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genomics (Dunn et al., 2018; Hardison, 2003; Smith et al., 2020; 

nized as a key tool when addressing gaps in knowledge of biodiversity 

Reyes et al., 2021). Accurate trees provide context for ecologists 

seeking to understand community assembly and stability, trophic 

From a human health perspective, rapidly updated phylogenies are 

pivotal to tracing and understanding pathogen outbreaks (Hadfield 

et al., 2018). With sequencing rates producing more genomic data 

than ever before, the barrier for studies of ecology, evolution and 

biodiversity is now the process of organizing and manipulating data 

prior to estimating phylogenies (Hodcroft et al., 2021).

Adding new data to a phylogeny first requires that the new data 

to be incorporated into a key underlying data structure, the homol

ogous sequence alignment. Homologous sequence alignments, also 

known as multiple sequence alignments, capture the shared evolu

tionary origin of any number of sequences arranged with pairwise 

awareness of sequence homology (Chenna et al., 2003; Swofford 

et al., 1996). Alignment as a procedure is the process of finding ho

mology between two or more DNA sequences (Kim et al., 2015; 

Vasimuddin et al., 2019). The procedure of multiple sequence align

ment is computationally challenging, which must be repeated when 

new data are added to existing alignments (Chenna et al., 2003; 

aligning datasets of many taxa and long sequences, the continuing 

expansion of empirical genomic datasets make the necessary data 

processing cumbersome (Eddy, 2009; Grad et al., 2016; Hadfield 

Nguyen et al., 2015). The National Center for Biotechnology 

Neisseria 

gonorrhoeae samples along with other pathogens with more than 

while not intractable, will be formidable and highlights why novel 

methods for updating genomic datasets are necessary.

An additional problem when updating an existing MSA with large, 

rapidly growing genomic databases is the probability of introducing 

missing data or incomplete data. 'Missing data' may be due to biologi

cal reality, such as the evolutionary process of insertions and deletions, 

or can be a bioinformatic artefact such as low sequencing coverage 

or read quality in some genomic regions. It has been demonstrated 

that biological reality and bioinformatic artefacts can interact in driv

ing patterns of missing data across the genome, as rapidly evolving 

regions are more likely to have reads fail to map, resulting in the ap

pearance of missing data (Huang & Knowles, 2016). Researchers have 

studied the effect of missing data in evolutionary analyses for decades 

the effect of missing data on evolutionary analyses has been hotly 

& Knowles, 2016; Lemmon et al., 2009; Molloy & Warnow, 2018; 

Some studies laud the effects of removing alignment regions with 

high proportions of missing data as improving phylogenetic estima

Methods of alignment trimming are based on cutoffs of the number 

of taxa which are missing a particular locus, removing the locus for 

often include strict default settings but allow for user specified inputs 

in order to tailor datasets for the question at hand (Castresana, 2000; 

lematic for phylogenetic estimation when it is randomly distributed 

across the phylogeny, and more problematic when there is a correla

tion between phylogeny and missingness (Huang & Knowles, 2016; 

Lemmon et al., 2009; Streicher et al., 2016). Wholesale removal of 

these regions from analyses can therefore bias estimates of evolu

tionary rate, affecting branch lengths, topology and bootstrap support 

(Huang & Knowles, 2016; Streicher et al., 2016). This bias can shorten 

branch lengths if predominantly variable regions are removed (Huang 

& Knowles, 2016), or lengthen branch lengths if invariant characters 

Lewis, 2001). Moreover, trimming alignment regions with high pro

portions of missing data can preclude potentially informative down

stream analyses. Analyses of sequence selection and adaptation, often 

between taxa, also rely on multiple sequence alignments as state

Rocha et al., 2006). Studies in various biological fields describe re

moving missing data from selection analyses, either by the removal of 

any missing data or by cutoff values for the number of taxa with miss

ing data at a site (Hodgins et al., 2016; Murolo & Romanazzi, 2015; 

ing missing data sites could bias investigations of adaptation. Simply 

put, if a locus has been removed from an alignment, no further analyses 

may be performed using it once new data are added to the alignment.

To address the problem of rapidly updating sequence alignments 

input alignment length, we introduce Extensiphy. Extensiphy uses ef

ficient reference based sequence assembly to add homologous loci to 

existing multiple sequence alignments. Extensiphy performs sequence 

assembly, locus extraction and alignment of new data to the original 

dataset in a single process. The intended utility of Extensiphy is to 

existing alignments for phylogenetic analyses. Here we describe the 

Extensiphy method and compare its speed and accuracy to a stan

dard de novo assembly workflow and a commonly used reference 

alignment method for calling single nucleotide polymorphisms (SNPs); 

We investigate Extensiphy's performance compared to these other 

methods by running each workflow on an empirical N. gonorrhoeae 

dataset as well as a simulated sequence dataset. Each method was 
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call comparison and phylogenetic distances.

|

|

A standard run of Extensiphy accepts a multiple sequence align

sequenced samples. The MSA may contain any number of concat

enated loci, here referring to genes or lengths of DNA sequences 

sequence is chosen from the taxa in the alignment for read alignment. 

After a reference is selected, all reads are aligned to the concat

enated reference sequence. Following read alignment, nucleotides 

are called to create a consensus sequence that is homologous to all 

the sequences in the original MSA. All new consensus sequences 

are added to the multiple sequence alignment, completing assembly 

and sequence alignment as part of the same process. Finally, if the 

user opts to automate phylogeny estimation, a phylogeny based on 

the newly created and extended sequence alignment is estimated 

is visually described in Figure 1. Alternative options for Extensiphy 

parameters and functionality are described in the following sections.

|

read alignment

Extensiphy takes as input a single, concatenated MSA file or any 

responding to each taxon are concatenated into a single sequence 

and all sequences are combined into a single multiple sequence 

alignment containing all sequences for all taxa. Reference selection 

by default selects the first taxon in the alignment to use as the refer

ence. The user may also specify the selection of a specific reference. 

2019). A reference index is constructed for the chosen reference 

put of read alignment to the reference sequence is in the sequence 

are output. The number of threads specified for each parallel run of 

as default.

construction

Following read alignment, SAM files are passed to programs for vari

ant calling. Reference sequence indexing is performed by Samtools 

Faidx (Li et al., 2009). SAM files are converted to binary alignment 

mapping (BAM) files by Samtools View (Li et al., 2009). Once SAM 

to BAM conversion is complete, BAM file organizing is performed 

by Samtools Index (Li et al., 2009). Variant nucleotide calling is per

formed by Mpileup from the Bcftools suite (Li et al., 2009). Mpileup 

produces a Variant Call File (VCF; Danecek et al., 2011). Following 

VCF production, insertions and deletions are removed as these 

events usually prevent shared synteny between aligned sequences. 

The cleaned VCF is then converted to a fastq format file by vcfu

tils.pl and then to a fasta format file by seqtk (Danecek et al., 2011; 

Gordon & Hannon, 2021; Heng, 2021). Finally, gaps in the original 

reference sequence are added to the new consensus sequence to 

preserve synteny. The fully constructed consensus sequence is then 

appended to the updated alignment file.

consensus sequence. (c) Output updated alignment and tree files
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If selected, phylogenetic estimations are performed using 

RAxML with the GTRGAMMA model of nucleotide substitution 

estimation or, when updating a extant phylogeny, Extensiphy may 

use a tree produced by the original MSA as a starting tree to im

prove the search of tree space. The purpose of the starting tree is 

to build on the evolutionary estimations of the original phylogeny. 

locus multiple sequence alignment files, for example, for the esti

mation of gene trees or a species tree by way of summary methods 

(Yin et al., 2019). RAxML using the GTRGAMMA model is the only 

option for phylogenetic estimation currently implemented within 

Extensiphy. However, as a default execution of Extensiphy outputs 

an updated alignment, users are free to apply any available method 

of phylogenetic estimation, by using the output alignment as the 

input for an alternative method. For example, when updating mul

alignments. While Extensiphy does not automate running a place

ment algorithm, the updated alignment and original phylogeny can 

be easily used as inputs software to place the new sequences with

out updating the input relationships (Matsen et al., 2010). Due to 

Extensiphy's focus on adding large amounts of new sequence data to 

existing alignments, users may specify removing intermediate out

put files used during consensus sequence production to reduce un

altogether if only an updated sequence alignment is desired.

|

Extensiphy produces an alignment of homologous sequence data. In 

order to assess Extensiphy's ability to produce useful data, we com

pared Extensiphy's alignment to similar alignments produced by con

temporary programs and methodologies. In addition to comparing the 

alignments, we also compared phylogenies produced from alignments, 

and overall program runtimes. Based on previous literature, we identi

fied two dominant approaches for constructing alignments with a focus 

on outputs used for evolutionary analyses: de novo sequence assembly 

followed by core genome alignment and read alignment to reference 

genome followed by SNP calling (Bush et al., 2020; Castresana, 2000; 

to represent read alignment and variant calling methodologies due to its 

results in program runtime and SNP calling accuracy (Bush et al., 2020). 

Following light quality trimming with BBDUK (Bushnell, 2021), we 

chose to perform de novo sequence assembly with SPAdes and ho

mologous locus selection with ParSNP (Bankevich et al., 2021; Treangen 

numerous studies for a variety of subject organisms. ParSNP is routinely 

cited in studies involving evolutionary analyses with topics on the micro

bial tree of life, the evolution of antibiotic resistance in Staphylococcus 

aureus and genomic analysis of antibiotic susceptibility in N. gonorrhoeae 

(Chen et al., 2020; Gernert et al., 2020; Shakya et al., 2020).

We ran each of these approaches on a simulated dataset and an 

empirical dataset and assessed the outputs. The simulated dataset was 

dataset retention and phylogenetic accuracy. The empirical dataset was 

used to test program runtime and the resulting alignments and phy

logenies produced by each method were compared to each other to 

note discrepancies. The comparison software was primarily written in 

Bash shell scripts and Python, and these scripts as well as the config

uration files for Tree to Reads are shared on GitHub at https://github.

com/jtfie ld/phylo_compa rison. There are two versions of the code, one 

for analysing each simulated and empirical sequence data. The empir

quences. The software for analysing simulated data required the same 

input parameters with the addition of the phylogeny and genomes that 

were used to simulate the raw read sequences. Details on configuring 

the comparison software are available in the manual packaged with the 

software.

phylogenetic topology, we used TreeToReads (McTavish, Pettengill, 

et al., 2017). TreeToReads takes as input a phylogeny, evolutionary 

model parameters and a reference sequence that serves as the tem

plate for simulating all additional sequences. In order to generate an 

input phylogeny for simulation, we obtained 209 N. gonorrhoeae raw 

read files in fastq format from the CDC (Centers for Disease Control 

and Prevention, USA) used in a 2016 study of the evolutionary re

lationships of antibiotic resistant N. gonorrhoeae (Grad et al., 2016). 

We replaced all isolate names with random identifiers before phylo

genetic estimation. The resulting phylogeny was used as the input 

complete N. gonorrhoeae

processing the empirical dataset. To introduce sequence variation, 

3,000 variant nucleotides were uniformly distributed throughout 

the reference genome and reads of 100 nucleotides were gener

ated at an average of 20 reads per site. To simulate sequences and 

reads, we used the evolutionary rate model estimated by RAxML 

from the 2016 study isolates (Rambaut & Grassly, 1997). The nucleo

5.291090 and 1.000000 with the default rate variation of 0.0200. 

Mutation cluster grouping was enabled with 25% variable site clus

tering. Sequence fragment size was set to 320 nucleotides and given 

a standard deviation of 50 nucleotides. We used the default Illumina 

sequencing error model packaged with ART (Huang et al., 2012). 
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The outputs of TreeToReads include simulated genome sequences in 

fasta format and raw read sequences for each simulated taxon. Our 

empirical dataset was comprised of 1,237 N. gonorrhoeae SRA files 

randomly as the first 1,237 SRA numbers found on NCBI Pathogen 

Detection database under Neisseria (NCBI, 2020). Fourteen isolates 

were identified as N. meningitidis and were removed from subsequent 

analyses. The final empirical dataset consisted of 1,223 samples.

selection of loci

During the de novo assembly and automated locus selection pipeline, 

for both the empirical and simulated datasets, bases were trimmed 

from the raw reads with a quality score of 10 or below. We also re

moved any sequencing adapters included in the BBDUK default 

adapters file (Bushnell, 2021). De novo sequence assembly was per

formed on the trimmed read files to construct contigs for all taxa in 

the dataset. De novo sequence assembly was performed by SPAdes 

using default parameters with the exception of additional computing 

cores (Bankevich et al., 2021). Following assembly, the core genome 

for all assembled sequences was selected using ParSNP (Treangen 

quences that are conserved in all included taxa (Hodgins et al., 2016). 

ParSNP identifies core genomes using a used maximal unique matches 

between sequences to capture conserved blocks of sequences in 

highly similar sets of genomes. Regions with missing data are not in

cluded in the final core genome, resulting in separate locus alignments. 

The selected loci were concatenated into a single alignment while the 

analyses. While ParSNP includes options to alter the sequence dis

tance between acceptable matches used for identifying core genome 

sequences, all options were left as defaults for our analyses.

For both the empirical and simulated datasets, Snippy was run using 

the chosen reference sequence and the raw reads as inputs. Snippy 

aligned reads to the reference and replaced reference nucleotides 

Snippy runs was alignments with sequence lengths matching the ref

erence sequence. The empirical dataset used a contiguous N. gonor-

rhoeae genome sequence as a reference while the simulated dataset 

used the sequence input into TreeToReads for sequence simulation.

with Extensiphy

In order to create an input alignment for use with Extensiphy, we took 

the assembled genomes for four random taxa and assembled them in 

the same manner as the de novo assembly stage described above. We 

created a core genome alignment for these four taxa and the selected 

set of taxa produced a set of loci that were influenced by the miss

ing data found in the five included taxa. The homologous loci of this 

smaller dataset were concatenated and used as the input alignment for 

Extensiphy, along with raw read sequences corresponding to the rest 

of the taxa. Extensiphy processed the concatenated alignment, raw 

read input files and produced an updated multiple sequence alignment 

and phylogeny based on the alignment. Once phylogenetic estimation 

was complete, the concatenated sequence alignment was split into 

For all datasets, phylogenetic estimation was performed on the con

topology and a consensus topology based on 100 bootstrap repli

model, and the only one available in RAxML.

|

We assessed each methodology using three metrics: program runtime, 

uring program runtime were identical regardless of the dataset. We 

assessed individual time to assemble each single sequence and the 

total time for a program to assemble a complete alignment. The time 

required for phylogenetic estimation was not included for any program. 

comparing each program outputs to the original TreeToReads sequences 

used to simulate the input data for each program. By using the original 

TreeToReads sequences, we collected an accurate description of which 

any empirical sequence are unknown. With this limitation in mind, we 

compared the sequence outputs of each program to their counterparts 

from each other program when assessing sequences produced from the 

sent in the output of any two programs. This conservative comparison 

was necessary due to the variation in the length of the sequences out

put by each program. Consequently, each sequence comparison was 

limited to the length of the shortest sequence. Phylogenies produced 

from the simulated dataset were compared to the original topology 

used by TreeToReads for sequence simulation. For the empirical dataset, 

the phylogeny produced by each program was compared to each other 

nies on bootstrapped data for all comparisons to account for stochastic 

variation in inferences of very short branches.
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We defined program runtime as two values: the time taken to assemble 

and output the sequence associated with a single taxon and the total 

program runtime for assembling all taxon sequences and outputting a 

complete sequence alignment. All three programs reported the time 

required for individual sequence alignment and assembly. The total 

program runtimes to produce a complete alignment were recorded.

were aligned to the original genomes produced by TreeToReads. 

Extensiphy and de novo assembled sequences which were separate 

loci for each taxon. Snippy sequences, being duplicates of the refer

ence sequence with variant nucleotides inserted, were the same 

once two sequences were aligned by noting which nucleotides in one 

sequence were identical to the paired sequence produced from the 

identical degenerate nucleotides and gaps within the sequences were 

counted and summed for each locus. The lengths of all loci were also 

recorded for Extensiphy and the de novo pipeline. Additional metrics 

collected from the simulated data analyses were the total number of 

program and, when comparing Extensiphy and de novo assembled 

sequences, the discrepancy in the length between the sequences out

put each program and the sequences produced by TreeToReads. For 

aligned to the sequences produced by both other programs. Additional 

metrics collected from the empirical data analyses were the total 

sequence and, when comparing Extensiphy and de novo assembled 

sequences, the discrepancy in the length of the compared loci.

Phylogenies estimated from each program's alignment were compared 

using the Robinson– Foulds (RF) distance calculations, the symmetric 

distance of partitions between two phylogenies, using the Dendropy 

Python library (Robinson & Foulds, 1981; Sukumaran & Holder, 2010). 

All RF distances were calculated as unweighted, expressing only the 

symmetric differences in branches between topologies.

|

|

Using Extensiphy, individual sequences were assembled at a mean 

mean of 8 s per individual sequence and a complete program runt

ime of 21 min. Snippy's mean individual sequence assembly time 

was 3 s per sequence and a complete program runtime of 10 min 

and 28 s.

Extensiphy returned 209 sequences at 51,157 nucleotides each for 

a total of 10,691,913 nucleotides in the final alignment, including 

the reference sequence (Table 1). The de novo pipeline returned 209 

nucleotide length as the simulated reference sequences as well as a 

‘core sites’ alignment with 1,030 nucleotides per taxon. The full length 

alignment included 10,698,919 nucleotides excluding the reference 

sequence.

Extensiphy's sequences produced the lowest miscall rate at 15 nucleo

tides while the de novo pipeline's alignment contained 21 miscalled nu

cleotides (Table 1). Snippy produced an alignment with 359 miscalled 

nucleotides. Supplementary Table 1 contains more descriptive statistics 

Total program runtime 21 m 10 m 28 s

Individual sequence runtime 8 s

Total miscalled bases 15 21 359

Total bases per taxon 51,157 51,191

Total bases analysed 10,691,913 10,500,766 10,698,919

RF distance to true tree 56 55 98

statistics. Results of comparison pipeline 

output after processing 209 taxa 

sequences. m, minutes; s, seconds
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Extensiphy returned 1,001 total gaps or degenerate nucleotides in 

the final alignment based on simulated data (Table S1). Snippy re

line's alignment contained no gaps or degenerate nucleotides.

Extensiphy produced a phylogeny with an RF distance to the true topology 

of 56 while the de novo pipeline's phylogeny received an RF distance of 

55 and Snippy produced a phylogeny with an RF distance of 98 (Table 1).

|

When processing and analysing data from the empirical dataset, 

Extensiphy produced consensus sequences in a mean time of slightly 

over 6 min and produced a complete alignment in 38 hr (Figure 2; 

Table 2). The de novo pipeline assembled sequences in a mean time 

complete alignment in 18 hr.

Individual sequences produced by Extensiphy were all of 1,859,910 

nucleotides in length for a total of 2.293 × 109 nucleotides in the 

final alignment (Table 3). The Extensiphy alignment was composed 

of 317 loci with a mean length of 5,868 nucleotides and a range of 

pipeline returned individual sequences of 751,033 nucleotides and a 

total of 9.215 × 108 nucleotides in the final alignment. The de novo 

pipeline alignment was composed of 522 loci with a mean length of 

tides in length for a total of 2.732 × 109 nucleotides in the final align

ment. Locus values were not reported for Snippy as Snippy operates 

Snippy comparison produced 27,778 differing nucleotides from 

338,286,158 analysed sites between both alignments. The compari

alignments.

We assessed empirical missing data in the same manner as empiri

contained 81,035 differing gaps or degenerate nucleotides from 

31,909,017 analysed sites between both alignments (Table S2). The 

or degenerate nucleotides from 338,286,158 analysed sites be

tween both alignments. The comparison of Snippy and the de novo 

pipeline alignments contained 105,875 differing gaps or degener

ments. When analysing the complete alignment for each program, 

and degenerate nucleotides (Table 3). The de novo pipeline align

nucleotides.

When analysing the RF distances between the phylogenies pro

sequences associated with each taxon in the empirical dataset
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Sequencing efforts are expanding for the collection of genomic data 

(Goodwin et al., 2016; Hodcroft et al., 2021; Mardis, 2017). Current 

methods for incorporating new data into sequence alignments exist 

taxa (Eddy, 2009; Nguyen et al., 2015). While combining new and 

previously analysed data during de novo alignment construction is a 

routinely performed workflow, this process can result in alignment 

trimming that can remove potentially useful data from a dataset 

(Huang & Knowles, 2016). To address issues of expanding existing 

sequence alignments, we introduced the Extensiphy program and 

assessed its outputs to two workflows with comparable outputs. 

Our results show that Extensiphy balances between data retention, 

runtime efficiency and applicability to genomic datasets. Extensiphy 

returned alignments with sequence lengths matching those of the 

input alignment and containing a lower proportion of degenerate 

or gap sites than other methods. Extensiphy accommodated and 

returned an alignment with sequences of lengths comprising over 

90% of the N. gonorrhoeae genome. All sequences were assembled in 

competitive times compared to other analysed methodologies. If the 

starting point of a study is an existing concatenated alignment or set 

read data and the goal is to rapidly add the new data to the align

ment, Extensiphy will produce the desired results. Additionally, we 

argue that the analyses of both the simulated and empirical datasets 

demonstrate that Extensiphy performs equally well when updating 

alignments with any number of loci and inputs of either separate 

features are simple in terms of modern bioinformatics tools, their 

presence expands the scope of studies for which Extensiphy may 

be appropriate. By accommodating any number of loci, Extensiphy 

is applicable to any scale of project, from inquiries with a single or 

et al., 2016; Hadfield et al., 2018; Hodcroft et al., 2021). By accept

ing either individual locus alignments or a concatenated alignment, 

Extensiphy does not constrain the user to a specific method of phy

logenetic estimation.

Extensiphy is designed to integrate new genomic data with 

existing datasets. The approach targets computational effort to 

Total program runtime 38 h 236 h 18 h

Average individual sequence runtime 6 m 21 s

statistics. Results of program runtimes 

after processing 1,223 taxa sequences. h, 

hours; m, minutes; s, seconds

Total bases per alignment 2,293,269,030 2,732,911,282

Total gaps or degenerate bases

Average locus length 5,868 — 

Loci output per program 317 522 — 

statistics. Nucleotide and locus metrics 

for the alignments containing 1,223 

sequences produced by each program. 

A ‘— ’ symbol indicates the value is not 

applicable

Extensiphy and the de novo assembly pipeline

Robinson– Foulds distances between phylogenies produced by each 

program. A ‘— ’ symbol indicates the value is not applicable

Extensiphy — 687

De novo assembly 687 — 676

Snippy 676 — 
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regions which are homologous to existing data. This removes the 

computationally taxing requirement of a downstream multiple se

quence alignment step, as the new reads are aligned to a sequence 

already included in the alignment. Extensiphy also packages a 

lined results. While Extensiphy and Snippy share similar approaches 

to sequence construction, Extensiphy produces a homologous se

Extensiphy assembles new loci directly aligned to existing loci, as 

opposed to a reference genome. Extensiphy does not require a full 

reference genome, and can be applied to integrating sequences from 

standing of many taxa.

As part of this framework, Extensiphy also allows for the selec

tion of a reference sequence already found in an existing alignment. 

This provides an opportunity to assess the role of choice of reference 

read alignment is an excellent flexible method for many studies, the 

choice of reference sequence can inherently bias downstream analy

ses (Brandt et al., 2015; Günther & Nettelblad, 2019). Reference bias 

read alignment based on the structure of the reference (Günther & 

reference bias affects phylogenetic estimation is still ambiguous. 

Extensiphy paired with the methodologies of sequence and phy

logenetic comparison we describe in this study offer an excellent 

opportunity to repeatedly measure the effects of constructing align

ments based on diverse reference sequences. By running the same 

analyses using different references with known phylogenetic rela

tionships to each other, it is straightforward to use Extensiphy to 

assess if this bias is playing a role in one's own dataset.

Acknowledging and addressing missing data are key issues 

Knowles, 2016; Streicher et al., 2016). The distribution of missing 

data throughout an alignment influences such decisions (Lemmon 

et al., 2009). Assuming a relatively even distribution of missing data, 

alignment trimming may not be necessary and such trimming could 

remove valuable variant nucleotides from future analyses. In the 

presence of an uneven distribution of missing data, perhaps due to 

sequencing bias, a study could benefit from judicious locus removal 

(Streicher et al., 2016). Extensiphy finds an ‘middle ground' in re

of missing data. Using Extensiphy, all input loci are maintained while 

updating an alignment, preventing loci from fragmenting into smaller 

sequence segments as seen when using ParSNP in the de novo pipe

line. Moreover, a smaller percentage of missing data was found in 

the Extensiphy alignment compared to the alignment produced by 

Snippy. While the Snippy alignment did contain more sites, expressed 

as the full length of the reference sequence for each taxon, the dif

ference in size between the Snippy alignment and the Extensiphy 

alignment is modest compared to the amount of missing data found 

in the Snippy alignment. Such a percentage of missing data could 

affect inferred phylogenies by biasing branch lengths, potentially 

misleading conclusions based on those phylogenies. Extensiphy rap

idly returns an updated alignment while minimizing missing data and 

enabling researchers to make decisions on the inclusion or excision 

of loci. Ultimately, all three methods tested here produced accurate 

estimates and useful alignments and the choice of application of any 

of the approaches described here depends on the researchers’ goal.

|

offs of program runtime, reference sequence availability and dataset 

trimming and fragmentation. We have introduced Extensiphy, a pro

gram that updates alignments of loci with new data, and compared 

it to two popular alternative methods. Extensiphy is applicable to 

alignments. Extensiphy offers an efficient and flexible solution to 

larly for disease monitoring purposes. Projects where maintaining 

locus length and preventing alignment trimming due to missing data 

are important will find Extensiphy particularly useful. Extensiphy 

produces updated alignments suitable for multiple methods of phy

methods in the field of bioinformatics. Updating sequence align

ments with Extensiphy removes the burden of data processing from 

the researcher and enables them to focus on purpose and applica

tions of their research.

Research was supported by the grant ‘Cultivating a sustainable 

and Discovery (MERCED) cluster from the University of California, 

helpful feedback from Dr. Chris Amemiya, Dr Gordon Bennett, Dr 

Mark Sistrom, Dr Siavash Mirarab, Dr Jessica Blois and the members 

clusions in this article are those of the authors and do not necessarily 

represent the official position of the CDC.

None declared.

J.T.F., A.J.A., J.C.C. and E.J.M. designed Extensiphy; J.T.F. and E.J.M. 

programmed Extensiphy; J.T.F. performed all data collection and 

comparisons; J.T.F., A.J.A., J.C.C. and E.J.M. wrote and edited the 

manuscript.



|Methods in Ecology and Evolu
onFIELD ET AL.

The peer review history for this article is available at https://publo 

Extensiphy is open source software utilizing software written by 

other developers. The Extensiphy pipeline itself is available on 

Github https://github.com/McTav ishLa b/exten siphy and on Zenodo 

https://doi.org/10.5281/zenodo.5770686 (Field, 2021b). The 

comparison pipelines are also open source software pipelines and 

are available on Github https://github.com/jtfie ld/phylo_compa 

rison and on Zenodo https://doi.org/10.5281/zenodo.5770698 

(Field, 2021c). All accession numbers for samples and alignments, as 

well as the simulated data files used in this study are publicly avail

able on Dryad Digital Repository https://doi.org/10.6071/M38T0T 

(Field, 2021a).
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