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Abstraci—For heterogeneous computing systems, various types of processor cores cause

system performance degradation due to uneven load. In addition, the inability of

multitasking to match the appropriate processor core is also an urgent problem. This

article proposes a swarm intelligence task scheduling strategy based on the genetic
algorithm (GA) for high-performance heterogeneous multicore processors. In orderto

avoid the falling into local optimal solutions, we employ an adaptive mutation and
injection strategy in the algorithm design. This swarm intelligence solution detects the

computing capacities of different cores by processing specified tasks beforehand, and
then an appropriate solution will be explored by introducing an adaptive mutation GA. Our

technique aims to execute various types of tasks on heterogeneous processing cores for

optimal performance. Experimental results show that this scheduling strategy can reduce

the additional overhead and improve parallel computing efficiency and system

performance.

B Cowmputer sysTems HAVE changed a lot with
the advance in manufacturing technologies. The
single-core processor structure is restricted by
physical design and other factors such as energy
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consumption, which will cause the focus of
Moore's Law to shift from the simply increasing
number of transistors to adding more cores that
can be integrated on a chip.l'3 Consequently,
the direction of the processor development is
changing from a single-core architecture to a
multicore architecture. To handle the massive
data computation in today’s applications, the
number of CPUs integrated on the single chip
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Figure 1. CPU-GPU heterogeneous computing
platform.

has reached dozens. It is difficult for a processor
to support such a huge amount of calculation.*®
Heterogeneous computing systems have so far
been developed to incorporate various comput-
ing units such as CPUs, DSPs, GPUs, and FPGAs.
Such heterogeneous systems combine comput-
ing units for various types of instruction sets,
allowing different cores to cooperate to deal
with multiple computing scenarios and improve
system performance effectively. While heteroge-
neous systems provide a novel platform for
emerging computing paradigms, such as big
data and cloud computing, they also face many
challenges. Figure 1 shows a CPU-GPU heteroge-
neous computing platform architecture. One of
the challenges is the inability to match the
appropriate processor cores during the execu-
tion of multitasking, which seriously restricts
the performance of heterogeneous computing
systems. An efficient task scheduling strategy is
of great importance to solve this problem to
improve system performance.

In this article, we focus on improving the per-
formance of heterogeneous multicore process-
ors and propose a swarm intelligence task
scheduling strategy based on a genetic algo-
rithm (GA). First, we propose a swarm intelli-
gence task scheduling strategy for high-
performance heterogeneous multicore process-
ors based on a GA to improve the performance.
Second, we introduce a mechanism to detect the
computing capacities of different cores by char-
acterizing specified tasks beforehand, and we
propose to use an adaptive mutation strategy
and injection strategy to avoid premature con-
vergence and fall into a local optimal solution.
Third, we perform an extensive experimental
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evaluation of the scheduling algorithm pro-
posed. The evaluation results show that our

solution can significantly improve system
performance.
BACKGROUND

Reducing the load unbalance on heteroge-
neous computing systems and fully utilizing the
computing capabilities of heterogeneous proc-
essing cores have become an urgent challenge
to be tackled in the field of high-performance
computing.

To solve the task scheduling problem in mul-
titask computing, linear programming-based
methods® have been explored by Baruah et al
There are other prior work focusing on the
assignment problem of multitasks.” A combina-
tion of GA and particle swarm optimization
(PSO) algorithmm was proposed by Li ef al. An
efficient hybrid GA and PSO algorithm for molec-
ular dynamics simulation on heterogeneous
supercomputers load balancing was further
developed. To improve the efficiency of multi-
tasks execution, a bypass shared cache manage-
ment method'' was developed by Juan et al. A
free and open-source software toolkit based on
GUN radio'? was developed by Perea et al. Tech-
niques have also been proposed to utilize the
support vector machine classification method to
classify computing tasks into CPU type and GPU
type.’31* Machine learning-based techniques
have also been proposed to improve consumer
electronics performance.!®!6

SWARM INTELLIGENCE TASK
SCHEDULING STRATEGY

The scheduling strategy designed in this arti-
cle aims to improve the overall operating effi-
ciency of the system. Binding the execution
relationship between various types of tasks and
heterogeneous processor cores appropriately,
we employ an improved genetic algorithm
(IM_GA) to reduce the additional overhead
caused by general task scheduling schemes.
Aiming at the problem of falling into local opti-
mal solutions and premature convergence in a
GA, we first do prescheduling by detecting the
computing capacities of different cores by proc-
essing specified tasks beforehand, and then we
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propose to add an adaptive mutation and an
injection strategy to alleviate these problems.
Adaptive mutation solves the problem that
genes of excellent individuals with high adapt-
abilities are destroyed and enters a random
search. If the mutation probability is too low,
then it is difficult to introduce new genes, which
makes the algorithm’s later search stalled.!” The
injection strategy has a powerful supplementary
diversity mechanism, which alleviates the earlier
convergence in the algorithm and can make the
algorithm easier to avoid reaching the local opti-
mal solution.

GA for NP-Hard

The task scheduling problem of heteroge-
neous multicore processors is an NP-hard prob-
lem. How to quickly obtain the task scheduling
strategy of the multitask model is a key indicator
to evaluate the performance of the algorithm. Effi-
cient algorithms can reduce the time consumed
to solve the task scheduling strategy. The sched-
uling strategy designed in this article improves
the GA to build the model. Selection, crossover,
and mutation in the GA are the key operations of
population iterative evolution. The final evolu-
tion and optimization effects of the entire popula-
tion are related to the fitness function, crossover
probability, and mutation probability set in the
algorithm. Therefore, in order to solve the prob-
lem of low efficiency and local optimal solution in
the GA, we add adaptive mutation and injection
strategies to improve the GA.

Tasks Prescheduling

To bind the execution relationship between
heterogeneous processing cores and various
types of tasks, we detect the computing capaci-
ties of different cores by processing specified
tasks beforehand. We introduce an regulatory
factor y to adjust the proportion of tasks for test-
ing, where 0 < y < 1. Based on this, we calculate
the total completion time and find a minimum
one as the initial setting of the intelligence task
scheduling algorithm.

Steps of Intelligence Task Scheduling Strategy

We propose a swarm intelligence algorithm
that improves the GA using the following steps.
The flow chart is shown in Figure 2.
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Figure 2. Flow chart of GA modeling and solving.

Step 1: Initialize parameters of the intelligence
task scheduling strategy. Each individual in
the initial population denotes a scheduling
scheme. In this model, we combine the task
pre-scheduling and the dependencies
between tasks as follows:

() We first calculate the H(T;), where
H(T;) denotes the height value of task
T; based on the DAG diagram.

(ii) Thetasks are allocated to GPU and CPU
based on the prescheduling strategy.

(iii) According to the H(T;) obtained in
step (i), the tasks randomly assigned
on each core are sorted in an increas-
ing order, and the sorting result is the
execution order of tasks on the proc-
essing unit.

(iv) When the size of the initial population
does not meet the requirements, we
switch back to (ii); otherwise, we go to
step 2.

Step 2: We calculate the fitness function of all
individuals in the population, and all individ-
uals in the population are ranked based on
the fitness order. The selection of the fitness
function affects whether the algorithm can
find the optimal solution and the conver-
gence speed directly. We judge the quality
of the solution according to the value of the
fitness function.

We use 5., to denote the size of the current
population, and we use T},4(S) to denote the
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time required to execute the scheduling scheme
S. The total completion time of the current
population Ty, is represented by the following
equation:

Sea—1

Tom= D Tiowmi(5), 0< §< S — 1. (10

i=0

The value of the fithess function for the
scheduling scheme S'is defined as follows:

wm Eotaf(s)

Fit (5) = 22— )

Step 3: Crossover. The rate of the crossover is
0.5. In the last step, two adjacent chromo-
somes are crossed and sequenced to pro-
duce offspring. We then recalculate the
fitness of the parents and offspring and
choose a new offspring in descending order
based on the fitness. The sizes of the popula-
tion and the new population are consistent
with the size of the parent population.

Step 4: Mutation. F,, is the selection of mutation
probability in parameters has a great impact
on the performance and the behavior of the
GA. When the probability of mutation is too
high, the genes of outstanding individuals
with high adaptability are easy to destroy,
and then we will enter a random search.
Therefore, we propose an adaptive mutation
strategy in this article. When Fitya > Fit
the F,, is calculated using (3), otherwise, B,
is set to 0.8. &, is setto (.2.

Fit 0 — Fit

Pm e Kﬂl*'
Fitypor — Fit 3
Here Fit,,.. denotes the fitness function with
the maximum value among all scheduling strate-
gies and Fitg denotes the fitness of the schedul-
ing strategies in the population.

Step 5: If the number of iterations reaches the
maximum number, we will select the task
scheduling scheme with the largest fitness
function; otherwise, the optimal solution
of the continuous multigeneration popula-
tion is found, and then the Hamming dis-
tance among the optimal solutions of the
continuous multigeneration population to
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determine whether potential premature con-
vergence has occurred. If there is no prema-
ture in the procedure, we go to step 3;
otherwise, we start to use the injection strat-
egy and go back to step 2. After successive
generations, the injection strategy is applied
if the solution remains the same.

EVALUATIONS

We use Sugon W580-G20 to build our platform
and the operating system is Linux. The CPU is
Intel Xeon E5-2620 and the GPU is NVIDIA Tesla
P100. In our platform, the memory is 128Gb and
the hard disk is 2Th. We use the widely used task
generation tool to create a test program and then
conduct simulations to test the performance of
our GA-based schemes for heterogeneous multi-
core processors. TGFF was originally a standard-
ized random benchmark developed by R.P. Dick
and D.L. was widely used in the research of task
scheduling and allocation in the field of software
and hardware collaboration.'® TGFF is suitable
for many applications that need to generate
pseudo-random graphs. The latest version (3.0)
expands the TGFF function and provides a highly
configurable random graph generator that can
generate multiple types of tasks.

Convergence Speed Test

Convergence speed is a key indicator for eval-
uating the performance of GAs. It is expressed by
the time of obtaining the global approximate
optima solution by the swarm intelligence algo-
rithm interaction. We use a first-come-first-serve
scheduling algorithm (FCFS), PSO, traditional
GA, and the IM_GA proposed to test the conver-
gence speed.

The convergence times of the TGFF-1 sched-
uling scheme solved by the three swarm intelli-
gence algorithms are shown in Figure 3 as the
first group of bars. Experiments show that
IM_GA has the strongest convergence ability
compared with the PSO and the GA. When the
IM_GA is used to model and solve the optimal
task scheduling scheme, the global optimal solu-
tion is found when the iteration proceeds to the
27th time. The task scheduling scheme obtained
by this method is the most efficient among the
three.
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Figure 3. Convergence times of TGFF series

solved by three algorithms.

The convergence speed results of GA, PSO,
and IM_GA tested by the TGFF-2 experiment are
the second group of bars shown in Figure 3. The
IM_GA is still the fastest of the baseline algo-
rithms. In the TGFF-2 test program, the iteration
times of GA, PSO, and IM_GA reach the conver-
gence state are 58, 39, and 36, respectively. PSO
and IM_GA have little difference in the number
of iterations and this is because the particle
swarm algorithm falls into the local optimal solu-
tion at the 39th iteration, and the obtained
scheduling strategy is the least efficient of the
three algorithms. The convergence of the three
algorithms in solving the optimal task schedul-
ing scheme under the TGFF-3 is the third group
of bars in Fig.3.

Although the execution time of the task
scheduling strategy obtained after the optimal
solutions decoding of the PSO and IM_GA are
the same, the convergence speed of IM_GA is
still the fastest of the three. The optimal solution
is found about the 33rd time, while the PSO
needs 58 times to find the same optimal solution
as IM_GA. In summary, from the convergence of
the three sets of test programs (TGFF-1, TGFF-2,
TGFF-3) created by TGFF, IM_GA has the stron-
gest convergence capability compared with the
other two algorithms.

Performance of CPU-GPU Heterogeneous
Multicore Processor

In many heterogeneous multiprocessor sys-
tems, due to the very high-cost in terms of GPU
energy, CPU-GPU heterogeneity has become the
most commonly used architecture in recent het-
erogeneous systems. Therefore, we first con-
ducted a performance test for the CPU-GPU
heterogeneous multicore processor. We run
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Table 1. Different configurations of CPU and GPU.

CPU 0 2 4 8 16 32

GPU 1 1 1 1 1 1

eight different test instances on the GPU through
the default method and records the execution
time, and then gradually increase the number of
CPU cores enabled in the experiments. As the
number of CPU cores involved in task processing
increases, the overall efficiency ratio of GPU to
CPU will gradually decrease. Under the load bal-
ancing measures of this strategy, the workload
of CPU will also gradually increase. To observe
the impact of changes in CPU configuration on
this strategy, in the five experiments after the
first run, the number of CPU cores enabled
changes to 2, 4, 8, 16, and 32, respectively. The
setting is shown in Table 1.

As shown in the first group in Figure 4(a), the
completion time of the system using FCFS, GA,
PSO, and IM_GA in TGFF-1 is 4851, 4786, and
4302 ms, respectively, that is, the performance
obtained by the four algorithms becomes better
gradually (FCFS < GA < PSO < IM_GA). The task
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Figure 4. Executiontime of GA, PSO and IM GA
under the (a) CPU-CPU and (b) heterogenous
multi-core processors.
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scheduling strategy decoded by IM_GA is better
than the task scheduling strategy decoded by
the GA and PSO, which is increased by 10.19%
and 8.97%, respectively. GA and PSO fall into a
local optimal solution; the execution time of the
scheduling strategy obtained by the three algo-
rithms in TGFF-2 are 6693, 6897, and 5983 ms,
respectively. The performance of the GA is bet-
ter than that of PSO, but these two are once
again caught in the local optimal solution, which
is shown in the second data group in Figure 4.
The performance of the two is 9.30% and 11.98%
lower than that of the IM_GA respectively; in the
TGFF-3 test program experiment, the perfor-
mance of the medium PSO strategy and the
IM_GA strategy are both 5072 ms, which is
11.84% higher than the 6502 ms of the GA, and
neither of them falls into a local optimal solution.

Performance of Heterogeneous Multicore
Processor

In the last section, we have proved that the
IM_GA has a significant performance improve-
ment in its convergence speed and heteroge-
neous multicore processor systems. On this
basis, we have expanded the types of heteroge-
neous multicore processors. We add NPU, FPGA
computing units to the processor core. As
shown in Figure 4(b), in the three sets of experi-
ments we tested, compared with the FCFS sched-
uling strategy, the performance of the
scheduling strategy based on GA increased by
33.02%, 33.73%, and 35.54%, which has an aver-
age increase of 34.10%. The specific performance
is as follows: when the FCFS scheduling strategy
is used, the system calculates the time for the
three groups of test programs to be 3528, 2416,
and 2760 ms, respectively. When the GA-based
scheduling strategy is used, the execution times
for the three groups of test programs are respec-
tively 2363 ms, 1601 ms, and 1779 ms, which
proves once again that the task scheduling strat-
egy of heterogeneous multicore processors
based on IM_GA can significantly improve the
performance of the system.

CONCLUSION

This article proposes a GA-based scheduling
strategy that allocates different tasks to the

most matching processor cores for computation,
which reduces the amount of system idle time. In
order to solve the problem of premature conver-
gence and falling into local optimal solution in
GAs, we propose to add an adaptive mutation
and injection strategy to the swarm intelligence
algorithm. Both strategies can increase the
diversity of the population gene types in the
later stage of the GA, which allows the algorithm
to jump out of the local optimal solution faster.
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