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Abstract—We introduce approximate trace reconstruction, a
relaxed version of the trace reconstruction problem. Here, instead
of learning a binary string perfectly from noisy samples, as in
the original trace reconstruction problem, the goal is to output
a string that is close in edit distance to the original string using
few traces. We present several algorithms that can approximately
reconstruct strings that belong to certain classes, where the
estimate is within n/polylog(n) edit distance and where we only
use polylog(n) traces (or sometimes just a single trace). These
classes contain strings that require a linear number of traces for
exact reconstruction and that are quite different from a typical
random string. From a technical point of view, our algorithms
approximately reconstruct consecutive substrings of the unknown
string by aligning dense regions of traces and using a run of a
suitable length to approximate each region.

A full version of this paper is accessible at: https://arxiv.
org/abs/2012.06713.pdf

I. INTRODUCTION

In the trace reconstruction problem, an unknown string
on n bits is passed through a deletion channel many times
independently, producing a set of traces (i.e., random sub-
sequences of the string). The deletion channel deletes each
bit independently with constant probability q. The goal is
to exactly reconstruct the original string from the traces [1],
[2]. Exact reconstruction is proving difficult to study, so far;
currently there is an exponential gap between the best known
upper and lower bounds [3]–[7]. Here, we relax the problem
and instead study whether it is possible to approximately
reconstruct an unknown string with much less information than
in exact reconstruction. The algorithm should output a string
that is close to the original string. We consider edit distance,
which measures the minimum number of insertions, deletions,
and substitutions between a pair of strings. For an unknown
string of length n, we investigate the number of traces needed
to approximate the string up to εn edit distance; we call this
εn-approximate reconstruction.

Trace reconstruction has become popular partially due to
its connection with DNA data storage, where reconstruction
algorithms are used to recover stored data [8]–[13]. In these
reconstruction algorithms, error-correcting codes handle miss-
ing data, and so approximate reconstruction algorithms are
practically useful. A single trace from a string X is, in
expectation and with high probability, an εn-approximation
to X for any ε larger than the deletion probability. However,
the interesting regime is for much smaller ε, such as when
ε is a very small constant compared to q or even going to

0 with n. Theoretically, an eventual goal for this line of
work would be to find the smallest ε such that any string
can be εn-approximately reconstructed with poly(n) traces,
where ε might depend on n and q. Designing algorithms to find
approximate solutions for general strings may in fact require
fundamentally different methods than all previous work on
exact reconstruction or on the maximum likelihood solution.
Our results begin to tackle this challenge; they exhibit the
ability to approximately reconstruct strings based on various
run-length or density assumptions. For these classes of strings,
we develop new polynomial-time, alignment-based algorithms,
and we show that O(log(n)/ε2) traces suffice.

II. RELATED WORK

In trace reconstruction, the main theoretical question is
whether poly(n) traces suffice for exact reconstruction. For an
arbitrary string, exp(Õ(n1/5)) traces suffice [5], improving the
previous bound of exp(O(n1/3)) [3], [4]. On the other hand,
at least Ω̃(n3/2) traces are required [6], [7].

Others have studied forms of approximate trace recon-
struction but with different goals in mind. For instance, the
maximum likelihood decoding of average-case strings has
been studied given only a constant number of traces [14]–[16].

Other work related to ours surrounds attempts to distinguish
strings close in edit distance [17]. Our work also resembles
coded trace reconstruction, though we point out that we study
classes of strings that are very different from codes (e.g., pairs
of strings in our classes can be very close) [18], [19]. A
more complete comparison to and background on coded trace
reconstruction are included in the full version.

III. OUR RESULTS

In our results, the deletion probability q is a fixed constant,
and we let p := 1−q be the retention probability. The variables
C,C ′, C ′′, C1, C2, . . . are constants, and O(·) hides constants
that may depend on p, q. We use log(·) with base 1/q. The
phrase with high probability means probability at least 1 −
O(1/n). A run in a string is a substring of consecutive bits
of the same value, and we often refer specifically to 0-runs
and 1-runs. We use bold r to denote runs, or more generally
substrings, and let |r| denote its length (number of bits). We
assume that the algorithms know n, q, ε, and the class that the
unknown string comes from. In Section IV, we also state the
basic ideas for our “warm-up" algorithms, which are simpler
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and introduce some of the techniques we use in our other
algorithms; details are included in the full version.

Theorem 1 only requires 1-runs to be long, while the length
of 0-runs is more flexible.

Theorem 1. Let X be a string on n bits such that all of its
1-runs have length at least C ′ log(n)/ε and none of its 0-
runs have length between C ′ log(n) and 3C ′ log(n). If C ′ >
100/p, then X can be εn-approximately reconstructed with
O(log(n)/ε2) traces.

Theorem 2 extends Theorem 1 to a wider class of strings by
allowing many of the bits in the runs to be arbitrarily flipped.

Theorem 2. Suppose that p > 3ε. Let Y be a string on n bits
such that all of its 1-runs have length at least C ′ log(n)/ε
and none of its 0-runs have length between C ′ log(n) and
3C ′ log(n). Suppose that X is formed from Y by modifying
at most εC ′ log(n) arbitrary bits in each run of Y . If C ′ >
1000/p, then X can be εn-approximately reconstructed with
O(log(n)/ε2) traces.

For the final class, we consider a slightly different relaxation
of having long runs. We impose a local density or sparsity
constraint on contiguous intervals. Here, a single trace suffices.

Theorem 3. For C ′ > 50/p2, if X can be divided into
contiguous intervals I1, . . . , Im with all Ii having length at
least C ′ log(n)/ε2 and density at least 1 − ε

12 of 0s or 1s,
then X can be εn-approximately reconstructed with a single
trace in polynomial time.

The algorithm for Theorem 3 extends to handle independent
insertions at a rate of O(ε), since the proof relies on finding
high density regions, which are unchanged by such insertions.

We provide some justification for the classes of strings
considered in the above theorems. Strings that either contain
long runs or that are locally dense are a natural class to
examine in order to understand the advantage gained by ap-
proximate reconstruction over exact. Strings with sufficiently
long runs require Ω(n) traces to reconstruct exactly, as exact
reconstruction for this set involves distinguishing between the
strings 1n/201n/2−1 and 1n/2−101n/2, for example. These
strings can be approximately reconstructed with substantially
less traces for large enough values of ε. We then relax the
condition that strings have long runs to the condition that
strings are locally dense. Strings with long runs and strings
that are locally dense also look very different than average-
case (i.e., uniformly random) strings, which can be exactly
reconstructed with O(exp(log1/3(n))) traces [20].

IV. PRELIMINARIES

We let dE(X,X ′) be the edit distance metric between X
and X ′, which is the minimum number of insertions, deletions,
and substitutions required to transform X into X ′. For each
class of strings that we consider, we present an algorithm and
argue that it can εn-approximately reconstruct any string from
the class. Our algorithms output a string X̂ , an approximation
of X , satisfying dE(X, X̂) 6 εn with high probability.

We denote a single run by r and a set of runs by r1, . . . , rk.
Our convention is to let X denote the unknown string that we
wish to reconstruct, and Y will sometimes denote a modified
version. A single trace will be denoted by X̃ and a set of
traces by X̃1, . . . , X̃T . Tildes will also be used to mark runs
and intervals of traces. Some strings X we partition into
` substrings X1, . . . , X`; their concatenation to form X is
denoted as X = X1X2 · · ·X`.

Some of our algorithms reconstruct X by partitioning it
into substrings X1, . . . , X` and reconstructing these substrings
approximately. Specifically, we will find strings X̂i such that
the edit distance between X̂i and Xi is at most ε|Xi|, and then
we will invoke the following lemma to see that X = X1 · · ·X`

and X̂ = X̂1 · · · X̂` have edit distance at most εn.

Lemma 4. Let X = X1X2 · · ·X` and X̂ = X̂1 · · · X̂` be
strings on n bits. If the edit distance between Xi and X̂i is
at most ε|Xi| for all i ∈ [`], then dE(X, X̂) 6 εn.

In the full version, as a warm-up we present two simple
algorithms that reconstruct simple classes of strings with very
long runs. If all of the runs in X have length at least 5 log(n),
then by Chernoff bounds all O(log n/ε2) traces have the same
number of runs as the original string with high probability.
By aligning the traces by run and scaling the average run
lengths across traces by 1/p, X can be εn-approximately
reconstructed with high probability. Similarly, if X has 1-
runs with length at least C ′ log(n)/ε2 for sufficiently large
C ′, then simply scaling the length of every run in the trace by
1/p gives an εn-approximation. See the full version for the
warm-up algorithms and the associated proofs.

V. ALGORITHMS AND PROOFS

A. Identifying long runs

We begin with an algorithm that builds on the ideas de-
scribed for our warm-up algorithms; though here when we
relax the length restriction on the 0-runs, entire runs of 0s
may be deleted, combining consecutive 1-runs and making it
difficult to identify which runs align together between traces.
To still use an alignment algorithm that averages run lengths,
we impose the weaker condition on the 0-runs that they must
be divided into short 0-runs and long 0-runs. As long as there
is a gap of sufficiently large size such that there are no 0-runs
with length in the gap, then in the traces we can identify which
0-runs are long and which are short.

The following points outline the reconstruction algorithm
used in the proof of Theorem 1.

1) Set-up: String X on n bits such that all of its 1-runs
have length at least C ′ log(n)/ε, where C ′ > 100/p, and
all of its 0-runs have length either greater than 3C ′ log n
or less than C ′ log n.

2) Sample T = 2
p2ε2 log(n) traces, X̃1, . . . , X̃T , from the

deletion channel with probability q.
3) Define L := 2C ′p log n, and for all j ∈ [T ], index the

0-runs in X̃j with length at least L as r̃j1, . . . , r̃
j
kj

. For
i ∈ [kj − 1], let s̃ji be the bits between r̃ji and r̃ji+1 in

2526
Authorized licensed use limited to: Princeton University. Downloaded on April 28,2022 at 19:51:57 UTC from IEEE Xplore.  Restrictions apply. 



X̃j and let s̃j0 be the bits before r̃j1 and s̃jkj+1 the bits
after r̃jkj for all j ∈ [T ].

4) If there is j 6= j′ ∈ [T ] with kj 6= kj′ , then fail without
output. Otherwise, let k := k1 = k2 = · · · = kT .

5) Compute µ̃r
i = 1

T

∑T
j=1 |r̃

j
i | for all i ∈ [k] and µ̃s

i =
1
T

∑T
j=1 |̃s

j
i | for all i ∈ {0} ∪ [k + 1].

6) Output X̂ = 1̂00̂11̂1 · · · 1̂k0̂k1̂k+1, where 1̂i is a 1-run,
length µ̃s

i

p , and 0̂i is a 0-run, length µ̃r
i

p .

This algorithm is inherently approximate, since we fill gaps
between the long 0-runs with 1-runs, omitting short 0-runs.

Proof of Theorem 1. Let X be a string on n bits such that
all of its 1-runs have length at least C ′ log(n)/ε, where C ′ >
100/p, and all of its 0-runs have length either greater than
3C ′ log n or less than C ′ log n. Take T = 2

p2ε2 log(n) traces
of X . By a Chernoff bound, with probability at least 1− 1

n2 ,
no 1-run is fully deleted in any trace; in the following we
assume that we are on this event.

We will justify that in the traces we can identify all 0-runs
that had length at least 3C ′ log(n) in X . Let r be a 0-run from
X with length |r| > 3C ′ log(n). Using a Chernoff bound, the
probability that in a single trace r is transformed into a run r̃
with |r̃| 6 2C ′p log(n) is bounded by 2n−3.

It follows that, with probability at least 1− 4T
n2 , there does

not exist any 0-run and any trace such that either of the
“unlikely” inequalities above holds. On this event, we have
that for any 0-run r of length at least 3C ′ log n, and any trace
X̃j , we can identify the image r̃j of r in trace X̃j . In particular,
on this event, the number of 0-runs in each trace that has length
at least 2C ′p log(n) is equal to the number of 0-runs in X of
length at least 3C ′ log(n); thus k1 = k2 = · · · kT =: k.

Let L := 2C ′p log n and find every 0-run in X̃j with length
at least L, indexing them as r̃j1, . . . , r̃

j
k. For i ∈ [k − 1], let

s̃ji be the bits between the last bit of r̃ji and the first bit of
r̃ji+1 in X̃j and let s̃j0 be the bits before r̃j1 and s̃jk+1 the bits
after r̃jk. Let si be the contiguous substring of X from which
s̃1i , . . . , s̃

T
i came and ri the contiguous substring of X from

which r̃1i , . . . , r̃
T
i came.

For all i, we will approximate ri with 0̂i a 0-run of length
µ̃r
i/p , for µ̃r

i = 1
T

∑T
j=1 |r̃

j
i |, and we will approximate si with

1̂i, a 1-run of length µ̃s
i/p, for µ̃s

i = 1
T

∑T
j=1 |̃s

j
i |. By Chernoff

and union bound, P(∃i : |µ̃r
i/p − |ri|| > ε|ri|) 6 2n−3 and

P(∃i : |µ̃s
i/p− |si|| > ε|si|) 6 2n−3.

Since si contains alternating 1-runs with length at least
C ′ log(n)/ε and 0-runs with length at most C ′ log(n), si has
at least a 1 − ε density of 1s. Therefore dE(si, 1̂i) 6 2ε|si|
and dE(ri, 0̂i) 6 ε|ri|. Let X̂ = 1̂00̂11̂1 · · · 1̂k0̂k1̂k+1 and we
see that from Lemma 4 dE(X, X̂) 6 2εn. Applying this with
ε/2 instead of ε, the result follows. Constants were taken large
enough to account for this factor of 2.

Note that the above theorem holds when the constant
C ′ is unknown. Given T = O(log n/ε2) traces of X , we
can determine whether or not X had such a gap, and the

corresponding C ′ value, with high probability. We can then
execute the algorithm as stated.

B. Identifying dense substrings
We extend the class of strings we can approximately

reconstruct, proving Theorem 2, which is a robust version
of Theorem 1. Specifically, we consider strings with similar
properties to those in Theorem 1, but allow for bit flips.

The goal of the algorithm is similar to that of Theorem 1,
which is to identify long 0-runs from Y in each trace of X
and to align by these 0-runs; then, we approximate the rest of
X with 1-runs. Because X and Y have small edit distance, a
good approximation for Y is also good for X . Unfortunately
the long 0-runs from Y are no longer necessarily 0-runs in
X , and therefore they are more difficult to find in the traces.
Instead we find long 0-dense substrings in X .

Let X and Y be as in the theorem statement. We also fix
m := C ′ε log(n) throughout this subsection. Fix a trace X̃ of
X , as well as an index `. Let ñ denote the length of the trace.
Define the indices i` and j` to be those that are (m+ 1) 1s to
the left and right of ` in X̃ , respectively, if such indices exist.
We count the 0s in X̃ between indices i` and j` with

Sint(X̃, `) :=

j∑̀
k=i`

1X̃[k]=0.

Note that Sint(X̃, `) is not defined if i` or j` are not
defined. We use a slightly different quantity on the boundary
of the trace to handle this. Letting the definition of i` and
j` remain the same, if i` or j` is not defined, then we
consider SL-bound(X̃, `) :=

∑j`
k=0 1X̃[k]=0 or SR-bound(X̃, `) :=∑ñ

k=i`
1X̃[k]=0, respectively. Combining the interior and

boundary quantities, let S(X̃j , `) = Sint(X̃j , `) if there are
(m + 1) 1s to the left and right of `, let S(X̃j , `) =

SL−bound(X̃j , `) if there are (m + 1) 1s to the right of ` but
not the left, and let S(X̃j , `) = SR−bound(X̃j , `) if there are
(m+ 1) 1s to the left of ` but not the right.

In each trace we identify a set of substrings of X that are
0-dense, and then decide whether each such substring is long
or short using S(X̃j , `); that is, whether the corresponding
unknown 0-runs in Y are long (length at least the upper
bound of the gap) or short (length at most the lower bound
of the gap). If the traces all agree on the number of long 0-
dense substrings, we align the traces by these substrings and
reconstruct in a manner similar to that of Theorem 1.

The following points outline the reconstruction algorithm
used in the proof of Theorem 2.

1) Set-up: String X on n bits formed by flipping at most
εC ′ log(n) bits in each run of Y , where Y is a string
on n bits such that all of its 1-runs have length at least
C ′ log(n)/ε, for C ′ > 1000/p, and all of its 0-runs have
length either greater than 3C ′ log n or less than C ′ log n.

2) Sample T = 2
p2ε2 log n traces, X̃1, . . . , X̃T , from the

deletion channel with deletion probability q.
3) Set m := εC ′ log n and a := pC ′ log n. For each trace

X̃j , let i be the smallest index of X̃j with X̃j [i] = 0 and
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|{k : X̃j [k] = 0, |i − k| 6 a + m}| > a. Let `j1 be the
smallest index such that X̃j [`

j
1] = 0 and |{k : X̃j [k] =

0, i − (a + m) 6 k < `j1}| = m. Compute S(X̃j , `
j
1).

Starting m+ 1 bits to the right of the last bit counted in
S(X̃j , `

j
1), continue to the right and repeat this process,

finding indices `jt and computing S(X̃j , `
j
t ), for t > 2.

4) Set Ḡ = 2C ′p log n. For every trace X̃j , let Ij = {t :

S(X̃j , `
j
t ) > Ḡ}. If |Ij | is not the same across all T

traces, the algorithm fails. Otherwise, define I = |Ij |
and for all t ∈ [I], we let 0̂t be a 0-run of length µ̃t/p,
for µ̃t = 1

T

∑T
j=1 S(X̃j , `

j
t ).

5) Define ît = 1
T

∑T
j′=1 i`j′t

and ĵt = 1
T

∑T
j′=1 j`j′t

, for

i
`j

′
t

and j
`j

′
t

as in the definition of S(X̃j′ , `
j′

t ). Let

1̂0, . . . , 1̂I be 1-runs where 1̂t has length |̂it+1 − ĵt|/p
for t ∈ [I − 1], 1̂0 has length î1/p, and 1̂I has length
|pn− ĵI |/p.

6) Output X̂ = 1̂00̂11̂1 · · · 1̂I−10̂I−11̂I .
Let ε, p be fixed with p > 3ε. Suppose X , Y , and C ′ are as

in the algorithm statement. Let X̃ be a trace of X . A 0-run r
in Y may have some bits flipped from 0 to 1 in X , becoming
the substring rX , so let |r0X | denote the number of 0s in rX .

Lemma 5. Let X̃ be a random trace from X , and let ` be an
index of X̃ such that X̃[`] = 0. If the bit at X̃[`] is from a 0-
run r in Y , then the following holds for the quantity S(X̃, `):

1) (Property 1) With probability at least 1 − n−6 the bits
at indices i` and j` come from a 1-run adjacent to r.

2) (Property 2) If indices i` and j` come from a 1-run ad-
jacent to r, then S(X̃, `) is upper bounded by a random
variable from the distribution Bin(|r0X |, p)+Bin(2m, p).

3) (Property 3) If |r| > C ′ log n and the bits at indices
i` and j` come from a 1-run adjacent to r, then with
probability at least 1−n−6, |S(X̃, `)−p|r|| 6 p|r|

4 +3m.

Proof of Property 1. It suffices to prove the claim for i`. Index
i` is m+ 1 1s to the left of `, and therefore not from r, since
at most m 0s of r were flipped to 1s. Further, by a Chernoff
bound, with probability at least 1−n−6 the 1-run left-adjacent
to r in Y has at least 2m+ 1 bits surviving in X̃ . At most m
bits of the left-adjacent 1-run to r in Y are flipped to 0, so at
least m+ 1 1s from this 1-run survive in X̃ . It follows that i`
came from the left adjacent 1-run to r in Y .

Proof of Property 2. Recall that |r0X | is the number of 0s in
r that were not flipped to 1 in X . This component of S(X̃, `)
is from the distribution Bin(|r0X |, p). Let the contribution to
S(X̃, `) by any 0s not from r be the random variable Zr(`).
Each bit that was flipped to 0 in either 1-run adjacent to r
in Y can contribute 1 with probability at most p to Zr(`).
From the assumption on i` and j`, any other 0 from X will
be outside of the range [i`, j`]. Therefore we can upper bound
the contribution of Zr(`) by a random variable sampled from
Bin(2m, p).

Proof of Property 3. By Property 2, S(X̃, `) is upper bounded
by a random variable from the distribution Bin(|r0X |, p) +

11111011000010000111101110001111011110100000

Count 0s for

Fig. 1. Example for Theorem 2. For a trace X̃ , the index `1 is carefully
chosen so that X̃[`1] is from a 0-run in Y with high probability.

Zr(`). By a Chernoff bound, with probability 1 − n−6 the
first binomial term varies from its mean by at most p|r|/4.
The second binomial term is upper bounded by 2m and
||r0X | − |r|| 6 m.

Proof of Theorem 2. Define a := pC ′ log(n). Take T =
2

p2ε2 log n traces of X , X̃1, . . . , X̃T , and fix a trace X̃j . Our
first goal is to find long 0-dense substrings in X; we can
also think of these long 0-dense substrings as corresponding
to long 0-runs in Y . Let i be the smallest index of X̃j such
that X̃j [i] = 0 and there are at least a 0s in X̃j within a+m
indices of i, i.e.

|{k : X̃j [k] = 0, |i− k| 6 a+m}| > a.

Next find the index `j1 such that X̃j [`
j
1] = 0 and there are

exactly m 0s in X̃j within the interval of indices [i − (a +

m), `j1], i.e. |{k : X̃j [k] = 0, i − (a + m) 6 k < `j1}| = m.
See Figure 1. The goal of this procedure is to find an index
`j1 such that the bit at X̃j [`

j
1] is from a 0-run in Y with high

probability.
With probability at least 1−n−6, every 1-run in Y is reduced

to a substring with at least 2(a + m) 1s in X̃j . This implies
that the length 2(a+m) interval X̃j [i− (a+m), i+ a+m]
contains bits from at most two 1 runs in Y and at most one
0 run with probability 1− n−6. By construction, this interval
contains at least a > 3m 0s (the inequality coming from the
fact that p > 3ε). Since each 1-run had at most m bits flipped
to 0, there must be at least a − 2m > m 0s in the interval
X̃j [i− (a+m), i+a+m] that came from some 0-run r in Y .
In this construction, the 0s from the r that survived in X̃j are
nested between at most m 0s that were flipped from the left-
adjacent 1-run to r in Y and at most m 0s that were flipped
from the right-adjacent 1-run to r in Y . This implies that the
(m+ 1)th 0 in this interval must be from the 0-run r.

Compute S(X̃j , `
j
1). Note that with high probability, if a

trace does not have (m+ 1) 1s to the right of `j1, the original
string can be well-approximated by outputting the all 0s string
with length 1

T

∑T
j=1 |X̃j |/p. Starting m + 1 bits to the right

of the last bit counted in S(X̃j , `
j
1), continue scanning to the

right and repeat this process, finding indices `jt and computing
S(X̃j , `

j
t ), for t > 2. We jump ahead m + 1 bits to the

right between iterations because this forces the next bit i that
satisfies the condition |{k : X̃j [k] = 0, |i− k| 6 a+m}| > a
to not overlap with the previous 0-run with high probability
by Property 1.
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We justify that this process succeeds, meaning that it catches
all long 0-runs from Y , in all T traces, with high probability.
For 0-run r in Y such that |r| > 3C ′ log(n), with probability
at least 1−n−6 at least a+m bits from all such 0-runs survive
in all T traces. Further there are at most m 1s among these
bits. Therefore, with probability at least 1− n−6, we have at
least a 0s that have at most m 1s inserted among them, and
this triggers the calculation of `jt for some t.

By the theorem assumptions, there exists an interval
[C ′ log n, 3C ′ log n] such that no 0-run r in Y has |r| in
the gap [C ′ log n, 3C ′ log n]. Let Ḡ be the middle of the gap
scaled by p, so Ḡ = 2C ′p log n. By Property 3 and a union
bound, with probability at least 1 − n−4, all 0-runs r in Y
with |r| > 3C ′ log n will trigger the calculation of an `jt
with S(X̃j , `

j
t ) > Ḡ in all traces, and all 0-runs r in Y with

|r| < C ′ log n will either not trigger an `jt calculation, or if
they do, `jt will have S(X̃j , `

j
t ) < Ḡ for all traces.

For every trace X̃j , let Ij = {t : S(X̃j , `
j
t ) > Ḡ}. If |Ij | is

not the same across all T traces, the algorithm fails. Otherwise
let I = |Ij | for all j, and for each trace X̃j relabel the `jt with
S(X̃j , `

j
t ) > Ḡ as `j1, . . . , `

j
I .

The proof now proceeds similarly to that of Theorem 1. We
approximate long 0-runs rt in Y , which are close to some long
0-dense substrings of X with high probability, with 0-runs,
and the rest is approximated with 1-runs. We first estimate the
distance between the 0-runs in Y . Consider a 0-run rt that
generates an estimate of µ̃r

t/p, and take ît = 1
T

∑T
j′=1 i`j′t

and ĵt = 1
T

∑T
j′=1 j`j′t

, for i
`j

′
t

and j
`j

′
t

as in the definition

of S(X̃j′ , `
j′

t ). The average of the indices ît can be at most
m bits to the left of the first 0 from rt, and therefore is at
most off by m bits. The same is true for ĵt. By a Chernoff
bound, |̂it+1− ĵt|/p is an estimate of the distance between 0-
runs with accuracy 2ε|rt| with probability at least 1−n−6. The
substring between these 0-runs also has at least a 1−ε density
of 1s, so we can fill with 1-runs for a good approximation.
Let 1̂0, . . . , 1̂I be 1-runs where 1̂t has length |̂it+1− ĵt|/p for
t ∈ [I−1], 1̂0 has length î1/p, and 1̂I has length |pn− ĵI |/p.
Hence by Lemma 4 the 1-runs contribute at most 3εn to the
edit distance error.

It remains to estimate the lengths of the long 0-runs in Y
r1, . . . , rI . Fix t ∈ [I], let 0̂t be a 0-run of length µ̃r

t/p,
for µ̃r

t = 1
T

∑T
j=1 S(X̃j , `

j
t ). For every rt ∈ {r1, . . . , rI},

define rt
0
X as above (the number of 0s from rt in X). With

probability at least 1− n−6 the average of Bin(|rt0X |, p) over
T = O(log(n)/ε2) traces is within εp|rt0X | of the mean
p|rt0X |. Combining this with Property 2, with probability at
least 1− n−3,

|µ̃r
t − p|rt0X || 6 εp|rt0X |+ 2m.

Since ||rt0X | − |rt|| 6 m, we have that

|p|rt| − µ̃r
t | 6 εp|rt|+ 2m+ pm = εp|rt|+ 3m.

This is at worst an approximation of p|rt| with edit distance
error at most ε+ 9ε

p2 6 C ′′ε where we use a > 3m and C ′′ =

1 + 9
p2 . Taking a union bound over all rt ∈ {r1, . . . , rI}, and

applying Lemma 4, with probability at least 1−n−2 the long
0-run estimates contribute at most error C ′′εn. Putting this all
together, we output the string X̂ = 1̂00̂11̂1 · · · 1̂I−10̂I−11̂I .
One more application of Lemma 4 implies that dE(Y, X̂) 6
(C ′′ + 3)εn. Since Y is within εn edit distance from X , we
can conclude that dE(X, X̂) 6 (C ′′ + 4)εn.

If we apply this algorithm and analysis with ε
C′′+4 instead

of ε, the result follows. Constants were taken large enough to
account for this factor of C ′′ + 4.

C. Majority voting in substrings
A natural follow-up question to the previous theorems is

what happens when the string no longer has long runs, but
instead has long dense regions. This question is addressed by
Theorem 3; the proof can be found in the full version.

The following points outline the reconstruction algorithm
used in the proof of Theorem 3.

1) Set-up: String X on n bits such that X can be di-
vided into contiguous intervals all of length at least
L = 50 log n/(p2ε2) and density at least 1 − ε

12 of 0s
or 1s.

2) Sample X̃ from the deletion channel with probability q.
3) Uniformly partition X̃ into contiguous substrings of

length w = εpL, so X̃ = X̃1 · · · X̃dn/we, with a shorter
last interval if needed.

4) Output X̂ = X̂1 · · · X̂dn/we, where X̂i is a run of length
w/p with value the majority bit of X̃i for i ∈ [dn/we].

VI. CONCLUSION

We studied the challenge of determining the relative trace
complexity of approximate versus exact string reconstruction.
We present algorithms for classes of strings, where these
classes lend themselves to techniques in every theoretician’s
toolbox, while introducing new alignment techniques that
may be useful for other algorithms. Our algorithms output
a string within edit distance εn from the original string using
O(log n/ε2) traces for classes of strings; these classes of
strings are hard to reconstruct exactly. We leave as open work
constructing algorithms for approximating arbitrary strings.

Algorithms with small sample complexity for the approxi-
mate trace reconstruction problem could also provide insight
into exact solutions. If we know that the unknown string
belongs to a specified Hamming ball of radius k, then one
can recover the string exactly with nO(k) traces by estimating
the histogram of length k subsequences [21], [22]. It is an open
question whether an analogous claim can be proven for edit
distance [17]. Do nO(k) traces suffice if we know an edit ball
of radius k that contains the string? If so, then an algorithm
satisfying our notion of edit distance approximation would
imply an exact reconstruction result.
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