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The inertial response of a particle to turbulent flows is a problem of relevance to a
wide range of environmental and engineering problems. The equation most often used
to describe the force balance is the Maxey–Riley equation, which includes in addition to
buoyancy and steady drag forces, an unsteady Basset drag force related to past particle
acceleration. Here we provide a historical review of how the Maxey–Riley equation was
developed and how it is only suited for studies where the Reynolds number is less than
unity. Revisiting the innovative mathematical methods employed by Basset (1888), we
introduce an alternative formulation for the unsteady drag for application to a broader
range of particle motions. While the Basset unsteady drag is negligible at higher Reynolds
numbers, the revised unsteady drag is not.

1. Introduction

Determination of a particle’s trajectory in a turbulent flow field requires an equation
that satisfies the Navier–Stokes equation and accounts for all relevant forces. The first
attempt was made by Stokes for a sphere moving slowly with a uniform velocity in a
viscous fluid of unlimited extent that is stationary far from the particle (Stokes 1850).
Boussinesq and Basset later considered the linear inertia of flow surrounding the sphere
and developed an equation for the unsteady motion of a spherical particle accelerating
from rest and moving with a time-varying velocity vp(t), adding an unsteady drag force
or “history term” to the equation of motion that accounts for prior particle interactions
with the surrounding flow (Boussinesq 1885a,b; Basset 1888).

In the interests of mathematical simplicity, the derivation by Boussinesq (1885a,b) and
Basset (1888) omitted non-linear inertia terms proportional to the squares and products
of velocities of the surrounding flow relative to a moving sphere. Such an assumption
can be valid in the Stokes flow regime because the particle motion can be considered to
be “slow”. Fluid viscous forces dominate inertia and the Reynolds number is “small”,
i.e, Re = vpdp/ν < 1 where dp is the sphere diameter and ν = µ/ρf is the kinematic
viscosity of the fluid, µ the dynamic viscosity of the fluid, and ρf the fluid density.

The next significant advance was introduced by Tchen (1947) who generalized the
equation of motion for unsteady motion of spherical particle in a fluid at rest. He proposed
an equation for the motion of a slow spherical particle in a fluid that has a velocity vf (t)
independent of the sphere. To reduce the problem to that of a particle moving in a fluid
at rest, Tchen assumed the particle moves with a velocity vp(t) − vf (t). In addition, he
allowed for the entire system, including both the fluid and the particle to experience a
pressure gradient force due to a changing rectilinear velocity of the fluid vf (t). Corrsin
& Lumley (1956) later showed that if the fluid is turbulent, and the sphere is smaller
than the shortest wavelength characterizing the turbulent flow, spatial and temporal
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inhomogeneities in the fluid also add a torque due to spatial velocity gradients, and a
force due to a static pressure gradient.

Further adaptations and extensions of the equation of motion account for the drag
force due to the forced velocity curvature around the sphere, or the Faxn correction,
and viscous shear stress, leading to the widely used Maxey–Riley equation (Faxén 1922;
Buevich 1966; Riley 1971; Soo 1975; Gitterman & Steinberg 1980; Maxey & Riley 1983).
For a particle that is at rest in a stationary fluid until the instant t = 0, and is sufficiently
small to have a negligible effect on fluid motions far from the particle, the Maxey–Riley
equation accounts for the trajectory, dispersion, and settling velocity of the particle. The
force balance includes the buoyancy force, the stress gradient of the fluid flow in the
absence of a particle, the force due to the virtual mass, steady Stokes drag and unsteady
Basset drag

mp
dvp
dt

=(mp − ρfVp)g + ρfVp
Dvf
Dt
− kρfVp

d

dt

(
vp − vf −

1

10
a2∇2vf

)
− 6πµa

(
vp − vf −

1

6
a2∇2vf

)
− 6πµa2

∫ t

0

d
dτ (vp(τ)− vf (τ)− 1

6a
2∇2vf )√

πν(t− τ)
dτ

(1.1)

where the index p denotes the particle and f for the fluid. d
dt = ∂

∂t + vpj
∂
∂xj

is the total

time derivative along the particle trajectory, and D
Dt = ∂

∂t + vf j
∂
∂xj

the acceleration

of the fluid along its own trajectory, mp the particle mass, vp the Lagrangian velocity
of the particle, and vf the Eulerian fluid velocity in the particle location. ρfVp is the
fluid mass mf occupied by the particle volume Vp of radius a. k = (m′f/mf ) is an
added mass coefficient, and m′f the virtual mass of the fluid, assumed to undergo the
same acceleration as the particle. The coefficient k is a function of the flow regime and
geometric properties of the particle. For irrotational flow around a sphere k is 0.5.

No analytical solution exists for the full expression of the Maxey–Riley equation
of motion. Numerically, however, the equation provides a useful guide for exploring
interactions between particles and a moving fluid flow. Its application extends to fields as
wide ranging as sediment transport and waste management, combustion, particle trans-
port, and deposition, particle clustering, atmospheric precipitation, aquatic organism
behaviors, and underwater robotics (Chao 1963; Soo 1975; Murray 1970; Reeks 1977; Nir
& Pismen 1979; Kubie 1980; Maxey 1987, 1990; Mei 1990; Mei et al. 1991a; Falkovich
et al. 2002; Peng & Dabiri 2009; Daitche 2013; Beron-Vera et al. 2019).

An important point is that (1.1) assumes that the Reynolds number of the particle
relative to the surrounding fluid flow satisfies Re = |vp − vf |dp/ν < 1, that is the Stokes
flow regime. For larger values of Re, semi-empirical adjustments are sometimes made (Ho
1933; Hwang 1985; Tunstall & Houghton 1968; Field 1968; Murray 1970; Maxey 1990;
Wang & Maxey 1993; Nielsen 1993; Stout et al. 1995; Good et al. 2014). The steady drag
force Fd = 6πµa(vp − vf ) shifts from scaling linearly with relative velocity to scaling
as an empirically derived steady drag coefficient CD and the relative velocity squared
Fd = 1

2ρfApCD(Re)(vp−vf )2. Then the steady drag at high Reynolds numbers becomes
sufficiently large that the history term in (1.1) becomes negligible and can be omitted
from the equation of motion (Wang & Maxey 1993; Stout et al. 1995; Good et al. 2014).

However, it remains that the mathematical form of the history term developed by
Boussinesq-Basset applies only when the Reynolds number is small (Re < 1). A pri-
ori, there is no mathematical justification for arguing that unsteady drag is negligible
compared to steady drag when the Reynolds number is arbitrarily high. While a few
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Figure 1. The laminar stream function around a sphere falling with constant velocity V0 at an
earlier (dashed top) and a later time t (solid bottom). The stream function changes in spatial
co-ordinates r and θ with respect to a stationary observer so that it is a function of both the
sphere velocity and time.

theoretical studies have considered unsteady drag on a sphere at a finite but small
Reynolds number in the range Re < 100 (Oseen 1913; Proudman & Pearson 1957;
Sano 1981; Mei et al. 1991b; Mei & Adrian 1992; Mei 1994; Lovalenti & Brady 1993;
Michaelides 1997), as of yet, no general formulation has been presented for the unsteady
drag on solid bodies moving within a viscous liquid when Re � 1. This article attempts
to fill this gap by first revisiting the classical derivation of Basset’s solution, and then by
using a similar approach obtaining a formulation for the unsteady drag term suitable for
application to higher Reynolds numbers.

2. Overview of the Stokes solution

Stokes (1850) considered a sphere of radius a falling at constant velocity V0 under
gravity along a straight axis z, considering the center of the sphere as the origin so that
the motion of the fluid is symmetrical with respect to the axis of fall. Relative to the
center of sphere, in a spherical coordinate system (r, θ, φ) where r is the radius, θ is the
zenith angle, and φ is the azimuthal angle (Fig. 1), the ur and uθ components of velocities
along and perpendicular to the direction of r are

vr(t, r, θ) =
1

r2sinθ

∂ψ(t, r, θ)

∂θ
(2.1)

vθ(t, r, θ) = − 1

rsinθ

∂ψ(t, r, θ)

∂r
(2.2)

For an incompressible fluid in an azimuthally symmetric 2D spherical coordinate
system, the Navier–Stokes equations that determine the surrounding fluid flow around
the moving sphere are
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∂vr
∂t

+ vr
∂vr
∂r

+
vθ
r

∂vr
∂θ
− v2θ

r
= − 1

ρf

∂p

∂r
+ ν
(
∇2vr −

2vr
r2
− 2

r2
∂vθ
∂θ
− 2vθcotθ

r2

)
(2.3)

∂vθ
∂t

+ vr
∂vθ
∂r

+
vθ
r

∂vθ
∂θ

+
vrvθ
r

= − 1

rρf

∂p

∂θ
+ ν
(
∇2vθ +

2

r2
∂vr
∂θ
− vθ

r2sin2θ

)
(2.4)

Assuming the no-slip condition at the surface of sphere, at a constant fall velocity V0
the boundary conditions are

vr

∣∣∣∣
r=a

= V0 cosθ, vθ

∣∣∣∣
r=a

= −V0 sinθ (2.5)

Defining for brevity an operator

D =
∂2

∂r2
+

1

r2
∂2

∂θ2
− cosθ

r2sinθ

∂

∂θ
(2.6)

then using (2.1)-(2.2), the Navier–Stokes equations (2.3)-(2.4) can be rewritten in terms
of the stream function as follows

− 1

ρf

∂p

∂r
=

1

r2sinθ

∂

∂θ

(∂ψ
∂t
− νDψ

)
(2.7)

1

ρf

∂p

∂θ
=

1

sinθ

∂

∂r

(∂ψ
∂t
− νDψ

)
(2.8)

Taking the derivative of (2.7) with respect to θ and the derivative of (2.8) with respect
to r and eliminating the pressure term, the equation for ψ(t, r, θ) becomes

D
(
νD− ∂

∂t

)
ψ︸ ︷︷ ︸

linear

+ sinθ

(
∂ψ

∂r

∂

∂θ
− ∂ψ

∂θ

∂

∂r

)
Dψ

r2sin2θ︸ ︷︷ ︸
non−linear

= 0 (2.9)

The solution to (2.9) is the stream function for a viscous and incompressible fluid
surrounding a moving sphere. Note the distinction between the linear term that produces
a laminar flow around a slow-moving sphere and the non-linear term that arises from
retaining the velocity products and squares in (2.3)-(2.4).

In 1850, Stokes solved the linear term at steady-state, namely D
(
Dψ(r, θ)

)
= 0 by

switching reference frames and treating the fluid as moving with velocity V0 relative to a
stationary sphere. Therefore, by placing the origin at the center of the quiescent sphere,
and supposing a solution in the form of ψ(r, θ) = sin2(θ)f(r), Stokes (1850) determined
the motion of a fluid for a sphere that moves slowly at a constant velocity in a fluid at
rest

ψ(r, θ) =
1

4
V0a

2sin2θ
(3r

a
− a

r

)
(2.10)

Stokes obtained the familiar expression FD = 6πµaV0 for the drag force of the fluid on
the sphere assuming the no-slip condition at the sphere’s surface. The terminal velocity
of a falling sphere is then obtained from balance with the gravitational force (Appendix
A).
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3. Overview of Basset’s solution

Basset argued that Stokes’ formula for the terminal velocity yields values larger than
those obtained by experiment. Based on his prior theoretical studies (Basset 1888), Basset
(1910a) attributed the discrepancy to the neglect of the ∂ψ

∂t term in (2.9) for steady

motion, suggesting that it should be replaced by V0
∂ψ
∂z , and again maintaining the origin

at the center of the moving sphere (Fig. 1). Stokes’ assumption that sphere starts the
motion with a constant velocity V0 also implies a discontinuity at the sphere surface.
Suppose that a sphere that is set in motion with a constant velocity of V0. The no-slip
condition requires that the fluid velocity instantly change from 1

2V0 sinθ to −V0 sinθ
(Appendix B). This discontinuity is unphysical. If instead the sphere is moving with a
variable velocity V (t) starting from rest then the revised linear equation to be solved is

D
(
νD− ∂

∂t

)
ψ(t, r, θ) = 0 (3.1)

The solution was found first by Boussinesq (1885b,a) and apparently independently
three years later by Basset (1888). Any more generalized analytical solution to (2.9) has
yet to be determined.

Much has been written about the Basset drag force in the literature but less about
how it was originally derived. Here, we revisit Basset’s solution for two reasons. His work
on the problem of variable slow motion of a sphere in a viscous fluid was last published in
1888, and the innovative analytical methods he used to solve partial differential equations
are not well known. Second, we extend his mathematical approach to present a revised
form of the Maxey–Riley equation suitable for application to a wider range of Reynolds
numbers than the Stokes regime.

The solution to (3.1) is outlined in more detail in Appendix A. Briefly, Basset’s
approach to solving (3.1) for ψ(t, r, θ) was motivated by the absence of an analytical
solution to the linear form of the Navier–Stokes equation for an accelerating particle. He
began by first assuming that the sphere moves with constant velocity V0. In this case, the
particular solution for the stream function around a sphere with a moving origin (3.1) is

ψ(t, r, θ) =
1

2
V0a

2 sin2θ
{3νt

ra
+

6
√
νt/π

r
+
a

r

}
(3.2)

− 3√
π
V0a

2 sin2θ

∫ ∞
r−a
2
√
νt

{2ξ2νt

ra
+

2ξ
√
νt

r
+

1

2
(
a

r
− r

a
)
}
e−ξ

2

dξ

The stream function around the sphere obtained by the Basset (3.2) is laminar and its
form is identical to that obtained by Stokes (2.10), as shown in Fig. 1. The difference is
that the stream function is non-steady due to acceleration of the fluid around the sphere.
Basset’s unsteady stream function reduces to the Stokes steady stream function at the
particle surface r = a, and in the limit t→∞ where the integral term of Basset’s solution
with r − a/2

√
νt approaches zero. At a distance radially far from the particle surface,

or for shorter times where the fluid has not yet reached a steady motion, the value of
stream function calculated by Basset’s solution is greater than that found by Stokes.

By substituting (3.2) into (2.7), the solution for the fluid pressure field is

p(t, r, θ) =
3V0aµ cosθ

2r2
(
1 +

a√
πνt

)
(3.3)

and the fluid velocities vr and vθ are obtained by substituting (3.2) into (2.1) and (2.2),
respectively.
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The drag force owes to the upstream pressure gradient across a falling particle and the
shear stress in the particle boundary layer. At the sphere surface where r = a, the drag
force is

FD = 2πa2
∫ π

0

{(
p− 2µ

∂vr
∂r

)
cosθ + µ

(∂vθ
∂r

+
1

r

∂vr
∂θ
− vθ

r

)
sinθ

}
sinθ dθ

= 6πµaV0
(
1 +

a√
πνt

)
(3.4)

Neglecting velocity squared terms, there is a correction term to the Stokes drag.
For physical insight, suppose that there is a relaxation time to the terminal velocity
τp = V0/g that in the Stokes flow regime is equal to τp = mp/6πµa, simplifying to

τp =
ρpd

2
p

18µ . The fractional addition to the Stokes drag in (3.4) varies temporally as

a/
√
πνt, which is proportional to

√
τp/t. Then, τp is the time tmax at which the unsteady

drag is a maximum. Fluid accelerations around the particle surface exert a force on the
particle that is proportional to the particle cross-section. The perturbation diffuses away
from the particle as 1/

√
t. For the case of turbulent flows, it has been suggested that

the appropriate timescale to which particle relaxation time could be compared is the
Kolmogorov timescale τη where η is the Kolmogorov length scale, in which case the
fractional enhancement of unsteady drag to Stokes drag is ∼ a/η (Daitche 2015).

Effectively then, there is an extra drag force at constant V0 that prolongs the time it
takes the particle to approach its terminal velocity. For the more physical case that V
is not a constant, Basset’s approach was to substitute in (3.4) the time variable t with

a historical time τ , and V0 with a time-varying velocity of form dV (t−τ)
dt dτ , integrating

the result from 0 to t. To see the justification for this substitution, consider that the
transformation ζ = t− τ leads to

∫ t

0

dV (t− τ)

dt
dτ = −

∫ 0

t

dV (ζ)

dζ
dζ (3.5)

= V (t)− V (0)

If the sphere starts from rest, then V (0) = 0, and V (ζ) is finite between its limits, any
integration of a time varying velocity in (3.5) will yield the current sphere velocity at
time t. Basset (1888) proposed that if V (t) is a solution to a partial differential equation,

then the integral of dV (t−τ)
dt dτ must also be a solution. The total drag force in (3.4) then

becomes

FD = 6πµa
(
V (t) + a

∫ t

0

1√
πντ

dV (t− τ)

dt
dτ
)

(3.6)

Drag is not only a function of the current velocity but also of the particle acceleration
due to prior interactions between the particle and the fluid. Basset (1910b) later adopted
a method developed by Picciati (1907) that simplifies the procedure of first find a
solution for constant velocity and then for changing velocity. Picciati’s method reduces
the problem to the determination of a function that satisfies Fourier’s heat equation, and
yields a solution equivalent to (3.6). The equation of motion for a sphere of mass mp

moving slowly with a time-varying velocity becomes
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mp
dV(t)

dt
= (mp −mf )g− 6πµa

(
V(t) + a

∫ t

0

1√
πν(t− τ)

dV(τ)

dτ
dτ
)
− 1

2
mf

dV(t)

dt

(3.7)

Equation (3.7) does not consider the squares and products of flow velocities in the
Navier–Stokes equation (2.3)-(2.4) and so it remains valid only for Stokes flow. It is this
equation of motion that (Tchen 1947) employed to account for the effects of temporal
variability in the fluid flow and that with subsequent revisions led to the Maxey–Riley
equation of motion (1.1).

4. Unsteady drag at high Reynolds numbers

To determine the hydrodynamic fluid forces at higher Reynolds numbers, what is
required is a particular solution to the full Navier–Stokes equations (2.3)-(2.4). This
is not yet possible due to the mathematical difficulties introduced when higher order
velocity terms are retained. Consequently, these terms have traditionally been either
ignored or parameterized based on empirical studies. In the latter case, the steady drag
on a falling sphere with velocity V0 in a stationary and incompressible viscous fluid can
then be expressed using Rayleighs formula Fd = 1

2ρfApCD(Re)V 2
0 , in which case the

drag force becomes

FD =
1

2
ρfApCD(Re)V0

2
(

1 +
a√
πνt

)
(4.1)

For example, in the Stokes flow regime, a formulation for the drag coefficient CD(Re) =
24/Re converts the Rayleigh formula to the familiar expression Fd = 6πµaV0 expressed
in (3.4). For higher Reynolds numbers, empirical estimates of the drag coefficient can be
used.

But if a more generalized drag force is to be implemented within the context of an
equation such as the Maxey–Riley equation, appropriate adjustments must be made to
the equation itself. We now proceed to derive an expression for the unsteady drag at high
Reynolds numbers in a manner analogous to that described in Section 3 for low Reynolds
numbers. Following Basset’s approach leading to (3.6) by way of (3.5), a more general
equation of motion is then

mp
dV (t)

dt
= (mp −mf )g − 1

2
ρfAp

(
CD(Re)V 2(t) + a

∫ t

0

CD(τ)|V (τ)|√
πν(t− τ)

dV (τ)

dτ
dτ

)
− 1

2
mf

dV (t)

dt
(4.2)

where the integral term expresses a more generalized unsteady drag. A possible
limitation of this expression is that CD is derived empirically for a particle moving
at constant velocity, and does not account for any time variation in the drag due to
acceleration. Experimental studies suggest drag coefficients that can be significantly
higher (Hughes 1952; Selberg & Nicholls 1968; Igra & Takayama 1993).

What is important to note however is that within the integrand in (4.2), the particle
acceleration is multiplied by the magnitude of the particle velocity, whereas with the
Basset equation (3.7), it is multiplied by a constant. Therefore, for a particle falling at
high velocity with a large Reynolds number, unsteady drag is not necessarily negligible
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as has sometimes been assumed. Ignoring any alterations to the drag force due to forced
velocity curvature around the sphere (the Faxn correction 1

6a
2∇2uf ), and viscous shear

stress, we propose a more general version of the Maxey–Riley equation of particle motion

mp
dvp
dt

=(mp − ρfVp)g + ρfVp
Dvf
Dt
− 1

2
ρfAp

{
CD(Re)|vp − vf |(vp − vf )

+ a

∫ t

0

CD(τ)|vp(τ)− vf (τ)|√
πν(t− τ)

d
(
vp(τ)− vf (τ)

)
dτ

dτ
}
− kρfVp

d

dt
(vp − vf )

(4.3)

where Re = |vp(t)− vf (t)|dp/ν is the particle’s relative Reynolds number.

5. Numerical analysis

The equation of motion (4.2) is now solved numerically. The particle velocity is
initialized at some value close to zero, the particle’s Reynolds number Re = |V (t)|dp/ν is
specified, and the drag coefficient is calculated from an empirically derived relationship
between the drag coefficient and the Reynolds number of a rigid sphere (White 1991)

CD(Re) =

{
1
4 + 24

Re + 6
1+
√
Re

if Re 6 3, 000

0.3659, otherwise
(5.1)

The history term in (4.2) can be estimated except where τ approaches t, at which
point the integrand becomes infinite and must be treated separately. Using the definition
of an integral, the history term evolves from the previous time step (t−∆t) through

∫ t

0

V (τ)√
t− τ

dV (τ)

dτ
dτ = lim

n→∞

n−1∑
k=1

(
V (t− k∆t)√

k

dV (t− k∆t)
dt

)
·∆t1/2 (5.2)

where t is the time of motion and ∆t is the time interval employed in the simulation.
The right-hand side of (5.2) is amenable to standard numerical techniques.

Equation (4.2) was solved numerically for the approach of a particle initially at rest
to its terminal velocity considering both a low and high Reynolds number. Fig. 2 shows
a comparison of steady and unsteady drag forces normalized by the gravity force as a
function of time normalized by the particle Stokes time τp. For a particle with a Reynolds
number of Re = 0.2 the generalized equation for unsteady drag, the integral term in (4.2),
is equivalent to the Basset history term and is a maximum 25% of the total force when
the Stokes time t/τp ' 1. Its contribution to the particle acceleration is negligible as the
drag turns steady and the particle approaches its terminal velocity.

For a higher Reynolds number of Re = 1100, the unsteady drag accounts for a
maximum ∼ 15% of the total force at a time much shorter than particle relaxation time
τp while the Basset history drag plays a negligible role. Fig. 3 shows that the time at
which the unsteady drag reaches its maximum value decreases logarithmically as the cube
root of the particle Reynolds number Re1/3, or that ln(tmax/τp) ∝ −Re1/3. Also shown
is the ratio of the Basset drag to the generalized unsteady drag, which also decreases as
Re1/3, indicating a diminished relative importance of the Basset drag at higher Reynolds
numbers. So while the revised unsteady drag dominates the Basset history drag, and
consequently increases the drag and reduces the particle terminal velocity, relative to the
Stokes time, the period over which the drag affects the particle motion is correspondingly
short.
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Figure 2. Normalized steady and unsteady drag forces acting on a particle falling into stationary
air over a normalized log-time of motion, according to (4.2). The forces are normalized by gravity
and the time of motion by the particle relaxation time in Stokes flow τp. The normalized total
force is also shown. Left) particle with a density ratio of s = 15 and a low Reynolds number of
Re = 0.2 Right) particle with a density ratio of s = 830 and a Reynolds number of Re = 1100.
The dashed purple line shows for comparison the unsteady Basset drag calculated using the
Maxey–Riley equation of motion (1.1).

2 4 6 8 10

0.1  

1    

Basset Drag/Unsteady Drag

tmax/ p with
 Unsteady Drag

tmax/ p with
Basset Drag

Figure 3. Time relative to the Stokes time τp at which the unsteady drag is a maximum, and
the corresponding ratio of the Basset drag to the unsteady drag, as a function of the cube root
of the Reynolds number.
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6. Discussion

There remain some important limitations to (4.2). First, there is an implicit assumption
that the particle starts from rest. While nonetheless assuming Stokes flow, Basset (1888)
developed a rather more complicated equation of motion for a particle initially projected
vertically with velocity Vi (for derivation, see Appendix B)

dV(t)

dt
= −λVie

−λt + fg e−λt − λa d

dt

∫ t

0

∫ υ

0

e−λ(t−υ)√
πν(υ − τ)

dV(τ)

dτ
dτ dυ (6.1)

The coefficient f =
mp−mf
mp+

1
2mf

simplifies to f =
ρp−ρf
ρp+

1
2ρf

, and λ = 6πµa
mp+

1
2mf

to λ =
9ρfν

2a2(ρp+
1
2ρf )

. Basset was unable to integrate this complicated integro-differential equation,

but for the limited case of λ� 1, as applies to a sphere moving in a fluid whose kinematic
viscosity is small, he used a method of successive approximation to obtain the acceleration
and velocity to the third power in λ.

Later, Boggio (1907) successfully reduced the complexity of the problem to a solvable
second order differential equation (see Appendix C). The solution employs error functions
of form erf(

√
αt) and erf(

√
βt) where α, β = λ

2 {(q − 2) ±
√
q(q − 4)} and q = λa2/ν.

Substituting this expression for λ yields q =
9ρf

2ρp+ρf
. For a particle denser than the fluid

then q < 4, and α and β are complex numbers. For this case,

V (t) =
fg

λ
+
(
Vi −

fg

λ

)
eγt
{

cos(δt)− γ + λ

δ
sin(δt)

}
(6.2)

− h eγt

δ

{
cos(δt)

∫ t

0

e−γtsin(δt)√
t

dt− sin(δt)

∫ t

0

e−γtcos(δt)√
t

dt

}

where γ = λ
2 (q − 2) = −λ2

( 4ρp−7ρf
2ρp+ρf

)
, δ = λ

2

√
q(4− q) = λ

2 q
1
2

√
8ρp−5ρf
2ρp+ρf

, and h =
λa√
πν

(fg − λVi). This equation is not widely known but it significantly reduces the

computational expense of finding a solution for V (t) by eliminating the requirement
of tracking the history of the particle’s motion.

A second, more troubling limitation of (6.1)-(6.2), and hence also of (3.7) and (4.2), is
that for a particle starting at t = 0 with a finite vertical velocity, the effect of the initial
velocity (or any disturbance to the flow field surrounding the sphere) on the eventual
particle displacement does not decay to zero at infinite time. The end result is that the
terminal velocity differs from that expected from the Stokes solution. While the effect is
small, it nonetheless implies the unphysical property of infinite memory in a dissipative
viscous fluid (Reeks & McKee 1984).

To resolve this issue, Sano (1981) applied a matching procedure initially developed by
Bentwich & Miloh (1978) to unsteady low Reynolds number flow past a sphere to find
that the drag decays faster than t−1/2 when t � τp. Thus, the temporal dependence
of the Basset drag is only appropriate at times less than τp when inertial forces are low
compared to viscous forces. A similar conclusion was reached by Mei et al. (1991b). Mei &
Adrian (1992) applied a successive orders of approximation method to solve the Navier–
Stokes equation to O(Re) for the case of oscillating flow over a sphere, by considering
small fluctuations in velocity when the Reynolds number is not negligibly small. Mei &
Adrian (1992) then proposed a modified expression for the unsteady drag that includes
an integration kernel that decays as t−2 for t � τp, limited to finite Reynolds numbers
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(Re 6 100) and small-amplitude fluctuations in the velocity of the free stream. Mei
(1994) later investigated the applicability of the kernel for other types of unsteady flows.

Mainardi (1997) went further to interpret the Basset force in terms of a fractional
derivative of any order ` ranging in the interval 0 < ` < 1 as

FD =
9

2
mf

( 1

τ0
+

1

τ1−`0

d`

dt`

)
V (t) (6.3)

where τ0 = a2/ν represents the characteristic time to reach steady-state in a viscous
fluid. ` = 1/2 yields the total Basset drag in (3.6). This generalization, suggested by
mathematical speculation, modifies the behaviour of the solution, changing its decay from
t−1/2 to t` for t � τp. Mainardi (1997) considered three cases of ` = 1/4, 1/2, and 3/4
and compared the particle terminal velocity with a desired temporal adjustment behavior
e−t/τp expected from Stokes drag (` = 0). The results yielded improved agreement with
the Stokes solution but the topic is still considered unsolved, as ideally it requires a full
solution to the Navier–Stokes equations, including non-linear inertia terms involving the
products of velocities.

7. Conclusions

The Maxey–Riley equation was originally developed for the study of small, slow-
moving spheres but is widely used for higher Reynolds numbers under the assumption
that unsteady Basset drag is insignificant relative to the steady drag. Here we have
presented a historical review of the derivation of the equation of motion that leads to
the Maxey–Riley equation and argue that the Basset drag can be suitably applied only
when Reynolds numbers are small. Following Basset’s original approach, but considering
drag proportional to the particle relative velocity squared, a revised analytical equation is
developed for extension to higher Reynolds numbers. Simulations based on this equation
show that the unsteady drag force contributes substantially to the total drag at timescales
less than the Stokes time, even for high values of the Reynolds number.
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Appendix A. Basset’s solution

Basset (1888) assumed a sphere of radius a moving slowly in a fluid with a uniform
velocity V0, with its center at the origin moving in a straight line, surrounded by a viscous
liquid that is initially at rest. As described in Section 3, the stream function must satisfy
the linearized Navier–Stokes equation

D
(

D− 1

ν

∂

∂t

)
ψ = 0 (A 1)

where in a spherical coordinate system (r, θ, φ)

D =
∂2

∂r2
+

1

r2
∂2

∂θ2
− cosθ

r2sinθ

∂

∂θ
(A 2)
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Since the operators D and (D− 1
ν
∂
∂t ) are commutative, following Stokes (1850), Basset’s

solution to (A 1) was (Basset 1888):

ψ(t, r, θ) = ψ1(t, r, θ) + ψ2(t, r, θ) (A 3)

where ψ1(t, r, θ) and ψ2(t, r, θ) satisfy, respectively

{
Dψ1 = 0(
D− 1

ν
∂
∂t

)
ψ2 = 0

(A 4)

Assuming the no-slip condition at the surface of a rigid falling sphere, the boundary
conditions at the surface of sphere satisfying (2.1)-(2.2) are

∂ψ

∂θ

∣∣∣∣
r=a

= V0a
2sinθ cosθ,

∂ψ

∂r

∣∣∣∣
r=a

= V0a sin2θ (A 5)

It is important to mention that this last boundary condition shows that θ must appear
in ψ(t, r, θ) in the form of the factor sin2θ. Basset used separation of variables ψ(t, r, θ) =
ψ(t, r)sin2θ satisfying (A 4), to obtain

∂2ψ1

∂r2
− 2ψ1

r2
= 0 (A 6)

∂2ψ2

∂r2
− 2ψ2

r2
=

1

ν

∂ψ2

∂t

The particular solution of ψ1(t, r) is f(t)/r. In an innovative approach, Basset assumed
a solution of form

ψ1 =
1

2r

√
π

νt

∫ ∞
0

κ(ρ)e−ρ
2/4νt dρ (A 7)

Provided the solution satisfies the boundary conditions, there is no restriction on how
ψ1 varies with time. For this purpose Basset chose a Gaussian distribution κ(ρ)e−ρ

2/4νt.
Note that ρ has units of length. It is zero by definition at the particle surface and increases
to infinity far from the particle. κ(ρ) is an arbitrary function to be established. To find
the solution for ψ2, Basset used separation of variables ψ2(t, r) = T (t)R(r) so that

1

R(r)

d2R(r)

dr2
− 2

r2
=

1

νT (t)

d2T (t)

dt2
(A 8)

The LHS is strictly a function of r and RHS of t, so for any range of time and space
integration, both are equal and therefore can be assigned to an arbitrary constant −m2

where the value of m can be specified from a particular set of boundary conditions. Note
that the solution for the functionality in R(r) is spherical Bessel functions of the first
and second kind that can be written in terms of Rayleigh’s formulas

R(r) = Ar
d

dr

cos(mr)

r
+Br

d

dr

sin(mr)

r
(A 9)

With respect to the time functionality

T (t) = Ce−m
2νt (A 10)
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Basset expressed a particular solution to ψ2 in (A 6) through use of boundary conditions
(A 5) at the particle surface

ψ2 = Ar
d

dr

e−m
2νt

r
cos[m(r − a+ ρ)] (A 11)

Integrating (A 11) with respect to m between the limits 0 and ∞ to consider all the
possible values of m, exchanging A with A(ρ), and integrating the results with respect
to ρ between the same limits yields:

ψ2 =
r

2

√
π

νt

d

dr

∫ ∞
0

A(ρ)

r
e−

(r−a+ρ)2
4νt dρ (A 12)

First differentiating and then integrating by parts
∫
udv = uv −

∫
vdu where u =

A(ρ)/r, Basset obtained

ψ2 =
r

2

√
π

νt

∫ ∞
0

−A(ρ)

r2
e−

(r−a+ρ)2
4νt dρ+

[A(ρ)

r
e−

(r−a+ρ)2
4νt

]∞
0

−r
2

√
π

νt

∫ ∞
0

1

r

dA(ρ)

dρ
e−

(r−a+ρ)2
4νt dρ

As A(ρ) is a function of arbitrary form, it is possible to define it in such a way that the

term in brackets can be eliminated at both limits, namely A(0) = 0 and A(ρ)e−ρ
2 → 0

when ρ→∞. Thus, the total solution for ψ(t, r, θ) becomes

ψ(t, r, θ) =
sin2θ

2r

√
π

νt

∫ ∞
0

κ(ρ)e−ρ
2/4νtdρ (A 13)

− sin2θ

2

√
π

νt

∫ ∞
0

{A(ρ)

r
+
dA(ρ)

dρ

}
e−

(r−a+ρ)2
4νt dρ

At the particle surface r = a, the exponential term in the second integral can be

expressed in the form of the first integral. Thereby, the boundary condition ∂ψ
∂θ

∣∣∣∣
r=a

=

V0a
2sinθ cosθ is satisfied in (A 13) if

κ(ρ)−A(ρ)− adA(ρ)

dρ
= V0a

3/π (A 14)

Also, the boundary condition ∂ψ
∂r

∣∣∣∣
r=a

= V0a sin2θ requires that

−1

2

√
π

νt

∫ ∞
0

κ(ρ)e−ρ
2/4νtdρ+

1

2

√
π

νt

∫ ∞
0

A(ρ)e−ρ
2/4νtdρ

−a
2

√
π

νt

∫ ∞
0

{
A(ρ) + a

dA(ρ)

dρ

} d

dρ
e−ρ

2/4νtdρ = V0a
3

Integrating by parts the last term on the LHS, and assuming that [A(ρ) +

aA′(ρ)]e−ρ
2/4νt disappears where ρ = 0 and ρ → ∞, what is required is that

A(0) = A′(0) = 0 and that A(ρ)e−ρ
2/4νt and A′(ρ)e−ρ

2/4νt should each vanish
when ρ→∞. Then, equation (A 15) becomes
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1

2

√
π

νt

∫ ∞
0

{
− κ(ρ) + A(ρ) + a

dA(ρ)

dρ
+ a2

d2A(ρ)

dρ2

}
e−ρ

2/4νtdρ = V0a
3 (A 15)

which is satisfied if

−κ(ρ) + A(ρ) + a
dA(ρ)

dρ
+ a2

d2A(ρ)

dρ2
= 2V0a

3/π (A 16)

Hence, we have A(ρ) = 3V0aρ
2/2π + C1a+ C2, where the condition A(0) = A′(0) = 0

requires that C1 = C2 = 0 and κ(ρ) = V0aπ
−1( 3

2ρ
2 + 3ρa + a2). Then, the particular

solution for the stream function (A 13) around a sphere moving with a uniform velocity
V0 is:

ψ(t, r, θ) =
V0a sin2θ

2r
√
πνt

∫ ∞
0

(
3

2
ρ2 + 3ρa+ a2)e−ρ

2/4νtdρ (A 17)

− 3V0a sin2θ

2
√
πνt

∫ ∞
0

{ρ2
2r

+ ρ
}
e−

(r−a+ρ)2
4νt dρ

The first term is in the form of an exponential integral, and the second can be solved
through the substitution r − a− ρ = 2ζ

√
νt, from which Basset finally obtained

ψ(t, r, θ) =
1

2
V0a

2 sin2θ
{3νt

ra
+

6
√
νt/π

r
+
a

r

}
(A 18)

− 3√
π
V0a

2 sin2θ

∫ ∞
r−a
2
√
νt

{2ξ2νt

ra
+

2ξ
√
νt

r
+

1

2
(
a

r
− r

a
)
}
e−ξ

2

dξ

This is Basset’s solution to (A 1). It satisfies the Navier–Stokes equation (2.3)-(2.4)
provided the advection terms involving velocity products and squares are omitted. At
t = 0, the integral vanishes in (A 18), and the initial value of ψ becomes

ψ(r, θ) =
V0a

3sin2θ

2r
(A 19)

which is the known solution of ψ for the case of a frictionless liquid. When t is very
large, one may substitute t→∞ in the lower limit of the integral in (A 18) leading to

ψ(r, θ) =
1

4
V0a

2sin2θ
(3r

a
− a

r

)
(A 20)

which is Stokes’ solution for the motion of slowly moving rigid sphere in a viscous
liquid after sufficient time has elapsed for the motion to become steady. One thing to
note is that Stokes’ steady-state solution for the stream function does not contain any
expression of viscosity implying that the solution only applies to highly viscous liquids
like water.

Appendix B. Basset’s equation of motion

Zeleny & McKeehan (1910) tested Stokes’ formula for the terminal velocity of small
spherical spores descending in the air under gravity, and they found that the value of
terminal velocity calculated by resistance expressed by Stokes’s solution yields values
much larger than those obtained by their experiment. As mentioned in Section 3, Basset



On the Maxey–Riley equation of motion 15

(1910a) proposed that with respect to a moving origin, the term ∂ψ
∂t should be replaced by

V0
∂ψ
∂z . Although, Basset was unable to obtain a complete solution for steady motion due

to the difficulty of obtaining appropriate boundary conditions, his more general solution
is nonetheless quite different from that given by Stokes (A 20).

Stokes’ solution also ignores inertia in the disturbed fluid flow, which alters the
boundary conditions very far from the sphere (Oseen 1910). For a sphere that starts
from rest in a stationary fluid, the hypothesis of no-slip condition holds at the surface
of the sphere because both sphere and fluid have zero initial velocities. However, for a
sphere that is set in motion with a constant velocity of V0, there exists an initial motion
of the fluid at the surface of the sphere due to an impulse needed to begin the sphere’s
motion. From the theory of impulsive motion, the fluid can be assumed to be frictionless
at the beginning of the motion. The tangential velocity of the fluid from the equation for
a frictionless fluid (A 19) becomes

Θ(r, θ) =
V0a

2sinθ

2r2
(B 1)

Which at the surface of sphere is 1
2V0 sinθ. The velocity components of the fluid along

and perpendicular to the radius vector that satisfies the boundary conditions at the
surface of the sphere applying the no-slip condition (A 5) are

R(r, θ) =
1

a2 sinθ

∂ψ

∂θ
= V0 cosθ (B 2)

Θ(r, θ) = − 1

a sinθ

∂ψ

∂r
= −V0 sinθ

Therefore, the consequence of the no-slip condition at the surface of sphere is that the
initial velocity of fluid suddenly changes from 1

2V0 sinθ to −V0 sinθ. This discontinuity
of velocity has no physical interpretation. Although the initial motion of the fluid in the
neighborhood of the sphere is highly turbulent and that it gradually subsides through
the action of viscosity, but the consequence of no-slip condition is that the tangential
velocity of the fluid is discontinuous at the surface of sphere. Basset proposed a simple
procedure to suppose that the sphere is moving with a variable velocity V (t) starting
from rest.

As outlined in Section 3, Basset (1888) developed the equation of motion for a sphere
of mass mp that starts the motion from rest and then moves slowly with a time-varying
velocity

(
mp +

1

2
mf

)dV(t)

dt
= (mp −mf )g− 6πµa

(
V(t) + a

∫ t

0

1√
πν(t− τ)

dV(τ)

dτ
dτ
)

(B 3)

which can be simplified to

dV(t)

dt
= fg− λV(t)− λa√

πν

∫ t

0

1√
t− τ

dV(τ)

dτ
dτ (B 4)

where coefficient λ = 6πµa
mp+

1
2mf

which thereby simplifies to λ =
9ρfν

2a2(ρp+
1
2ρf )

, and f =
mp−mf
mp+

1
2mf

.

For a sphere set in motion with an initial velocity V0, Basset divided the time t into
two intervals ε and t − ε, where ε is a vanishing infinitesimal. In the first interval, the
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sphere starts to fall from rest due to gravity and a momentary external force that is large
and constant. The value of the external force (mp + 1

2mf )X leads to a velocity Vi at the
end of the time interval so that Vi = Xε. X is the acceleration due to the momentary
external force.

Replacing fg by fg + X, multiplying by eλt, and integrating between the limits t and
0 of (B 4), Basset obtained

V(t) eλt =

∫ ε

0

X eλυdυ + f

∫ t

0

g eλυdυ − λa√
πν

∫ t

0

∫ υ

0

eλυ√
υ − τ

dV(τ)

dτ
dτ dυ (B 5)

Note that integrating by parts
∫
udv = uv−

∫
vdu where u = eλυ is applied to the LHS

in (B 4), which cancels the second term in the RHS. dV/dt consists of two components;
a large one that is a function of X equal to Vi/ε, and a second that is a function of fg
and we continue to denote by dV/dt. Hence equation (B 5) becomes

V(t) eλt =
X

λ
(eλε − 1) +

fg

λ
(eλt − 1)− λa√

πν

∫ t

0

∫ υ

0

eλυ√
υ − τ

(
dV(τ)

dτ
+

Vi

ε

)
dτ dυ

(B 6)

The second part of integral becomes

∫ ε

0

2Vi

ε
υ1/2eλυ dυ = 0, when ε→ 0 (B 7)

Also, in the limit when ε vanishes, the first term in RHS of (B 6) becomes

lim
ε→0

Vi
λε

(eλε − 1) = Vi (B 8)

so the equation of motion becomes

V(t) = Vi e
−λt +

fg

λ
(1− e−λt)− λa√

πν

∫ t

0

∫ υ

0

e−λ(t−υ)√
υ − τ

dV(τ)

dτ
dτ dυ (B 9)

Note that the value of the acceleration is then

dV(t)

dt
= −λVie

−λt + fg e−λt − λa d

dt

∫ t

0

∫ υ

0

e−λ(t−υ)√
πν(υ − τ)

dV(τ)

dτ
dτ dυ (B 10)

Appendix C. Solution to the Basset’s equation of motion

Boggio (1907) successfully integrated the equation of motion (B 4), and obtained an
analytical solution to the particle velocity. The method employed by Boggio depends on
the Abel integral equation. Let

∫ t

0

1√
t− τ

dV (τ)

dτ
dτ = φ(t) (C 1)

for which a unique solution is
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∫ t

0

φ(τ)√
t− τ

dτ = π
[
V (t)− V (0)

]
(C 2)

Substituting the definite integral (C 1) in (B 4), multiplying by (t− τ)−1/2, integrating
from 0 to t, and then eliminating the integral and differentiating with respect to t, Boggio
reduced the complexity of the problem to the second order differential equation

d2V (t)

dt2
+ λ

(
2− λa2

ν

)dV (t)

dt
+ λ2V (t) +

h√
t
− fgλ = 0 (C 3)

where the coefficient h = λa√
πν

(fg − Viλ). Basset (1910b) summarised Boggio’s work

and expressed the solution to the equation of motion (C 3) as

V (t) =
fg

λ
+
{
A− h

√
π

α
erf(
√
αt)
} eαt

α− β
(C 4)

+
{
B + h

√
π

β
erf(

√
βt)
} eβt

α− β

where coefficients A = (fg−λVi)(1+β/λ) and B = −(fg−λVi)(1+α/λ) are determined

by the initial conditions V (0) = Vi, and from (3.7), dV (0)
dt = fg−λVi. Also, the coefficient

h = λa√
πν

(fg − λVi), and α, β = λ
2 {(q − 2)±

√
q(q − 4)} where q = λa2/ν. When Vi = 0,

the equation of motion simplifies to

V (t) =
fg

λ
+

fg

α− β

{
λa√
να

erfc(
√
αt) eαt − λa√

νβ
erfc(

√
βt) eβt

}
(C 5)

This is a solution for the equation of motion (B 4) of a small sphere that is initially at
rest and falls due to gravity in an infinite fluid that is also initially at rest.
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Oseen, Carl Wilhelm 1910 Über die stokes’ sche formel und uber eine verwandte aufgabe in
der hydrodynamik. Arkiv Mat., Astron. och Fysik 6 (29), 1.
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