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An Adversarial Model of Network Disruption:
Maximizing Disagreement and Polarization
in Social Networks

Mayee F.Chen and Mikldés Z. Ricz

Abstract—The spread of misinformation has increased markedly
in recent vears, a phenomenon which has been accelerated and
amplified by social media such as Facebook and Twitter. While
some actors spread misinformation to push a specific agenda, it has
also been widely documented that others aim (o simply disrupl the
network by increasing disagreement and polarization across the
network, thereby destabilizing society. Popular social networks are
also vulnerable to large-scale attacks. Motivated by this reality, we
introduce a simple model of network disruption to capture this
phenomenon, where an adversary can take over a limited number
of user profiles in a social network with the aim of maximizing
disagreement and/or polarization in the network. We investigate
this model both theoretically and empirically. We show that the
adversary will always change the opinion of a taken-over profile to
an extreme in order to maximize disruption. We also prove that an
adversary can increase disagreement/polarization at maosi linearly
in the number of wser profiles it takes over. Furthermore, we
present a detailed empirical study of several natural algorithms for
the adversary on both synthetic networks and real world (Reddit
and Twitter) data sets. These show that even simple, unsophis
ticated heuristics, such as targeting cenirists, can disrupt a network
effectively, cansing a large increase in disagreement / polarization.
Studying the problem of network disruption through the lens of an
adversary thus highlights the severity of the problem.

Index Terms—social networks, polarization, misinformation.

1. INTRODUCTION

ECENT years have seen a significant increase in the spread

of misinformation, a phenomenon which has been acceler-
ated and amplified by social media such as Facebook and Twitter.
This problem has been widely studied empmically [1]-[5]. By
and large, the main solution proposed to tackle the spread of mis-
information is to develop automated fake news detection tools
(e.g., [6]). However, there are huge challenges to overcome o
make this viable. To start, simply defining what 15 false vs. true 15
often controversial and by now has been hugely politicized.
Moreover, rapid advances in machine learning have made
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possible the creation of fake audio and video that are convine-
ingly realistic, hence the problem of detection will only become
worse in the coming years.

Here we consider a completely different angle. While some
actors spread misinformation to push a specific agenda, it has
also been widely documented [7], [8] that others aim to sim-
ply disrupt the network by increasing disagreement and polari-
zation across the network, thereby destabilizing  society.
Popular social networks are also vulnerable to large-scale
attacks in which attackers have the ability o take over
accounts—in September 2018 it was revealed that nearly 50
million Facebook users were compromised in a data breach
this way [9]. Motivated by this reality, we introduce a simple
model of remwork disruprion to capture this phenomenon,
where an adversary can take over some user profiles in a social
network with the aim of maximizing disagreement andfor
pelarization in the network.

How should adversaries choose profiles, and how much dis-
raption can this cause to the network? Does the adversary
have to be sophisticated to cause significant disruption? Or
can they achieve their goal via simple, unsophisticated heuris-
tics? How do the answers to these guestions depend on proper-
ties of the underlying social network? We answer these
questions n this paper, and the results highlight the impor-
tance of considering an adversarial perspective in the ultimate
zoal of counteracting the harmful effects of malicious actors.

A, Modeling Network Disruption

Our key conceptual contribution 15 the introduction of an
adversarial model of network disrmuption, based on the con-
cepts of polarization and disagreement. First, we describe how
the network evolves over time and how the final expressed
opinions are used w compute polarization and disagreement.
Then, we present the adversarial model that sets up how an
adversary 15 allowed to choose profiles to maximize
disruption.

1) Measuring Disruption: 'We model the underlying social
network as a weighted graph &' = (V. E, w), where 17 is the
set of vertices, cormesponding to the users of the social net-
work; I is the set of edges, connecting nusers who know each
other; and w : E — [0,1] is a weight function on the edges
that describes the strength of the tes between users. Now con-
sider a topic that evervone has an opinion about—gun
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.!.-c-henmrc af the adversarial model of network disruption, Tup On apamculur topic everyone has an innaie opinion, resulting in the innate opinion vec-

tr # & [0, 1", These are mapped to equilibrium opimons z € [0,1]" via the opinion dynamics. The equilibriium opinions give rise to nawral quantities: disagree-
ment [2 and polarization F Bontom: The adversary can take over at most & nodes in the network and change their innate opinions, resulting in the new innate

opinion vector & € [, 1]

The opinion dynamics are unchanged, resulting in new equilibrivm opinions 2 € |0, I]L

and subsequently new values of

disagreement ¥ and polarization P'. The goal of the adversary is to marimize disagreement andfor polarization.

ownership, the amount of taxation, or your favorite controver-
sial topic. We assume that everyone has an imnate opinion
about this topic and that this opinion can be quantified by a
number in the interval [0,1]; for instance, 0 corresponds to
strict gun control while 1 corresponds to no gun control. The
innate opinions are denoted by s = {s,},- € [0, 1]".

People interact with their acquaintances on the social net-
work and exchange opinions. As a result, their expressed opin-
ions evolve and finally reach an equilibrizm, which we denote
by z = {2} € [0, 1)¥. To be specific, in this paper we con-
sider a simple model of opinion dynamics—known as the
Friedkin-Johnsen model [10]—where users iteratively update
their expressed opinions by taking a weighted average of the
opinions of their friends and their own innate opinion. This
results in the equilibrium opinions being z= (I + L)~
where [ is the identity matrix and L is the {weighted) Lapla-
cian matrix. We emphasize that, while we focus on the Fried-
kin-Johnsen model, the questions that we consider about
adversarial network disruption can be studied for other opin-
ion dynamics models as well.

The equilibrium opinions z have various properties that we
care about. Following [11], we introduce the following two
important quantities. Disagreement is defined as

3 wilz — 2%

[wp)EE

D=D(z):= (1)

this measures how much acquaintances disagree in their opin-
ions, globally across the network. Polarizarion is defined as

P=P(z):=} (2-3%

vel”

(2)

where % := 137 ;- 7 is the mean opinion; in other words, P
is the variance of the opinions, multiplied by the number of
vertices. We refer to [11] for a detamled discussion of these
quantities, as well as related ones.

2) Modeling the Adversary: We now turn to modeling an
adversarial perspective on network disruption, which is the
key new idea introduced in the paper. Motivated by practical
examples of hackers taking over a set of accounts, we consider
an adversary that has a budget of &k nodes it can control. We
additionally must factor in how real users react to malicious
accounts in order to delineate the adversary’s capabilities as to
not raise suspicion. For this purpose, we do not allow the
adversary to change the graph structure (such as suddenly add-
ing many new friends or shifting target andience) or interfere
with the opinion dynamics (such as having the hacked nodes
remain stubborm and ignore their friends’ opinions). We thus
assume the adversary can only change the innate opinions of &
nodes. Since the adversary is not directly changing the
expressed opinion, even extreme innate opinions  are
expressed subtly, raising less suspicion. One real world exam-
ple motivating our adversarial model is ISIS's use of Twitter
accounts to recruit new members—on the surface, the tweets
and accounts did not appear out of the normal even though
they pushed a malicions agenda [12].

Formally, we consider an adversary who can take over &
noddes of the network and modify the innate opimions of
these nodes arbitrarily. That is, the adversary can select
& €[0,1" such that & — 8|y < k. Therefore, assuming
the Friedkin-Johnsen model, the resulting equilibrium opin-
ions will be 2 = (I + L) 's" and these will result in new
values of disagreement I and polarization P. The goal of
the adversary is to pick &' in such a way that maximizes
disagreement ¥ or polarization P, See Fig. 1 for an
illustration.'

'Thmugjmu: the paper we only ever use the function £(-) with two argo-
ments: z and 2. Thos, for simplicity, we denate the corresponding function
values by £ and IY. We hope the reader forgives the slight abuse of notation,
in exchange for simplicity. (The same goes for polanzation.)
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B. Questions and Challenges

We open with a general question: what is the optimal solu-
tion for the adversary? That 15, how should they pick the set of
k vertices o hack, and how should they set the innate opinions
of hacked vertices? We show that any optimal solution will
set the innate opinions to an extreme; that is, if & # s, then
& € {0,1}. Thus a brute force approach can find an optimal
solution by checking all (7)2* possibilities, where n denotes
the number of vertices. This is not feasible when k is large—
s0 is there an efficient (polynomial time in ) algorithm to
find an optimal solution? The function that we are maximizing
15 not submodular (see Section V) and hence off-the-shelf
greedy algorithms and their guarantees do not apply directly.

Regardless if they can efficiently find an optimum or not, it
is important to understand the limits of an adversarial attack
under our model, prompting the next question: what is an
upper bound on the amount of dismption an adversary can
cause? We find that our measurement of disruption scales at
maost linearly in the number of profiles taken over. However,
this scaling may only hold for sophisticated, knowledgeable
algorithms, while it may be argued that in most cases knowing
all the innate opinions exactly is unrealistic, and in other cases
knowing the entire social network structure 1 difficult. There-
fore, can the adversary cause this significant extent of disrup-
tion knowing only the network structure and nothing (or close
to nothing) about the innate opinions, and vice versa? Can
simple heuristics perform well, and how does performance
depend on properties of the underlying social network? We
investigate these questions.

II. REsULTS
A, Theoretical Results

We analyze characteristics of the optimal solution and how
polarization and disagreement scale with it. Our first result 1s
inmitive: no matter which set of vertices the adversary choo-
ses, the optimal way to modify the innate opinions of these
nodes 15 to set them to one of the two extremes: 0 or 1. That is,
radicalizing the taken-over account rather than giving them
neutral opinions is more effective, although we again note that
extreme innate opinions still give way to more subile
expressed opinions. In particular, we have the following result.

Theorem 1 (The adversary chooses extreme opinions):
Consider the problem setup as above, with the adversary max-
imizing either disagreement, polarization, or a conical combi-
nation of these two (ie, a linear combination with
nonnegative coefficients). Assume that 7 has no isolated ver-
tices. Let &' be an optimum vector of innate opinions, given
the constraints (formalized in Section IV). For every v € V', if
& # s, then s € {0,1}.

This result follows from the convexity of the objective func-
tions, together with the fact that the adversary 18 maximizing
the objective function (see Section ¥ for the proof). This
implies that if the adversary has a budget of k (i.e., it can take
over at most k nodes), then a brute force approach can find an

optimal solution by checking all (}})2* possibilities, where n

denotes the number of nodes. For constant £ this gives a poly-
nomial-time algorithm, but it performs poorly as & grows. In
fact, we conjecture that solving the optimization problem of
the adversary is computationally hard when & is large {e.g.,
k= n* for constant £ € (0, 1)), which is a direction for future
work.

Next, we examine gquantitatively the effect that the adver-
sary can have on disagreement and polarization. First, we
prove that the adversary can only increase disruption linearly
in k. Specifically, for the polarization objective we show that
the increase is always bounded above by 3k; this is the content
of the following theorem.

Theorem 2 (Upper bound on the increase in polarvization):
Let & be a weighted graph and s a vector of innate opinions
such that the resulting equilibrium opinion vector z has
polarization . Suppose that the adversary has a budget of &
that is, the adversary may select &' € [0,1]" such that ||s' —
8|p = k. Let P be the polarization of the resulting equilibrium
opinion vector 2’ = (I + L)' Then

P<P+dk

For the disagreement objective, our result gives a bound of
Bk, where dy.. is the (weighted) maximum degree. Thus
for bounded-degree graphs this is still O k).

Theorem 3 (Upper bound on the increase in disagreement).
Let (7 be a weighted graph and s a vector of innate opinions
such that the resulting equilibrium opinion vector z has
disagreement [J. Suppose that the adversary has a budget of k;
that is, the adversary may select &' € [0,1]" such that ||s' —
5|y = k. Let I¥ be the disagreement of the resulting equilib-
rium opinion vector 2 = (I + L) '<. Then

U 'E D+8d:|mxk;

where dy 1= max,cv 3, oty 15 the (weighted) maxi-
mum degree.

B. Empirical Results

The theoretical results above lead to a natural question: can
the adversary achieve an increase in these objective functions
that grows linearly with &7 We show empirically, on both syn-
thetic and real data sets, that this is indeed the case for a range
of heuristics.

We first consider a greedy algorithm, where the adversary
iteratively selects nodes to take over, in each iteration choos-
ing the node, together with one of the two extreme opinions,
that maximizes the objective function. While this greedy algo-
rithm is natural, it also uses detailed information: specifically,
it assumes perfect knowledge of the network (7 and the innate
opinions s. Since this may be unrealistic in practice, we also
consider simpler heuristics for the adversary.

Ome such heuristic, which we term the “mean opinion™ heu-
ristic, is to choose the node whose (innate) opinion is closest
to the mean and change it to one of the two extremes (either
by optimizing this choice or just randomly). Such a heuristic
can easily be implemented approximately by an adversary,
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since often it is possible to deduce whether someone has a cen-
trist opinion by using exra information available about the
node. Furthermore, it may be the case that the adversary has
only approximate information about the {innate) opinions, for
instance, perhaps they are “rounded” to the set {0,1,/2 1}
(which cormesponds to the two extremes and the center); in
such a scenario, this heuristic is natural.

Another heuristic, which we term the “max degree™ heurs-
tic, focuses on a simple function of the underlying graph struc-
ture: iteratively choosing the largest degree nodes (in either a
weighted or unweighted sense) and changing their opinion to
one of the two extremes. This is motivated by practical scenar-
08 where the network topology is only partially known; for
instance, if only the node degrees are known, then this hearis-
tic is natural,

We also compare all the algonithms to a random baseline,
where the adversary selects nodes randomly and changes their
opinions to random extremes—note that this approach is infor-
mation agnostic.

We evaluate these algorithms on both synthetic and real
data sets. For synthetic networks we use three common proba-
hilistic generative models: Erdos-Rényi random graphs [13],
[14], the preferential attachment model [15], and the stochas-
tic block model [16], [17]. We also study Reddit and Twitter
data sets that were collected in [18] and subsequently studied
i [11].

Our main empirical finding is that in almost all settings—
meaning, a network (synthetic or real, as above), an algorithm
(from the ones described above), and an objective function
{disagreement, polarization, or a conical combination)—the
adversary succeeds in increasing its objective function linearly
in k. The rate of increase depends on the details: the greedy
algorithm performs best among these options, but the mean
opinion heuristic is often not far behind. Even the random
baseline gives a linear increase in k in several (though not all)
settings.

We note that our empirical results only consider iterative
algorithms. In principle, algorithms that are not iterative (e.g.,
nefficient algorithms such as brute force) could do much bet-
ter than iterative ones. However, the upper bounds of Theo-
rems 2 and 3 show that this is not possible: no maiter the
algorithm, only at most linear increase in & is possible for
polarization/disagreement.

The details of all our empirical results are in Section VII
below. All code and data has been posted to a public GitHub
repository, available at https:/fgithub. com/mayeechen/network-
disruption.

M. RELATED WORK

The diffusion of information through networks is an impor-
tant phenomenon in many disciplines. One common problem
related to ours is Influence Maximization (IM), where one
must select a subset of nodes to inject information into in order
to maximize the number of influenced nodes by the end of the
diffusion process [19]. Much work has been done on analyzing

the performance of greedy algorithms for this problem [20],

[21] (which, unlike ours, is submoduolar), and vardants of it
have further been studied (e.g., see [22] for a survey). Our
problem instead focuses on opinion dynamics and considers a
different objective of maximizing disruption. This involves
not only the diffusion process but also the value of the innate
and expressed opinions and where they are in the network.

Opinion dynamics have been used in various disciplines w
model social learning (see, e.g., [23]). In seminal work, the
DeGroot mode] describes how individuals reach a consensus
through stochastic interactions [24]. Friedkin and Johnsen
extended this model to incorporate individuals® intrinsic
beliefs and prejudices [10]. In the Friedkin-Tohnsen model, all
agents have individual innate opinion values, and as time goes
on, agents interact with each other, updating their opinions to
be a weighted average of their innate opinion and the neigh-
boring agents” opimions. Eventually, opinions converge to an
equilibrium, which is a non-constant function of the innate
opinions. This latter property is an important reason why we
use the Friedkin-Johnsen model for opinion dynamics in this
paper, in additon to its simplicity. The Friedkin-Johnsen
model can be extended in a variety of ways, for instance o
incorporate stubbomness and susceptibility to persuasion [25].

Several recent works have studied various network inter-
ventions to influence opinions in certain ways. Gionis, Terzi,
and Tsaparas [26] studied opinion maximization in social net-
works, which comesponds to pushing a specific agenda.
Abebe et al. [25] study a similar problem {opinion maximiza-
tion or minimization), but where interventions happen at the
level of susceptibility to persuasion. Bimpikis, Ozdaglar, and
Yildiz [27] study a game-theoretic model of targeted advertis-
ing in networks, which is again a similar objective; see also
the work of Lever on strategic competitions over net-
works [28]. Recent works of Mao er al. [29], [30] study com-
petiive information spread, with a focus on understanding
effects of confirmation bias,

In contrast, the work of Musco, Musco, and Tsouraka-
kis [11]—which serves as the starting point of our work—
studies polarization and disagreement, which are quite differ-
ent objectives. Even though one of their settings is a slightly
similar optimization problem with variable innate opinions,
their technical approach and motivation are very different
from our work since the goal of their work is to minimize
polarization and disagreement.

Our key conceptual contribution is to study the opposite
objective: maximizing polarization and disagreement. This
corresponds to an adversanial perspective, which is motivated
by recent developments over the past few years: malicious
actors have increasingly been working towards disrupting net-
works by increasing disagreement and polanzation, thereby
destabilizing society [7]-[9], [31]. Also, the specific interven-
tion we consider is taking over nodes of a network and modi-
fying their (innate) opinions,

The recent paper [32] contains similar ideas to our work.
However, their focus is on the special case when society ini-
tially has a consensus (i.e., s = 0), and this is perturbed by an
adversary that can modify the entire innate opinion vector.
They formalize the constraint on the adversary as an Ls-norm

Authonzed licensed use limited to: Princeton University. Downloaded on Aprl 28 2022 at 19:40-04 UTC from IEEE Xplore. Restrictions apply.



T3 IEEE TRANSACTIONS O NETWORK SCIENCE AND ENGINEERING, VOL. 9, NO. 2, MARCH/APRIL 2022

bound, whereas we use the constraint ||s" — s||; = k., which
has a clear interpretation in the adversary taking over at most
k nodes of the network. After our work appeared on the
arxiv, [32] was updated to consider L, constraints; in particu-
lar, they prove a bound that slightly improves upon our Theo-
rem 3. We focus on understanding the vulnerability of innate
opinions and provide extensive empirical work demonstrating
that simple adversarial heuristics can cause significant disrup-
tion, while [32] focuses more on a theoretical understanding
of the network structure.

Finally, we note that there is a huge literature on under-
standing polarization in social networks, a complete overview
of which 15 beyond the scope of this article; we refer the reader
to [33], [34] and the references therein.

I'V. PROBLEM SETUP

In this section we detail the problem setup for clarity. We
fix an undirected weighted graph G = (V, £ w) which repre-
sents the social network. Let n = |V| denote the number of
vertices (we often write [n] for the vertex set) and let m = |E)|
denote the number of edges. For convenience we define the
weight function on all pairs of nodes, with 0 < wy; < 1 if
(i,7) € £ and w; ; = () otherwise. We also set w;; = 0 for all
ieV.

Let d; = E}'EV wy; ; denote the (weighted) degree of node @
and let ) be the diagonal matrix with entries dy, ..., d, on the
diagonal. Let A denote the (weighted) adjacency matrix of 3,
with A;;:=wy; for i,7 V. Let L=0— A denote the
weighted combinatorial Laplacian of &, which we refer to just
as the Laplacian of (7. Finally, let [ denote the all-ones vector.

Opinion dynamics: Let s = (51,...,5,) € [0, 1]" denote the
vector of innate opinions. ln the Friedkin-Johnsen model of
opinion dyvnamics [10], agents interact with each other as time
goes on, updating their opinions to be a weighted average of
their innate opimion and the neighboring agents” opinions. For-
mally, if zgr} denotes the expressed opinion of node ¢ at time {
(where &€ {0,1,2,...}), then initially =" =s and the
update for t = (1is given by

t}
) _ S + 2 jev ‘”iulsz.i'
' 1+ stv w5

Ast — og, the vector of opinions converges to an equilibrium
vector = that satisfies

2= (I+ L}_ls, (3)

where [ is the nn x n identity matrix.

Disagreement and polarization. Following [11], we study
the disagreement [{z) and the polarization (=) of a vector
of opinions z; see (1) and (2) for the definitions. Note that
since the equilibrium opinion vector z is a function of the
innate opinion vector s, disagreement D and polanzation P
can be considered functions of s as well, in which case we
will denote them by D{s) and P(s), respectively. When clear
from the context, we may denote these by just I and F. We
also study linear combinations of these two quantities.

The objectives of the adversary. We are now ready to math-
ematically formulate our original questions as three optimiza-
tion problems with varying objective functions. For any
weighted graph &, innate opinions s, and budget k € M, the
adversary aims to determine the optimal modified innate opin-
ion vector 5" according to the following.

o Problem |: Disagreement

maximize  D(z')
subject to ' =(I+L) s’
s € [0,1]", ()
”g.r _S”u = k.
® Problem 2: Polarization
maximize  P(z)
subject to ' =(I+L) s’
8 € [ﬂ'_. 1]“, (5)
”g.r _S”u = k.
o Problem 3: Weighted Sum
maximize PlZy+ A %D[z’]
subject to d=(I+L) s
§e [ﬂ,l]n, (6)
18" — sl < .

Note that in (6), we introduce A as a parameter to describe
the relative importance of disagreement versus polanzation to
the adversary. For this weighted sum index, we have scaled
disagreement by {-H- = I 5o that the two terms have the same

order of magnitude when A = 1.

V. CONVEXITY AND CHOOSING EXTREME OFINIONS

In this section we prove Theorem | and also demonstrate
the lack of submodularity of the described problems. For all
three optimization problems, the set of constraints do not form
a convex set due to the constraint ||s' — s[|, < k. However,
we prove that all of the objective functions are convex in &,
which implies that s € {0, 1} for all vertices 1 where 5| # =.

Lemma 4: Disagreement is convex in &', That is, the func-
tion s (') is convex.

Proof: Disagreement can be written in quadratic form as
#7Lz'. Noting that T + L is symmetric and using (3), I can
be expressed as

D8 ="y = ((I4+ L)'\ LT+ L) ')
=sT(I+ L)'L(T + L),

The Laplacian matrix L is positive semidefinite and symmetric, so
L can be written as . = BT B for some matrix B € R™*", There-
fore, (I+L)'LUI+L)y'=(I+L)"'B™B (I+L)"'=
(B(I+ L)Y (B{I+L)"),so(I+L)"'L{I+L) " isalso
positive semidefinite. Thus we can write I as a quadratic form in
terms of &', with a positive semidefinite matrix, so [2{<') is convex
ing’,
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Lemma 5: Polarization is convex in ", That is, the function
& P[] is convex,

Proaf: For notational convenience we drop all apostrophes
from the notation. For a vector = € B" let 7 := = — T1 denote

the centered vector. With this notation we have P(z) = Tz
Observe that L1=10, and so (/+L)I=1 and (I+
L}r‘l =1. Usmg (3) this implies that T=1:1=

I+L} 1=1 Tl =7 In words, the mean eqm]]bnum
ur|:nmun i the same as the mean innate opinion. This, in turn,
implies that = = (I + L) '3 With this notation we have that

- 3”"([: + L]'1)2.”€.

For a vector z € R" define f(z):=z"((I + L) ")z and
glz) =x— T1 = 7. Note that ((I+ L]_1]2 is positive semi-
definite, since it is the square of (7 + L)™*, which is positive
semidefinite and symmetric. This implies that f is convex,
since it 15 a quadratic form with a positive semidefinite matrix.
Note also that for any two vectors z,y € B" and ¢ < [0, 1] we
have that gler + (1 — w)y) = wg(z) + (1 — alg(y). There-
fore the convexity of P = f o g follows directly from the con-
vexity of f. u

An immediate consequence of Lemmas 4 and 3 is that any
comical combination of disagreement and polarization is con-
vex in &'. This is because convexity is preserved by scaling
with a positive constant, as well as across addition. Therefore
our conclusions extend to the objective function of Problem 3
(see (6)) as well.

Proof of Theorem [: Lemmas 4 and 5 show that the
adversary’s optimization problem is a convex maximization
problem in 5. Moreover, if (& has no isolated vertices then
this is a strictly convex maximization problem. Therefore any
coordinate of s that is changed in & must be changed to an
extreme: Dor 1. u

We conclude this section by a simple example that shows
that the objective functions we are considering are not sub-
modular. First, recall that a set function f: {0, l}v — [k is
submodular if for every 5, T C V with § C T and for every
ve VAT we have that f(SU{v})— fIS) = f(TU{v}) -
fIT). In words, submodular functions have a diminishing
returmns property.

Example 1 (A single edge): Consider a graph with two
nodes, denoted | and 2, with an edge between them with
weight w2 = 1. Suppose that the innate opimons are initially
centrist: & = s = 1/2_ In this case the equilibrinm opinions
are also centrist: z; = zp = 1/2, leading to no disagreement or
polarization: D(z) = P(z) = 0.

If an adversary has a budget of & = 1, they will change the
innate opinion of ajn arbitrary) node to an (arbitrary) extreme:
& =10, s, =1/2. This results in the equilibrium opinions
# =1/6 and =, = 1/3, giving disagreement D(z') = 1/36
and polarization P(:") = 1/72.

If an adversary has a budget of k = 2, they will change the
innate opinions to opposite extremes: s) =0, & = 1. This
results in the equilibrium opinions z{ = 1/3 and 2 = 2/3,

giving disagreement D(z") = 1/9 and polarization P(z") =
1/18.

For both disagreement and polanzation the increase in the
second step is greater than the increase in the first step, and
hence these objective functions are not submodular.

Because all three objective functions are not submodular,
we are unable to apply the theoretical guarantees of greedy
algorithms for submodular maximization (e.g., [35]). We
instead focus directly on bounding the extent of disruption an
adversary can cause, independent of the algorithm, and then
conduct an empirical smdy to evaluate the performance of
greedy algorithms with respect to this bound.

VL BounDs oN NETWORK DISRUFTION

In this section we prove Theorems 2 and 3. We start with a
preliminary lemma which gives a bound on the Lj-norm of
the difference between the modified equilibrium opinion vec-
tor =" and the original equilibrium opinion vector z.

Lemma 6: Let s be the original innate opinion vector and
let & be the modified innate opinion vector, satisfying || —
sl|y < k. Let = and 2" be the respective equilibrium opinion
vectors. Then

I = 2l < k.

Proof: Since z = (I + L) 's, we have that

I# =l = |7+ L)

I I

<3N (s, - sa) (T4 L)

i=1 a=1

_EEL*J — Sy I+L}m \

i=1 a=1

(s = 9l

where the inequality is due to the triangle mtx{uaht}r and the
final equality is because the entries of (J 4+ L) are nonnega-
tive. Without loss of generality, assume that nodes 1..... &
comprise the set of nodes taken over by the adversary. Since
s; € [0, 1], we must have || — 5| < 1 for all i. Thus

2 —z||1{ZZ|s — sl I+L},&{ZZ(1+L

i=1 a= i=1 a=

Now interchanging the order of summation we have that

ZZ(I+L

Here we used the fact that the column sums of (I + ) - are all
equal to 1, which follows from the fact that (I + L}_ll =1
(shown in Section V) and that (I + L)' is symmetric. u

k k

EZI+L 1=

a=1 i= =

A. Bownd om the Increase in Polarization

Proof of Thearem 2: 'We first rewrite P’ in a way to make P
appear. This can be done by adding and subtracting under the
square, and then expanding the square:
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T 113
P=3%(4-7) =Z{z§—z,-+z,-—z+z—z’}2
<

i=1

- P+Z[z: —x) +nE-7) + ?i{fs - z)(z—3)
i=1

+Ez 4 -%)(z-7 +‘EZ

i=1 i=1

-3E-7). O

Since ¥, (2 — T) = 0, the last term in (7) is zero. The first term
in (7) is equal to —2n(% —7)", because Y, (2 — =) =
n(z" — ). Plugging this back into the display above we obtain that

P =P+ (a2 ) (- ) - D)
=1 i=]
(8)

The last term in (8) is nonpositive, so we may drop it. For the
hn‘t sum in (8), note that z; € [0, 1] for every i € [n]. so (2] —

! < |4 — z|. Together with Lemma 6 this shows that
E:l_l(z’ — z;)” < k. Finally, for the other sum in (8), using
the bound |z — 2 < 1 we have that >0 (2} — z)(z —2) <
S, |2t = =] £ k Altogether this shows that P' < P + 3k
as desired. |

B. Bound on the Increase in Disagreement

Proaf of Theorem 3: We start by rewriting 1 in a way to
make [ appear. This can be done by adding and subtracting
under the square, and then expanding the square. In the fol-
lowing all summations over ¢ and j go from 1 to n, so we do
not write this out further.

D=y wi(4-4)
i
=3 (4 —Z:'+7=f—z)+zj'—z§)2
i

=D+ Zw,-_j{{z: — z.}l2+(z‘; — .e:_j;)2
+ 2{2': - z,-}(zj - z;)
+2{z, —z_l.] (z" Zi+ 24— z_‘;)}

We now bound the four sums above. The first two sums are
equal by symmeiry, and we have that

Sl Pl -2t -
i
=2 Zd:{z: - zi:lzi: P - Z|3: - 2‘,‘| < 2k,
i i
where we used Lemma 6 for the last inequality and the fact

that |2} — %] € [0,1] in the inequalit}r before that. Next, using
the inequality (2} — z)(z; — 2}) < |2 — 2i| we have that

—n(T — Er}z.

Efzdﬂ"id{z: - Z.-}(zj _

Finally, we use the bound (z; —z;)(z} — = + 2 —
|2} = 2| + |2} — ;| to obtain that

EZMJ  — Zj (
5 EEHJI‘JUZ; — Z§| + |zj -—
i

= Ak

%) €23 wisl 4 - 2 < 2k
t.j

Z) =

f
-tz — zJ.)

) =4S i
i

Putting everything together we obtain that [ < [} + 8d,,,. %
as desired. |

VII. ALGORITHMS AND EXPERTMENTS

We analyze the performance of the different heuristics
across our three objectives and comment on how factors in the
underlying social network—such as the degrees of the vertices
and the distribution of innate opinion vectors—play a role. In
particular, in our experiments we consider maximizing dis-
agreement [, polarization F, and a weighted sum P+ 21
(i.e., A = 1). In the descriptions of the algorithms, we refer to
the adversary’s objective as f.

A Algorithms for the Adversary

We present six adversanial heuristics that are designed
under varying levels of information available about the net-
work structure and opinions. We start with a natural greedy
algorithm and then turn to other simpler heuristics. All algo-
rithms below are iterative, picking vertices one at a time until
at most & vertices have been selected. We denote by {2 the set
of vertices that have already been selected by the adversary;
initially 0 = {.

Greepy. In each iteration i, we select a vertex and set its
opinion to 0 or 1 to result in the greatest increase in the objec-
tive function f((I+ L)7'&"), given that i — 1 opinions have
already been picked and modified according to this algorithm.
We then add this vertex to £}, update &', and repeat & times, Tf
no modification results in an merease in the objective function
at the ith iteration, with i < k&, then we stop.

Mearn Opmaom, First, we select the index §* such that

J =

In words: among opinions that have not been changed yet, we
choose the vertex whose opinion 15 closest to the current
network's average opinion to be §°. Second, we must change
the opinion &, to 0 or 1. To do this, we optimize and set
& = a* = arg max, o y{f((I + L)'¢) : s} = a}.

Mote that the first step of this heuristic does not require any
knowledge of the underlying graph structure, which can be the
case in practice when edges are unknown; for instance, when

hiding a list of followers or friends. Furthermore, if the
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adversary only has a rough idea of the nodes’ opinions, this
heuristic is intuitive and implementable approximately: pick a
“centrist” node with the most neutral opinion.

Meanw Orpaoxn (Ravposmizen). This algorithm is similar o
the Meanw Opmaon algorithm, except the second step is
replaced with randomly picking .w;.. tor be equal to 0 or 1 with
equal probability. This algorithm can thus be entirely per-
formed without knowledge of the underlying graph.

Max Decree. First, we select the index 577 such that

o= ﬂ.rgmaxz {m”__hu}

Jeil

In words: we choose our vertex to be the one that is connected
to the most other vertices in the network. Second, we optimize
the opinion £, as in MEAN OPINION.

Max WeigHTED DEGREE. This algorithm is similar to Max
DecreE, except in the first step we choose §° by maximizing
the weighted degree: 7 := arg max;, z:'e'l.-’ w; .

The latter two algorithms exploit the network strocture in a
simple way and so they may be practical for an adversary that
has access to the underlying graph but may not have the means
or data necessary to deduce what the opinions are.

Rarmom. First, select a vertex §* ¢ {) uniformly at random.
Second, set 3‘;. to either 0 or 1 with equal probability. This
completely random algonithm offers a natural baseline to com-
pare against.

B. Symthetic Experiments

We evaluate the algorithms described above on synthetic
networks generated using three probabilistic models: the
Erdos-Rényi model, the preferential attachment model, and
the stochastic block model. In all three cases, our resulis sug-
gest that Greeny, Mean Opivion, and Mean Opivion (RanDomM-
zeD ) cause disruption that scales linearly in k.

For each of the models, we generate a random graph with
1 = 1000 vertices. Weights on the edges are chosen indepen-
dently and uniformly at random from (0,1) (and nonedges
have zero weight). We experiment with k in the range ) < k <
n/2. For each iteration until n/2, we plot the disagreement,
polarization, and weighted sum when the adversary disrupts
the network according to the six algorithms presented.”

Erdo s-Rényi model. Tn the Erdos-Rényi model [13], [14]
every pair of nodes is connected independently with some
probability p < [0,1]. This model serves as a natural null
model for random graphs, with no underlying structure. In
Fig. 2 we take p = 0.2; other values of p show qualitatively
similar behavior. We set the innate opinion vector s to have
ii.d. values which are uniformly distributed in [0, 1].

The simulated performance of the six algorithms are shown
in Fg. 2 (top row). We observe that all three objective func-
tons are increasing roughly linearly in £ for all six

*To clarify, each figure presents results for a single realization of the ran-
dom setup (random graph and innate opinions) and, for randomized algo-
rithms, a single realization of madomness in the algorithm. We do this so that
curves represent the trajeciory of a single adversary's action.

algorithms, with the Greepy algorithm performing the best.
We also see that Mean Ormaon and Mean Ormion (Raspom-
1ZED), the two heunstics that exploit the innate opinion vector,
perform better than Max Decree and Max WaGHTED DEGREE,
which exploit network structure. In fact, the latter two heuris-
tics appear to be only slightly better than the Ranbosm baseline
for all three objectives.

Preferential attachment model. Compared to Erdos-Rényi
random graphs, more realistic graphs can be constructed with
the preferential attachment process [15]. While the Erdds-
Rényi random graph serves as a namural null model for a net-
work with no structure, the preferential attachment process
instead follows the natural concept that vertices that are more
connected will receive more edges in the foture. This is often
true in social networks; for instance, new accounts on a social
media platform are perhaps more likely to follow a popular
account rather than a less known one. We choose 1o generate a
network using a preferential attachment process with parame-
ter m = 5, meaning that at each time step, a new vertex s con-
nected to m existing nodes, choosing each existing node with
probability proportional to its degree. We again set the innate
opinion vector s to have i.i.d. values which are uniformly dis-
tributed in [0, 1].

The simulated performance of the six algorithms are shown
in Fig. 2 (middle row). Relatively, the greedy algorithm still
has the best performance, followed by Meaw Opvion and
Meaw Ormaon { Ravpomizen) for the k defined in the synthetic
experiments, and the performance of all algorithms seems to
increase linearly in this range of & We observe, however, that
while Max DeGreg and Max WEIGHTED DEGREE start out worse
than pure randomization, they appear evenmally to surpass
Rampom and increase at a rate faster than other algorithms.
Lastly, we observe that the scale of the objectives 15 signifi-
cantly larger than is observed for the Erdd s-Rényi model (see
the top row of Fig. 2); perhaps this is due to the Erdos-Rényi
graph being much denser and thus “averaging™ all the opimons
more.

Stochastic block model. The stochastic block model [16],
[17] is able to represent planted clusters, unlike the other mod-
els we consuder. These sorts of communities often arise in
social networks, as seen in the Twitter data set which we dis-
cuss below. We consider the simplest version of the stochastic
block model, with two communities 7 and €4 each of size
n/2. Let the connectivity within both communities have
parameters py = ppe = (.7, that is, pairs of vertices within
the communities share an edge with probability 0.7 (indepen-
dently across pairs), and let the connectivity between the two
communities have parameter p;; = 0.1. Moreover, different
communities often have different opinion distributions. There-
fore, in our experiments we set the innate opinions s, for v €
'y 1o be independent draws from the Beta(5, 2) distribution,
while the opinions of s, for v € (' are i.i.d. Beta(2,5). This
means that opinions in 4 are biased towards 1, and opinions
in s are biased towards 0. Experiments with different param-
eters show similar qualitative behavior.

The simulated performance of the six algonithms are shown
in Fig. 2 (bomom row). Similar to the other synthetic
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Fig. . Performance of network disruption algoritims in synthetic experiments. Top row: under the Erdos-Rényi model with p = (0.2 and opinions distributed
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experiments, the Greepy and Mgeaw Opmaow algorithms per-
form the best across the three objectives, increasing linearly in
i However, in this case the Rawpowm baseline actually
decreases the value of all three objectives, while Mean Opin.
104 (RanposizeD) decreases for polarization and the weighted
sum. We conjecture that this is because choosing between 0
and 1 heavily depends on which community j° 1% in due to
how the innate opinions are generated using two beta distribu-
tions rather than just a uniform distribution over [0, 1].

C. Analysis of Reddit and Twitter Data Sets

We also evaluate the six algorithms for the adversary on
two real data sets, finding that polanization and disagreement
can increase one order of magnimde when an adversary takes
over just 10% of the accounts. These data sets, one on Twitter
and one on Reddit, contain the edge set for the social networks
as well as the list of opinions of the users over time. They were
originally collected by [18] by tracking interactions between
users and using natural language processing techniques to
map text to opinions; they were subsequently studied in [11].

We pick the innate opinion vector to be the most recently
recorded opinion vector, which is also how [11] chooses
innate opinion vectors,

Twirter. This network has n = 548 vertices and m = 3638
edges, where the vertices represent the individuals tweeting
over a certain time period about a debate on the Delhi legisla-
tive assembly elections of 2013 (identified by a set of hash-
tags), and their opinions correspond to the sentiment of the
tweets. Each edge is an undirected interaction between users.

The simulated performance of the six algomthms on the
Twitter data set are shown in Fig. 3 (top row).” The GReEDY
and Mean Orpraon algorithms still have the largest increases
in all three objectives for this data set, with the Greeny algo-
rithm performing best. On the other hand, Meay Opisnon (Ran-
pomizen) and Rawoom perform relatively poorly, with Max
Decree and Max WeigHTED DEGreE eventually outperforming
the former two for all three objectives. Thas relative ordering

*Apain, each figure presents results for a single realization of the random-
ness (for those algorithms that involve mndomness). The same applies to the
botiom row of Fig. 3.
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Fig. 3. Performance of neswork disriprion algorithms on real data sets. Top row: on o Twiter data set. Bostom row: on o Reddit data set.

of the performance of different algorithms is similar to that of
the stochastic block model discussed previously (Fig. 2, bot-
tom row). In fact, when the Twitter network is visualized, we
can see that there are two main communities, and a third
smaller and less dense community. Therefore, we can attribute
a lot of the performance results to the underlying commumity
structure. However, the distribution of innate opinions does
not follow two beta distributions, but instead is approximately
Gaussian with mean (0602 and standard deviation 0.08, which
mitigates the decrease in performance that results from ran-
domly setting a® amid beta-distributed opinions.

In Table I, we list the exact values for disagreement, polar-
ization, and their weighted sum of the Twitter network when
the adversary uses the greedy algorithm, at the start of the
algorithm (k= 0) and when k is equal to 20,50, 100, 200.
This table suggests that, even if the adversary can only
change the opinions on 20 accounts (approximately 3.6% of
the nodes), the disagreement in the network increases by
over 4 times, while the polarization and weighted sum
increase by over 7 times. This quantitatively demonsirates
the significant amount of disruption—increase in disagree-
ment and polanzation—that a malicious actor may inflict
upon a social network.

Reddit. This network has n = 556 vertices and m = 8969
edges, where the vertices mepresent individuals who have
posted in a politics subreddit, and their opimons correspond to
the sentiment in this subreddit over a certain time period.
There is an edge between users if they both post in at least two
other same subreddits. We also discard three vertices from
this graph that are not connected to any other vertices, as keep-
ing these vertices implies that algorithms can simply change
these opinions to yield large increases in polanzation without
any consequences for the opinion dynamics.

TABLE 1
VALUVES OF OBJECTIVE FUNCTIONS FOR THE TWITTER DA TA SET. THESE ARE
UNDER THE GREEDY ALGORITHM AT k = 0 (original ], 20, 50,

100, Az 200
Objective k=0]k=20 k=50 k=100 k=200
Disagreement .48 212 4.17 G.81 1120
Polarization 0.29 234 3.89 6.70 15.05
Weighted Sum | 0.37 2.66 4,48 7.58 16.54

The simulated performance of the six algorithms on the
Reddit data set are shown in Fig. 3 (bottom row).* Again, the
greedy algorithm performs best, with a large increase espe-
cially for small k. While the graphs for polarization and for
the weighted sum have very noticeable jumps, for all three
objectives Mean Opmaorn, Mean Opmion (Ravpowizen), and
Ranpom perform similarly. We conjecture that random is not
the worst in this case for two reasons: firstly, the Reddit data
set's opinions roughly follow a Gaossian distribution with
mean (1.498 and standard deviation 0.04, meaning that the val-
ues are more tightly concentrated around a very neutral opin-
ion than the Twitter data set. Moreover, the distribution of
degrees of the vertices is more uniform than that of the Twitter
data set (which appears to follow a power law instead), sug-
gesting that arbitrarily choosing a vertex and then randomly
setting its opinion can still result in good performance.

In Table 1T, we list the exact values for disagreement, polari-
zation, and their weighted sum of the Reddit network when the
adversary uses the greedy algorithm at the start of the

"We remark that some of the curves in these figures have relatively big
jumps, a phenomenon that is not present in the figures about other networks. It
turns out that the Reddit data set has many nodes with degree 1, and these
larger jumps happen when the algorithm happens © pick these nodes to
change. All other networks appearing in the paper do not have nodes of degree
1. which iz why this phenomenon does not appear in the other figures.
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TABLEI
VALUES OF QBJECTIVE FUNCTIONS FOR THE REDINT DMTA SET, THESE ARE
INDER THE GREEDY ALGORITHM AT k = 0 (original ], 20, 50, 100, AND 200

Objective k=0 k=230 k=450 k=100 k=200
Disagreement 0,09 1.14 2, 0¥ 2.88 4.08
Polarization 0.07 0.72 .54 0.895 Lioa
Weighted Sum | 0.08 0.79 0.99 1.15 1.33

algorithm (% = 0) and when & is equal to 20, 50, 100, 200. This
table suggests that, even if the adversary can only change the
opinions on 20 accounts (approximately 3.6% of the nodes),
all objectives are able to increase roughly tenfold. Just like the
corresponding results for the Twitter data set, this quantita-
tively demonstrates the significant amount of disruption—
increase in disagreement and polarization—that a malicious
actor may inflict upon a social network.

VI CoNcLUSION AND DISCUSSION

Our primary conceptual contribution is the introduction of
an adversarial model of network disruption. This presents an
important lens through which to study the unfortunate recent
trend of malicious actors interfenng in social networks in
order to destabilize society.

The key conclusion from our results is that an adversary can
significantly disrupt a network—in particular, increasing dis-
agreement and polarization—using simple, unsophisticated
methods., This mirrors recent findings analyzing real-world
data; for instance, the authors in [31] conclude that the Internet
Research Agency’s operations to interfere with the 2016 U.S.
presidential election “were largely unsophistcated”. This
adversarial approach thus highlights the severity of the prob-
lem, and we hope this motivates further research into address-
ing it via strategies for defending against network disruption.

We list several avenues for further study in the following
bullet points, ranging from specific questions concerning the
model we studied to broad questions concerning adversarial
models on social networks,

& Hardness of optimal network disruption: As mentioned
m Section II, we conjecture that solving the optimiza-
tion problem of the adversary is computationally hard
when k is large. Recent work of Gionis, Terzi, and Tsa-
paras [26] on a related opinion maximization problem
uses a reduction o vertex cover to show hardness: see
also [25] where this proof is adapted to another setting.
Adapting this proof to our setting is challenging due to
the different nature of our objective function, coupled
with the opinion dynamics whose effect is difficult to
1solate,

o Performance pguarantees  for the adversary: In
Section VI we investigated empirically the perfor-
mance of several natural algorithms for the adversary,
on several different random graphs, as well as on Reddit
and Twitter data sets. While performances wvaried,
depending on the algorithm and the underlying social
network, one thing that most had in common was a lin-
ear growth in the objective function, as a function of the

budget &. Ts it possible to prove such a performance
guarantee (at least for some heuristic)?

o Other opinion dynamics: We focused here on the Fried-
kin-Johnsen model of opinion dynamics, but everything
we discussed can be studied under other models. How
robust are the results to such changes?

o Other adversarial disruption models: We have consid-
ered a setup where an adversary can change the innate
opinions of k nodes in a network, While we discuss
the motivation behind our model in Section [-A2, we
may want to model how an adversary disrupts a net-
work in more nuanced ways. For instance, we can
combine our model with that of [25], which uses a sus-
ceptibility parameter o reflect how easily users are
influenced by (adversarial) opinions. We may also
want to consider a setting where adversaries can create
new accounts (i.e., bots), for which we would need to
both set opinions and add edges. Nonetheless, we hope
that the simplicity of our model, while it may not
completely represent the complex realities of social
networks, provides a first step into understanding
adversarial disruption.

& Defense strategies: Our empirical results show that the
adversary does not have to be sophisticated in order to
significantly disrupt the network. This highlights the
need to think eritically about defense strategies that can
counteract network disruption. For instance, is it possi-
ble to tackle network disruption by modifying the net-
work itself (e.g., by carefully suggesting new edges to
add)?

Ultimately, we hope that considering an adversarial view-
point will better equip us to minimize the deletenious effects
of malicious actors.
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