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ABSTRACT

Topographic differencing measures landscape 
change by comparing multitemporal high-​resolution 
topography data sets. Here, we focused on two 
types of topographic differencing: (1) Vertical dif-
ferencing is the subtraction of digital elevation 
models (DEMs) that span an event of interest. 
(2) Three-dimensional (3-D) differencing measures 
surface change by registering point clouds with 
a rigid deformation. We recently released topo-
graphic differencing in OpenTopography where 
users perform on-demand vertical and 3-D differ-
encing via an online interface. OpenTopography is 
a U.S. National Science Foundation–funded facility 
that provides access to topographic data and pro-
cessing tools. While topographic differencing has 
been applied in numerous research studies, the lack 
of standardization, particularly of 3-D differencing, 
requires the customization of processing for individ-
ual data sets and hinders the community’s ability 
to efficiently perform differencing on the growing 
archive of topography data. Our paper focuses on 
streamlined techniques with which to efficiently 
difference data sets with varying spatial resolution 
and sensor type (i.e., optical vs. light detection and 
ranging [lidar]) and over variable landscapes. To 
optimize on-demand differencing, we considered 
algorithm choice and displacement resolution. The 
optimal resolution is controlled by point density, 
landscape characteristics (e.g., leaf-on vs. leaf-off), 
and data set quality. We provide processing options 
derived from metadata that allow users to produce 

optimal high-quality results, while experienced 
users can fine tune the parameters to suit their 
needs. We anticipate that the differencing tool will 
expand access to this state-of-the-art technology, 
will be a valuable educational tool, and will serve 
as a template for differencing the growing number 
of multitemporal topography data sets.

■■ INTRODUCTION

Topographic differencing measures landscape 
change from urban growth, flooding (Wheaton et 
al., 2009; Izumida et al., 2017), coastal processes 
(Brock et al., 2001; Bull et al., 2010), earthquakes 
and creeping faults (Oskin et al., 2012; Nissen et 
al., 2012, 2014; Clark et al., 2017; Scott et al., 2018a; 
Wedmore et al., 2019; Barnhart et al., 2019; Scott et 
al., 2020), volcanic eruptions (Albino et al., 2015), 
and landslides (Lucieer et al., 2014), among other 
events. Interest in this technique is growing as 
more regions are surveyed with multitemporal 
topography data. Vertical differencing is the sub-
traction of raster-based digital elevation models 
(DEMs) and can be performed on original raster 
topography or grids generated from point cloud 
data, as shown in Figure 1. Three-​dimensional (3-D) 
differencing resolves the best rigid deformation 
during an event of interest and is performed with 
a windowed implementation of the iterative closest 
point (ICP) algorithm (Besl and McKay, 1992; Chen 
and Medioni, 1992), as illustrated in Figure 2.

The 3-D differencing method, in particular, often 
requires an expert to dedicate substantial effort to 
customize processing, and there is little standard 

methodology or documentation available. As multi
temporal topography coverage increases, more 
data types with variable characteristics are differ-
enced, and results are used to respond to natural 
disasters and study phenomena altering Earth’s 
surface. In this paper, we describe our implemen-
tation of on-demand vertical and 3-D differencing 
on topography data available via OpenTopography 
(opentopography.org). A major challenge in 3-D 
differencing is to select the appropriate differencing 
algorithm and the resolution of derived displace-
ments, which depend on data resolution, noise, and 
landscape characteristics. We compared several 
differencing algorithms and incorporated meta-
data (e.g., point density) into the default processing 
settings. Our workflow quickly produces quality 
differencing results and offers default options that 
can be further tailored for individual data sets by 
more advanced users. Deployment of these tools in 
OpenTopography expands access to state-of-the-art 
technology for scientists, geospatial professionals, 
and students. Additionally, our tools can become 
a reference that contributes to the standardization 
of topographic differencing, which is lacking in the 
geosciences.

OpenTopography is a U.S. National Science 
Foundation–funded facility that enables discovery 
and access of high-resolution topography data sets 
and provides on-demand processing tools. Open-
Topography is built on a scalable-system–​oriented 
architecture that supports a range of downstream 
processing tools that derive common science prod-
ucts from hosted raw data (Krishnan et al., 2011). 
As of October 2020, the 341 point cloud data sets 
hosted by OpenTopography cover more than 
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266,000 km2 with over 1.6 trillion returns. Since 
its founding in 2009, almost 500,000 point cloud 
and raster jobs have been run via the portal, with 
an additional 1 million jobs run via the available 
application programming interface. The processing 
tools are designed to be accessible to users with 
a range of geospatial knowledge and experience, 
from beginners to geospatial professionals, includ-
ing students, environmental engineers, urban 
planners, and geologists. To accommodate the 
diverse user community, novice users are guided 
by interactive interfaces where processing algo-
rithms are prepopulated with optimal parameters 
for best results. Advanced users can change the 
default options in the available algorithms to tailor 
the analysis according to their needs. In on-demand 
differencing via the portal, users select overlapping 
data sets for differencing and can process the data 

with the suggested default parameters (e.g., spatial 
resolution) or customize the processing.

In the next section, we review established 
methodology on general topographic differencing, 
topography data sets and error, DEM generation, 
and vertical and 3-D differencing. We then describe 
our vertical differencing implementation in Open-
Topography using primarily open-source software 
with an emphasis on data set resolution and error. 
Subsequently, we address several challenges in 
standardizing 3-D differencing, including selecting 
the right differencing algorithm and optimizing the 
spatial resolution given modern and legacy data 
sets in different landscape types. We show that 
the optimal spatial resolution (i.e., window size) 
depends on point density, data set quality, and 
vegetation characteristics. We detail the imple-
mentation of 3-D on-demand differencing in the 

portal. Last, we summarize lessons learned on 
topographic differencing, differencing algorithm 
usage, and remaining challenges.

■■ BACKGROUND

Overview of Differencing Approaches

Surface change detection from multitemporal 
topographic data sets reveals landscape change. 
Typically, the differenced data sets are acquired for 
dissimilar purposes and with varying technology, 
resolution, and precision (Fig. 3). A differencing 
algorithm that can ingest diverse data types is 
therefore more widely applicable.

There are multiple approaches for calculating 
surface change from topography data acquired 
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Figure 1. Vertical differencing in OpenTo-
pography. (A–B) Topographic hillshades 
of Yosemite National Park, California 
(37° 45.175’N, 119° 32.509’W), from air-
borne light detection and ranging (lidar) 
data acquired in 2006 (A) and 2010 (B). 
(C) Differencing shows rockfalls and 
treefalls near cliff edges (red) and veg-
etation changes (purple). (D) Tectonic 
fault (black arrows) ruptures through 
agricultural fields during the M 7 2016 
Kumamoto, Japan (32° 47.788’N, 130° 
51.099’E), earthquake. (E) Topographic 
differencing: Downward motion (red) 
is punctuated by two faults that pro-
duce sharp displacement changes. Red 
square represents a collapsed building. 
Hillshade illumination is from the north-
west. Outputs were generated directly 
via the OpenTopography workflow. 
Yosemite lidar: 2006 (Stock, 2012) and 
2010 (Zimmer, 2011); Kumamoto lidar: 
(Chiba, 2018b, 2018a).
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Figure 2. Three-dimensional (3-D) iterative 
closest point (ICP) algorithm differenc-
ing for the 2016 M 7 Kumamoto, Japan, 
earthquake performed on OpenTopogra-
phy. (A) 3-D displacement field: Arrows 
and filled circles represent the horizontal 
and vertical displacement, respectively. 
(B) East-west, (C) north-south, and 
(D) vertical displacement. The earthquake 
produced ~2 m of oblique right-lateral sur-
face slip. Outputs were generated directly 
via the OpenTopography workflow. Data 
sets: Chiba (2018a, 2018b).

Figure 3. High-resolution topographic hill-
shades: (A) Terrestrial laser scanning (TLS) 
along a coastal bluff in Solano Beach, Cali-
fornia (32° 59.425’N, 117° 16.472’W; SDRCC, 
2018). (B) Structure-from-motion (SfM) 
topography from a small uncrewed aerial 
system (sUAS) showing a conical vent 
along the Tecolote Volcano, Sonora, Mex-
ico (31° 52.682’N, 113° 21.760’W; Scott et al., 
2018b). (C) Airborne laser scanning (ALS) 
showing fractured rocks in the Granite 
Dells, Arizona (34° 36.124’N, 112° 25.316’W; 
Haddad, 2010).

Downloaded from http://pubs.geoscienceworld.org/gsa/geosphere/article-pdf/17/4/1318/5362446/1318.pdf
by guest
on 29 April 2022

http://geosphere.gsapubs.org


1321Scott et al.  |  On-demand topographic differencing in OpenTopographyGEOSPHERE  |  Volume 17  |  Number 4

Software Contribution

from terrestrial, airborne, and space-based plat-
forms. Vertical differencing (Fig. 1) is the raster 
subtraction of two DEMs, and it can capture geo-
logic processes including river erosion, flooding 
(Wheaton et al., 2009; Izumida et al., 2017), earth-
quakes (Oskin et al., 2012; Clark et al., 2017), volcanic 
eruptions (Albino et al., 2015), and landslides (Luc-
ieer et al., 2014). Vertical differencing works well in 
flat areas or when the surface change is dominantly 
vertical, but lateral shifts due to coseismic offset 
result in topographically correlated artifacts when 
the data sets are no longer coregistered (e.g., Oskin 
et al., 2012). However, the relative offset between 
topographic data sets may be used to solve for 
horizontal motion (Streutker et al., 2011; DeLong 
et al., 2012; Donnellan et al., 2017). Cross-correla-
tion algorithms applied to topographic hillshades, 
optical, and radar data sets quantify horizontal dis-
placement (Leprince et al., 2007; Borsa and Minster, 
2012; Milliner et al., 2015).

Other differencing approaches directly use point 
clouds. The cloud-to-cloud distance tool in Cloud-
Compare (cloudcompare.org) measures local point 
cloud separation. The Multiscale Model to Model 
Cloud Comparison (M3C2; Lague et al., 2013) calcu-
lates cloud-to-cloud separation in the surface-normal 

direction and has been applied to bank and bed-
rock erosion and prograding deltas (Wagner et al., 
2017; Beer et al., 2017; Leyland et al., 2017). A win-
dowed implementation of the ICP algorithm (Besl 
and McKay, 1992; Chen and Medioni, 1992) solves 
for the rigid-body 3-D deformation by registering 
subsets of pre- and postevent topography.

The data set acquired before the event of inter-
est is called the “pre,” “compare,” or “source” data 
set. The data set acquired after the event is the 

“post,” “reference,” or “target” data set. The com-
pare and reference terminology is more commonly 
used in the vertical differencing literature (Wheaton 
et al., 2009), while source and target are used for 
3-D differencing (Nissen et al., 2012). We use com-
pare and reference terms for both vertical and 3-D 
differencing for consistency.

Topography and Error

Topographic data derived from laser- and pho-
togrammetry-based techniques are often presented 
as a point cloud (Fig. 4). The spatial sampling may 
vary by several orders of magnitude depending 
on the sensor type (e.g., terrestrial vs. airborne 

laser scanning; Fig. 3) and the available technol-
ogy. A DEM is generated by rasterizing the point 
cloud to a horizontal grid.

Because topographic differencing quantifies rel-
atively small changes between topography data 
sets, survey and metadata errors often become 
pronounced. Due to rapid advances in light detec-
tion and ranging (lidar) scanning systems, the older 
compare data set often has the larger error. Typical 
airborne lidar point clouds have vertical errors of 
5–15 cm when the flight altitude is below 1200 m 
due to inertial measurement unit, boresight, laser, 
scanner, lever arm offset, incidence angle, and dif-
ferential global navigation satellite system (dGNSS) 
kinematic position errors (Toth et al., 2007; Glennie, 
2007; Goulden and Hopkinson, 2010). Horizontal 
errors are often five times larger than vertical errors. 
Metadata often include no error or only a single 
error that represents a flat and unvegetated surface. 
Errors are larger over high-relief landscapes due to 
range-finder errors caused by changes in scanning 
geometry (Schaer et al., 2007). Light detection and 
ranging surveys typically consist of data acquired 
along multiple paths or flight lines. Flight-line offset 
often creates linear artifacts in differencing results 
(Fig. 2) aligned with the flight direction. Resolution 
or point density depends on flight design and sen-
sor properties. Typical airborne lidar point density 
has increased over time, from ~0.1–2 points/m2 for 
data acquired before 2007 (termed legacy data) to 
~1–30 points/m2 for modern data (Passalacqua et 
al., 2015; Okyay et al., 2019). Because differencing 
requires that both data sets are in identical coor-
dinate systems, good metadata are critical for 
mitigating coregistration errors. Point classification 
adds additional error, ranging from minimal over 
bare earth to the vegetation height when features 
cannot be removed (e.g., Passalacqua et al., 2015).

Photogrammetric point clouds produced from 
small uncrewed aerial system (sUAS) optical imag-
ery and structure-from-motion (SfM) techniques 
have errors due to onboard navigation systems 
with multimeter accuracy and doming due to radial 
lens distortion (James and Robson, 2014). Exter-
nal ground-control points measured with dGNSS 
translate, orient, and scale the point cloud. Posi-
tion error correlates with the square root of the 

Compare (pre):

Reference (post):

Subtraction:
Di�erence 
= Reference-Compare

UpDown

Error: 
Mask out di�erences
below the error 
threshold

Masked points

Figure 4. Vertical differencing: Compare (pre-event; blue) and reference (postevent; pink) point clouds with varying spa-
tial resolution are gridded to identical rasters. Raster differencing reveals elevation changes: Red is downward change 
or erosion, and blue is upward change or deposition. Elevation changes below the error threshold are masked (gray).
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number of ground-control points (James et al., 
2017). DEMs generated from stereo-satellite imag-
ery have decreased cost and increased spatial 
coverage in the last decade (e.g., Barnhart et al., 
2019). DigitalGlobe DEMs have an ~2 m resolution 
with a <5 m geolocation accuracy that is reduced 
to 0.5 m with ground control (Shean et al., 2016). 
Both SfM- and stereo-satellite–derived topography 
methods record surface features, including vege-
tation (Anders et al., 2019). In contrast, lidar offers 
the ability to filter points returned from vegetation.

DEM Generation and Uncertainty

A DEM is a generic term for elevation values. 
A digital terrain model (DTM) refers to bare earth. 
A digital surface model (DSM) refers to the top of 
the landscape. DEMs are often produced from point 
clouds using local neighborhood, geostatistical, 
and spline methods (e.g., Passalacqua et al., 2015). 
The triangular irregular network (TIN) is a local 
neighborhood algorithm wherein the surface is 
represented by neighboring triangles. A Delauney 
triangulation creates nearly equilateral triangles. 
Inverse distance weighted (IDW) and inverse dis-
tance power (IDP) approaches calculate elevations 
along grid cells based on an inverse weighting of 
elevations given the Euclidean distance between 
the grid cell and data points, sometimes to a power. 
IDW/IDP methods result in few artifacts near holes 
commonly present in terrestrial laser scanning 
(TLS) data. The DEM spatial resolution is typically 
dictated by the point cloud resolution (e.g., Smith 
et al., 2019). DEM uncertainties represent grid res-
olution, terrain variability, and acquisition and 
processing errors (e.g., Smith et al., 2019).

Vertical Raster-Based Differencing

Vertical or raster-based differencing is per-
formed on two DEMs in the same coordinate 
system and rasterized to identical grids. The dif-
ferencing results in Figure 1 show rockfalls in 
Yosemite, California, and vertical displacements 
due to an earthquake in Japan. When point cloud 

and/or DEM errors are known, error propagation 
provides the differencing uncertainty (Wheaton et 
al., 2009). Differences below a minimum level of 
detection (EMLOD) are usually masked. For a DEM 
vertical uncertainty of ∂z, the differencing uncer-
tainty is (e.g., Brasington et al., 2003):

	 EMLOD = zreference
2 + zcompare

2 .	 (1)

This equation requires that DEM errors are 
random and independent of landscape type (e.g., 
wet vs. dry and varying relief). Because DEM error 
is typically more complex, Equation 1 should be 
used if the signal is significantly larger than the 
error. We use Equation 1 in OpenTopography’s error 
calculation.

3-D Differencing

The ICP algorithm used for 3-D differencing 
originated in the medical, robotics, and computer 
vision communities for registering 3-D scans (e.g., 
Bellekens et al., 2014; Besl and McKay, 1992). In 
the earth sciences, 3-D differencing is best applied 
to events where the landscape shifts laterally, like 
earthquakes and creeping landslides. As a proof-of-
concept, Nissen et al. (2012) applied this approach to 
synthetically offset B4 airborne lidar data (Bevis et 
al., 2005) that mimic a surface-rupturing earthquake 

along the San Andreas fault, California. The method 
has since been applied to real earthquakes using 
airborne lidar (Clark et al., 2017; Nissen et al., 2012, 
2014; Scott et al., 2018a, 2019), TLS (Wedmore et al., 
2019), satellite optical (Barnhart et al., 2019), aerial 
photographs (Howell et al., 2020), and hybrid data 
sets (Ekhtari and Glennie, 2017; Scott et al., 2020).

In windowed 3-D differencing, surface change 
is calculated as the best rigid transformation (fea-
tures translate and rotate while maintaining their 
shape and scale) that registers reference and com-
pare windows of topography. For airborne laser 
scanning, the window size (i.e., resolution) is a few 
tens of meters. The rigid deformation is associated 
with a core point (Fig. 5; black dot) at the window 
center. Typically, there is no exact point-to-point 
match between the two point clouds due to noise, 
varying point density, and the fact that the same 
points are rarely resurveyed. The optimal window 
size is a trade-off between a large scale with greater 
topographic structure to produce a robust align-
ment and a small scale that is less likely to violate 
the rigid-body assumption (Nissen et al., 2012). In 
the “Window Size and Point Density” section, we 
show that point density, data quality, and vegeta-
tion control window size.

Scott et al. (2018a) used correlation error to 
assess uncertainty in airborne lidar ICP displace-
ments. This error measures the local variability 
in displacements over ~100 × 100 m2 areas. The 

25 m 

Compare 
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Pre-ICP alignment

ICP rigid alignment
Compare post ICP

         alignment 

Core point

UpDown

Horizontal 
displacement

150 m

(x1,y1)

Core point
pre_x1_y1.las

post_x1_y1.las

Figure 5. Three-dimensional (3-D) 
differencing of windowed point 
cloud topography. The compare 
(pre-event; blue) and reference 
(postevent; pink) data sets are delin-
eated by windows (square outlines) 
around a core point (black dot). The 
reference data set has an additional 
buffer. Typically, the reference data 
set has a higher point density due to 
technology advancements over time. 
The point clouds are registered by a 
rigid deformation (translation and 
rotation) using the iterative closest 
point (ICP) algorithm. Applying the 
algorithm to a repeat survey results 
in a 3-D displacement field.
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horizontal correlation error scaled inversely with 
topographic relief: In that study, the lower- and 
higher-​relief landscapes had horizontal errors of 
5–12 cm and 4–6 cm, respectively, while the 1–3 cm 
vertical errors had no relationship to land use.

■■ VERTICAL DIFFERENCING 
IMPLEMENTATION IN 
OPENTOPOGRAPHY

To use the vertical differencing tool imple-
mented in OpenTopography, a user selects a data 
set pair from a subset of overlapping data sets with 
identical coordinate systems, as shown in Figure 6. 
The user is presented with differencing options: 
(1) The reference and compare data sets can be 
switched, ultimately impacting the differencing 
product sign (e.g., if erosion or deposition is neg-
ative). (2) When both data sets have been classified, 
differencing can be performed with a subset of the 
classifications (i.e., ground-classified points) or on 
the DTM or DSM. (3) The optimal grid resolution 
(GR) of the differencing product is obtained when 
the lower-resolution data set point density is less 
than 1 pt/m2, so the recommended GR is (e.g., Hu, 
2003; Langridge et al., 2014):

	 GR = 1
point  density

.	 (2)

When the point density exceeds 1 pt/m2, the 
1 m default resolution increases processing speeds. 
The user can alter the resolution, but gridding too 
finely may result in artifacts.

Differencing can be performed starting with 
point cloud or raster topography. Both data types 
are rasterized to identical grids (origin, boundaries, 
and resolution). Point cloud data sets are gridded to 
a DEM using the TIN algorithm. The raster data sets 
are regridded using the Geospatial Data Abstraction 
Library (GDAL/OGR contributors, 2019): Gdalwarp 
crops the data set to the appropriate bounds, and 
gdal_translate grids the data set to appropriate res-
olution. To produce the differencing result (zDiff ), the 
reference (zreference) and compare (zcompare) DEMs are 
subtracted using gdal_calc:
	 zDiff = zreference zcompare .	 (3)

When zreference was acquired after zcompare (the 
default setting), positive and negative zDiff values 
denote upward and downward change, respectively. 
The suggested EMLOD = 0.5 m corresponds to  ∂z = 
0.35 m for both DEMs. While conservative for current 
lidar surveys, the range is likely intuitive for many 
users. Users can alter the EMLOD value, rerun the dif-
ferencing, and assess the most representative error. 
Because metadata do not typically include error, the 
EMLOD suggestions do not reflect an individual data 
set. Using this method, we generated the follow-
ing outputs: (1) DEM topographic hillshades, (2) zdiff 
values, and (3) a zdiff histogram (Fig. 7). With the 
selected error option, we display (4) zdiff values and 
(5) a histogram with differences below the threshold 
masked. These products can be downloaded from 
the OpenTopography results page for that job.

■■ 3-D DIFFERENCING ALGORITHM 
DEVELOPMENT AND IMPLEMENTATION

Differencing Algorithms

There are several variations of the 3-D differ-
encing algorithm. The common ICP point-to-point 
algorithm aligns point clouds based on the cor-
respondence between nearest neighbors, which 
is preferable when surfaces are quadratic or 

polynomial (Bellekens et al., 2014). The ICP point-
to-plane algorithm aligns compare points with the 
reference plane. The algorithm penalizes for sep-
aration in the surface-normal direction but not for 
horizontal misalignments across flat topography. 
It is less sensitive to noise when topography is 
approximately planar and is advantageous when 
an exact point match is unlikely, such as when the 
point density varies between data sets. The ICP 
nonlinear method uses the point-to-point and point-
to-plane approaches for global and fine alignment, 
respectively (e.g., Bellekens et al., 2014). Other 
approaches also use color (e.g., Men et al., 2011) 
or solve for scale (Amberg et al., 2007).

To calculate 3-D displacements, the point cloud 
data set delineated into windows (Fig. 5). A buffer 
exceeding the plausible horizontal displacement 
and rotation is added to the reference data set so 
that the transformed compare (PCcompare

transformed ) and orig-
inal reference point clouds (PCreference) align. After 
applying the best 3-D rigid body deformation to 
the compare point cloud (PCcompare ), PCcompare

transformed and 
PCreference align:

PCcompare
transformed =

1

1

1

PCcompare +
tx

ty

tz

.	 (4)

Perform On-demand vertical di�erencing 

Select region with overlapping data sets
Choose 3D vertical detection 

Processing options 

Switch reference and compare data sets
Point classi�cation
Spatial resolution
Error threshold: Minimum level of detection 
Processing limits based on number of points

Vertical Di�erencing

Query data sets
Grid data sets on identical grid
Subtract reference and compare DEMs

Presentation of results

Di�erencing results, topographic hillshades, histograms
Error plots: Mask out di�erences below Emlod  

Figure 6. Flow chart for vertical 
differencing implemented in 
OpenTopography. Bolded text 
denotes areas of user interac-
tion. Nonbolded text requires no 
user interaction. DEMs—digital 
elevation models; EMLOD—error 
threshold for minimum level of 
detection.
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Figure 7. (A–B) Vertical differencing re-
sults in Iowa City, Iowa, from 2008 (A) to 
2014 (B) generated via OpenTopography. 
(C) Differencing results highlight a drop 
in river level (red), building construction 
(blue), and vegetation changes (purple). 
(D) Displacements below a 0.5 m error 
threshold are masked (black). (E) Verti-
cal differencing histogram. (F) Histogram 
with EMLOD = 0.5 m (red bars). Data 
sets: 2008 (Krajewski, 2012); 2014 
(Kumar, 2016). Location is 41° 40.361’N, 
91° 33.490’W.
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Here, α, β, and γ are rotations about the x, y, and 
z axes, and tx, ty , and tz are translations in the x, y, 
and z directions. Equation 4 is written succinctly as

	 PCpre
transformed =   PCpre ,	 (5)

where φ is the rigid transformation:

	 =

1 tx

1 ty

1 tz

0 0 0 1

.	 (6)

ICP approaches penalize misalignments and out-
lier treatments differently (Rusinkiewicz and Levoy, 
2001). The point-to-point error (Ep2p) penalizes for 
misalignment between individual PCcompare points 
and the nearest neighbor in PCreference:

Ep2p =

PCcompare , i   PCreference , i( ) 2

i =1

Compare  point  cloud .	 (7)

The ICP point-to-plane error (Ep2l) is:

Ep2l =

PCcompare , i PCreference , i( ) ni

2

i =1

Compare  point  cloud
,	 (8)

where ni is the surface-normal vector at the ith 
point of PCreference. When the net 3-D rotation is small 
(<30°), the problem can be linearized and solved 
with linear least squares (Low, 2004).

3-D Differencing Algorithm Choice

We compared two open-source ICP algo-
rithms using airborne lidar topography for the 
2016 M 7 Kumamoto, Japan, earthquake (Chiba, 
2018a, 2018b; Scott et al., 2018a, 2019), as shown in 
Figure 8. The Library for ICP (LIBICP) was developed 
by Geiger et al. (2012) for 3-D object identification 
in autonomous navigation with point-to-point and 
point-to-plane implementation options. For the 
latter option, the normal vector is computed from 
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Figure 8. Three-​dimensional (3-D) iterative closest point (ICP) algorithm displacements derived from three 
algorithms applied to the 2016 M 7 Kumamoto, Japan, earthquake light detection and ranging (lidar) topog-
raphy (Chiba, 2018a, 2018b). Kumamoto Japan: 32° 47.788’N, 130° 51.099’E. (A) Topographic hillshade and fault 
ruptures mapped by the Japanese National Institute of Advanced Industrial Science and Technology (2016). 
(B) Pre-​earthquake (blue) and post-earthquake (red) airborne lidar flight line boundaries. (C) Standard deviation 
of elevation over 50 × 50 m2 windows. (D–F) Second row shows east-west displacement from the Library for ICP 
(LIBICP) point-to-plane (D), LIBICP point-to-point (E), and Point Data Abstraction Library (PDAL) (F) algorithms. 
(G–L) Third and fourth rows show north-south (G–I) and vertical displacements (J–L), respectively.
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the default 10 nearest neighbors, which lie over 
~1 m2 for typical modern airborne lidar data. The 
second algorithm was the ICP filter in the Point 
Data Abstraction Library (PDAL; PDAL Contribu-
tors, 2018) point-to-point algorithm. We computed 
surface displacements using the three ICP imple-
mentations over 12 km2 from 50 m windows and 
accessed quality from the correlation between 
displacements, fault ruptures, airborne lidar flight 
lines, and landscape. We expected variable ICP 
behavior over different landscape types and sharp 
displacement changes along faults. Displacement 
changes that correlate with flight-line boundaries 
(Fig. 8B) represent data-quality issues.

Horizontal displacements varied by algorithm 
and implementation (Fig. 8). The LIBICP point-to-
plane displacements changed along faults and 
flight-line boundaries (Fig. 8D). Both point-to-point 
methods produced scattered displacements that 
correlated with land use (Figs. 8E and 8F), such as 
the agricultural-​village boundary northwest of the 
fault. Vertical displacements that were estimated by 
aligning the point cloud vertical centroids were similar 
between methods. We prefer the LIBICP point-to-
plane algorithm, which likely performs better because, 
locally, Earth’s surface is approximately planar.

Window Size and Point Density

Topographic differencing algorithms ingest data 
sets with varying point density (Fig. 3), including leg-
acy data that become invaluable following an event 
of interest (Oskin et al., 2012; Glennie et al., 2014), or 
conduct hybrid differencing that uses topography 
measured with different sensor types (Ekhtari and 
Glennie, 2017; Scott et al., 2020). We assessed the 
impact of point density on ICP window size from 
experiments that mimicked the study by Nissen et al. 
(2012), who synthetically offset airborne lidar data to 
explore ICP methodology. They separated lidar data 
into synthetic compare and reference topography 
data sets based on flight line, giving no exact point-
to-point match between point clouds.

We conducted similar experiments on the data 
sets listed in Tables 1 and 2. We split each original 
data set in half using MATLAB’s random number 

TABLE 1. SAMPLE AIRBORNE LIGHT DETECTION AND RANGING (lidar) DATA SETS, WHERE THE MEAN 
HORIZONTAL ITERATIVE CLOSEST POINT (ICP) ERROR IS LESS THAN 20 CM ERROR THRESHOLD 

IN THE EXPERIMENT DESCRIBED IN “WINDOW SIZE AND POINT DENSITY” SECTION OF TEXT

Data set name Date Class Point density  
(points/m2)

EarthScope, Northern California March 2007 All 1.6–3.1
Missiquoi Watershed, Vermont 2008 All 0.7
Jemez, New Mexico, CZO Snow-on March 2010 All 4.7
Jemez, New Mexico , CZO Snow-off June 2010 All 1.7–5.2
Susquehanna, Pennsylvania, Shales Hill CZO Leaf-Off April 2010 All 1.6–6.4
Susquehanna, Pennsylvania, Shales Hill CZO Leaf-On July 2010 All 1.8–7.3
Apopka, Florida 2011 All 0.4–3.4
PG&E Diablo Canyon Power Plant: Los Osos, California 2011 All 0.3–5.4
Tahoe National Forest, California 2013 All 1.2–7.4
State of Utah: Wasatch Front 2013–2014 All 0.3–7.9
Wellington, New Zealand 2013 All 0.8–3.1
IML CZO, Clear Creek, Iowa 2014 All 0.5–4.1
Slumgullion Landslide, Colorado (July 3) 2015 All 0.6–9.0
EarthScope, Northern California March 2007 Ground 1.4–2.1
Susquehanna, Pennsylvania, Shales Hill CZO Leaf-On July 2010 Ground 0.1–0.5
El Mayor–Cucupah (EMC) earthquake Aug 2010 Ground 0.7–4.0
Lunar Crater field, Nevada June 2012 Ground 1.1–4.4
Tahoe National Forest, California 2013 Ground 0.1–0.5
State of Utah: Wasatch Front 2013–2014 Ground 0.3–2.5

Note: The point density range represents each of the synthetic compare and reference data sets. The lowest 
point density represents each half data set at the maximum thinning. OpenTopography hosts all data sets. 
CZO—critical zone observatory, IML—intensely managed landscape. Data set citations: EarthScope, Northern 
California (NCAL) (EarthScope, 2008; Prentice et al., 2009); Vermont (USGS, 2013); Jemez snow-off (Santa 
Catalina Mountains CZO, 2012a); Jemez snow-on (Santa Catalina Mountains CZO, 2012b); Susquehanna leaf-off 
(Susquehanna Shale Hills CZO, 2013a); Susquehanna leaf-on (Susquehanna Shale Hills CZO, 2013b); Florida 
(Catano, 2012); PG&E Diablo Canyon (DCPP LTSP, 2011); U.S. Forest Service (USFS, 2013); State of Utah (Utah, 
2014); Wellington, New Zealand (GWRC, 2017); Iowa (Kumar, 2016); Slumgullion (Lee, 2017); El Mayor–Cucupah 
earthquake (Oskin et al., 2010); Lunar Crater volcanic field, Nevada (Valentine, 2012). 

TABLE 2. SAMPLE AIRBORNE LIGHT DETECTION AND RANGING (lidar) DATA SETS, 
WHERE THE MEAN HORIZONTAL ITERATIVE CLOSEST POINT (ICP) ERROR EXCEEDS 

20 CM FOR WINDOW SIZES LESS THAN 250 M BASED ON THE EXPERIMENT 
DESCRIBED IN “WINDOW SIZE AND POINT DENSITY” SECTION OF TEXT

Data set name Date of acquisition Point density
(points/m2)

West Rainier seismic zone, Washington 2002 2.40
Idaho Lidar Consortium: Moscow Mountain 2003 0.35
San Diego Urban Region lidar 2005 1.41
Indiana statewide lidar 2011–2013 1.56
New Madrid seismic zone 2012 8.87

Note: Point density represents each of the synthetic compare and reference data sets. 
OpenTopography hosts all data sets. Rainier (NASA, 2005); Idaho (ILC, 2012); San Diego (City 
of San Diego, 2011); Indiana (IndianaMap, 2012); New Madrid (Williams and Weaver, 2012).
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generator, resulting in sensitivity to point density 
and landscape type but losing sensitivity to spa-
tially correlated Global Navigation Satellite System/
Inertial Navigation System (GNSS/INS)  trajectory 
and scanning geometry errors. Typically, the over-
lap between adjacent flight lines is insufficient to 
split by flight line. We shifted the entire post data 
set by 1 m eastward, 1 m southward, and 3 m 
upward. We estimated the 3-D displacement field 
using the LIBICP point-to-plane algorithm on 300 
core points with variable spacing and a window 
size that increased in steps of 5 m to a maximum 
of 250 m. We calculated error from the root-mean-
square difference between the input and estimated 
deformation. At the optimal window size, the mean 
horizontal error was equal to the 20 cm error thresh-
old. We artificially thinned data sets to explore a 
broader range of point density.

Window size controlled displacement error 
for the 2013–2014 State of Utah Wasatch Front 
(7.9 points/m2 point density; Utah, 2014) and the 
2011–2013 Indiana data sets (0.6 points/m2; Indiana-
Map, 2012) as shown in Figure 9. For both data sets, 
horizontal errors exceeded vertical errors. For the 
Wasatch data set, a 25 m window size was below 
the 20 cm error threshold. The Indiana data set 
errors decayed with increasing window size but 

always exceeded the error threshold. The data sets 
in Table 1 produced mean horizontal errors less 
than the 20 cm threshold for the indicated window 
sizes, and those in Table 2 produced errors that 
exceeded 20 cm for window sizes below 250 m. We 
conducted the analyses using all points (Fig. 10A) 
and ground-classified points (Fig. 10B).

For the Wasatch (Utah, 2014), Los Osos (DCPP 
LTSP, 2013), Florida (Catano, 2012), Wellington 
(GWRC, 2017), Slumgullion (Lee, 2017), and Iowa 
(Kumar, 2016) data sets, the optimal window size 
increased with decreasing point density (Fig. 10). 
The varying leaf-on and leaf-off behavior suggests 
that landscape and season impact window size. 
The April 2010 leaf-off and the July 2010 leaf-on 
data sets in Susquehanna, Pennsylvania, had 
optimal window sizes of 35–50 m and 60–70 m, 
respectively (Susquehanna Shale Hills CZO, 2013a, 
2013b). Likely, the leaf-off case is preferable due to 
the improved point cloud alignment in the absence 
of a tree canopy.

Using full airborne lidar data sets (Table 1; 
Fig. 10A), we fit an exponential decay relationship 
between the optimal window size (wsfull) and point 
density (pd):

	 wsfull = 187 e 2.26 pd + 45.	 (9)

The optimal window was ~45 m when the point 
density exceeded 2 points/m2, and larger window 
sizes were required for lower point density. Using 
ground-classified points, the optimal window size 
(wsground) was:

	 wsground = 233 e 7.62 pd + 32.	 (10)

Typically, ground-classified points have a lower point 
density than the full data set. Still, we found that a 
smaller window size is optimal when the ground-clas-
sified point density exceeds 0.5 points/m2.

When the ground point density was less than 
0.5 points/m2, a larger window size was required, 
and so using the full point cloud would be advan-
tageous, particularly over high vegetation.

In OpenTopography, we used the 95% confi-
dence level (i.e., 2σ) upper bound of Equation 9 
to recommend window size based on the lower-​
resolution data set’s point density. Although 
conservative, this recommendation produces qual-
ity results for most data sets. Wedmore et al. (2019) 
preferred a 1 m window size for TLS data, showing 
that increasing resolution by a factor of 100 impacts 
window size. The larger errors (>20 cm) of data sets 
in Table 2 reflect lower point density and data qual-
ity. Because many of these were acquired before 
those in Table 1, the acquisition date serves as a 
secondary window size control.

Window Size: Topographic Relief

We explored the impact of topographic relief 
on window size using the experiment described 
in the “Window Size and Point Density” section 
and the Wasatch data set (Utah, 2014), which spans 
the relatively flat urban Salt Lake City landscape 
and the higher-relief Wasatch Range (Fig. 11A). 
Topographic relief was measured as the standard 
deviation of elevation over 50 m windows. For the 
full data set (Fig. 11B), ICP error showed some 
dependence on topographic relief: Given the 20 cm 
error threshold, the lowest and highest relief areas 
required a 35 m window, while the middle-relief 
areas required a 20 m window. Low-relief areas 
had higher error due to the lower 3-D structure 
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Figure 9. (A) Displacement error vs. window size for the 2013–2014 airborne light detection and ranging (lidar) State of 
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available for alignment. The Wasatch mountains 
likely benefited from a larger window size due to 
the higher point cloud error and vegetation. Using 
only ground-​characterized points (Fig. 11C), the 
preferred window size decreased, and the relief 
extremes no longer required the largest windows.

Implementation in OpenTopography

We used the insights described above to imple-
ment 3-D differencing in OpenTopography. Like 
vertical differencing, 3-D differencing is performed 
by differencing overlapping data sets in the same 
coordinate system (Fig. 12) with all or a subset of 
point cloud classifications. The recommended win-
dow size is the 2σ upper bound of Equation 9, based 
on the average point density of the entire data set 
stored in the metadata, although point density 
varies spatially. We used a licensed version of the 
LAStools software package (LAStile; Isenburg et 
al., 2006) for point cloud windowing and the LIBICP 
point-to-plane algorithm for differencing (Geiger 
et al., 2012). To decrease run time, we imposed 
limitations on the maximum data set size and the 
minimum window size and ran the data set query 
and windowing steps for both data sets in parallel. 
The run time could be further diminished by paral-
lelizing the ICP differencing. Differencing a typical 
data set (~108 points) takes ~2–30 min on Open-
Topography computer resources at the San Diego 
Supercomputer Center, depending on a number of 
factors, including system load.

■■ DISCUSSION

Topographic Differencing Advancements

Here, we address multiple aspects related to 
efficiently differencing the growing volumes of 
multitemporal topography data sets. Each year, 
the number and coverage of airborne lidar data 
sets increase, and the data set characteristics (i.e., 
point density) become more varied. To develop on-​
demand 3-D differencing tools, we addressed two 
aspects of the workflow that are key to successful 
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Figure 10. Optimal iterative closest point (ICP) algorithm window size (WS) vs. point density for synthetically offset 
airborne light detection and ranging (lidar) data sets given the 20 cm horizontal error threshold. Data sets are listed 
by acquisition year and cited in Table 1; Salt Lake City corresponds to State of Utah data in Table 1. Data sets plotted 
multiple times were artificially thinned. (A) All point classifications. (B) Ground-classified points. Solid lines—best-fit 
exponential curves (Eqs. 9 and 10); dashed lines—2σ error. NCAL—Northern California; NM—New Mexico; PA—Pennsyl-
vania; CA—California; NZ—New Zealand; CO—Colorado; NV—Nevada; EMC—El Mayor–Cucupah.
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differencing. (1) Differencing results depend on the 
selected ICP algorithm: Point-to-plane algorithms 
are better than point-to-point algorithms and indi-
vidual algorithms of the same type have varying 
quality. (2) We incorporated metadata to parame-
trize the processing: The processing is tailored to 
point density, which has generally increased over 
time with the advancement of sensor technology. 
With these new advances packaged into an easy-to-
use tool that is executed on-demand on cloud-​based 
computer resources, students and other geospatial 
nonexperts can now efficiently perform differencing. 
More advanced users can experiment and iterate on 
processing approaches to refine results. The user 
community has the potential to find new applica-
tions for these differencing tools and to incorporate 
them into initiatives such as hazard response.

Use of OpenTopography’s Differencing Tools

Currently, differencing is implemented on over 
60 data set pairs in OpenTopography. In the 18 mo 
following the vertical differencing release, over 1150 
successful jobs were run. The 3-D differencing had 
over 100 successful jobs in the first 6 mo following its 
release. Usage metrics indicate a diverse user com-
munity with many from academia. Others include 
those from U.S. federal agencies (U.S. Geological 
Survey, U.S. Forest Service, and National Oceanic 
and Atmospheric Administration), the Army Corps 
of Engineers, or industry. The vertical differencing 
tool was also used in a geographic information 
systems (GIS) course at Simon Fraser Univer-
sity, Burnaby, British Columbia, Canada. Students 
related remote-sensing observations to surface pro-
cesses and considered how processing parameters 
impacted results. We expect that as we continue to 
publicize the tool, and the number of overlapping 
data sets increases, the usage will also grow.

Future Challenges for Differencing

The archive of global and national topogra-
phy data sets will continue to grow, particularly 
with ongoing collections including stereo-satellite 

Window Size (m)

E
rr

or
 (m

)
E

rr
or

 (m
)

1 2 3 4 5 6 7 8
Standard deviation of elevation (m) 

A: Standard Deviation of Elevation

0 20 40 60 80 100

1.2

0.8

0.4

0

1.2

0.8

0.4

0

B: All Classification

C: Ground points

1 km 

Perform On-demand 3D di�erencing 

Select region with overlapping data sets
Choose 3D change detection 

Processing options 

Window size: Suggestions based on point density
Point classi�cation
Processing limit: Point cloud size  

Calculate 3D change

Window point cloud data set
ICP algorithm: 3D displacements and rotations

Presentation of results

Geoti�s of the 3D displacements and rotations
Graphics of the 3D displacements and rotations

Figure 11. (A) Topographic hillshade from the 2013–2014 State of Utah Wasatch Front airborne 
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Figure 12. Three-dimensional (3-D) 
differencing flow chart as imple-
mented in OpenTopography. Bolded 
text denotes areas of user interac-
tion, including data set selection, 
processing options, and result vi-
sualization. ICP—iterative closest 
point algorithm.
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topography obtained as part of ArcticDEM, satellite 
lidar, including the Ice, Cloud and Land Elevation 
Satellite-2 (ICESat-2) and Global Ecosystem Dynam-
ics Investigation (GEDI) missions, and national-scale 
programs such as the U.S. Geologic Survey 3-D 
Elevation program (3-DEP), among many other 
projects. A fundamental challenge to enabling dif-
ferencing on these data sets is to centralize their 
access such that they can be intercompared.

Differencing will benefit from on-demand 
techniques that require minimal user input, like 
those developed here. Performing differencing on 
high-performance computing resources such as 
those provided by OpenTopography would enable 
larger-scale computations relative to local processing. 
Future methodology to difference hybrid data sets 
(i.e., optical- and lidar-derived topography) and data 
sets with greatly varying point spacing (i.e., airborne 
vs. spaceborne lidar) will expand opportunities. Fur-
ther, differencing could incorporate color from optical 
imagery and laser return intensity (Eitel et al., 2016).

■■ CONCLUSION

Vertical and 3-D topographic differencing mea-
sures landscape evolution with applications in 
natural hazards, critical infrastructure monitoring, 
and basic research in geomorphology and earth-
quake geodesy. This technology is increasingly 
in-demand due to the growing multitemporal sur-
vey archive. Here, we addressed several challenges 
that serve as obstacles for many first-time users 
and explored package algorithms that streamline 
topographic differencing via OpenTopography. We 
showed that the 3-D differencing window size (i.e., 
spatial resolution) depends on the point cloud 
density, data quality, and vegetation. As additional 
multitemporal topography data are acquired by 
spaceborne and airborne platforms, the framework 
presented here will be adaptable to differencing 
data sets with varying characteristics.
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