2021 International Conference on Rebooting Computing (ICRC) | 978-1-6654-2332-8/21/$31.00 ©2021 IEEE | DOI: 10.1109/ICRC53822.2021.00016

2021 International Conference on Rebooting Computing (ICRC)

Reoptimization of Quantum Circuits via
Hierarchical Synthesis

Xin-Chuan Wu
Intel Labs

Marc Grau Davis
Department of Computer Science

Frederic T. Chong

Department of Computer Science

Intel Corporation MIT University of Chicago
Santa Clara, CA 95054, USA Cambridge, MA 02139, USA Chicago, IL 60637, USA
xin-chuan.wu@intel.com mgd@mit.edu chong@cs.uchicago.edu

Costin Iancu
Computational Research Division
Lawrence Berkeley National Laboratory
Berkeley, CA 94720, USA
cciancu@Ibl.gov

Abstract—The current phase of quantum computing is in
the Noisy Intermediate-Scale Quantum (NISQ) era. On NISQ
devices, two-qubit gates such as CNOTs are much noisier than
single-qubit gates, so it is essential to minimize their count.
Quantum circuit synthesis is a process of decomposing an
arbitrary unitary into a sequence of quantum gates, and can
be used as an optimization tool to produce shorter circuits to
improve overall circuit fidelity. However, the time-to-solution of
synthesis grows exponentially with the number of qubits. As a
result, synthesis is intractable for circuits on a large qubit scale.

In this paper, we propose a hierarchical, block-by-block opti-
mization framework, QGo, for quantum circuit optimization. Our
approach allows an exponential cost optimization to scale to large
circuits. QGo uses a combination of partitioning and synthesis:
1) partition the circuit into a sequence of independent circuit
blocks; 2) re-generate and optimize each block using quantum
synthesis; and 3) re-compose the final circuit by stitching all the
blocks together. We perform our analysis and show the fidelity
improvements in three different regimes: small-size circuits on
real devices, medium-size circuits on noisy simulations, and large-
size circuits on analytical models. Our technique can be applied
after existing optimizations to achieve higher circuit fidelity.
Using a set of NISQ benchmarks, we show that QGo can reduce
the number of CNOT gates by 29.9% on average and up to 50%
when compared with industrial compiler optimizations such as
t|ket). When executed on the IBM Athens system, shorter depth
leads to higher circuit fidelity. We also demonstrate the scalability
of our QGo technique to optimize circuits of 60+ qubits. Our
technique is the first demonstration of successfully employing
and scaling synthesis in the compilation toolchain for large
circuits. Overall, our approach is robust for direct incorporation
in production compiler toolchains to further improve the circuit
fidelity.

Index Terms—Quantum Computing, Optimization, Synthesis,
Quantum Compiler

[. INTRODUCTION

Quantum Computing (QC) is expected to solve certain
computational problems that even the largest classical super-
computers cannot solve. QC algorithms might have significant
impact on areas such as quantum chemistry [44], [57], cryptog-

raphy [63], and machine learning [12]. Recently, QC devices
up to 72 quantum bits (qubits) have been demonstrated by
IBM and Google [36], [39]. The current phase of QC is in
the Noisy Intermediate-Scale Quantum (NISQ) era [58]. On
NISQ devices, quantum gates are noisy and their count must
be minimized to produce low-error circuits. In particular, two-
qubit gates such as CNOTs are much noisier than single-qubit
gates. For NISQ devices, shorter depth translates directly into
higher circuit fidelity. Most of the existing compilers focus on
optimizing the qubit mapping and swap insertion to reduce
circuit depth [41], [47], [73].

Quantum circuit synthesis provides an orthogonal circuit
optimization method, which generates a circuit from its high
level mathematical description such as unitary matrix. There
are several existing studies in this field [1], [6], [13], [23],
[24], [26], [27], [32], [45], [50], [53], [60], [67], [72]. Given an
arbitrary quantum circuit, we can compute the corresponding
unitary, and then use synthesis to generate a new circuit, which
has a different sequence of gates from the original circuit,
but will be equivalent in terms of unitary operator performed.
This approach can work as a reopotimization process to further
improve the circuit fidelity.

However, synthesis algorithms face an “exponential” scal-
ability challenge. For a m-qubit circuit, the unitary size is
2™ x 2™. The solving time of synthesis scales exponentially
with the number of qubits [1], [23], [27]. Thus, synthesis is
intractable for circuits beyond a handful of qubits.

To perform quantum synthesis for optimizing large scale
circuits, we propose our hierarchical, block-by-block, opti-
mization framework, called QGo. QGo uses a combination
of partitioning and synthesis: 1) partition the circuit into in-
dependent sub-blocks whose size can be successfully handled
by synthesis; 2) re-generate each block using synthesis; and
3) re-assemble the circuit. Figure 1 shows an example of QGo
circuit optimization that partitions a 5-qubit circuit into 3-qubit
blocks. In general, partitioning a n-qubit circuit into multiple

978-1-6654-2332-8/21/$31.00 ©2021 IEEE 35
DOI 10.1109/ICRC53822.2021.00016

Authorized licensed use limited to: Intel Corporation via the Virtual Library. Downloaded on April 11,2022 at 16:58:23 UTC from IEEE Xplore. Restrictions apply.

k-qubit blocks (k < m) leads to replacing an algorithm with
O(exp(n)) complexity with a sequence of calls to O(exp(k))
algorithms. The time to synthesized solution grows linearly
with the number of k-qubit blocks, which is a useful tradeoff
when compared to the exponential scaling with the number
of qubits. After all blocks are synthesized, QGo then puts the
blocks back together to produce the final optimized circuit.

QGo allows us to compile a quantum circuit to an optimized
executable circuit for a target hardware. QGo is a topology-
aware compilation framework. The overall flow is described
in Figure 2. QGo includes four core modules: physical qubit
mapping, circuit partitioning, quantum synthesis, and circuit
composition. The input to QGo is a quantum circuit in a
high-level quantum program, together with a description of
the topology of the target processor. The first step in QGo
is topology mapping of the circuit to the target hardware.
We leverage third party mappers and call into “traditional”
compilers to perform mapping. This approach allows us to
select the best mapper available for a given platform. We use
the #|ket) compiler for physical qubit mapping as it is reported
to effectively produce short circuits for several applications
[20], [66]. We then run our partitioning algorithm to select
tunable size blocks of the circuit that are independent of each
other. For large-scale circuit partitioning, we use a greedy-
based heuristic approach that partitions a circuit by selecting
blocks with high CNOT-count. In the synthesis procedure,
each block is converted from its circuit format into a unitary
matrix and re-synthesized with a synthesis tool. In this work,
we use the state-of-the-art synthesis tool proposed in [23].
The last step is circuit composition. If the synthesized block
has more or equal number of CNOTs, QGo will select the
original block for the final circuit. The final output of QGo
is the optimized circuit by stitching all the optimized blocks
together.

For evaluation we use a series of NISQ circuits as our
benchmarks. To understand the impact of the partitioning
strategy we conduct experiments with 3- and 4-qubit blocks.
We evaluate the quality of the generated circuits on IBM’s
Athens [40] device, as well as using noise simulation for
medium-size circuits and on our analytical model for large-
size circuits.

Compared with existing synthesis approaches, our hierar-
chical synthesis guarantees to reduce or keep the same CNOT
count for arbitrary gate sets in large-scale circuits within a
feasible compilation time.

The main contributions of this work are:

e Circuit fidelity improvement is critical. Our approach
provides a next-level reoptimization that is robust for
direct incorporation in existing compiler tools. Our tech-
nique allows an exponential cost optimization tool to
scale to large circuits, and is the first demonstration
of successfully employing and scaling synthesis in the
compilation toolchain for large circuit optimization.

e QGo reduces the CNOT gate count well beyond the
ability of existing compilers. Using a set of NISQ bench-
marks, we show that QGo can reduce the number of

36

CNOT gates by 29.9% on average and up to 50% com-
pared with circuits optimized by #|ket) compiler. These
translate into direct fidelity improvements when running
on the IBM’s Athens device [21]. It was not obvious that
selecting blocks with high CNOT-count and synthesizing
them would yield significant fidelity improvements.

o We evaluate fidelity improvements using 3 metrics for 3
scaling regimes: small-size circuits using fidelity on real
devices, medium-size circuits using fidelity using sim-
ulations with noise, and large-size circuits using CNOT
reduction measured statically by our compiler. To validate
the trends shown by our simulations, we show that there
is a 98% correlation between our real-device results and
our simulation results on small circuits.

o We present the sensitivity analysis by running Qiskit
noise simulations to show the circuit fidelity improve-
ments under different levels of gate errors. The results
indicate that QGo is important for NISQ devices.

o We demonstrate the scalability of our technique to op-
timize the circuits of 60+ qubits. This demonstration
suggests that QGo provides a viable path towards higher
fidelity for circuits on large scale qubits.

II. BACKGROUND
A. Principles of Quantum Computation

A qubit is a two-level quantum system, represented by
two orthonormal computational basis states |0) and |1). The
quantum state of a qubit can be described by any linear
combination of |0) and |1): |¢)) = «|0) + (1), where «
and 3 are complex numbers satisfying |a|?2 + |32 = 1.
More generally, the state of a n-qubit quantum system can
be represented by using 2™ amplitudes.

A quantum circuit consists of a sequence of quantum gates
on qubits, and a quantum gate is a unitary operator, U. The
effect of a gate on a quantum state can be expressed as
|") = U |¢). Gates are applied to one or many qubits simulta-
neously. Two-qubit controlled gates and arbitrary single-qubit
gates are known to be universal [29]. CNOT gates and single-
qubit rotation gates (R, I?,, I?,) constitute a commonly used
universal gate set for quantum programming.

B. Quantum Circuit Synthesis

Quantum circuit synthesis is the process of taking a de-
scription of a desired unitary matrix and decomposing it into
a sequence of smaller unitaries, representing the gates in a
circuit that implements the target unitary. One of the earliest
techniques was the Solovay-Kitaev algorithm [1], [24], [53],
which combined a recursive matrix decomposition technique
with numerical methods required for the base case. This
method served as a proof-of-concept for the field of synthesis,
but the circuits it produces are very long. One of the main
goals of synthesis is to produce “short” circuits, minimizing
metrics such as CNOT count, total gate count, and critical
path length. CNOT count is of particular importance on NISQ
devices, since they contribute significantly more to the overall
noise and runtime of circuits than single-qubit gates. Because

Authorized licensed use limited to: Intel Corporation via the Virtual Library. Downloaded on April 11,2022 at 16:58:23 UTC from IEEE Xplore. Restrictions apply.

a0 —{H} (Rl

o -F-OHRHOT o

a O R

a] Ol

s DR DR Oald

(a) Original circuit

@ r—{uf {u}
& U, (U] {uf {ul—
a2 (U] {us]
@
% H-u, U—u,

(c) Synthesized circuit

o/ —{H} o
o HOEE &
o
o TOR O BEE
« D EOR
15t Block 274 Block 39 Block

(b) Partitioned circuit

do (U —{us] U}

o ~E-{Us -yl {La}—
a 0, {us}

Qs {ug} P{uHPHU;]

@« —OTO—

F
=]

(d) Optimized circuit

Fig. 1. An example of QGo circuit optimization. (a) The original 5-qubit circuit. (b)The original circuit is partitioned into three blocks, and each block only
contains gates on 3 qubits. The first circuit block is only on go, g1, and g4. The second block is on g1, g2, and g4. The third block is on gg, q1, and g3. All
gates after partitioning still respect the gate dependency in the original circuit. (¢c) The synthesized circuit. After running quantum synthesis for each block,
the CNOT counts in the first and second block are reduced, and the third block still has 2 CNOTSs. (d) The single-qubit gates can be combined to produce
the final optimized circuit. This circuit is effectively equivalent to the original circuit but with fewer CNOT gates.

| Quantum Program |

|

§ :r—vl Physical Qubit Mapping (Sec. I11-B) |

; : r

{ Device —-I Circuit Partitioning (Sec. IlI-C) |—~

i Connectivity 1 T :

! 3 " | Qubit Group |
”Jy—-l Quantum Synthesis (Sec. I11-D) Mapping !

1

| Circuit Composition (Sec. Il1-E)

{

| Optimized Circuit |

Fig. 2. Our compilation framework for scalable circuit optimization using
synthesis (QGo).

of this, CNOT count has been a particular target for synthesis
approaches. The approach shown in [6] is able to find minimal
length circuits according to a weighting of different gates,
and demonstrates a significant advantage over the Solovay-
Kitaev approach. The approaches shown in [45] and [27]
focus on synthesis runtime, which is another metric needed
for synthesis to be practical. All of these techniques mentioned
so far work solely with discrete gatesets, where only a finite
number of base gates are allowed. However, most current
quantum devices can perform continuously varying gates.
For example, superconducting qubits use virtual Z rotations,
which can be performed with any angle, and trapped ion
qubits can perform X and Y rotations with any angle. These
continuous gates can be used to perform any single qubit ro-
tation, usually parameterized as Z(01) X (5)Z(02) X (5)Z(63)
or X(01)Y (02)Z(03). Leveraging this capability, the KAK
decomposition can perform optimal 2-qubit synthesis to per-
form any 2 qubit unitary with at most 3 CNOTs [67]. The
approach shown in [60] uses the cosine-sine decomposition to

produce universal gates for any number of qubits, which can
perform any unitary simply by changing the parameters. Other
approaches use numerical optimization of parameterized gates
to find high quality circuits [23], [50], [72].

We employ the search-based numerical synthesis method
described in [23]. This technique builds a search tree of
CNOT structures filled in with parameterized single-qubit
gates, and employs numerical optimization to evaluate the
CNOT structure at each node in the search. A* search is
used to find the shortest CNOT structure that can implement
the desired unitary, and numerical optimization is used to
find parameters for the single-qubit gates to produce a fully
instantiated circuit. We choose this technique because of its
ability to minimize CNOT count.

III. SCALABLE CIRCUIT OPTIMIZATION USING SYNTHESIS
A. QGo Overview

Figure 2 shows an overview of QGo. It contains four
core compiler components: physical qubit mapping, circuit
partitioning, quantum synthesis, and the circuit composition
procedure. The inputs for QGo consist of a high-level quantum
program and a target device connectivity description. First,
QGo performs physical qubit mapping to assign the logical
qubits to physical qubits and to resolve all unexecutable two-
qubit gates by adding swap gates. Since our goal is to produce
an optimized topology-aware circuit, if we perform physical
qubit mapping after quantum synthesis, there will be swap
gates inevitably added into the final circuit. Therefore, we
perform physical qubit mapping before quantum synthesis,
so that the swap gates added into the circuit become a part
of the input circuit for the circuit synthesis, and hence the
final circuit would have a reduced CNOT gate count. Second,
QGo partitions the circuit into multiple small circuit blocks.

Authorized licensed use limited to: Intel Corporation via the Virtual Library. Downloaded on April 11,2022 at 16:58:23 UTC from IEEE Xplore. Restrictions apply.

Each block only interacts with a few qubits. The qubit group
mapping is generated to indicate what qubits are involved for
each circuit block. This qubit group mapping information will
be used for the later circuit composition procedure. Since
the number of qubits in a block reflects the size of the
corresponding unitary matrix, we demonstrate the partitioning
of 3-qubit and 4-qubit blocks in this work, but the block
size can be further increased. In general, a larger unitary
matrix would take exponentially longer time to decompose
into a sequence of gates. A circuit partitioned with a larger
block size would have fewer blocks, and each block tends to
allow the synthesizer to decide circuit elements rather than
the mapping algorithm, and hence the final optimized circuit
would have fewer CNOTSs. Thus, the block size is a trade-
off between the time-to-solution and the quality of solution
(CNOT reduction). Next, quantum synthesis is applied to the
partitioned circuit blocks. We use the state-of-the-art synthesis
tool proposed in [23] for our work. Finally, QGo performs
the circuit composition by following the qubit group mapping
to concatenate the synthesized blocks to produce the final
optimized circuit.

B. Physical Qubit Mapping

Given an input quantum circuit and the qubit connectivity
graph, physical qubit mapping is to find an initial qubit map-
ping and insert swap gates to satisfy all two-qubit interactions
and try to minimize the total number of swap gates and circuit
depth in the final hardware-compliant circuit. Physical qubit
mapping problem is NP-Complete [64]. Several approaches
for solving this problem have been proposed [9], [16], [21],
[41], [47], [49], [51], [56], [66], [70], [71], [73].

We design the physical qubit mapping as the first step of
QGo because we want to have the additional swaps gates to
be part of the input circuit for the remaining optimization
process, so that the optimization by quantum synthesis can
reduce the CNOT gate count in the final circuit. In addition, we
also find that most quantum applications have certain repeated
CNOT patterns, and existing qubit mapping algorithms will
perform better by leveraging the structure of these patterns.
If the synthesis process runs before physical qubit mapping,
the pattern will be destroyed, and the number of additional
swap gates will increase in some cases. Thus, performing
physical qubit mapping before synthesis can benefit the overall
optimization.

We compare industrial compilers such as IBM Qiskit [21]
and f|ket) compilers [66]. Since the t|ket) compiler produces
shorter circuits in our experiments and is reported to produce
shorter circuits for several quantum applications compared
with other techniques [20], we adopt the #|ket) compiler for
physical qubit mapping in our QGo.

C. Circuit Partitioning

QGo partitions a circuit into multiple small circuit blocks.
Each block contains gates only on a small group of qubits.
Figure 1 shows an example of partitioning. Each circuit block
consists of 3 qubits (Figure 1(b)). Since the CNOT reduction

38

TABLE 1
NOTATIONS USED IN OUR ALGORITHM.
Notation Definition
n The total number of qubits in a circuit
k The total number of qubits in a partitioned block
Gi A gate operation. % is the index of the gate.
qi A qubit. ¢ is the index of the qubit.
Qi A qubit group. 7 is the index of the group.
Eq, A set of executable gates on (Q;
G Gate dependency graph
B A list of partitioned blocks
M A list of qubit group mapping

would be higher when there are more CNOTs in a block,
the goal of partitioning is to find a block with the number of
qubits and biggest number of CNOTs. Thus, we propose our
algorithm: we use a greedy-based heuristic approach. This is
an efficient approach; compared with other partitioning algo-
rithms such as dynamic programming that would be limited
by circuit depth, our heuristic algorithm is scalable for large-
scale circuit partitioning. We summarize the notations used in
our algorithm in Table 1.

Before our heuristic algorithm, we define a few terms used
in our algorithm.

Qubit group. A qubit group is a set of qubits in a circuit
block. For a n-qubit circuit, there are (Z) different combina-
tions of qubit groups for a k-qubit block. For example, the cir-
cuit shown in Figure 1(a) is a 5-qubit circuit. For partitioning
the circuit into 3-qubit blocks, {qo, ¢1, 42}, {q0, ¢1,93}, .., and
{q2, 43, qa} are possible qubit groups for a block. Figure 1(b)
shows the circuit after partitioning. The qubit group of the 1st
block is {qo, g1, g4}, and the 2nd block is {q1, g2, g4}, and the
3rd block is {qo,q1,q3}. We use Q; to denote a qubit group
in this paper, where i = 1,2, ..., (}). The qubit group size k
is limited to a small number due to the limitation of quantum
synthesis. Our qubit group mapping maintains the physical
qubit mapping. The qubit mapping is fixed during the partition
and synthesis. In this paper, we focus our analysis on the size
of 3 and 4 qubits in a qubit group.

Valid qubit group. Since the input circuit for our par-
titioning algorithm is a physical qubit mapped circuit, all
two-qubit gates are applied on the neighbor qubits. We can
define valid qubit groups by considering device connectivity
to reduce the search space in our algorithm. We map the qubit
group onto the device connectivity graph. If a qubit group is
a connected component, it is a valid qubit group; otherwise,
it is an invalid group. Figure 3 shows an example of a valid
qubit group. Considering a 3 x 3 grid connectivity, the qubit
group {qo, ¢3,qs} is a valid qubit group. However, the qubit
group {g2, g7, gs} is an invalid qubit group. When partitioning
a circuit, we only need to consider valid qubit groups.

Gate dependency graph. We use a Directed Acyclic Graph
(DAG) to represent the gate dependency of a circuit. In a DAG,
a node represents a gate, and an edge is the qubit involved for
the gate. A gate can be executed only when all the previous

Authorized licensed use limited to: Intel Corporation via the Virtual Library. Downloaded on April 11,2022 at 16:58:23 UTC from IEEE Xplore. Restrictions apply.

Invalid

Fig. 3. Example of valid and invalid qubit groups.

Algorithm 1 Circuit Partitioning

1: Convert the circuit into a gate dependency graph G.

2: B+ ¢

3 M+ ¢

4: while G is not empty do

5 for each valid qubit group @; do

6 Eq, < {Executable Gates on Q;}
7: Compute Score(Eq,)
3
9

end for
: Select the Eq, with the maximal score;
10:

B.append(Eg,,)
11: M.append(Q.,)
12: G+ G- EQm

13: end while
14: Output the sequence of circuit blocks B and the list of
qubit group mapping M

gates have been executed. Figure 4 shows an example of gate
dependency graph. The DAG in Figure 4(b) is generated from
the original circuit (Figure 4(a)). For example, the gate g5
depends on g; and g, because ¢q is used for g; and g5, and
q1 is used for g5 and g5. Thus, g5 can be executed only after
both g; and g, are executed.

Executable gates on a qubit group. A single-qubit gate on
@; can count as an executable gate on a qubit group @; only
when ¢; € @; and all previous gates on ¢; are executable gates
on ;. A two-qubit gate on (g;, ¢;) can count as an executable
gate on a qubit group @); only when both ¢;,q; € Q; and all
previous gates on ¢; and ¢; are executable gates on ;. In
Figure 4, for example, when we count the executable gates on
the qubit group {qo, 1,42}, the gate go is an executable gate
because qo and ¢; are in the qubit group and all the previous
gates on o and ¢ are also executable gates. However, g4 is
not an executable gate on this qubit group because ¢3 is not
in the target qubit group. We use Eg, to denote the largest set
of executable gates on the qubit group ();. We can get each
Eg, by traversing the gate dependency graph. Figure 4(c) and
Figure 4(d) show FEiq 41401 and Efgo o 4.y, respectively.

Algorithm 1 shows our partitioning procedure. First, we
prepare the gate dependency graph G for the target circuit.
Next, we collect the set of executable gates, Eg,, for each
qubit group, and also compute the score for each Eq,. Since
the objective is to find the biggest circuit block, we select
the Eg, with the maximal score as the partitioned block, and
save the (), as the qubit group mapping for this block. Once a

39

do _@ 9s 9o

a1 0 t J10

o g6 o 911 913
s g + T

o
@~ au

— e e HP) k&

913

(c) Executable gates on qubit group {qo, q1,q2}-

913 |

(d) Executable gates on qubit group {qo, q1,q3}.

Fig. 4. Example of gate dependency graph and executable gates on a qubit
group.

circuit block is partitioned, we remove the block from the gate
dependency graph G, and repeat the procedure to find the next
circuit block partition until the gate dependency graph G is
empty, which means the entire circuit is partitioned. Finally, a
sequence of circuit blocks B and a list of qubit group mapping
M are the output of the circuit partitioning process.

The heuristic cost function indicates the number of exe-
cutable gates for a qubit group. The general form of our
heuristic cost function for a qubit group); is shown as
follows:

Score(Eg,) = NEg, s 1)
where Np, is the number of executable CNOT gates on
@;. Since the objective of partitioning is to find a block
for quantum synthesis to minimize the CNOT count, a block
with more CNOT gates can potentially achieve higher CNOT
reduction. Thus, we use CNOT count as the score function.
The time complexity of our heuristic algorithm for parti-
tioning a circuit into k-qubit blocks is O(n*g), where n is the

Authorized licensed use limited to: Intel Corporation via the Virtual Library. Downloaded on April 11,2022 at 16:58:23 UTC from IEEE Xplore. Restrictions apply.

number of qubits in the original circuit, g is the total number
of gates, k is the number of qubits in a partitioned block.

D. Quantum Circuit Synthesis

After the circuit is partitioned into multiple blocks, QGo
applies quantum synthesis for each circuit block. We integrate
the state-of-the-art synthesis tool proposed in [23] into our
QGo framework. For each circuit block, QGo computes the
corresponding unitary matrix, and this matrix is the input
for the synthesis process. As the synthesized circuit should
respect the hardware topology, the qubit group for each block
and the device connectivity are also the input parameters for
the synthesis tool. With our block-based synthesis scheme,
the time-to-solution for a n-qubit circuit is reduced from
O(exp(n)) to O(exp(k)).

After the synthesis, there is an undesired synthesis distance
due to numerical approximation, leading the final unitary at
a distance from the original unitary [23], [54], [72]. As a
result, the final unitary distance is in the range of 10710 to
10715, In the NISQ era, when running a quantum circuit
on a real machine, the unitary executed is different from
the original intended unitary due to the presence of noise.
Since gate errors are multiple orders of magnitudes larger than
synthesis distances, these synthesis distances are insignificant.
In Section V-B we will show that this distance only causes
negligible impact on the overall state fidelity.

E. Circuit Composition

Once all circuit blocks have been synthesized, QGo com-
poses the entire circuit by stitching all circuit blocks. The
list of qubit group mappings provide the qubit mapping
information to connect blocks correctly. In general, the number
of CNOTs in the synthesized block is less than in the original
block. If the synthesized circuit block has an equal or greater
number of CNOTs compared to the original block, QGo
will choose to use the original circuit block to the circuit
composition to avoid unnecessary synthesis distance due to
floating point errors. Once all blocks are put together, QGo
combines the adjacent single-qubit gates to further reduce the
gate count, and produces the final optimized circuit.

IV. EXPERIMENTAL SETUP
A. Benchmarks

To evaluate QGo against real applications, we select mul-
tiple important quantum applications as our benchmarks.
Table II lists the applications and brief description in our
evaluation. We have three sets of applications according to the
different sizes of the circuits. The first set consists of small-size
circuits on 4 and 5 qubits; the second set is the medium-size
of 9- and 10-qubit circuits; and the third set of benchmarks,
large-size circuits, contains circuits beyond 60 qubits. In our
evaluation, we run the small-size circuits on a 5-qubit quantum
device, Athens, provided by IBM quantum experience plat-
form to demonstrate how much circuit fidelity is improved
through our optimization on a real NISQ machine. Next,
we run our medium-size benchmarks by using Qiskit noisy

40

TABLE 11

LIST OF BENCHMARKS.

Size Application ~ Qubits Description
QAOA5S 5 QAOA on MaxCut problem
TFIMS 5 Transverse-field Ising model
Small MULS 5 Multiplier arithmetic function
ADDER4 4 Adder arithmetic function
QFTS 5 Quantum Fourier transform
HLF5 5 Hidden linear function
QAOAI10 10 QAOA on MaxCut problem
TFIM10 10 Transverse-field Ising model
Medium MUL10 10 Multiplier arithmetic function
ADDER9 9 Adder arithmetic function
QFT9 9 Quantum Fourier transform
HLF9 9 Hidden linear function
MULG60 60 Multiplier arithmetic function
Large ADDERG63 63 Adder arithmetic function
QFT64 64 Quantum Fourier transform

Experimental Platforms

Sec. V-C Sec. V-D Sec. V-E
Real Noise Analytical
Devices Simulations Models
1 1 1
Small Medium Large
Circuits Circuits Circuits

Number of Qubits

Fig. 5. Experimental platforms used in our evaluation.

simulators to show the fidelity improvement under different
levels of gate errors. Finally, we use the large-size benchmarks
to demonstrate the scalability of our QGo technique. Since
the circuit depth is deep for large scale circuits, we select the
important kernel functions to demonstrate the scalability of
our approach.

Quantum Approximate Optimization Algorithm (QAOA)
is a hybrid quantum-classical variational algorithm and it is
one of the most important quantum algorithms in the NISQ
era [30]. In our study, the QAOA application is a hardware-
efficiency ansatz [52] for MaxCut problem. Transverse Field
Ising Model (TFIM) is for problems that study the time
evolution of chemical systems [38], [62]. Multiplier (MUL)
[31] and adder [22], [31] benchmarks are important arithmetic
functions in several quantum applications. Quantum Fourier
transform (QFT) [42] is a kernel function in many quantum
algorithms such as phase estimation algorithm [19], Shor’s
algorithm [63], and the algorithm for hidden subgroup problem
[43]. Hidden Linear Function (HLF) is a quantum circuit
solving a problem from a previous study [14].

B. Experimental Parameters

We evaluate our QGo with 3-qubit and 4-qubit blocks
on different sizes of circuits. All QGo processes and noisy
simulations are carried out on a Ubuntu 16.04 system with
Intel Xeon Silver 4110 32-core CPU (2.1 GHz) and 128GB
RAM.

Figure 5 summarizes our fidelity analysis. For small circuits,
we show the experimental results on IBM’s Athens device

Authorized licensed use limited to: Intel Corporation via the Virtual Library. Downloaded on April 11,2022 at 16:58:23 UTC from IEEE Xplore. Restrictions apply.

200- HE Baseline B QGo-3 Il QGo-4

150

100:

#CNOTs

50

o QAOA5 TFIM5 MULS5 ADDER4 QFT5 HLF5 QAOA10 TFIM10 MUL10 ADDER9 QFT9 HLF9

(a) Total number of CNOTSs in the circuits optimized by the baseline compiler
and QGo.
B QGo3

0.6 B QGo-4

o
a

CNOT Reduction Rate
°
[y

0.0

QAOA5 TFIM5 MUL5 ADDER4 QFT5 HLF5 QAOA10 TFIM10 MUL10 ADDER9 QFT9 HLF9

(b) CNOT reduction rate compared with the baseline compiler.

Fig. 6. The numbers of CNOTs are reduced in the QGo-optimized circuits.

©
k-

Il 3-qubit Block El QGo-3 [J 4-qubit Block B QGo-4

N
S

Avg. #CNOTSs per Block
s

o QAOA5 TFIM5 MUL5 ADDER4 QFTS

HLF5 QAOA10 TFIM10 MUL10 ADDER9 QFT9

HLF9

Fig. 7. Average CNOT count in a block.

(Section V-C). For medium circuits, we run the experiments on
noise simulations (Section V-D). Finally, we use our analytical
model to perform the fidelity results for large circuits (Sec-
tion V-E). The t|ker) compiler with the highest optimization
level is the baseline in our evaluation. The f|ket) compiler
is reported to effectively produce shorter circuits for several
applications compared with other compilers [20], [66].

V. EVALUATION

In our evaluation, we first show the CNOT reduction in
the QGo-optimized circuits compared to the baseline (#|ket))
optimization, and we compare the compilation time using
3-qubit and 4-qubit blocks. We then discuss the impact of
synthesis distance on the quantum state. Next, we present the
results running on a real quantum device, IBM’s 5-qubit device
(Athens), to prove that our technique is critical for the current
devices. Then a sensitivity analysis is performed to show how
much circuit fidelity is improved under different gate errors.
We also demonstrate the scalability of QGo by optimizing
large circuits.

A. CNOT Reduction

We use the #|ket) compiler to map 4- and 5-qubit circuits on
the IBM’s Athens topology, which is a linear connectivity, and

41

B QGo4

B QGo-3

Fig. 8. Compilation time.

map 9- and 10-qubit circuits on a 2D lattice of physical qubits.
As discussed in Section III-B, we compare industrial compilers
such as IBM Qiskit [21] and t|kef) compilers [66]. Since the
t|ket) compiler is shown to generate shorter circuits for several
quantum applications [20], we use the circuits optimized by
t|ket) compiler as our baseline. The circuits optimized using
our QGo with 3-qubit blocks and 4-qubit blocks are denoted
as QGo-3 and QGo-4, respectively. Figure 6 shows the total
number of CNOTSs in the circuits optimized by the baseline
and QGo. Our QGo optimization reduces the total number of
CNOTs. For MULS5 and HLF5, QGo-3 does not reduce the
CNOT count because there is only a small number of CNOTs
in a block. QGo-4 can reduce the CNOT counts across all
benchmarks. The average CNOT reduction rates of QGo-3 and
QGo-4 are 17.2% and 29.9%, respectively. In general, QGo-4
can achieve more CNOT reduction when compared with QGo-
3 because a large block will have more CNOTs in a block,
and this is easier for the synthesis to find a circuit using less
CNOTs than the original circuit block. Figure 7 shows the
average CNOT count in a block. If a circuit is partitioned into
4-qubit blocks, the average CNOT count per block is higher
when compared with 3-qubit blocks. As a result, QGo-4 can
achieve higher CNOT reduction. However, the time-to-solution
of QGo-4 is much longer than QGo-3 (Figure 8).

B. Impact of Synthesis Distance

As discussed in Section III-D, since there is a synthesis
distance due to numerical approximation, the final state is not
exactly the same as the ideal state of the original circuit. In
order to analyze the impact of synthesis distance, we use ideal
simulation to obtain the final states of the original circuit and
synthesized circuit, and we generate multiple random initial
states as the input states, and calculate the state infidelity [54].
Figure 9 shows the average state infidelity. Since the unitary
matrix distance of 4-qubit circuit synthesis is fundamentally
larger than 3-qubit circuit synthesis, QGo-4 has slightly larger
state infidelity when compared with QGo-3. The state infi-
delity of each optimized circuit is less than 107'2. This is
insignificant when compared with the gate error in the NISQ
era. The current gate infidelity on the available NISQ devices
is ranged from 107! to 1075, Thus, the impact of synthesis
distance is negligible.

Authorized licensed use limited to: Intel Corporation via the Virtual Library. Downloaded on April 11,2022 at 16:58:23 UTC from IEEE Xplore. Restrictions apply.

1076+ B QGo-3 B QGo-4

1078+

g
Z

107124

10714

State Infidelity

10716

1018

1020 W
NN NI

N v & ™
o\>° & \>°° ¢ <

Fig. 9. State infidelity due to the synthesis distance. Compared with the
gate error on NISQ devices, the state infidelity due to synthesis distance is
negligible.

El Baseline B QGo-3 B QGo-4

0.3
&£ 0.2

0.14

0.0~

QAOAS5 TFIM5 MUL5S ADDER4 QFT5 HLF5

Fig. 10. Running optimized small circuits on IBM’s Athens, a 5-qubit device.
(Lower dry/ is better.)

C. Running on Real Hardware

To measure how much improvement our QGo technique can
achieve on the current available NISQ machines, we perform
our experiments on quantum devices. Since our medium-size
and large-size circuits are too deep for the current quantum
devices to generate meaningful results, we choose small-size
circuits for this evaluation. We run the small-size benchmarks
on IBM’s Athens device [40]. We use total variation distance,
dry, to compare measurement samples of the real device
with those of the ideal simulation. Total variation distance is
commonly used as a metric for QC experiments [7], [8], [28],
[48]. Lower dry means the samples of the real device are
closer to the ideal distribution. Figure 10 shows the results on
IBM’s Athens, a 5-qubit device; each data point is obtained
from 8192 shots of the circuit execution. We observe that
QGo achieves lower total variation distance for all benchmarks
compared with the baseline optimization, and the distance
results are correlated to the number of CNOT reduction. Even
though the synthesis distance with 4-qubit blocks is larger
than with 3-qubit blocks, QGo-4 can achieve lower dry due
to more CNOT reduction. The results suggest that our QGo
optimization technique is important in the NISQ era, and is
applicable to the current quantum devices.

D. Running on Noise Simulation

To understand the performance of QGo optimization for
medium circuits, we run the experiments on IBM Qiskit Aer
noise simulation [2] because the medium circuits are too deep
to get meaningful results on the current available real devices.
To validate the trends shown by our simulations, we run

42

El Baseline E QGo-3 B QGo-4

- QAOAS5 TFIM5 MUL5 ADDER4 QFT5 HLF5

Fig. 11. Running optimized small circuits on Qiskit noise simulation. (Lower
dry is better.)

small circuits on both real devices and simulations to see the
correlation between them. Figure 11 shows the results from
noise simulation. Compared with the results on IBM’s Athens
(Figure 10), the dpy improvements are correlated in both
experiments. There is a 98% correlation between our real-
device results and our simulation results on small circuits.

We perform sensitivity analysis by running noise simu-
lations for medium circuits with different gate errors. Fig-
ure 12 shows the noise simulation results. We simulate de-
polarize_noise for two-qubit gate noises with the gate error
probability from 0.1% to 2.5%. We can observe that QGo can
reduce more dpy when the gate error is large.

E. Scalability

To demonstrate the scalability of our QGo technique, we
optimize the large-scale (60+ qubits) benchmarks using QGo.
We map the large-scale circuits on a 2D (8 x 8) lattice
of physical qubits. Figure 13 shows the total number of
CNOTs optimized by the baseline compiler and QGo, and
Figure 15 shows the CNOT reduction rate. With large-size
circuits, QGo-3 and QGo-4 achieves 22.8% and 28.9% CNOT
reduction on average. QGo-4 performs better than QGo-3
in terms of CNOT reduction, but it takes longer time to
complete the optimization. Figure 14 shows the compilation
time of large-scale circuit optimization. QGo-3 can complete
the optimization within a few minutes, and QGo-4 can finish
the optimization process within a few hours.

Since the scale is too large to perform noise simulation, we
use an analytical model to estimate the success rate of each
circuit. The success rates in our evaluation are computed by a
worst-case analysis using gate success rates. Multiplying the
gate success rates, we can obtain the estimated success rate for
the whole circuit. Figure 16 shows the results under different
gate error models. Since our QGo-4 has the lowest CNOT
count, it is projected to achieve the highest success rates for
all benchmarks. The success rate improvement is greater when
there is a larger gate error.

F. Discussion

The results show the general applicability of our approach.
Having access to 3-qubit block synthesis already enables good
optimization results on large circuits. In general, larger block
size can achieve more CNOT reduction. Running synthesis
with 5-qubit blocks is possible, but the solving time is much
longer.

Authorized licensed use limited to: Intel Corporation via the Virtual Library. Downloaded on April 11,2022 at 16:58:23 UTC from IEEE Xplore. Restrictions apply.

-o- Baseline

T T 1
0.01 0.02 0.03

Gate Error

T T 1
0.01 0.02 0.03

Gate Error

(a) QAOA10 (b) TFIM10

T 1
0.02 0.03

T
0.01
Gate Error

(e) QFT9

= QGo-3

-+ QGo-4

T T
0.01 0.02
Gate Error

T T 1
0.01 0.02 0.03

Gate Error

(¢) MUL10 (d) ADDERY

T T 1
0.01 0.02 0.03

Gate Error

(f) HLF9

Fig. 12. Realistic noise simulation results of dry under different levels of gate error. (Lower dpy is better.)

Il Baseline

B QGo-3

1500 B QGo-4

10001

#CNOTs

MUL60

ADDER63 QFT64

Fig. 13. The number of CNOTs in the optimized large-scale circuits.

80000 B QGo-3 B QGo-4

60000-

40000-

Time (s)

20000-

MUL60 ADDER63 QFT64

Fig. 14. Compilation time of large-scale circuit optimization.

0.5:

'Y

CNOT Reduction Rate
S 2

°

°
>

MUL60 ADDER63

QFT64

Fig. 15. CNOT reduction rate of large-scale circuits.

QGo allows composability with any mapper available for
a given platform and we have experimented with #|ket) com-
piler. Our preliminary sensitivity analysis of circuit quality to
mapping quality indicates there is a direct correlation between
QGo efficacy and mapping quality. The best quality mappings
have highly interconnected components. In our conjecture, the
better mapper provides the higher opportunity of forming large

43

blocks, thus motivating improvements in both mapping and
synthesis. Our study offers insights for future compiler design.

VI. FUTURE WORK

Even though QGo already achieves successful results in op-
timizing different sizes of circuits, we discuss a few directions
that would further extend the line of this research and improve
the development of quantum computing.

A. Pulse-Level Optimization

The objective of optimization using synthesis is to reduce
the CNOT count. In some cases, it may be desirable to
make approximations to reduce the number of CNOTs at
the expense of how closely the final circuit approximates the
desired unitary. An intuitive way to achieve this is to relax
a synthesis threshold. In order to effectively trade accuracy
for CNOT count, a threshold-controllable synthesis tool is
necessary. Integrating a different synthesis tool or heuristic
that is designed for approximate synthesis may further im-
prove the optimization. Since the device-level control of a
quantum computer is operated via analog pulses, recent pulse
optimization studies aim to generate shorter pulses [17], [18],
[33]-[35], [61]. Pulse optimization can also be integrated into
our QGo technique as a backend optimization. The current
synthesis output is a sequence of quantum gates. To integrate
pulse optimization into this work, we can synthesize the block
into a sequence of pulses.

B. Partial Optimization

Since our approach already partitions a circuit into multiple
blocks, we can simply only perform synthesis on some critical
blocks to reduce the compilation time. Also, we can combine
different sizes of blocks in the optimization according to the
importance of a block.

Authorized licensed use limited to: Intel Corporation via the Virtual Library. Downloaded on April 11,2022 at 16:58:23 UTC from IEEE Xplore. Restrictions apply.

-e- Baseline

e o =
o @ o
e o =
> @ o

o
kY
o
kY

Success Rate

e
N
Success Rate

e
N

QGo-3

+ QGo-4

Success Rate

0.¢
T T 1 T
0.00005 0.00010 0.00015 0.0000

Gate Error

0.0
0.00000

(a) MUL60

T
0.0005
Gate Error

(b) ADDERG63

T T 1
0.00005 0.00010 0.00015

Gate Error

T 1 0.0¢
0.0010 0.0015 0.00000

(c) QFT64

Fig. 16. Circuit success rate under different levels of gate errors. (Higher circuit success rate is better.)

C. QGo in Parallel

In this work, we perform the quantum synthesis in serial.
However, since we partition a circuit into a sequence of circuit
blocks, each block is independent for the synthesis process. As
a result, the synthesis of blocks can be executed in parallel.
Running the entire QGo on a supercomputing system can
reduce the overall compilation time significantly.

D. Crosstalk Mitigation

Our optimization tool that can be applied with any other
existing optimization to improve the overall circuit fidelity.
For cross talk, we can apply crosstalk mitigation to address
this issue, and as we reduce the CNOT count, it would be
easier to mitigate crosstalk.

VII. RELATED WORK

Several studies of circuit optimization have been carried
out. Most of the existing techniques focus on optimizing the
qubit mapping and swap insertion to reduce circuit depth. One
common approach is to describe the problem in a mathematical
form, such as integer linear programming, and then find the
optimal solutions by using solvers [9], [37], [49], [51], [70].
This approach only works for small circuits since the time
scaling is exponential. Another approach is to find the optimal
solutions by using dynamic programming [41], [65]. However,
since the solving time grows exponentially, this method only
works for a handful of qubits. Recent studies propose using
heuristic search algorithms to find good solutions to avoid long
execution times [3], [11], [41], [46], [47], [59], [69], [73].
However, these approaches keep the original CNOT count and
only reduce the additional swap count. Our synthesis approach
can reduce both swap count and CNOT count used in the
circuits.

Previous studies have applied synthesis technique to opti-
mize some specific circuits such as classical reversible cir-
cuits [4], [10], [37], [68], a specific gate set [5], or Clifford+T
circuits [55]. [25] proposes architecture-aware synthesis for
phase polynomials. This manner can be applied to circuits con-
taining only CNOT and R, gates. In our work, our approach
is designed for general circuits. However, since we can easily
change the core synthesis tool, these synthesis approaches
can be integrated in our compiler framework to improve the
optimization for these specific circuits.

44

Our approach relies on synthesis techniques that are able
to produce extremely short circuits. Otherwise, it is unlikely
that we will be able to see an improvement when resynthesiz-
ing sub-circuits. The KAK decomposition could be used for
resynthesizing 2-qubit blocks [67]. We have seen improvement
when using larger block sizes, so we use the search-based
technique found in [23], which can handle circuits as large as
4 qubits. For scaling further, we are considering the approach
found in [72], which produces slightly longer circuits, but
offers a better scaling runtime when compared to the search-
based approach.

Recent studies such as [13] propose the removal of the
constraint of unitary operations by adding ancilla qubits. Ad-
ditionally, [15] uses ancillas and an approximation technique
to produce very short circuits. To achieve greater CNOT
reduction, integrating ancillas and approximate synthesis into
our QGo is a promising research direction.

VIII. CONCLUSION

In the NISQ era, since two-qubit gates are much noisier
than single-qubit gates, it is essential to minimize their count.
Synthesis is a powerful tool for circuit optimization to pro-
duce shorter circuits to improve the overall circuit fidelity.
However, synthesis is only applicable for small circuits. In
this work, we present an automated compilation framework,
QGo. It partitions the circuit into blocks, and re-generates
each optimized block by using synthesis, and re-composes
the circuit by stitching all the blocks together. Our approach
to circuit optimization offers a role for quantum synthesis
algorithms in large-scale quantum computing scenarios. We
evaluate fidelity improvements using 3 metrics for 3 scaling
regimes: small-size circuits using fidelity on real devices,
medium-size circuits using fidelity using simulations with
noise, and large-size circuits using CNOT reduction measured
statically by our compiler. The results show that our technique
has practical value on current devices and is reliable in the
NISQ era. We also discuss using approximate synthesis to
further trade for circuit depth and pulse-level optimization.
Circuit fidelity improvement is critical. Our approach provides
a next-level optimization that is robust for direct incorporation
in existing compiler tools. Our study of circuit optimization
using synthesis offers insights for future compiler design.

Authorized licensed use limited to: Intel Corporation via the Virtual Library. Downloaded on April 11,2022 at 16:58:23 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGMENTS

This work is funded in part by EPiQC, an NSF Expedition
in Computing, under grants CCF-1730449; in part by STAQ
under grant NSF Phy-1818914; in part by DOE grants
DE-SC0020289 and DE-SC0020331; and in part by NSF
OMA-2016136 and the Q-NEXT DOE NQI Center. This
work was supported by the U.S. Department of Energy (DOE)
under Contract No. DE-AC02-05CH11231, through the Office
of Advanced Scientific Computing Research Accelerated
Research for Quantum Computing Program.

Disclosure: F. Chong is Chief Scientist at Super.tech and an
advisor to QCI.

[1]

[2]

[3]

[4]

[5]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

0. Al-Ta’ani, “Quantum circuit synthesis using solovay-kitaev algorithm
and optimization techniques,” Ph.D. dissertation, Kansas State Univer-
sity, 2015.

G. Aleksandrowicz, T. Alexander, P. Barkoutsos, L. Bello, Y. Ben-
Haim, D. Bucher, F. Cabrera-Herndndez, J. Carballo-Franquis, A. Chen,
C. Chen et al., “Qiskit: An open-source framework for quantum com-
puting,” Accessed on: Mar, vol. 16, 2019.

M. AlFailakawi, I. Ahmad, and S. Hamdan, “Lnn reversible circuit
realization using fast harmony search based heuristic,” in Asia-Pacific
Conference on Computer Science and Electrical Engineering, 2014.

Z. Alwardi, R. Wille, and R. Drechsler, “Synthesis of reversible circuits
using conventional hardware description languages,” in 2018 IEEE 48th
International Symposium on Multiple-Valued Logic (ISMVL). 1EEE,
2018, pp. 97-102.

M. Amy, P. Azimzadeh, and M. Mosca, “On the controlled-not complex-
ity of controlled-not—phase circuits,” Quantum Science and Technology,
vol. 4, no. 1, p. 015002, 2018.

M. Amy, D. Maslov, M. Mosca, and M. Roetteler, “A meet-in-the-
middle algorithm for fast synthesis of depth-optimal quantum circuits,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 32, no. 6, pp. 818-830, 2013.

F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends,
R. Biswas, S. Boixo, F. G. Brandao, D. A. Buell et al., “Quantum
supremacy using a programmable superconducting processor,” Nature,
vol. 574, no. 7779, pp. 505-510, 2019.

C. Béddescu, R. O’Donnell, and J. Wright, “Quantum state certification,”
in Proceedings of the 51st Annual ACM SIGACT Symposium on Theory
of Computing, 2019, pp. 503-514.

T. Bahreini and N. Mohammadzadeh, “An MINLP model for scheduling
and placement of quantum circuits with a heuristic solution approach,”
ACM Journal on Emerging Technologies in Computing Systems (JETC),
vol. 12, no. 3, pp. 1-20, 2015.

C. Bandyopadhyay, R. Wille, R. Drechsler, and H. Rahaman, “Post
synthesis-optimization of reversible circuit using template matching,” in
2020 24th International Symposium on VLSI Design and Test (VDAT).
IEEE, 2020, pp. 1-4.

A. Bhattacharjee, C. Bandyopadhyay, R. Wille, R. Drechsler, and
H. Rahaman, “A novel approach for nearest neighbor realization of 2D
quantum circuits,” in 2018 IEEE Computer Society Annual Symposium
on VLSI (ISVLSI). 1EEE, 2018, pp. 305-310.

J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and
S. Lloyd, “Quantum machine learning,” Nature, vol. 549, no. 7671, p.
195, 2017.

A. Bocharov, M. Roetteler, and K. M. Svore, “Efficient synthesis of
universal repeat-until-success quantum circuits,” Physical review letters,
vol. 114, no. 8, p. 080502, 2015.

S. Bravyi, D. Gosset, and R. Konig, “Quantum advantage with shallow
circuits,” Science, vol. 362, no. 6412, pp. 308-311, 2018.

D. Camps and R. Van Beeumen, “Approximate quantum circuit synthesis
using block encodings,” Physical Review A, vol. 102, no. 5, p. 052411,
2020.

A. Chakrabarti, S. Sur-Kolay, and A. Chaudhury, “Linear nearest neigh-
bor synthesis of reversible circuits by graph partitioning,” arXiv preprint
arXiv:1112.0564, 2011.

45

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

J. Cheng, H. Deng, and X. Qia, “Accqoc: Accelerating quantum optimal
control based pulse generation,” in 2020 ACM/IEEE 47th Annual Inter-
national Symposium on Computer Architecture (ISCA). 1EEE, 2020,
pp. 543-555.

J. Cheng, H. Deng, and X. Qian, “Accqoc: Accelerating quantum
optimal control based pulse generation,” in 47th ACM/IEEE Annual
International Symposium on Computer Architecture, ISCA 2020,
Valencia, Spain, May 30 - June 3, 2020. 1EEE, 2020, pp. 543-555.
[Online]. Available: https://doi.org/10.1109/ISCA45697.2020.00052

R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca, “Quantum algo-
rithms revisited,” Proceedings of the Royal Society of London. Series A:
Mathematical, Physical and Engineering Sciences, vol. 454, no. 1969,
pp. 339-354, 1998.

A. Cowtan, S. Dilkes, R. Duncan, W. Simmons, and S. Sivarajah, “Phase
gadget synthesis for shallow circuits,” arXiv preprint arXiv:1906.01734,
2019.

A. Cross, “The IBM Q experience and QISKit open-source quantum
computing software,” Bulletin of the American Physical Society, vol. 63,
2018.

S. A. Cuccaro, T. G. Draper, S. A. Kutin, and D. P. Moulton, “A new
quantum ripple-carry addition circuit,” arXiv preprint quant-ph/0410184,
2004.

M. G. Davis, E. Smith, A. Tudor, K. Sen, I. Siddiqi, and C. Iancu,
“Towards optimal topology aware quantum circuit synthesis,” in 2020
IEEE International Conference on Quantum Computing and Engineer-
ing (QCE), 2020, pp. 223-234.

C. M. Dawson and M. A. Nielsen, “The solovay-kitaev algorithm,” arXiv
preprint quant-ph/0505030, 2005.

A. M.-v. de Griend and R. Duncan, “Architecture-aware synthesis of
phase polynomials for nisq devices,” arXiv preprint arXiv:2004.06052,
2020.

A. De Vos and S. De Baerdemacker, “Block-z x z synthesis of an
arbitrary quantum circuit,” Physical Review A, vol. 94, no. 5, p. 052317,
2016.

O. Di Matteo and M. Mosca, “Parallelizing quantum circuit synthesis,”
Quantum Science and Technology, vol. 1, no. 1, p. 015003, 2016.

Y. Ding, X.-C. Wu, A. Holmes, A. Wiseth, D. Franklin, M. Martonosi,
and F. T. Chong, “Square: Strategic quantum ancilla reuse for modular
quantum programs via cost-effective uncomputation,” in ACM/IEEE
47th Annual International Symposium on Computer Architecture (ISCA),
2020.

D. P. DiVincenzo, “Two-bit gates are universal for quantum computa-
tion,” Physical Review A, vol. 51, no. 2, p. 1015, 1995.

E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate
optimization algorithm,” arXiv preprint arXiv:1411.4028, 2014.

C. Gidney and D. Bacon, “The cirq developers, quantumlib/-cirq: A
python framework for creating, editing, and invoking noisy intermediate
scale quantum (nisq) circuits.”

B. Giles and P. Selinger, “Exact synthesis of multiqubit clifford+ t
circuits,” Physical Review A, vol. 87, no. 3, p. 032332, 2013.

S. J. Glaser, U. Boscain, T. Calarco, C. P. Koch, W. Kockenberger,
R. Kosloff, I. Kuprov, B. Luy, S. Schirmer, T. Schulte-Herbriiggen et al.,
“Training schrodinger’s cat: quantum optimal control,” The European
Physical Journal D, vol. 69, no. 12, pp. 1-24, 2015.

P. Gokhale, Y. Ding, T. Propson, C. Winkler, N. Leung, Y. Shi,
D. I. Schuster, H. Hoffmann, and F. T. Chong, “Partial compilation of
variational algorithms for noisy intermediate-scale quantum machines,”
in Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture, 2019, pp. 266-278.

P. Gokhale, A. Javadi-Abhari, N. Earnest, Y. Shi, and F. T. Chong, “Op-
timized quantum compilation for near-term algorithms with openpulse,”
arXiv preprint arXiv:2004.11205, 2020.

“A Preview of Bristlecone, Google’s New Quantum Processor,”
https://ai.googleblog.com/2018/03/a- preview- of-bristlecone- googles-
new.html, accessed: 2020-10-09.

D. GroBle, R. Wille, G. W. Dueck, and R. Drechsler, “Exact multiple-
control toffoli network synthesis with sat techniques,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 28,
no. 5, pp. 703-715, 2009.

M. Heyl, A. Polkovnikov, and S. Kehrein, “Dynamical quantum phase
transitions in the transverse-field ising model,” Physical review letters,
vol. 110, no. 13, p. 135704, 2013.

Authorized licensed use limited to: Intel Corporation via the Virtual Library. Downloaded on April 11,2022 at 16:58:23 UTC from IEEE Xplore. Restrictions apply.

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[61]

“IBM Announces Advances to IBM Quantum Systems and Ecosys-
tem,” https://www-03.ibm.com/press/us/en/pressrelease/53374.wss, ac-
cessed: 2020-10-09.

“IBM Quantum Experience,” https://quantum-computing.ibm.com/, ac-
cessed: 2020-11-15.

T. Itoko, R. Raymond, T. Imamichi, and A. Matsuo, “Optimization of
quantum circuit mapping using gate transformation and commutation,”
Integration, vol. 70, pp. 43-50, 2020.

A. JavadiAbhari, S. Patil, D. Kudrow, J. Heckey, A. Lvov, F. T. Chong,
and M. Martonosi, “ScaffCC: Scalable compilation and analysis of
quantum programs,” Parallel Computing, vol. 45, pp. 2-17, 2015.

R. Jozsa, “Quantum factoring, discrete logarithms, and the hidden
subgroup problem,” Computing in science & engineering, vol. 3, no. 2,
p- 34, 2001.

A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M.
Chow, and J. M. Gambetta, “Hardware-efficient variational quantum
eigensolver for small molecules and quantum magnets,” Nature, vol.
549, no. 7671, p. 242, 2017.

V. Kliuchnikov, D. Maslov, and M. Mosca, “Fast and efficient exact
synthesis of single qubit unitaries generated by clifford and t gates,”
arXiv preprint arXiv:1206.5236, 2012.

A. Kole, K. Datta, and I. Sengupta, “A heuristic for linear nearest
neighbor realization of quantum circuits by SWAP gate insertion using
N-gate lookahead,” IEEE Journal on Emerging and Selected Topics in
Circuits and Systems, vol. 6, no. 1, pp. 62-72, 2016.

G. Li, Y. Ding, and Y. Xie, “Tackling the qubit mapping problem
for nisq-era quantum devices,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2019, pp. 1001-1014.

A. P. Lund, M. J. Bremner, and T. C. Ralph, “Quantum sampling
problems, bosonsampling and quantum supremacy,” npj Quantum In-
formation, vol. 3, no. 1, pp. 1-8, 2017.

A. Lye, R. Wille, and R. Drechsler, “Determining the minimal number of
swap gates for multi-dimensional nearest neighbor quantum circuits,” in
The 20th Asia and South Pacific Design Automation Conference. 1EEE,
2015, pp. 178-183.

E. A. Martinez, T. Monz, D. Nigg, P. Schindler, and R. Blatt, “Compiling
quantum algorithms for architectures with multi-qubit gates,” New
Journal of Physics, vol. 18, no. 6, p. 063029, 2016.

D. Maslov, S. M. Falconer, and M. Mosca, “Quantum circuit placement,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 27, no. 4, pp. 752-763, 2008.

N. Moll, P. Barkoutsos, L. S. Bishop, J. M. Chow, A. Cross, D. J. Egger,
S. Filipp, A. Fuhrer, J. M. Gambetta, M. Ganzhorn et al., “Quantum op-
timization using variational algorithms on near-term quantum devices,”
Quantum Science and Technology, vol. 3, no. 3, p. 030503, 2018.

A. B. Nagy, “On an implementation of the solovay-kitaev algorithm,”
arXiv preprint quant-ph/0606077, 2006.

M. A. Nielsen and I. Chuang, “Quantum computation and quantum
information,” 2002.

Y. Shi, N. Leung, P. Gokhale, Z. Rossi, D. I. Schuster, H. Hoffmann,
and F. T. Chong, “Optimized compilation of aggregated instructions
for realistic quantum computers,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2019, pp. 1031-1044.

46

[55]

[56]

[57]

[70

[71]

P. Niemann, R. Wille, and R. Drechsler, “Improved synthesis of clifford+
t quantum functionality,” in 2018 Design, Automation & Test in Europe
Conference & Exhibition (DATE). 1EEE, 2018, pp. 597-600.

S. Nishio, Y. Pan, T. Satoh, H. Amano, and R. Van Meter, “Extracting
success from ibm’s 20-qubit machines using error-aware compilation,”
arXiv preprint arXiv:1903.10963, 2019.

A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J.
Love, A. Aspuru-Guzik, and J. L. O’brien, “A variational eigenvalue
solver on a photonic quantum processor,” Nature Communications,
vol. 5, p. 4213, 2014.

J. Preskill, “Quantum computing in the NISQ era and beyond,” Quan-
tum, vol. 2, p. 79, 2018.

M. Saeedi, R. Wille, and R. Drechsler, “Synthesis of quantum circuits for
linear nearest neighbor architectures,” Quantum Information Processing,
vol. 10, no. 3, pp. 355-377, 2011.

V. V. Shende, S. S. Bullock, and I. L. Markov, “Synthesis of quantum-
logic circuits,” IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 25, no. 6, pp. 1000-1010, 2006.

D. Shin, H. Hiibener, U. De Giovannini, H. Jin, A. Rubio, and N. Park,
“Phonon-driven spin-floquet magneto-valleytronics in mos 2,” Nature
communications, vol. 9, no. 1, pp. 1-8, 2018.

P. W. Shor, “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer,” SIAM review, vol. 41, no. 2,
pp. 303-332, 1999.

M. Y. Siraichi, V. F. d. Santos, S. Collange, and F. M. Q. Pereira,
“Qubit allocation,” in Proceedings of the 2018 International Symposium
on Code Generation and Optimization, 2018, pp. 113-125.

——, “Qubit allocation,” in Proceedings of the 2018 International
Symposium on Code Generation and Optimization, 2018, pp. 113-125.
S. Sivarajah, S. Dilkes, A. Cowtan, W. Simmons, A. Edgington, and
R. Duncan, “t— ket;: A retargetable compiler for nisq devices,” Quan-
tum Science and Technology, 2020.

R. R. Tucci, “An introduction to cartan’s kak decomposition for gcfon
programmers,” arXiv preprint quant-ph/0507171, 2005.

R. Wille, M. Haghparast, S. Adarsh, and M. Tanmay, “Towards hdl-
based synthesis of reversible circuits with no additional lines,” in
2019 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD). IEEE, 2019, pp. 1-7.

R. Wille, O. Keszocze, M. Walter, P. Rohrs, A. Chattopadhyay, and
R. Drechsler, “Look-ahead schemes for nearest neighbor optimization
of 1D and 2D quantum circuits,” in 2016 21st Asia and South Pacific
Design Automation Conference (ASP-DAC). 1EEE, 2016, pp. 292-297.
R. Wille, A. Lye, and R. Drechsler, “Optimal SWAP gate insertion for
nearest neighbor quantum circuits,” in 2014 19th Asia and South Pacific
Design Automation Conference (ASP-DAC). 1EEE, 2014, pp. 489—494.
X.-C. Wu, D. M. Debroy, Y. Ding, J. M. Baker, Y. Alexeev, K. R. Brown,
and F. T. Chong, “Tilt: Achieving higher fidelity on a trapped-ion linear-
tape quantum computing architecture,” 2020.

E. Younis, K. Sen, K. Yelick, and C. Iancu, “Qfast: Conflating search and
numerical optimization for scalable quantum circuit synthesis,” arXiv
preprint arXiv:2103.07093, 2021.

A. Zulehner, A. Paler, and R. Wille, “Efficient mapping of quantum
circuits to the ibm gx architectures,” in 2018 Design, Automation &
Test in Europe Conference & Exhibition. 1EEE, 2018, pp. 1135-1138.

Authorized licensed use limited to: Intel Corporation via the Virtual Library. Downloaded on April 11,2022 at 16:58:23 UTC from IEEE Xplore. Restrictions apply.

