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ies. Large, rapidly collected genomic datasets are used to capture biodiversity

among many other applications. Updating homologous sequence datasets with

University of California, Merced, CA, USA new samples is cumbersome, requiring excessive program runtimes and data
processing. We describe Extensiphy, a bioinformatics tool to efficiently update
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types for Extensiphy are any multiple sequence alignment in fasta format and

Handling Editor: Pablo Duchen 2. To validate Extensiphy, we compared its results to those produced by two other
methods that construct whole-genome scale multiple sequence alignments. We
measured our comparisons by analysing program runtimes, base-call accuracy,
dataset retention in the presence of missing data and phylogenetic accuracy.

3. We found that Extensiphy rapidly produces high-quality updated sequence align-
ments while preventing alignment shrinkage due to missing data. Phylogenies
estimated from alignments produced by Extensiphy show similar accuracy to
other commonly used alignment construction methods.

4. Extensiphy is suitable for updating large sequence alignments and is ideal for

studies of biodiversity, ecology and epidemiological monitoring efforts.
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1 | INTRODUCTION describe the evolutionary relationships of multiple lineages (Chan

& Ragan, 2013). Phylogenies have a wide range of applications
The development of genomic methods has revolutionized virtually across ecology and evolutionary biology. Recent developments in
all fields of biology and lead to an abundance of DNA sequence genome scale phylogenetics have upended long held beliefs about

data available to researchers (Goodwin et al., 2016; Mardis, 2017). deep evolutionary history (Dunn et al., 2008, 2015). Phylogenetic

This genomic data can be used to estimate phylogenies, which estimates are essential frameworks for comparative genetics and
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genomics (Dunn et al., 2018; Hardison, 2003; Smith et al., 2020;
Soltis & Soltis, 2003). Large-scale phylogenies have long been recog-
nized as a key tool when addressing gaps in knowledge of biodiversity
(Drew etal., 2013; Hortal et al., 2015; McTavish et al., 2017; Sanchez-
Reyes et al., 2021). Accurate trees provide context for ecologists
seeking to understand community assembly and stability, trophic
interactions and ecosystem function (Cavender-Bares et al., 2012).
From a human health perspective, rapidly updated phylogenies are
pivotal to tracing and understanding pathogen outbreaks (Hadfield
et al., 2018). With sequencing rates producing more genomic data
than ever before, the barrier for studies of ecology, evolution and
biodiversity is now the process of organizing and manipulating data
prior to estimating phylogenies (Hodcroft et al., 2021).

Adding new data to a phylogeny first requires that the new data
to be incorporated into a key underlying data structure, the homol-
ogous sequence alignment. Homologous sequence alignments, also
known as multiple sequence alignments, capture the shared evolu-
tionary origin of any number of sequences arranged with pairwise
awareness of sequence homology (Chenna et al., 2003; Swofford
et al., 1996). Alignment as a procedure is the process of finding ho-
mology between two or more DNA sequences (Kim et al., 2015;
Vasimuddin et al., 2019). The procedure of multiple sequence align-
ment is computationally challenging, which must be repeated when
new data are added to existing alignments (Chenna et al., 2003;
Field et al., 2018; Liu et al., 2012; Treangen et al., 2014; Wang &
Jiang, 1994). While recent methods have improved the efficiency of
aligning datasets of many taxa and long sequences, the continuing
expansion of empirical genomic datasets make the necessary data
processing cumbersome (Eddy, 2009; Grad et al., 2016; Hadfield
et al., 2018; Leebens-Mack et al., 2019; Liu et al., 2012; NCBI, 2020;
Nguyen et al., 2015). The National Center for Biotechnology
Information (NCBI) pathogen database contains 14,915 Neisseria
gonorrhoeae samples along with other pathogens with more than
340,000 samples (NCBI, 2020). The task of assembling these ge-
nomes, extracting loci-of-interest and aligning the updated datasets,
while not intractable, will be formidable and highlights why novel
methods for updating genomic datasets are necessary.

An additional problem when updating an existing MSA with large,
rapidly growing genomic databases is the probability of introducing
missing data or incomplete data. 'Missing data' may be due to biologi-
cal reality, such as the evolutionary process of insertions and deletions,
or can be a bioinformatic artefact such as low sequencing coverage
or read quality in some genomic regions. It has been demonstrated
that biological reality and bioinformatic artefacts can interact in driv-
ing patterns of missing data across the genome, as rapidly evolving
regions are more likely to have reads fail to map, resulting in the ap-
pearance of missing data (Huang & Knowles, 2016). Researchers have
studied the effect of missing data in evolutionary analyses for decades
(Driskell et al., 2004; Huang & Knowles, 2016; Lemmon et al., 2009;
Molloy & Warnow, 2018; Wilkinson, 1995; Xi et al., 2016). As such,
the effect of missing data on evolutionary analyses has been hotly
debated (Capella-Gutiérrez et al., 2009; Castresana, 2000; Huang
& Knowles, 2016; Lemmon et al., 2009; Molloy & Warnow, 2018;

Talavera & Castresana, 2007; Treangen et al., 2014; Xi et al., 2016).
Some studies laud the effects of removing alignment regions with
high proportions of missing data as improving phylogenetic estima-
tions (Capella-Gutiérrez et al., 2009; Castresana, 2000; Criscuolo &
Gribaldo, 2010; Talavera & Castresana, 2007; Treangen et al., 2014).
Methods of alignment trimming are based on cutoffs of the number
of taxa which are missing a particular locus, removing the locus for
all taxa (Capella-Gutiérrez et al., 2009; Castresana, 2000; Criscuolo &
Gribaldo, 2010; Treangen et al., 2014). Alignment trimming programs
often include strict default settings but allow for user specified inputs
in order to tailor datasets for the question at hand (Castresana, 2000;
Treangen et al., 2014). In general, missing data tend to be less prob-
lematic for phylogenetic estimation when it is randomly distributed
across the phylogeny, and more problematic when there is a correla-
tion between phylogeny and missingness (Huang & Knowles, 2016;
Lemmon et al., 2009; Streicher et al., 2016). Wholesale removal of
these regions from analyses can therefore bias estimates of evolu-
tionary rate, affecting branch lengths, topology and bootstrap support
(Huang & Knowles, 2016; Streicher et al., 2016). This bias can shorten
branch lengths if predominantly variable regions are removed (Huang
& Knowles, 2016), or lengthen branch lengths if invariant characters
are dropped from the analysis (Felsenstein, 1992; Leaché et al., 2015;
Lewis, 2001). Moreover, trimming alignment regions with high pro-
portions of missing data can preclude potentially informative down-
stream analyses. Analyses of sequence selection and adaptation, often
assessed using ratios of synonymous and non-synonymous mutations
between taxa, also rely on multiple sequence alignments as state-
ments of orthology (Briggs et al., 2009; Huerta-Cepas et al., 2016;
Rocha et al., 2006). Studies in various biological fields describe re-
moving missing data from selection analyses, either by the removal of
any missing data or by cutoff values for the number of taxa with miss-
ing data at a site (Hodgins et al., 2016; Murolo & Romanazzi, 2015;
Williamson et al., 2014). While these methods may be appropriate for
within-locus missing data, the automated removal of sequences flank-
ing missing data sites could bias investigations of adaptation. Simply
put, if a locus has been removed from an alignment, no further analyses
may be performed using it once new data are added to the alignment.

To address the problem of rapidly updating sequence alignments
with unprocessed whole-genome sequence data while maintaining
input alignment length, we introduce Extensiphy. Extensiphy uses ef-
ficient reference based sequence assembly to add homologous loci to
existing multiple sequence alignments. Extensiphy performs sequence
assembly, locus extraction and alignment of new data to the original
dataset in a single process. The intended utility of Extensiphy is to
incorporate new un-assembled sequence (e.g. raw reads) data into
existing alignments for phylogenetic analyses. Here we describe the
Extensiphy method and compare its speed and accuracy to a stan-
dard de novo assembly workflow and a commonly used reference
alignment method for calling single nucleotide polymorphisms (SNPs);
Snippy (Bankevich et al., 2012; Seemann, 2021; Treangen et al., 2014).
We investigate Extensiphy's performance compared to these other
methods by running each workflow on an empirical N. gonorrhoeae

dataset as well as a simulated sequence dataset. Each method was
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assessed using metrics of program runtime, dataset retention, base-
call comparison and phylogenetic distances.

2 |MATERIALS AND METHODS
2.1 | Overview of Extensiphy

A standard run of Extensiphy accepts a multiple sequence align-
ment (MSA) and any number of high-throughput read files for newly
sequenced samples. The MSA may contain any number of concat-
enated loci, here referring to genes or lengths of DNA sequences
appended together. Extensiphy can accept both paired-end and
single-end high-throughput short-read files. An arbitrary reference
sequence is chosen from the taxa in the alignment for read alignment.
After a reference is selected, all reads are aligned to the concat-
enated reference sequence. Following read alignment, nucleotides
are called to create a consensus sequence that is homologous to all
the sequences in the original MSA. All new consensus sequences
are added to the multiple sequence alignment, completing assembly
and sequence alignment as part of the same process. Finally, if the
user opts to automate phylogeny estimation, a phylogeny based on
the newly created and extended sequence alignment is estimated
using a maximume-likelihood framework. A default run of Extensiphy
is visually described in Figure 1. Alternative options for Extensiphy
parameters and functionality are described in the following sections.

2.2 | Description of Extensiphy

2.2.1 | Fileinputs, reference selection and
read alignment

Extensiphy takes as input a single, concatenated MSA file or any

number of unconcatenated single-locus MSA files with identical
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Map short reads
with an input

Call consensus

taxon labels. If multiple single-locus files are chosen, sequences cor-
responding to each taxon are concatenated into a single sequence
and all sequences are combined into a single multiple sequence
alignment containing all sequences for all taxa. Reference selection
by default selects the first taxon in the alignment to use as the refer-
ence. The user may also specify the selection of a specific reference.
Read alignment is performed by BWA-MEM2 (Vasimuddin et al.,
2019). A reference index is constructed for the chosen reference
sequence and paired-end or single-end reads are aligned. The out-
put of read alignment to the reference sequence is in the sequence
alignment mapping (SAM) file format and no un-aligned sequences
are output. The number of threads specified for each parallel run of
Extensiphy are allocated to BWA-MEM2. All other settings are left
as default.

2.2.2 | Variant calling and consensus sequence
construction

Following read alignment, SAM files are passed to programs for vari-
ant calling. Reference sequence indexing is performed by Samtools
Faidx (Li et al., 2009). SAM files are converted to binary alignment
mapping (BAM) files by Samtools View (Li et al., 2009). Once SAM
to BAM conversion is complete, BAM file organizing is performed
by Samtools Index (Li et al., 2009). Variant nucleotide calling is per-
formed by Mpileup from the Bcftools suite (Li et al., 2009). Mpileup
produces a Variant Call File (VCF; Danecek et al., 2011). Following
VCF production, insertions and deletions are removed as these
events usually prevent shared synteny between aligned sequences.
The cleaned VCF is then converted to a fastq format file by vcfu-
tils.pl and then to a fasta format file by seqtk (Danecek et al., 2011;
Gordon & Hannon, 2021; Heng, 2021). Finally, gaps in the original
reference sequence are added to the new consensus sequence to
preserve synteny. The fully constructed consensus sequence is then
appended to the updated alignment file.

moN®>»

1 -

Estimate extended

/

Multiple sequence . phylogen
alignr?went 8 sequence as refernce  Ccduence p ylog —y
i for taxon E Generate extended ™\ Y FRYLC
. \ dlanmert N
= HNLALOWN C
\"‘ E
A
short reads B D
(a) (b) (c)

FIGURE 1 Default workflow of Extensiphy. (a) Input an alignment file and new raw reads. (b) Align reads to reference and call the

consensus sequence. (c) Output updated alignment and tree files
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2.2.3 | Phylogenetic estimation and output settings
If selected, phylogenetic estimations are performed using

RAXML with the GTRGAMMA model of nucleotide substitution
(Stamatakis, 2014). Extensiphy can perform a de novo phylogenetic
estimation or, when updating a extant phylogeny, Extensiphy may
use a tree produced by the original MSA as a starting tree to im-
prove the search of tree space. The purpose of the starting tree is
to build on the evolutionary estimations of the original phylogeny.
If the input was multiple single-locus alignment files, the user may
also choose to split the final, updated alignment back into single-
locus multiple sequence alignment files, for example, for the esti-
mation of gene trees or a species tree by way of summary methods
(Yin et al., 2019). RAXML using the GTRGAMMA model is the only
option for phylogenetic estimation currently implemented within
Extensiphy. However, as a default execution of Extensiphy outputs
an updated alignment, users are free to apply any available method
of phylogenetic estimation, by using the output alignment as the
input for an alternative method. For example, when updating mul-
tiple single-locus alignment files a more appropriate method of esti-
mation may be available for inferring a species tree from single-locus
alignments. While Extensiphy does not automate running a place-
ment algorithm, the updated alignment and original phylogeny can
be easily used as inputs software to place the new sequences with-
out updating the input relationships (Matsen et al., 2010). Due to
Extensiphy's focus on adding large amounts of new sequence data to
existing alignments, users may specify removing intermediate out-
put files used during consensus sequence production to reduce un-
necessary on-disk storage. Phylogenetic inference may be skipped

altogether if only an updated sequence alignment is desired.

2.3 | Program comparison

2.3.1 | Program comparison overview

Extensiphy produces an alignment of homologous sequence data. In
order to assess Extensiphy's ability to produce useful data, we com-
pared Extensiphy's alignment to similar alignments produced by con-
temporary programs and methodologies. In addition to comparing the
alignments, we also compared phylogenies produced from alignments,
and overall program runtimes. Based on previous literature, we identi-
fied two dominant approaches for constructing alignments with a focus
on outputs used for evolutionary analyses: de novo sequence assembly
followed by core genome alignment and read alignment to reference
genome followed by SNP calling (Bush et al., 2020; Castresana, 2000;
Seemann, 2021; Treangen et al., 2014). We chose the pipeline Snippy
to represent read alignment and variant calling methodologies due to its
results in program runtime and SNP calling accuracy (Bush et al., 2020).
Following light quality trimming with BBDUK (Bushnell, 2021), we
chose to perform de novo sequence assembly with SPAdes and ho-
mologous locus selection with ParSNP (Bankevich et al., 2021; Treangen

et al., 2014). SPAdes has been used to assemble genomic sequences in

numerous studies for a variety of subject organisms. ParSNP is routinely
cited in studies involving evolutionary analyses with topics on the micro-
bial tree of life, the evolution of antibiotic resistance in Staphylococcus
aureus and genomic analysis of antibiotic susceptibility in N. gonorrhoeae
(Chen et al., 2020; Gernert et al., 2020; Shakya et al., 2020).

We ran each of these approaches on a simulated dataset and an
empirical dataset and assessed the outputs. The simulated dataset was
used to test all aspects of interest; program runtime, base-call accuracy,
dataset retention and phylogenetic accuracy. The empirical dataset was
used to test program runtime and the resulting alignments and phy-
logenies produced by each method were compared to each other to
note discrepancies. The comparison software was primarily written in
Bash shell scripts and Python, and these scripts as well as the config-
uration files for Tree to Reads are shared on GitHub at https:/github.
com/jtfield/phylo_comparison. There are two versions of the code, one
for analysing each simulated and empirical sequence data. The empir-
ical data comparison software requires whole-genome short-read se-
quences. The software for analysing simulated data required the same
input parameters with the addition of the phylogeny and genomes that
were used to simulate the raw read sequences. Details on configuring
the comparison software are available in the manual packaged with the

software.

2.3.2 | Datasets

To construct our simulated high-throughput dataset with a known
phylogenetic topology, we used TreeToReads (McTavish, Pettengill,
et al., 2017). TreeToReads takes as input a phylogeny, evolutionary
model parameters and a reference sequence that serves as the tem-
plate for simulating all additional sequences. In order to generate an
input phylogeny for simulation, we obtained 209 N. gonorrhoeae raw
read files in fastq format from the CDC (Centers for Disease Control
and Prevention, USA) used in a 2016 study of the evolutionary re-
lationships of antibiotic resistant N. gonorrhoeae (Grad et al., 2016).
We replaced all isolate names with random identifiers before phylo-
genetic estimation. The resulting phylogeny was used as the input
phylogeny for TreeToReads. We used a 51,924 bp segment of a
complete N. gonorrhoeae genome (GenBank: NC_002946.2) as the
reference sequence. The NC_002946.2 sample was also used as the
reference in all instances of reference-based read alignment when
processing the empirical dataset. To introduce sequence variation,
3,000 variant nucleotides were uniformly distributed throughout
the reference genome and reads of 100 nucleotides were gener-
ated at an average of 20 reads per site. To simulate sequences and
reads, we used the evolutionary rate model estimated by RAxML
from the 2016 study isolates (Rambaut & Grassly, 1997). The nucleo-
tide rate matrix of was: 1.039821, 5.116539, 0.339204, 0.910812,
5.291090 and 1.000000 with the default rate variation of 0.0200.
Mutation cluster grouping was enabled with 25% variable site clus-
tering. Sequence fragment size was set to 320 nucleotides and given
a standard deviation of 50 nucleotides. We used the default lllumina

sequencing error model packaged with ART (Huang et al., 2012).
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The outputs of TreeToReads include simulated genome sequences in
fasta format and raw read sequences for each simulated taxon. Our
empirical dataset was comprised of 1,237 N. gonorrhoeae SRA files
in fastg format collected from GenBank. Samples were chosen semi-
randomly as the first 1,237 SRA numbers found on NCBI Pathogen
Detection database under Neisseria (NCBI, 2020). Fourteen isolates
were identified as N. meningitidis and were removed from subsequent
analyses. The final empirical dataset consisted of 1,223 samples.

2.3.3 | De novo sequence assembly and
selection of loci

During the de novo assembly and automated locus selection pipeline,
for both the empirical and simulated datasets, bases were trimmed
from the raw reads with a quality score of 10 or below. We also re-
moved any sequencing adapters included in the BBDUK default
adapters file (Bushnell, 2021). De novo sequence assembly was per-
formed on the trimmed read files to construct contigs for all taxa in
the dataset. De novo sequence assembly was performed by SPAdes
using default parameters with the exception of additional computing
cores (Bankevich et al., 2021). Following assembly, the core genome
for all assembled sequences was selected using ParSNP (Treangen
et al., 2014). Core genomes are defined as sets of orthologous se-
quences that are conserved in all included taxa (Hodgins et al., 2016).
ParSNP identifies core genomes using a used maximal unique matches
between sequences to capture conserved blocks of sequences in
highly similar sets of genomes. Regions with missing data are not in-
cluded in the final core genome, resulting in separate locus alignments.
The selected loci were concatenated into a single alignment while the
separate locus alignments were retained for downstream base-call
analyses. While ParSNP includes options to alter the sequence dis-
tance between acceptable matches used for identifying core genome

sequences, all options were left as defaults for our analyses.

2.3.4 | Read alignment and SNP calling with Snippy

For both the empirical and simulated datasets, Snippy was run using
the chosen reference sequence and the raw reads as inputs. Snippy
aligned reads to the reference and replaced reference nucleotides
with taxon-specific variants where appropriate. The output of the
Snippy runs was alignments with sequence lengths matching the ref-
erence sequence. The empirical dataset used a contiguous N. gonor-
rhoeae genome sequence as a reference while the simulated dataset

used the sequence input into TreeToReads for sequence simulation.
2.3.5 | Read alignment and SNP calling
with Extensiphy

In order to create an input alignment for use with Extensiphy, we took

the assembled genomes for four random taxa and assembled them in

the same manner as the de novo assembly stage described above. We
created a core genome alignment for these four taxa and the selected
reference sequence using ParSNP (Treangen et al., 2014). This small
set of taxa produced a set of loci that were influenced by the miss-
ing data found in the five included taxa. The homologous loci of this
smaller dataset were concatenated and used as the input alignment for
Extensiphy, along with raw read sequences corresponding to the rest
of the taxa. Extensiphy processed the concatenated alignment, raw
read input files and produced an updated multiple sequence alignment
and phylogeny based on the alignment. Once phylogenetic estimation
was complete, the concatenated sequence alignment was split into

individual locus alignments in preparation for base-call comparisons.

2.3.6 | Phylogenetic analysis

For all datasets, phylogenetic estimation was performed on the con-
catenated alignment using RAXML to produce a maximume-likelihood
topology and a consensus topology based on 100 bootstrap repli-
cates (Stamatakis, 2014). We used the GTRGAMMA model for all
estimations as this model is the most flexible maximum-likelihood

model, and the only one available in RAXML.

2.4 | Program output comparisons

241 | Program output comparison overview

We assessed each methodology using three metrics: program runtime,
base-call accuracy and phylogenetic accuracy. The methods of meas-
uring program runtime were identical regardless of the dataset. We
assessed individual time to assemble each single sequence and the
total time for a program to assemble a complete alignment. The time
required for phylogenetic estimation was not included for any program.
Base-call comparisons, when using the simulated dataset, benefit from
comparing each program outputs to the original TreeToReads sequences
used to simulate the input data for each program. By using the original
TreeToReads sequences, we collected an accurate description of which
nucleotides were correctly and incorrectly called. The true base-calls of
any empirical sequence are unknown. With this limitation in mind, we
compared the sequence outputs of each program to their counterparts
from each other program when assessing sequences produced from the
empirical dataset. We assessed base-calls pairwise from any locus pre-
sent in the output of any two programs. This conservative comparison
was necessary due to the variation in the length of the sequences out-
put by each program. Consequently, each sequence comparison was
limited to the length of the shortest sequence. Phylogenies produced
from the simulated dataset were compared to the original topology
used by TreeToReads for sequence simulation. For the empirical dataset,
the phylogeny produced by each program was compared to each other
program's phylogeny. We compared majority-rule consensus phyloge-
nies on bootstrapped data for all comparisons to account for stochastic

variation in inferences of very short branches.
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2.4.2 | Program runtime comparisons

We defined program runtime as two values: the time taken to assemble
and output the sequence associated with a single taxon and the total
program runtime for assembling all taxon sequences and outputting a
complete sequence alignment. All three programs reported the time
required for individual sequence alignment and assembly. The total
program runtimes to produce a complete alignment were recorded.

2.4.3 | Program base-call comparisons

For simulated dataset base-call comparisons, each taxon's sequences
were aligned to the original genomes produced by TreeToReads.
Extensiphy and de novo assembled sequences which were separate
loci for each taxon. Snippy sequences, being duplicates of the refer-
ence sequence with variant nucleotides inserted, were the same
length as the reference sequence. A base-call comparison was made
once two sequences were aligned by noting which nucleotides in one
sequence were identical to the paired sequence produced from the
other program. Identical nucleotides, non-identical nucleotides, non-
identical degenerate nucleotides and gaps within the sequences were
counted and summed for each locus. The lengths of all loci were also
recorded for Extensiphy and the de novo pipeline. Additional metrics
collected from the simulated data analyses were the total number of
bases analysed, the per-base miscall and missing data rate for each
program and, when comparing Extensiphy and de novo assembled
sequences, the discrepancy in the length between the sequences out-
put each program and the sequences produced by TreeToReads. For
empirical dataset base-call comparisons, each taxon's sequences were
aligned to the sequences produced by both other programs. Additional
metrics collected from the empirical data analyses were the total
number of bases analysed, the per-base disagreement between each
sequence and, when comparing Extensiphy and de novo assembled

sequences, the discrepancy in the length of the compared loci.

2.4.4 | Phylogenetic comparisons

Phylogenies estimated from each program's alignment were compared

using the Robinson-Foulds (RF) distance calculations, the symmetric

TABLE 1 Simulated data comparison

distance of partitions between two phylogenies, using the Dendropy
Python library (Robinson & Foulds, 1981; Sukumaran & Holder, 2010).
All RF distances were calculated as unweighted, expressing only the

symmetric differences in branches between topologies.

3 |RESULTS
3.1 |Simulated dataset results

3.1.1 | Runtime

Using Extensiphy, individual sequences were assembled at a mean
rate of 4 s per sequence and the overall program runtime was com-
pleted in 6 min and 45 s (Table 1). De novo pipeline runtimes were a
mean of 8 s per individual sequence and a complete program runt-
ime of 21 min. Snippy's mean individual sequence assembly time
was 3 s per sequence and a complete program runtime of 10 min
and 28 s.

3.1.2 | Alignment length

Extensiphy returned 209 sequences at 51,157 nucleotides each for
a total of 10,691,913 nucleotides in the final alignment, including
the reference sequence (Table 1). The de novo pipeline returned 209
sequences at 50,245 nucleotides for a total of 10,500,766 nucleo-
tides. Snippy returned 209 full-length sequences at the same 51,191
nucleotide length as the simulated reference sequences as well as a
‘core sites’ alignment with 1,030 nucleotides per taxon. The full length
alignment included 10,698,919 nucleotides excluding the reference
sequence.

3.1.3 | Alignment accuracy

Extensiphy's sequences produced the lowest miscall rate at 15 nucleo-
tides while the de novo pipeline's alignment contained 21 miscalled nu-
cleotides (Table 1). Snippy produced an alignment with 359 miscalled
nucleotides. Supplementary Table 1 contains more descriptive statistics

from the simulated dataset base-call comparison of the three programs.

statistics. Results of comparison pipeline De novo
) X P pip Comparison metrics Extensiphy assembly Snippy

output after processing 209 taxa

sequences. m, minutes; s, seconds Total program runtime 6m45s 21m 10m28s
Individual sequence runtime 4s 8s 4s
Total miscalled bases 15 21 359
Total bases per taxon 51,157 50,245 51,191
Total bases analysed 10,691,913 10,500,766 10,698,919
RF distance to true tree 56 55 98
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3.1.4 | Missing data

Extensiphy returned 1,001 total gaps or degenerate nucleotides in
the final alignment based on simulated data (Table S1). Snippy re-
turned 163,545 gaps or degenerate nucleotides. The de novo pipe-

line's alignment contained no gaps or degenerate nucleotides.

3.1.5 | Phylogenetic accuracy

Extensiphy produced a phylogeny with an RF distance to the true topology
of 56 while the de novo pipeline's phylogeny received an RF distance of
55 and Snippy produced a phylogeny with an RF distance of 98 (Table 1).

3.2 | Empirical dataset results

3.21 | Runtime

When processing and analysing data from the empirical dataset,
Extensiphy produced consensus sequences in a mean time of slightly
over 6 min and produced a complete alignment in 38 hr (Figure 2;
Table 2). The de novo pipeline assembled sequences in a mean time
of 41 min and produced a complete alignment in 236 hr. Snippy pro-
duced individual sequences in a mean time of 41 s and produced a
complete alignment in 18 hr.

3.2.2 | Alignment length

Individual sequences produced by Extensiphy were all of 1,859,910
nucleotides in length for a total of 2.293 x 107 nucleotides in the
final alignment (Table 3). The Extensiphy alignment was composed
of 317 loci with a mean length of 5,868 nucleotides and a range of
lengths between 682 and 40,798 nucleotides (Figure 3). The de novo
pipeline returned individual sequences of 751,033 nucleotides and a
total of 9.215 x 108 nucleotides in the final alignment. The de novo
pipeline alignment was composed of 522 loci with a mean length of
1,465 and a range of lengths between 688 and 5,913 nucleotides.
Individual sequences produced by Snippy were 2,180,847 nucleo-
tides in length for a total of 2.732 x 10’ nucleotides in the final align-
ment. Locus values were not reported for Snippy as Snippy operates
using whole-genome inputs and outputs.

3.2.3 | Alignment accuracy

We assessed empirical base-calls for the outputs of all three pro-
grams against each other as true base-calls cannot be described with
certainty for empirical sequence data (Table S2). The Extensiphy-de
novo pipeline comparison contained 490 differing nucleotides from
31,909,017 analysed sites between both alignments. The Extensiphy-

Snippy comparison produced 27,778 differing nucleotides from

Time for individual sequence assembly
3004 o

2504

200

150

1004

Minutes per assembly

50

De r;ovo
method

Extenlsiphy

FIGURE 2 The time required by each method to assemble all
sequences associated with each taxon in the empirical dataset

338,286,158 analysed sites between both alignments. The compari-
son of Snippy and the de novo pipeline alignments contained 142
differing nucleotides from 31,974,892 sites analysed between both
alignments.

3.2.4 | Missing data

We assessed empirical missing data in the same manner as empiri-
cal base-calls, that is, by comparing the outputs of each program
against each other. The Extensiphy-de novo pipeline comparison
contained 81,035 differing gaps or degenerate nucleotides from
31,909,017 analysed sites between both alignments (Table S2). The
Extensiphy-Snippy comparison produced 1,857,035 differing gaps
or degenerate nucleotides from 338,286,158 analysed sites be-
tween both alignments. The comparison of Snippy and the de novo
pipeline alignments contained 105,875 differing gaps or degener-
ate nucleotides from 31,974,892 sites analysed between both align-
ments. When analysing the complete alignment for each program,
the alignment produced by Extensiphy contained 4,891,739 gaps
and degenerate nucleotides (Table 3). The de novo pipeline align-
ment contained 3,469,861 gaps and degenerate nucleotides and
the Snippy alignment contained 224,835,516 gaps and degenerate
nucleotides.

3.2.5 | Phylogenetic accuracy

When analysing the RF distances between the phylogenies pro-
duced by each program, the Extensiphy-de novo pipeline compari-
son produced an RF distance of 687 and the Extensiphy-Snippy
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TABLE 2 Empirical data runtime
statistics. Results of program runtimes
after processing 1,223 taxa sequences. h,
hours; m, minutes; s, seconds

Average individual sequence runtime

TABLE 3 Empirical data alignment
statistics. Nucleotide and locus metrics
for the alignments containing 1,223
sequences produced by each program.
—' symbol indicates the value is not
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FIGURE 3 Empirical dataset locus lengths returned by
Extensiphy and the de novo assembly pipeline

comparison produced an RF distance of 749 (Table 4). The de novo
pipeline-Snippy comparison produced an RF distance of 676.

4 |DISCUSSION

Sequencing efforts are expanding for the collection of genomic data
(Goodwin et al., 2016; Hodcroft et al., 2021; Mardis, 2017). Current
methods for incorporating new data into sequence alignments exist
but are inadequate for whole-genome datasets with thousands of
taxa (Eddy, 2009; Nguyen et al., 2015). While combining new and
previously analysed data during de novo alignment construction is a
routinely performed workflow, this process can result in alignment
trimming that can remove potentially useful data from a dataset
(Huang & Knowles, 2016). To address issues of expanding existing

sequence alignments, we introduced the Extensiphy program and

Comparison metrics

Total program runtime

Total bases per alignment

Total gaps or degenerate bases

De novo
Extensiphy assembly Snippy
38h 236 h 18 h
6m2ls 41m 41s
De novo
Extensiphy assembly Snippy
2,293,269,030 921,517,491 2,732,911,282
4,891,739 3,469,861 224,835,516
5,868 1,465 -
317 522 =

TABLE 4 Empirical data phylogeny RF distances. Unweighted
Robinson-Foulds distances between phylogenies produced by each
program. A ‘—' symbol indicates the value is not applicable

De novo
Comparison metrics Extensiphy assembly Snippy
Extensiphy - 687 749
De novo assembly 687 — 676
Snippy 749 676 -

assessed its outputs to two workflows with comparable outputs.
Our results show that Extensiphy balances between data retention,
runtime efficiency and applicability to genomic datasets. Extensiphy
returned alignments with sequence lengths matching those of the
input alignment and containing a lower proportion of degenerate
or gap sites than other methods. Extensiphy accommodated and
returned an alignment with sequences of lengths comprising over
90% of the N. gonorrhoeae genome. All sequences were assembled in
competitive times compared to other analysed methodologies. If the
starting point of a study is an existing concatenated alignment or set
of alighments for the same taxa and a set of whole-genome short-
read data and the goal is to rapidly add the new data to the align-
ment, Extensiphy will produce the desired results. Additionally, we
argue that the analyses of both the simulated and empirical datasets
demonstrate that Extensiphy performs equally well when updating
alignments with any number of loci and inputs of either separate
alignments or a single, pre-concatenated alignment. While these two
features are simple in terms of modern bioinformatics tools, their
presence expands the scope of studies for which Extensiphy may
be appropriate. By accommodating any number of loci, Extensiphy
is applicable to any scale of project, from inquiries with a single or
a few loci to full-scale epidemiological monitoring efforts (Grad
et al., 2016; Hadfield et al., 2018; Hodcroft et al., 2021). By accept-
ing either individual locus alignments or a concatenated alignment,
Extensiphy does not constrain the user to a specific method of phy-
logenetic estimation.

Extensiphy is designed to integrate new genomic data with

existing datasets. The approach targets computational effort to
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regions which are homologous to existing data. This removes the
computationally taxing requirement of a downstream multiple se-
quence alignment step, as the new reads are aligned to a sequence
already included in the alignment. Extensiphy also packages a
maximume-likelihood phylogenetic estimation method for stream-
lined results. While Extensiphy and Snippy share similar approaches
to sequence construction, Extensiphy produces a homologous se-
quence alignment as opposed to genome-length sequences which
require additional processing to identify and isolate loci-of-interest.
Extensiphy assembles new loci directly aligned to existing loci, as
opposed to a reference genome. Extensiphy does not require a full
reference genome, and can be applied to integrating sequences from
whole-genome data into even single-locus datasets. These few or
single-locus datasets form the phylogenetic backbone of our under-
standing of many taxa.

As part of this framework, Extensiphy also allows for the selec-
tion of a reference sequence already found in an existing alignment.
This provides an opportunity to assess the role of choice of reference
sequence in consensus sequence inference. While reference-based
read alignment is an excellent flexible method for many studies, the
choice of reference sequence can inherently bias downstream analy-
ses (Brandt et al., 2015; Glinther & Nettelblad, 2019). Reference bias
is a well-known potential influence on sequence structure during
read alignment based on the structure of the reference (Glinther &
Nettelblad, 2019; Ros-Freixedes et al., 2018). The extent to which
reference bias affects phylogenetic estimation is still ambiguous.
Extensiphy paired with the methodologies of sequence and phy-
logenetic comparison we describe in this study offer an excellent
opportunity to repeatedly measure the effects of constructing align-
ments based on diverse reference sequences. By running the same
analyses using different references with known phylogenetic rela-
tionships to each other, it is straightforward to use Extensiphy to
assess if this bias is playing a role in one's own dataset.

Acknowledging and addressing missing data are key issues
in modern phylogenomics. Current research argues for a case-
by-case strategy on including or excluding missing data (Huang &
Knowles, 2016; Streicher et al., 2016). The distribution of missing
data throughout an alignment influences such decisions (Lemmon
et al., 2009). Assuming a relatively even distribution of missing data,
alignment trimming may not be necessary and such trimming could
remove valuable variant nucleotides from future analyses. In the
presence of an uneven distribution of missing data, perhaps due to
sequencing bias, a study could benefit from judicious locus removal
(Streicher et al., 2016). Extensiphy finds an ‘middle ground' in re-
spect to retaining full loci-of-interest while introducing a minimum
of missing data. Using Extensiphy, all input loci are maintained while
updating an alignment, preventing loci from fragmenting into smaller
sequence segments as seen when using ParSNP in the de novo pipe-
line. Moreover, a smaller percentage of missing data was found in
the Extensiphy alignment compared to the alignment produced by
Snippy. While the Snippy alignment did contain more sites, expressed
as the full length of the reference sequence for each taxon, the dif-

ference in size between the Snippy alignment and the Extensiphy

alignment is modest compared to the amount of missing data found
in the Snippy alignment. Such a percentage of missing data could
affect inferred phylogenies by biasing branch lengths, potentially
misleading conclusions based on those phylogenies. Extensiphy rap-
idly returns an updated alignment while minimizing missing data and
enabling researchers to make decisions on the inclusion or excision
of loci. Ultimately, all three methods tested here produced accurate
estimates and useful alignments and the choice of application of any

of the approaches described here depends on the researchers’ goal.

5 |CONCLUSIONS

Updating a multiple sequence alignment previously required trade-
offs of program runtime, reference sequence availability and dataset
trimming and fragmentation. We have introduced Extensiphy, a pro-
gram that updates alignments of loci with new data, and compared
it to two popular alternative methods. Extensiphy is applicable to
any project with a starting alignment and new whole-genome short-
read data. Alignments may be concatenated or separate single-locus
alignments. Extensiphy offers an efficient and flexible solution to
any study producing high volumes of whole-genome data, particu-
larly for disease monitoring purposes. Projects where maintaining
locus length and preventing alignment trimming due to missing data
are important will find Extensiphy particularly useful. Extensiphy
produces updated alignments suitable for multiple methods of phy-
logenetic estimation and base-call accuracy comparable to standard
methods in the field of bioinformatics. Updating sequence align-
ments with Extensiphy removes the burden of data processing from
the researcher and enables them to focus on purpose and applica-
tions of their research.

ACKNOWLEDGEMENTS

Research was supported by the grant ‘Cultivating a sustainable
Open Tree of Life’, NSF ABI No. 1759846. Computer time was pro-
vided by the Multi-Environment Research Computer for Exploration
and Discovery (MERCED) cluster from the University of California,
Merced (UCM), supported by the NSF Grant No. ACI-1429783. J.T.F.
was supported by the NSF NRT Grant DGE-1633722. We appreciate
helpful feedback from Dr. Chris Amemiya, Dr Gordon Bennett, Dr
Mark Sistrom, Dr Siavash Mirarab, Dr Jessica Blois and the members
of the UC Merced Blois-McTavish Lab Group. The findings and con-
clusions in this article are those of the authors and do not necessarily
represent the official position of the CDC.

CONFLICT OF INTEREST

None declared.

AUTHORS' CONTRIBUTIONS

JT.F,A.JA, J.C.C.and E.J.M. designed Extensiphy; J.T.F. and E.J.M.
programmed Extensiphy; J.T.F. performed all data collection and
comparisons; J.T.F., A.J.A., J.C.C. and E.J.M. wrote and edited the

manuscript.



FIELD ET AL.

Methods in Ecology and Evolution |691

PEER REVIEW
The peer review history for this article is available at https://publo
ns.com/publon/10.1111/2041-210X.13790.

DATA AVAILABILITY STATEMENT

Extensiphy is open source software utilizing software written by
other developers. The Extensiphy pipeline itself is available on
Github https://github.com/McTavishLab/extensiphy and on Zenodo
https://doi.org/10.5281/zenodo.5770686 (Field, 2021b). The
comparison pipelines are also open source software pipelines and
are available on Github https://github.com/jtfield/phylo_compa
rison and on Zenodo https://doi.org/10.5281/zenodo.5770698
(Field, 2021c). All accession numbers for samples and alignments, as
well as the simulated data files used in this study are publicly avail-
able on Dryad Digital Repository https://doi.org/10.6071/M38TOT
(Field, 2021a).

ORCID

Jasper Toscani Field "= https://orcid.org/0000-0002-6457-4359

Emily Jane McTavish "= https://orcid.org/0000-0001-9766-5727

REFERENCES

Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A, Dvorkin, M.,
Kulikov, A. S., Lesin, V. M., Nikolenko, S. I., Pham, S., Prjibelski, A.
D., Pyshkin, A. V., Sirotkin, A. V., Vyahhi, N., Tesler, G., Alekseyev,
M. A, & Pevzner, P. A. (2012). SPAdes: A new genome assembly
algorithm and its applications to single-cell sequencing. Journal of
Computational Biology, 19(5), 455-477. https://doi.org/10.1089/
cmb.2012.0021

Brandt, D. Y., Aguiar, V. R., Bitarello, B. D., Nunes, K., Goudet, J., & Meyer,
D. (2015). Mapping bias overestimates reference allele frequencies
at the HLA genes in the 1000 genomes project phase | data. G3:
Genes, Genomes, Genetics, 5(5), 931-941.

Briggs, A. W., Good, J. M., Green, R. E., Krause, J., Maricic, T., Stenzel, U.,
Lalueza-Fox, C., Rudan, P., Brajkovi¢, D., Kuéan, 7., Gusic, I., Schmitz,
R., Doronichey, V. B., Golovanova, L. V., De La Rasilla, M., Fortea, J.,
Rosas, A., & Paibo, S. (2009). Targeted retrieval and analysis of five
Neandertal mtDNA genomes. Science, 325(5938), 318-321.

Bush, S. J., Foster, D., Eyre, D. W., Clark, E. L., De Maio, N., Shaw, L. P,,
Stoesser, N., Peto, T. E. A., Crook, D. W., & Walker, A. S. (2020).
Genomic diversity affects the accuracy of bacterial single-
nucleotide polymorphism-calling pipelines. GigaScience, 9(2).
https://doi.org/10.1093/gigascience/giaa007

Bushnell, B. (2021). BBTools. Retrieved from https://sourceforge.net/
projects/bbmap/

Capella-Gutiérrez, S., Silla-Martinez, J. M., & Gabaldon, T. (2009). tri-
mAl: A tool for automated alignment trimming in large-scale phy-
logenetic analyses. Bioinformatics, 25(15), 1972-1973. https://doi.
org/10.1093/bioinformatics/btp348

Castresana, J. (2000). Selection of conserved blocks from multiple align-
ments for their use in phylogenetic analysis. Molecular Biology and
Evolution, 17(4), 540-552. https://doi.org/10.1093/oxfordjournals.
molbev.a026334

Cavender-Bares, J., Ackerly, D. D., & Kozak, K. H. (2012). Special Issue:
Integrating ecology and phylogenetics: The footprint of history in
modern-day communities. Ecology, 93(8), S1-S3. http://www.jstor.
org/stable/23229892

Chan, C. X., & Ragan, M. A. (2013). Next-generation phylogenomics.
Biology Direct, 8(1), 3. https://doi.org/10.1186/1745-6150-8-3

Chen, C.-J.,Huang, Y.-C., & Shie, S.-S.(2020). Evolution of multi-resistance
to vancomycin, daptomycin, and linezolid in methicillin-resistant
staphylococcus aureus causing persistent bacteremia. Frontiers in
Microbiology, 11, 1414. https://doi.org/10.3389/fmicb.2020.01414

Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T. J., Higgins, D.
G., & Thompson, J. D. (2003). Multiple sequence alignment with
the Clustal series of programs. Nucleic Acids Research, 31(13), 3497-
3500. https://doi.org/10.1093/nar/gkg500

Criscuolo, A., & Gribaldo, S. (2010). BMGE (block mapping and gathering
with entropy): A new software for selection of phylogeneticinforma-
tive regions from multiple sequence alignments. BMC Evolutionary
Biology, 10(1), 1-21. https://doi.org/10.1186/1471-2148-10-210

Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M.
A., Handsaker, R. E., Lunter, G., Marth, G. T, Sherry, S. T., McVean,
G., & Durbin, R. (2011). The variant call format and VCFtools.
Bioinformatics, 27(15), 2156-2158. https://doi.org/10.1093/bioin
formatics/btr330

Drew, B. T., Gazis, R., Cabezas, P., Swithers, K. S., Deng, J., Rodriguez, R.,
Katz, L. A., Crandall, K. A, Hibbett, D. S., & Soltis, D. E. (2013). Lost
branches on the tree of life. PLoS Biology, 11(9), e1001636. https://
doi.org/10.1371/journal.pbio.1001636

Driskell, A. C., Ané, C., Burleigh, J. G., McMahon, M. M., O'meara, B.C., &
Sanderson, M. J. (2004). Prospects for building the tree of life from
large sequence databases. Science, 306(5699), 1172-1174.

Dunn, C. W,, Hejnol, A., Matus, D. Q., Pang, K., Browne, W. E., Smith, S.
A., Seaver, E., Rouse, G. W., Obst, M., Edgecombe, G. D., Sgrensen,
M. V., Haddock, S. H. D., Schmidt-Rhaesa, A., Okusu, A., Kristensen,
R. M., Wheeler, W. C., Martindale, M. Q., & Giribet, G. (2008).
Broad phylogenomic sampling improves resolution of the animal
tree of life. Nature, 452(7188), 745-749. https://doi.org/10.1038/
nature06614

Dunn, C. W,, Leys, S. P., & Haddock, S. H. D. (2015). The hidden biology
of sponges and ctenophores. Trends in Ecology & Evolution, 30(5),
282-291. https://doi.org/10.1016/j.tree.2015.03.003

Dunn, C. W., Zapata, F., Munro, C., Siebert, S., & Hejnol, A. (2018).
Pairwise comparisons across species are problematic when analyz-
ing functional genomic data. Proceedings of the National Academy of
Sciences of the United States of America, 115(3), E409-E417. https://
doi.org/10.1073/pnas.1707515115

Eddy, S. R. (2009). A new generation of homology search tools based
on probabilistic inference. Genome Informatics, 2009, 205-211.
https://doi.org/10.1142/9781848165632_0019

Felsenstein, J. (1992). Phylogenies from restriction sites: A maximum-
likelihood approach. Evolution, 46(1), 159-173. https://doi.
org/10.1111/j.1558-5646.1992.th01991.x

Field, J. T. (2021a). Data from: Rapid alignment updating with extensiphy.
Dryad Digital Repository, https://doi.org/10.6071/M38TOT

Field, J. T. (2021b). McTavishLab/extensiphy: MEE submission (bioinfor-
matics). Zenodo, https://doi.org/10.5281/zenodo.5770686

Field, J. T. (2021¢). jtfield/phylo_comparison: MEE submission (bioinfor-
matics). Zenodo, https://doi.org/10.5281/zenodo.5770698

Field, J. T., Weinberg, J., Bensch, S., Matta, N. E., Valkitnas, G., &
Sehgal, R. N. (2018). Delineation of the genera Haemoproteus and
Plasmodium using RNA-Seq and multi-gene phylogenetics. Journal
of Molecular Evolution, 86(9), 646-654. https://doi.org/10.1007/
s00239-018-9875-3

Gernert, K. M., Seby, S., Schmerer, M. W., Thomas, J. C., Pham, C. D., St
Cyr, S., Schlanger, K., Weinstock, H., Shafer, W. M., Raphael, B. H.,
Kersh, E. N., Hun, S., Hua, C., Ruiz, R., Soge, O. O., Dominguez, C.,
Patel, A., Loomis, J., Leavitt, J., ... Harvey, A. (2020). Azithromycin
susceptibility of Neisseria gonorrhoeae in the USA in 2017: A ge-
nomic analysis of surveillance data. The Lancet Microbe, 1(4),
e154-e164. https://doi.org/10.1016/52666-5247(20)30059-8

Goodwin, S., McPherson, J. D., & McCombie, W. R. (2016). Coming
of age: Ten years of next-generation sequencing technologies.



692 Methods in Ecology and Evolution

FIELD ET AL.

Nature Reviews Genetics, 17(6), 333-351. https://doi.org/10.1038/
nrg.2016.49

Gordon, A., & Hannon, G. J. (2021). Fastq_toolkit. Retrieved from http://
hannonlab.cshl.edu/fastx_toolkit/download.html

Grad, Y. H., Harris, S. R, Kirkcaldy, R. D., Green, A. G., Marks, D. S.,
Bentley, S. D., Trees, D., & Lipsitch, M. (2016). Genomic epidemi-
ology of gonococcal resistance to extended-spectrum cephalospo-
rins, macrolides, and fluoroquinolones in the United States, 2000-
2013. Journal of Infectious Diseases, 214(10), 1579-1587. https://
doi.org/10.1093/infdis/jiw420

Glnther, T., & Nettelblad, C. (2019). The presence and impact of refer-
ence bias on population genomic studies of prehistoric human pop-
ulations. PLoS Genetics, 15(7), e1008302. https://doi.org/10.1371/
journal.pgen.1008302

Hadfield, J., Megill, C., Bell, S. M., Huddleston, J., Potter, B., Callender, C.,
Sagulenko, P., Bedford, T., & Neher, R. A. (2018). Nextstrain: Real-
time tracking of pathogen evolution. Bioinformatics, 34(23), 4121-
4123. https://doi.org/10.1093/bioinformatics/bty407

Hardison, R. C. (2003). Comparative genomics. PLOS Biology, 1(2), €58.
https://doi.org/10.1371/journal.pbio.0000058

Heng, L. (2021). Seqtk. Retrieved from https://github.com/Ih3/seqtk

Hodcroft, E. B., De Maio, N., Lanfear, R., MacCannell, D. R., Minh, B. Q.,
Schmidt, H. A., Stamatakis, A., Goldman, N., & Dessimoz, C. (2021).
Want to track pandemic variants faster? Fix the bioinformatics bot-
tleneck. Nature, 591(7848), 30-33. Retrieved from https://www.
nature.com/articles/d41586-021-00525-x

Hodgins, K. A., Yeaman, S., Nurkowski, K. A., Rieseberg, L. H., & Aitken, S. N.
(2016). Expression divergence is correlated with sequence evolution
but not positive selection in conifers. Molecular Biology and Evolution,
33(6), 1502-1516. https:/doi.org/10.1093/molbev/msw032

Hortal, J., de Bello, F., Diniz-Filho, J. A. F., Lewinsohn, T. M., Lobo, J.
M., & Ladle, R. J. (2015). Seven shortfalls that beset large-scale
knowledge of biodiversity. Annual Review of Ecology, Evolution, and
Systematics, 46(1), 523-549. https://doi.org/10.1146/annurev-
ecolsys-112414-054400

Huang, H., & Knowles, L. L. (2016). Unforeseen consequences of exclud-
ing missing data from next-generation sequences: Simulation study
of RAD sequences. Systematic Biology, 65(3), 357-365. https://doi.
org/10.1093/sysbio/syu046

Huang, W,, Li, L., Myers, J. R.,, & Marth, G. T. (2012). ART: A next-
generation sequencing read simulator. Bioinformatics, 28(4), 593-
594. https://doi.org/10.1093/bioinformatics/btr708

Huerta-Cepas, J., Serra, F., & Bork, P. (2016). ETE 3: Reconstruction, analysis,
and visualization of phylogenomic data. Molecular Biology and Evolution,
33(6), 1635-1638. https://doi.org/10.1093/molbev/msw046

Kim, D., Langmead, B., & Salzberg, S. L. (2015). HISAT: A fast spliced
aligner with low memory requirements. Nature Methods, 12(4),
357-360. https://doi.org/10.1038/nmeth.3317

Leaché, A. D., Banbury, B. L., Felsenstein, J., de Oca, A.- N.-M,, &
Stamatakis, A. (2015). Short tree, long tree, right tree, wrong tree:
New acquisition bias corrections for inferring SNP phylogenies.
Systematic Biology, 64(6), 1032-1047. https://doi.org/10.1093/sysbi
o/syv053

Leebens-Mack, J. H., Barker, M. S., Carpenter, E. J., Deyholos, M. K.,
Gitzendanner, M. A., Graham, S. W,, Grosse, |., Li, Z., Melkonian, M.,
& Mirarab, S. (2019). One thousand plant transcriptomes and the
phylogenomics of green plants. Nature, 574, 679-685. https://doi.
org/10.1038/541586-019-1693-2

Lemmon, A. R., Brown, J. M,, Stanger-Hall, K., & Lemmon, E. M. (2009).
The effect of ambiguous data on phylogenetic estimates obtained
by maximum likelihood and Bayesian inference. Systematic Biology,
58(1), 130-145. https://doi.org/10.1093/sysbio/syp017

Lewis, P. O. (2001). A likelihood approach to estimating phylogeny from
discrete morphological character data. Systematic Biology, 50(6),
913-925. https://doi.org/10.1080/106351501753462876

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N.,
Marth, G., Abecasis, G., Durbin, R., & 1000 Genome Project Data
Processing Subgroup. (2009). The sequence alignment/map for-
mat and SAMtools. Bioinformatics, 25(16), 2078-2079. https://doi.
org/10.1093/bioinformatics/btp352

Liu, K., Warnow, T. J., Holder, M. T,, Nelesen, S. M., Yu, J., Stamatakis, A.
P., & Linder, C. R. (2012). SATe-Il: Very fast and accurate simultane-
ous estimation of multiple sequence alignments and phylogenetic
trees. Systematic Biology, 61(1), 90.

Mardis, E. R. (2017). DNA sequencing technologies: 2006-2016. Nature
Protocols, 12(2), 213-218. https://doi.org/10.1038/nprot.2016.182

Matsen, F. A., Kodner, R. B., & Armbrust, E. V. (2010). pplacer: Linear
time maximume-likelihood and Bayesian phylogenetic placement of
sequences onto a fixed reference tree. BMC Bioinformatics, 11(1),
538. https://doi.org/10.1186/1471-2105-11-538

McTavish, E. J., Drew, B. T., Redelings, B., & Cranston, K. A. (2017). How
and why to build a unified tree of life. BioEssays, 39(11), 1700114~
https://doi.org/10.1002/bies.201700114

McTavish, E. J., Pettengill, J., Davis, S., Rand, H., Strain, E., Allard, M., &
Timme, R. E. (2017). TreeToReads - A pipeline for simulating raw
reads from phylogenies. BMC Bioinformatics, 18(1), https://doi.
org/10.1186/s12859-017-1592-1

Molloy, E. K., & Warnow, T. (2018). To include or not to include: The
impact of gene filtering on species tree estimation methods.
Systematic Biology, 67(2), 285-303. https:/doi.org/10.1093/sysbi
0/syx077

Murolo, S., & Romanazzi, G. (2015). In-vineyard population structure of
‘Candidatus Phytoplasma solani’ using multilocus sequence typing
analysis. Infection, Genetics and Evolution, 31, 221-230. https://doi.
org/10.1016/j.meegid.2015.01.028

NCBI. (2020). NCBI Pathogen database. Retrieved from https://www.
ncbi.nlm.nih.gov/pathogens/organisms/

Nguyen, N. D., Mirarab, S., Kumar, K., & Warnow, T. (2015). Ultra-large
alignments using phylogeny-aware profiles. Genome Biology, 16(1),
124. https://doi.org/10.1186/s13059-015-0688-z

Rambaut, A., & Grassly, N. C. (1997). Seq-Gen: An application for the
Monte Carlo simulation of DNA sequence evolution along phyloge-
netic trees. Computer Applications in the Biosciences, 13, 235-238.
https://doi.org/10.1093/bioinformatics/13.3.235

Robinson, D. F., & Foulds, L. R. (1981). Comparison of phylogenetic
trees. Mathematical Biosciences, 53(1-2), 131-147. https://doi.
org/10.1016/0025-5564(81)90043-2

Rocha, E. P., Smith, J. M., Hurst, L. D., Holden, M. T., Cooper, J. E.,
Smith, N. H., & Feil, E. J. (2006). Comparisons of dN/dS are time
dependent for closely related bacterial genomes. Journal of
Theoretical Biology, 239(2), 226-235. https://doi.org/10.1016/j.
jtbi.2005.08.037

Ros-Freixedes, R., Battagin, M., Johnsson, M., Gorjanc, G., Mileham, A.
J., Rounsley, S. D., & Hickey, J. M. (2018). Impact of index hopping
and bias towards the reference allele on accuracy of genotype calls
from low-coverage sequencing. Genetics Selection Evolution, 50(1),
1-14. https://doi.org/10.1186/s12711-018-0436-4

Sanchez-Reyes, L. L., Kandziora, M., & McTavish, E. J. (2021). Physcraper:
A Python package for continually updated phylogenetic trees using
the Open Tree of Life. BMC Bioinformatics, 22, 355. https://doi.
org/10.1186/s12859-021-04274-6

Seemann, T. (2021). Snippy. Retrieved from https://github.com/tseem
ann/snippy

Shakya, M., Ahmed, S. A., Davenport, K. W., Flynn, M. C,, Lo, C.-C,, &
Chain, P. S. G. (2020). Standardized phylogenetic and molecular
evolutionary analysis applied to species across the microbial tree of
life. Scientific Reports, 10(1), 1723. https://doi.org/10.1038/54159
8-020-58356-1

Smith, S. D., Pennell, M. W., Dunn, C. W., & Edwards, S. V. (2020).
Phylogenetics is the new genetics (for most of biodiversity). Trends



FIELD ET AL.

Methods in Ecology and Evolution |693

in Ecology & Evolution, 35(5), 415-425. https://doi.org/10.1016/j.
tree.2020.01.005

Soltis, D. E., & Soltis, P. S. (2003). The role of phylogenetics in compar-
ative genetics. Plant Physiology, 132(4), 1790-1800. https://doi.
org/10.1104/pp.103.022509

Stamatakis, A. (2014). RAXML version 8: A tool for phylogenetic analysis
and post-analysis of large phylogenies. Bioinformatics, 30(9), 1312-
1313. https://doi.org/10.1093/bioinformatics/btu033

Streicher, J. W., Schulte, J. A., & Wiens, J. J. (2016). How should genes
and taxa be sampled for phylogenomic analyses with missing data?
An empirical study in iguanian lizards. Systematic Biology, 65(1),
128-145. https://doi.org/10.1093/sysbio/syv058

Sukumaran, J., & Holder, M. T. (2010). DendroPy: A Python library
for phylogenetic computing. Bioinformatics, 26(12), 1569-1571.
https://doi.org/10.1093/bioinformatics/btq228

Swofford, D., Olsen, G., Waddell, P., & Hillis, D. M. (1996). Phylogenetic
inference. In D. M. Hillis, C. Moritz, & B. K. Mable (Eds.), Molecular
systematics (Chapter 5, pp. 407-514). Sinauer Associates.

Talavera, G., & Castresana, J. (2007). Improvement of phylogenies after
removing divergent and ambiguously aligned blocks from protein
sequence alignments. Systematic Biology, 56(4), 564-577. https://
doi.org/10.1080/10635150701472164

Treangen, T. J., Ondov, B. D., Koren, S., & Phillippy, A. M. (2014). The
Harvest suite for rapid core-genome alignment and visualization
of thousands of intraspecific microbial genomes. Genome Biology,
15(11). https://doi.org/10.1186/s13059-014-0524-x

Vasimuddin, M., Misra, S., Li, H., & Aluru, S. (2019). Efficient
architecture-aware acceleration of BWA-MEM for multicore sys-
tems. In 2019 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pp. 314-324. https://doi.org/10.1109/IPDPS.
2019.00041

Wang, L., & Jiang, T. (1994). On the complexity of multiple sequence
alignment. Journal of Computational Biology, 1(4), 337-348. https://
doi.org/10.1089/cmb.1994.1.337

Wilkinson, M. (1995). Coping with abundant missing entries in phyloge-
netic inference using parsimony. Systematic Biology, 44(4), 501-514.
https://doi.org/10.2307/2413657

Williamson, R. J., Josephs, E. B., Platts, A. E., Hazzouri, K. M., Haudry,
A., Blanchette, M., & Wright, S. I. (2014). Evidence for widespread
positive and negative selection in coding and conserved noncod-
ing regions of Capsella grandiflora. PLoS Genetics, 10(9), e1004622.
https://doi.org/10.1371/journal.pgen.1004622

Xi, Z., Liu, L., & Davis, C. C. (2016). The impact of missing data on species
tree estimation. Molecular Biology and Evolution, 33(3), 838-860.
https://doi.org/10.1093/molbev/msv266

Yin, J., Zhang, C., & Mirarab, S. (2019). ASTRAL-MP: Scaling ASTRAL to very
large datasets using randomization and parallelization. Bioinformatics,
35(20), 3961-3969. https://doi.org/10.1093/bioinformatics/btz211

SUPPORTING INFORMATION
Additional supporting information may be found in the online

version of the article at the publisher’s website.

How to cite this article: Field, J. T., Abrams, A. J., Cartee, J. C.,
& McTavish, E. J. (2022). Rapid alignment updating with
Extensiphy. Methods in Ecology and Evolution, 13, 682-693.
https://doi.org/10.1111/2041-210X.13790




