for i ∈ L, j ∈ Ni ∩M, and Λc =
Ac −W (Bce

Ac), with scalars Ac and Bc given by

Ac =
1

σ2
c

− 1

c
− 1, Bc = −1

c
− 1.

Proof: Let i ∈ L, j ∈ Ni ∩ L, and note that the given proba-
bilistic bound holds trivially when d < 0, so assume that d > 0
and define

γij(t) = d+ 1/2− αij(t).

Since d = E(αij(t)− 1/2), for the random variable γij(t), we
haveE(γij(t)) = 0 and var(γij(t)) = σ2

d. Sinceαij(t) ∈ [0, 1],
it follows that d ≤ 1/2 implying that γij(t) ≤ 1. Also, since d >
0 and αij(t) ∈ [0, 1], it follows that γij > −1/2. Thus, |γij | ≤
1. Using the definition of βij(t) in (6), we have

P (βij(t) < 0) = P

(
t∑

k=0

(αij(k)− 1/2) < 0

)

= P

(
t∑

k=0

(αij(k)− 1/2− d) < −(t+ 1)d

)

= P

(
−

t∑
k=0

γij(t) < −(t+ 1)d

)

= P

(
t∑

k=0

γij(t) > (t+ 1)d

)
.

We now invoke Theorem 6 for the sequence of random variables
γij(0), . . . , γij(t), with M = 1, n = t+ 1 and b = (t+ 1)d,
which yields the desired relation. Note that the condition b <
nM in Theorem6 is satisfied in our case here, since b = (t+ 1)d
with d ≤ 1/2 and nM = t+ 1.

Consider now the case i ∈ L, j ∈ Ni ∩M. If c > 0, then the
result holds trivially. Thus, assume that c < 0, and consider

γij(t) = αij(t)− 1/2− c.

Since c = E(αij(t)− 1/2), we have that E(γij(t)) = 0 and
var(γij(t)) = σ2

c . Additionally, sinceαij(t) ∈ [0, 1], we can see
(similar to the preceding case) that |γij(t)| ≤ 1. Hence, we have

P (βij(t) ≥ 0) = P

(
t∑

k=0

(αij(k)− 1/2) ≥ 0

)

= P

(
t∑

k=0

(αij(k)− 1/2− c) ≥ −(t+ 1)c

)

= P

(
t∑

k=0

γij(t) ≥ −(t+ 1)c

)
.

Recall that c < 0, so we can invoke Theorem 6 for the se-
quence of random variables γij(0), . . . , γij(t), with α = −(t+
1)c > 0, M = 1, and n = t+ 1. Since c = E(αij(t)− 1/2)
and αij(t) ∈ [0, 1], it follows that −1/2 ≤ c < 0. Thus, in our
case here, the condition b < nM in Theorem 6 reduces to
−(t+ 1)c < t+ 1, which holds since −1/2 ≤ c < 0.

Therefore, in the case that additional information on the obser-
vationsαij is available, in particular that a bound on the variance
of the αij is known, then the results of Lemma 2 can be replaced
with Lemma 6, resulting in tighter deviation and convergence
rate results when applied to Theorems 2 and 3. This shows
the generality of our framework and the potential to improve
our derived performance guarantees as more information on the
αij observations becomes available. Similarly, Lemma 6 can be
extended to the case where var(βij(t)) varies over time and is
link dependent.

IV. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed
scheme in this work using Monte Carlo simulations. We aim
at investigating the effects, on several performance metrics, of
the following system parameters: the number |M| of malicious
agents, the starting time T0 of the data passing stage, and the
variance of the random variables αij . Performance metrics that
we study include deviation from the true consensus value and the
convergence rate. We evaluate a system setup with 15 legitimate
agents and with κ = 10. We consider the following values for
the starting time T0: 0, 25, 50, 100, and 150. The adjacency
matrix of the subgraph GL of links among legitimate agents is⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0 0 0 0 1 0 1 0 0 1
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 1 0 0 0 0 0 0 0 1 0 0
0 0 0 1 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 0 0 0 0 0 1 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 1 0 0 0 1 1 0
0 0 0 0 0 0 0 1 1 1 0 0 0 1 0
1 0 0 0 0 0 0 0 1 1 1 1 0 1 0
0 0 1 0 0 0 0 0 0 1 1 1 0 0 1
1 0 0 0 0 0 0 0 0 1 1 1 1 0 0
0 0 0 1 0 1 0 1 0 0 0 1 1 1 0
0 0 0 0 0 0 0 1 1 1 0 0 1 1 1
1 0 0 0 1 0 1 0 0 0 1 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(38)

and we assume that every malicious agent is connected to all the
legitimate agents in the system,which is theworst-case scenario.
We depict the topology corresponding to the connectivity graph
G in Fig. 4; since every malicious agent is connected to all
legitimate agents, we depict the malicious agents in Fig. 4 by a
single node. The vector of initial values of legitimate agents is

xL(0) = (−2.59,−2.44,−4.23,−1.45,−1.46, 0.871,−0.51,

− 3.19,−0.59,−3.31,−2.25, 1.31, 1.87, 1.34, 1.76)′

where (·)′ denotes the transpose operator, and we use η = 5 as
the upper bound for the agents’ initial values. Additionally, for
every legitimate agent i, we haveE(αij) = 0.55 if j ∈ Ni ∩ L,
and E(αij) = 0.45 if j ∈ Ni ∩M. The random variable αij is
uniformly distributed on the interval [E(αij)− �

2 , E(αij) +
�
2 ].

We consider the following three values for 
: 0.2, 0.4, and 0.6,
for which the standard deviation values are 0.0577, 0.1155,
and 0.1732, respectively. Note that the larger the 
, the larger
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Fig. 4. Undirected subgraphG of legitimate andmalicious agents. Two agents
are neighbors if they are connected by an edge. Legitimate agents are depicted
by blue nodes and malicious agents are depicted by a red node. Edges between
legitimate agents are depicted by black solid lines. Edges between legitimate
and malicious agents are depicted by red dashed lines.

Fig. 5. Agent value with the maximal deviation from true consensus value for
a single system realization for a system with 15 malicious agents, � = 0.4, and
maximal deviation malicious inputs.

the variance of αij about its mean value. We consider the
following input scenarios presented in Figs. 5 and 6. Both attacks
assume that the malicious agents are allowed to communicate
and coordinate attacks.

A. Maximal Deviation Malicious Input

Tomeasure the maximal possible deviation from true consen-
sus value, we consider the case where the malicious agent inputs
are the furthest from the true consensus value. That is, if the true
consensus value is positive, then the malicious input is −η, and
if the true consensus value is negative, then themalicious input is
η. In our scenario, all the malicious agents choose the maximum
possible input η = 5. Figs. 5 and 7 measure the effect of the
malicious agent inputs that lead to the maximum deviation from
the true consensus value. Fig. 5 depicts agent values over time

Fig. 6. Agent value with the maximal deviation from true consensus value for
a single system realization for a system with 15 malicious agents, � = 0.4, and
drift malicious inputs.

when running consensus according to the protocol from (1) and
the weights defined by (8). Specifically, Fig. 5 depicts the value
of the agent with the maximal deviation from the true consensus
value for a single system realization with maximum deviation
malicious input.Additionally, Fig. 7 depicts the absolute value of
the maximum deviation from the true consensus value averaged
over 500 system realizations. Figs. 5 and 7 additionally show
the differences in converged values and deviation, respectively,
for different consensus start times T0.
The maximum deviation malicious input leads to an upper

bound to all possible malicious attacks and depicts a worst-case
scenario in terms of deviation from true consensus value. How-
ever, though this attack is useful to analyze the worst-case effect
of malicious inputs, it is easy to detect using outlier rejection
methods, for example [8]. For this reason, we consider the
following additional attack scenario that is harder to detect.

B. Drift Malicious Input

Fig. 6 and 8 measure the effect of a less transparent mali-
cious agents’ attack, where every malicious agent adds a drift
term to the average legitimate agent values. More specifically,
let dL(m, t) be the average value at time t of the legitimate
agents that are neighbors of the malicious agent m. Denote
dL(t) = 1

|M|
∑|M|

m=1 dL(m, t). Then, at time t, the malicious
agentm chooses its state value xm(t) according to the following
rule:

xm(t) = dL(t− 1) + 0.15× dM(m, t)

where xm(t = T0 − 1) is chosen randomly from the set
[−0.15× η, 0.15× η], and for every t ≥ T0, we have

dM(m, t) = −sign(dL(1))× η × (0.75)0.05(t−T0)u(m, t),

u(m, t) ∼ U [0, 1]. Thus, malicious agent inputs are time vary-
ing and strategically close to legitimate agent values to avoid
easy detection in this case. Additionally, if xm(t) > η, then
xm(t) is generated randomly and uniformly from the interval
[η − 0.05, η]. Similarly, if xm(t) < −η, then xm(t) is generated
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Fig. 7. Maximal deviation input.

randomly and uniformly from the interval [−η,−η + 0.05]. We
note that since, in our scenario, every malicious agent is a
neighbor of all the legitimate agents, dL(m1, t) = dL(m2, t) for
all m1,m2 ∈ M. Fig. 6 depicts the value of the agent with the
maximal deviation from the true consensus value for a single
system realizationwith driftmalicious input.Additionally, Fig. 8
depicts the resulting absolute value of the maximum deviation
from the true consensus value for a driftmalicious input averaged
over 500 system realizations.
Figs. 5 and 6 depict a single realization of the agent value with

the maximal deviation from true consensus value for a system
with 15 malicious agents and 
 = 0.4. Fig. 5 depicts the agent
value with the maximal deviation from true consensus value for
the maximal deviation malicious inputs, whereas Fig. 6 depicts
the agent value with the maximal deviation from true consensus
value for the drift malicious inputs.

In addition to Figs. 5 and 6 that depict the legitimate agent
values for a single system realization, we depict in Figs. 7 and
8 the average deviation of the legitimate agent values from true
consensus value. The average deviation is calculated using 500
system realizations. Figs. 7 and 8 show that the deviation from
true consensus value grows both as 
 grows and as the number
|M| of malicious agents grows. In each figure, we label the plot
by (R#,C#) where R# denotes the row number and represents
the increase in the number of malicious agents, and C# denotes
the column number and represents the growth of 
. Figs. 7
and 8 show the significance of introducing the variable T0 that
sets the starting time of the data passing between agents. The
figures indicate that increasing T0 can significantly reduce the
deviation from true consensus value. Figs. 7 and 8 also show
that our scheme can combat an attack of a large number of
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Fig. 8. Drift input.

malicious agents, even when |M| = 30, that is, there is twice
the number of malicious agents than legitimate agents in the
system. This is a significant improvement over classical results
that depend on the network connectivity [1], [5], [6]. Using the
upper boundmini∈L∪M |Ni|on the network connectivity,we can
conclude that classical results will fail to detect all the malicious
agents when their number is larger than the number of legitimate
agents; in this case, the undetected malicious agents can control
the data values of the legitimate agents. More specifically, we
can see from the choice of adjacency matrix (38) that for our
setup, the network connectivity is at most 3 + |M|, and thus,
classical results can tolerate less than 3+|M|

2 malicious agents.
Since there are |M| malicious agents, the consensus algorithm
can fail and be controlled by the malicious agents. Furthermore,
for the connectivity graph that we consider in the numerical
results, the maximal number of malicious agents leading to a

graph connectivity guaranteeing their detection and preventing
them from controlling the network is 2, since we must fulfill
the condition that |M| < 3+|M|

2 . Finally, our numerical results
show that there exists a finite time T0 such that the probability
to classify all the user in the network correctly for every t > T0

is sufficiently high. We can see from Figs. 7 and 8 that the
minimal value of T0 that yields a negligible deviation from
true consensus value depends on probability of misclassifying
users, i.e., classifying a legitimate agent as malicious and vice
versa. This probability is increased, for example, as the number
of malicious agents grows and as the variance of αij grows.
Figs. 7 and 8 show that as we increase the number of malicious
agents and the deviation 
 that governs the variance of αij , we
should increase T0 to limit the effect of the malicious agents
on the consensus value. Additionally, Figs. 7 and 8 show that
the for T0 = 150, the deviation from true consensus value for
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all considered scenarios is negligible. Finally, for T0 = 100, the
deviation from true consensus value is sufficiently small, and
the effect of malicious agents is limited even for |M| = 30.
Fig. 7 shows that as 
 becomes larger (and therefore also

the variance), the effect of malicious agents on deviation gets
worse. However, even in this case, increasing T0 can recover the
nominal consensus value with deviation approaching zero. The
exact relationship between the deviation Δmax(T0, δ) and T0 is
given by Theorem 2.
In the case of a time-varying malicious agent input as with the

drift malicious input model described in Section IV-B, nominal
average consensus can also be recovered by making T0 larger,
as depicted in Fig. 8. This is true even with variable variance on
the αij values.

V. DISCUSSION

In this section, we discuss the significance of some of our
characterizations on the trust observations αij and some of
our assumptions. We also discuss directions for future work.
First, the results of this article assume a fixed network topology.
However, we believe that it is possible to relax Assumption 1.1
to include the case where the graph over legitimate agents is
not always connected. In such a case, Assumption 1.1 can be
replaced with the assumption that the topology of the legitimate
agents is B-connected.3 We believe that the convergence results
from [64, Proposition 1] can be adapted to this case along the
same vein as in Theorem 3. Finally, we discuss a few interesting
observations about the trust valuesαij . Our results show that the
more informed our αij values are, the tighter the performance
guarantees achievable become (cf. Lemma 6). This also opens
a future avenue of investigation of finding αij observations
from physical channels in multiagent systems, which can be
characterized as fully as possible. The theory in this article
provides the mathematical framework for understanding which
characteristics ofαij are most critical for attaining performance
guarantees that are important for multiagent coordination. We
hope that this can guide continued investigation into trust-based
resilience, particularly for CPSs, where additional information
on interagent trust can be attained.

VI. CONCLUSION

This article presented a unified mathematical theory to treat
distributed multiagent consensus in the presence of malicious
agents when stochastic values of trust between agents are avail-
able. Under this model, we presented three new performance
guarantees for consensus systems in the presence of malicious
agents:
1) Convergence of consensus is possible with probability 1

evenwhen the number ofmalicious agents is far larger than
1/2 of the network connectivity—in contrast to classical
results in resilience;

2) Thedeviation of the convergedvalue fromaverage consen-
sus can be bounded and, further, can be driven arbitrarily
close to zero by using our derived edge weights and by

3See definition in [29].

allowing an observation time T0 of trust values over the
network; and

3) Convergence to the correct classification of agents can be
attained in finite time with probability 1 with an exponen-
tial rate that we derive.

Additionally, we showed that our performance guarantees can
be made stronger if more information on the trust observations,
such as bounds on their variance, is available. Taken together,
these results point to the inherent value of quantifying and
exploiting trust between agents for consensus. We believe that
themathematical formulations and frameworkof this article hold
promise for achieving a new generation of resilient multiagent
systems.
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