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Abstract—The current phase of quantum computing is in
the Noisy Intermediate-Scale Quantum (NISQ) era. On NISQ
devices, two-qubit gates such as CNOTs are much noisier than
single-qubit gates, so it is essential to minimize their count.
Quantum circuit synthesis is a process of decomposing an
arbitrary unitary into a sequence of quantum gates, and can
be used as an optimization tool to produce shorter circuits to
improve overall circuit fidelity. However, the time-to-solution of
synthesis grows exponentially with the number of qubits. As a
result, synthesis is intractable for circuits on a large qubit scale.

In this paper, we propose a hierarchical, block-by-block opti-
mization framework, QGo, for quantum circuit optimization. Our
approach allows an exponential cost optimization to scale to large
circuits. QGo uses a combination of partitioning and synthesis:
1) partition the circuit into a sequence of independent circuit
blocks; 2) re-generate and optimize each block using quantum
synthesis; and 3) re-compose the final circuit by stitching all the
blocks together. We perform our analysis and show the fidelity
improvements in three different regimes: small-size circuits on
real devices, medium-size circuits on noisy simulations, and large-
size circuits on analytical models. Our technique can be applied
after existing optimizations to achieve higher circuit fidelity.
Using a set of NISQ benchmarks, we show that QGo can reduce
the number of CNOT gates by 29.9% on average and up to 50%
when compared with industrial compiler optimizations such as
t|ket〉. When executed on the IBM Athens system, shorter depth
leads to higher circuit fidelity. We also demonstrate the scalability
of our QGo technique to optimize circuits of 60+ qubits. Our
technique is the first demonstration of successfully employing
and scaling synthesis in the compilation toolchain for large
circuits. Overall, our approach is robust for direct incorporation
in production compiler toolchains to further improve the circuit
fidelity.

Index Terms—Quantum Computing, Optimization, Synthesis,
Quantum Compiler

I. INTRODUCTION

Quantum Computing (QC) is expected to solve certain

computational problems that even the largest classical super-

computers cannot solve. QC algorithms might have significant

impact on areas such as quantum chemistry [44], [57], cryptog-

raphy [63], and machine learning [12]. Recently, QC devices

up to 72 quantum bits (qubits) have been demonstrated by

IBM and Google [36], [39]. The current phase of QC is in

the Noisy Intermediate-Scale Quantum (NISQ) era [58]. On

NISQ devices, quantum gates are noisy and their count must

be minimized to produce low-error circuits. In particular, two-

qubit gates such as CNOTs are much noisier than single-qubit

gates. For NISQ devices, shorter depth translates directly into

higher circuit fidelity. Most of the existing compilers focus on

optimizing the qubit mapping and swap insertion to reduce

circuit depth [41], [47], [73].

Quantum circuit synthesis provides an orthogonal circuit

optimization method, which generates a circuit from its high

level mathematical description such as unitary matrix. There

are several existing studies in this field [1], [6], [13], [23],

[24], [26], [27], [32], [45], [50], [53], [60], [67], [72]. Given an

arbitrary quantum circuit, we can compute the corresponding

unitary, and then use synthesis to generate a new circuit, which

has a different sequence of gates from the original circuit,

but will be equivalent in terms of unitary operator performed.

This approach can work as a reopotimization process to further

improve the circuit fidelity.

However, synthesis algorithms face an “exponential” scal-

ability challenge. For a n-qubit circuit, the unitary size is

2n × 2n. The solving time of synthesis scales exponentially

with the number of qubits [1], [23], [27]. Thus, synthesis is

intractable for circuits beyond a handful of qubits.

To perform quantum synthesis for optimizing large scale

circuits, we propose our hierarchical, block-by-block, opti-

mization framework, called QGo. QGo uses a combination

of partitioning and synthesis: 1) partition the circuit into in-

dependent sub-blocks whose size can be successfully handled

by synthesis; 2) re-generate each block using synthesis; and

3) re-assemble the circuit. Figure 1 shows an example of QGo

circuit optimization that partitions a 5-qubit circuit into 3-qubit

blocks. In general, partitioning a n-qubit circuit into multiple
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k-qubit blocks (k < n) leads to replacing an algorithm with

O(exp(n)) complexity with a sequence of calls to O(exp(k))
algorithms. The time to synthesized solution grows linearly

with the number of k-qubit blocks, which is a useful tradeoff

when compared to the exponential scaling with the number

of qubits. After all blocks are synthesized, QGo then puts the

blocks back together to produce the final optimized circuit.
QGo allows us to compile a quantum circuit to an optimized

executable circuit for a target hardware. QGo is a topology-

aware compilation framework. The overall flow is described

in Figure 2. QGo includes four core modules: physical qubit

mapping, circuit partitioning, quantum synthesis, and circuit

composition. The input to QGo is a quantum circuit in a

high-level quantum program, together with a description of

the topology of the target processor. The first step in QGo

is topology mapping of the circuit to the target hardware.

We leverage third party mappers and call into “traditional”

compilers to perform mapping. This approach allows us to

select the best mapper available for a given platform. We use

the t|ket〉 compiler for physical qubit mapping as it is reported

to effectively produce short circuits for several applications

[20], [66]. We then run our partitioning algorithm to select

tunable size blocks of the circuit that are independent of each

other. For large-scale circuit partitioning, we use a greedy-

based heuristic approach that partitions a circuit by selecting

blocks with high CNOT-count. In the synthesis procedure,

each block is converted from its circuit format into a unitary

matrix and re-synthesized with a synthesis tool. In this work,

we use the state-of-the-art synthesis tool proposed in [23].

The last step is circuit composition. If the synthesized block

has more or equal number of CNOTs, QGo will select the

original block for the final circuit. The final output of QGo

is the optimized circuit by stitching all the optimized blocks

together.
For evaluation we use a series of NISQ circuits as our

benchmarks. To understand the impact of the partitioning

strategy we conduct experiments with 3- and 4-qubit blocks.

We evaluate the quality of the generated circuits on IBM’s

Athens [40] device, as well as using noise simulation for

medium-size circuits and on our analytical model for large-

size circuits.
Compared with existing synthesis approaches, our hierar-

chical synthesis guarantees to reduce or keep the same CNOT

count for arbitrary gate sets in large-scale circuits within a

feasible compilation time.
The main contributions of this work are:

• Circuit fidelity improvement is critical. Our approach

provides a next-level reoptimization that is robust for

direct incorporation in existing compiler tools. Our tech-

nique allows an exponential cost optimization tool to

scale to large circuits, and is the first demonstration

of successfully employing and scaling synthesis in the

compilation toolchain for large circuit optimization.

• QGo reduces the CNOT gate count well beyond the

ability of existing compilers. Using a set of NISQ bench-

marks, we show that QGo can reduce the number of

CNOT gates by 29.9% on average and up to 50% com-

pared with circuits optimized by t|ket〉 compiler. These

translate into direct fidelity improvements when running

on the IBM’s Athens device [21]. It was not obvious that

selecting blocks with high CNOT-count and synthesizing

them would yield significant fidelity improvements.

• We evaluate fidelity improvements using 3 metrics for 3

scaling regimes: small-size circuits using fidelity on real

devices, medium-size circuits using fidelity using sim-

ulations with noise, and large-size circuits using CNOT

reduction measured statically by our compiler. To validate

the trends shown by our simulations, we show that there

is a 98% correlation between our real-device results and

our simulation results on small circuits.

• We present the sensitivity analysis by running Qiskit

noise simulations to show the circuit fidelity improve-

ments under different levels of gate errors. The results

indicate that QGo is important for NISQ devices.

• We demonstrate the scalability of our technique to op-

timize the circuits of 60+ qubits. This demonstration

suggests that QGo provides a viable path towards higher

fidelity for circuits on large scale qubits.

II. BACKGROUND

A. Principles of Quantum Computation

A qubit is a two-level quantum system, represented by

two orthonormal computational basis states |0〉 and |1〉. The

quantum state of a qubit can be described by any linear

combination of |0〉 and |1〉: |ψ〉 = α |0〉 + β |1〉, where α
and β are complex numbers satisfying |α|2 + |β|2 = 1.

More generally, the state of a n-qubit quantum system can

be represented by using 2n amplitudes.

A quantum circuit consists of a sequence of quantum gates

on qubits, and a quantum gate is a unitary operator, U . The

effect of a gate on a quantum state can be expressed as

|ψ′〉 = U |ψ〉. Gates are applied to one or many qubits simulta-

neously. Two-qubit controlled gates and arbitrary single-qubit

gates are known to be universal [29]. CNOT gates and single-

qubit rotation gates (Rx, Ry, Rz) constitute a commonly used

universal gate set for quantum programming.

B. Quantum Circuit Synthesis

Quantum circuit synthesis is the process of taking a de-

scription of a desired unitary matrix and decomposing it into

a sequence of smaller unitaries, representing the gates in a

circuit that implements the target unitary. One of the earliest

techniques was the Solovay-Kitaev algorithm [1], [24], [53],

which combined a recursive matrix decomposition technique

with numerical methods required for the base case. This

method served as a proof-of-concept for the field of synthesis,

but the circuits it produces are very long. One of the main

goals of synthesis is to produce “short” circuits, minimizing

metrics such as CNOT count, total gate count, and critical

path length. CNOT count is of particular importance on NISQ

devices, since they contribute significantly more to the overall

noise and runtime of circuits than single-qubit gates. Because
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(a) Original circuit (b) Partitioned circuit

(c) Synthesized circuit (d) Optimized circuit

Fig. 1. An example of QGo circuit optimization. (a) The original 5-qubit circuit. (b)The original circuit is partitioned into three blocks, and each block only
contains gates on 3 qubits. The first circuit block is only on q0, q1, and q4. The second block is on q1, q2, and q4. The third block is on q0, q1, and q3. All
gates after partitioning still respect the gate dependency in the original circuit. (c) The synthesized circuit. After running quantum synthesis for each block,
the CNOT counts in the first and second block are reduced, and the third block still has 2 CNOTs. (d) The single-qubit gates can be combined to produce
the final optimized circuit. This circuit is effectively equivalent to the original circuit but with fewer CNOT gates.

Fig. 2. Our compilation framework for scalable circuit optimization using
synthesis (QGo).

of this, CNOT count has been a particular target for synthesis

approaches. The approach shown in [6] is able to find minimal

length circuits according to a weighting of different gates,

and demonstrates a significant advantage over the Solovay-

Kitaev approach. The approaches shown in [45] and [27]

focus on synthesis runtime, which is another metric needed

for synthesis to be practical. All of these techniques mentioned

so far work solely with discrete gatesets, where only a finite

number of base gates are allowed. However, most current

quantum devices can perform continuously varying gates.

For example, superconducting qubits use virtual Z rotations,

which can be performed with any angle, and trapped ion

qubits can perform X and Y rotations with any angle. These

continuous gates can be used to perform any single qubit ro-

tation, usually parameterized as Z(θ1)X(π2 )Z(θ2)X(π2 )Z(θ3)
or X(θ1)Y (θ2)Z(θ3). Leveraging this capability, the KAK

decomposition can perform optimal 2-qubit synthesis to per-

form any 2 qubit unitary with at most 3 CNOTs [67]. The

approach shown in [60] uses the cosine-sine decomposition to

produce universal gates for any number of qubits, which can

perform any unitary simply by changing the parameters. Other

approaches use numerical optimization of parameterized gates

to find high quality circuits [23], [50], [72].

We employ the search-based numerical synthesis method

described in [23]. This technique builds a search tree of

CNOT structures filled in with parameterized single-qubit

gates, and employs numerical optimization to evaluate the

CNOT structure at each node in the search. A* search is

used to find the shortest CNOT structure that can implement

the desired unitary, and numerical optimization is used to

find parameters for the single-qubit gates to produce a fully

instantiated circuit. We choose this technique because of its

ability to minimize CNOT count.

III. SCALABLE CIRCUIT OPTIMIZATION USING SYNTHESIS

A. QGo Overview

Figure 2 shows an overview of QGo. It contains four

core compiler components: physical qubit mapping, circuit

partitioning, quantum synthesis, and the circuit composition

procedure. The inputs for QGo consist of a high-level quantum

program and a target device connectivity description. First,

QGo performs physical qubit mapping to assign the logical

qubits to physical qubits and to resolve all unexecutable two-

qubit gates by adding swap gates. Since our goal is to produce

an optimized topology-aware circuit, if we perform physical

qubit mapping after quantum synthesis, there will be swap

gates inevitably added into the final circuit. Therefore, we

perform physical qubit mapping before quantum synthesis,

so that the swap gates added into the circuit become a part

of the input circuit for the circuit synthesis, and hence the

final circuit would have a reduced CNOT gate count. Second,

QGo partitions the circuit into multiple small circuit blocks.
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Each block only interacts with a few qubits. The qubit group

mapping is generated to indicate what qubits are involved for

each circuit block. This qubit group mapping information will

be used for the later circuit composition procedure. Since

the number of qubits in a block reflects the size of the

corresponding unitary matrix, we demonstrate the partitioning

of 3-qubit and 4-qubit blocks in this work, but the block

size can be further increased. In general, a larger unitary

matrix would take exponentially longer time to decompose

into a sequence of gates. A circuit partitioned with a larger

block size would have fewer blocks, and each block tends to

allow the synthesizer to decide circuit elements rather than

the mapping algorithm, and hence the final optimized circuit

would have fewer CNOTs. Thus, the block size is a trade-

off between the time-to-solution and the quality of solution

(CNOT reduction). Next, quantum synthesis is applied to the

partitioned circuit blocks. We use the state-of-the-art synthesis

tool proposed in [23] for our work. Finally, QGo performs

the circuit composition by following the qubit group mapping

to concatenate the synthesized blocks to produce the final

optimized circuit.

B. Physical Qubit Mapping

Given an input quantum circuit and the qubit connectivity

graph, physical qubit mapping is to find an initial qubit map-

ping and insert swap gates to satisfy all two-qubit interactions

and try to minimize the total number of swap gates and circuit

depth in the final hardware-compliant circuit. Physical qubit

mapping problem is NP-Complete [64]. Several approaches

for solving this problem have been proposed [9], [16], [21],

[41], [47], [49], [51], [56], [66], [70], [71], [73].

We design the physical qubit mapping as the first step of

QGo because we want to have the additional swaps gates to

be part of the input circuit for the remaining optimization

process, so that the optimization by quantum synthesis can

reduce the CNOT gate count in the final circuit. In addition, we

also find that most quantum applications have certain repeated

CNOT patterns, and existing qubit mapping algorithms will

perform better by leveraging the structure of these patterns.

If the synthesis process runs before physical qubit mapping,

the pattern will be destroyed, and the number of additional

swap gates will increase in some cases. Thus, performing

physical qubit mapping before synthesis can benefit the overall

optimization.

We compare industrial compilers such as IBM Qiskit [21]

and t|ket〉 compilers [66]. Since the t|ket〉 compiler produces

shorter circuits in our experiments and is reported to produce

shorter circuits for several quantum applications compared

with other techniques [20], we adopt the t|ket〉 compiler for

physical qubit mapping in our QGo.

C. Circuit Partitioning

QGo partitions a circuit into multiple small circuit blocks.

Each block contains gates only on a small group of qubits.

Figure 1 shows an example of partitioning. Each circuit block

consists of 3 qubits (Figure 1(b)). Since the CNOT reduction

TABLE I
NOTATIONS USED IN OUR ALGORITHM.

Notation Definition
n The total number of qubits in a circuit
k The total number of qubits in a partitioned block
gi A gate operation. i is the index of the gate.
qi A qubit. i is the index of the qubit.
Qi A qubit group. i is the index of the group.
EQi A set of executable gates on Qi

G Gate dependency graph
B A list of partitioned blocks
M A list of qubit group mapping

would be higher when there are more CNOTs in a block,

the goal of partitioning is to find a block with the number of
qubits and biggest number of CNOTs. Thus, we propose our

algorithm: we use a greedy-based heuristic approach. This is

an efficient approach; compared with other partitioning algo-

rithms such as dynamic programming that would be limited

by circuit depth, our heuristic algorithm is scalable for large-

scale circuit partitioning. We summarize the notations used in

our algorithm in Table I.

Before our heuristic algorithm, we define a few terms used

in our algorithm.

Qubit group. A qubit group is a set of qubits in a circuit

block. For a n-qubit circuit, there are
(
n
k

)
different combina-

tions of qubit groups for a k-qubit block. For example, the cir-

cuit shown in Figure 1(a) is a 5-qubit circuit. For partitioning

the circuit into 3-qubit blocks, {q0, q1, q2}, {q0, q1, q3}, ..., and

{q2, q3, q4} are possible qubit groups for a block. Figure 1(b)

shows the circuit after partitioning. The qubit group of the 1st

block is {q0, q1, q4}, and the 2nd block is {q1, q2, q4}, and the

3rd block is {q0, q1, q3}. We use Qi to denote a qubit group

in this paper, where i = 1, 2, ...,
(
n
k

)
. The qubit group size k

is limited to a small number due to the limitation of quantum

synthesis. Our qubit group mapping maintains the physical

qubit mapping. The qubit mapping is fixed during the partition

and synthesis. In this paper, we focus our analysis on the size

of 3 and 4 qubits in a qubit group.

Valid qubit group. Since the input circuit for our par-

titioning algorithm is a physical qubit mapped circuit, all

two-qubit gates are applied on the neighbor qubits. We can

define valid qubit groups by considering device connectivity

to reduce the search space in our algorithm. We map the qubit

group onto the device connectivity graph. If a qubit group is

a connected component, it is a valid qubit group; otherwise,

it is an invalid group. Figure 3 shows an example of a valid

qubit group. Considering a 3 × 3 grid connectivity, the qubit

group {q0, q3, q6} is a valid qubit group. However, the qubit

group {q2, q7, q8} is an invalid qubit group. When partitioning

a circuit, we only need to consider valid qubit groups.

Gate dependency graph. We use a Directed Acyclic Graph

(DAG) to represent the gate dependency of a circuit. In a DAG,

a node represents a gate, and an edge is the qubit involved for

the gate. A gate can be executed only when all the previous
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Fig. 3. Example of valid and invalid qubit groups.

Algorithm 1 Circuit Partitioning

1: Convert the circuit into a gate dependency graph G.

2: B ← φ
3: M ← φ
4: while G is not empty do
5: for each valid qubit group Qi do
6: EQi ← {Executable Gates on Qi}
7: Compute Score(EQi

)
8: end for
9: Select the EQm

with the maximal score;

10: B.append(EQm
)

11: M.append(Qm)
12: G ← G− EQm

13: end while
14: Output the sequence of circuit blocks B and the list of

qubit group mapping M

gates have been executed. Figure 4 shows an example of gate

dependency graph. The DAG in Figure 4(b) is generated from

the original circuit (Figure 4(a)). For example, the gate g5
depends on g1 and g2 because q0 is used for g1 and g5, and

q1 is used for g2 and g5. Thus, g5 can be executed only after

both g1 and g2 are executed.

Executable gates on a qubit group. A single-qubit gate on

qi can count as an executable gate on a qubit group Qi only

when qi ∈ Qi and all previous gates on qi are executable gates

on Qi. A two-qubit gate on (qi, qj) can count as an executable

gate on a qubit group Qi only when both qi, qj ∈ Qi and all

previous gates on qi and qj are executable gates on Qi. In

Figure 4, for example, when we count the executable gates on

the qubit group {q0, q1, q2}, the gate g9 is an executable gate

because q0 and q1 are in the qubit group and all the previous

gates on q0 and q1 are also executable gates. However, g4 is

not an executable gate on this qubit group because q3 is not

in the target qubit group. We use EQi
to denote the largest set

of executable gates on the qubit group Qi. We can get each

EQi
by traversing the gate dependency graph. Figure 4(c) and

Figure 4(d) show E{q0,q1,q2} and E{q0,q1,q3}, respectively.

Algorithm 1 shows our partitioning procedure. First, we

prepare the gate dependency graph G for the target circuit.

Next, we collect the set of executable gates, EQi
, for each

qubit group, and also compute the score for each EQi
. Since

the objective is to find the biggest circuit block, we select

the EQm with the maximal score as the partitioned block, and

save the Qm as the qubit group mapping for this block. Once a

(a) Original circuit

(b) Gate dependency graph

(c) Executable gates on qubit group {q0, q1, q2}.

(d) Executable gates on qubit group {q0, q1, q3}.

Fig. 4. Example of gate dependency graph and executable gates on a qubit
group.

circuit block is partitioned, we remove the block from the gate

dependency graph G, and repeat the procedure to find the next

circuit block partition until the gate dependency graph G is

empty, which means the entire circuit is partitioned. Finally, a

sequence of circuit blocks B and a list of qubit group mapping

M are the output of the circuit partitioning process.

The heuristic cost function indicates the number of exe-

cutable gates for a qubit group. The general form of our

heuristic cost function for a qubit group Qi is shown as

follows:

Score(EQi
) = NEQi

, (1)

where NEQi
is the number of executable CNOT gates on

Qi. Since the objective of partitioning is to find a block

for quantum synthesis to minimize the CNOT count, a block

with more CNOT gates can potentially achieve higher CNOT

reduction. Thus, we use CNOT count as the score function.

The time complexity of our heuristic algorithm for parti-

tioning a circuit into k-qubit blocks is O(nkg), where n is the
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number of qubits in the original circuit, g is the total number

of gates, k is the number of qubits in a partitioned block.

D. Quantum Circuit Synthesis

After the circuit is partitioned into multiple blocks, QGo

applies quantum synthesis for each circuit block. We integrate

the state-of-the-art synthesis tool proposed in [23] into our

QGo framework. For each circuit block, QGo computes the

corresponding unitary matrix, and this matrix is the input

for the synthesis process. As the synthesized circuit should

respect the hardware topology, the qubit group for each block

and the device connectivity are also the input parameters for

the synthesis tool. With our block-based synthesis scheme,

the time-to-solution for a n-qubit circuit is reduced from

O(exp(n)) to O(exp(k)).
After the synthesis, there is an undesired synthesis distance

due to numerical approximation, leading the final unitary at

a distance from the original unitary [23], [54], [72]. As a

result, the final unitary distance is in the range of 10−10 to

10−15. In the NISQ era, when running a quantum circuit

on a real machine, the unitary executed is different from

the original intended unitary due to the presence of noise.

Since gate errors are multiple orders of magnitudes larger than

synthesis distances, these synthesis distances are insignificant.

In Section V-B we will show that this distance only causes

negligible impact on the overall state fidelity.

E. Circuit Composition

Once all circuit blocks have been synthesized, QGo com-

poses the entire circuit by stitching all circuit blocks. The

list of qubit group mappings provide the qubit mapping

information to connect blocks correctly. In general, the number

of CNOTs in the synthesized block is less than in the original

block. If the synthesized circuit block has an equal or greater

number of CNOTs compared to the original block, QGo

will choose to use the original circuit block to the circuit

composition to avoid unnecessary synthesis distance due to

floating point errors. Once all blocks are put together, QGo

combines the adjacent single-qubit gates to further reduce the

gate count, and produces the final optimized circuit.

IV. EXPERIMENTAL SETUP

A. Benchmarks

To evaluate QGo against real applications, we select mul-

tiple important quantum applications as our benchmarks.

Table II lists the applications and brief description in our

evaluation. We have three sets of applications according to the

different sizes of the circuits. The first set consists of small-size

circuits on 4 and 5 qubits; the second set is the medium-size

of 9- and 10-qubit circuits; and the third set of benchmarks,

large-size circuits, contains circuits beyond 60 qubits. In our

evaluation, we run the small-size circuits on a 5-qubit quantum

device, Athens, provided by IBM quantum experience plat-

form to demonstrate how much circuit fidelity is improved

through our optimization on a real NISQ machine. Next,

we run our medium-size benchmarks by using Qiskit noisy

TABLE II
LIST OF BENCHMARKS.

Size Application Qubits Description

Small

QAOA5 5 QAOA on MaxCut problem
TFIM5 5 Transverse-field Ising model
MUL5 5 Multiplier arithmetic function

ADDER4 4 Adder arithmetic function
QFT5 5 Quantum Fourier transform
HLF5 5 Hidden linear function

Medium

QAOA10 10 QAOA on MaxCut problem
TFIM10 10 Transverse-field Ising model
MUL10 10 Multiplier arithmetic function

ADDER9 9 Adder arithmetic function
QFT9 9 Quantum Fourier transform
HLF9 9 Hidden linear function

Large
MUL60 60 Multiplier arithmetic function

ADDER63 63 Adder arithmetic function
QFT64 64 Quantum Fourier transform

Fig. 5. Experimental platforms used in our evaluation.

simulators to show the fidelity improvement under different

levels of gate errors. Finally, we use the large-size benchmarks

to demonstrate the scalability of our QGo technique. Since

the circuit depth is deep for large scale circuits, we select the

important kernel functions to demonstrate the scalability of

our approach.

Quantum Approximate Optimization Algorithm (QAOA)

is a hybrid quantum-classical variational algorithm and it is

one of the most important quantum algorithms in the NISQ

era [30]. In our study, the QAOA application is a hardware-

efficiency ansatz [52] for MaxCut problem. Transverse Field

Ising Model (TFIM) is for problems that study the time

evolution of chemical systems [38], [62]. Multiplier (MUL)

[31] and adder [22], [31] benchmarks are important arithmetic

functions in several quantum applications. Quantum Fourier

transform (QFT) [42] is a kernel function in many quantum

algorithms such as phase estimation algorithm [19], Shor’s

algorithm [63], and the algorithm for hidden subgroup problem

[43]. Hidden Linear Function (HLF) is a quantum circuit

solving a problem from a previous study [14].

B. Experimental Parameters

We evaluate our QGo with 3-qubit and 4-qubit blocks

on different sizes of circuits. All QGo processes and noisy

simulations are carried out on a Ubuntu 16.04 system with

Intel Xeon Silver 4110 32-core CPU (2.1 GHz) and 128GB

RAM.

Figure 5 summarizes our fidelity analysis. For small circuits,

we show the experimental results on IBM’s Athens device
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(b) CNOT reduction rate compared with the baseline compiler.

Fig. 6. The numbers of CNOTs are reduced in the QGo-optimized circuits.
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Fig. 7. Average CNOT count in a block.

(Section V-C). For medium circuits, we run the experiments on

noise simulations (Section V-D). Finally, we use our analytical

model to perform the fidelity results for large circuits (Sec-

tion V-E). The t|ket〉 compiler with the highest optimization

level is the baseline in our evaluation. The t|ket〉 compiler

is reported to effectively produce shorter circuits for several

applications compared with other compilers [20], [66].

V. EVALUATION

In our evaluation, we first show the CNOT reduction in

the QGo-optimized circuits compared to the baseline (t|ket〉)
optimization, and we compare the compilation time using

3-qubit and 4-qubit blocks. We then discuss the impact of

synthesis distance on the quantum state. Next, we present the

results running on a real quantum device, IBM’s 5-qubit device

(Athens), to prove that our technique is critical for the current

devices. Then a sensitivity analysis is performed to show how

much circuit fidelity is improved under different gate errors.

We also demonstrate the scalability of QGo by optimizing

large circuits.

A. CNOT Reduction

We use the t|ket〉 compiler to map 4- and 5-qubit circuits on

the IBM’s Athens topology, which is a linear connectivity, and
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Fig. 8. Compilation time.

map 9- and 10-qubit circuits on a 2D lattice of physical qubits.

As discussed in Section III-B, we compare industrial compilers

such as IBM Qiskit [21] and t|ket〉 compilers [66]. Since the

t|ket〉 compiler is shown to generate shorter circuits for several

quantum applications [20], we use the circuits optimized by

t|ket〉 compiler as our baseline. The circuits optimized using

our QGo with 3-qubit blocks and 4-qubit blocks are denoted

as QGo-3 and QGo-4, respectively. Figure 6 shows the total

number of CNOTs in the circuits optimized by the baseline

and QGo. Our QGo optimization reduces the total number of

CNOTs. For MUL5 and HLF5, QGo-3 does not reduce the

CNOT count because there is only a small number of CNOTs

in a block. QGo-4 can reduce the CNOT counts across all

benchmarks. The average CNOT reduction rates of QGo-3 and

QGo-4 are 17.2% and 29.9%, respectively. In general, QGo-4

can achieve more CNOT reduction when compared with QGo-

3 because a large block will have more CNOTs in a block,

and this is easier for the synthesis to find a circuit using less

CNOTs than the original circuit block. Figure 7 shows the

average CNOT count in a block. If a circuit is partitioned into

4-qubit blocks, the average CNOT count per block is higher

when compared with 3-qubit blocks. As a result, QGo-4 can

achieve higher CNOT reduction. However, the time-to-solution

of QGo-4 is much longer than QGo-3 (Figure 8).

B. Impact of Synthesis Distance

As discussed in Section III-D, since there is a synthesis

distance due to numerical approximation, the final state is not

exactly the same as the ideal state of the original circuit. In

order to analyze the impact of synthesis distance, we use ideal

simulation to obtain the final states of the original circuit and

synthesized circuit, and we generate multiple random initial

states as the input states, and calculate the state infidelity [54].

Figure 9 shows the average state infidelity. Since the unitary

matrix distance of 4-qubit circuit synthesis is fundamentally

larger than 3-qubit circuit synthesis, QGo-4 has slightly larger

state infidelity when compared with QGo-3. The state infi-

delity of each optimized circuit is less than 10−12. This is

insignificant when compared with the gate error in the NISQ

era. The current gate infidelity on the available NISQ devices

is ranged from 10−1 to 10−6. Thus, the impact of synthesis

distance is negligible.
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Fig. 9. State infidelity due to the synthesis distance. Compared with the
gate error on NISQ devices, the state infidelity due to synthesis distance is
negligible.
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Fig. 10. Running optimized small circuits on IBM’s Athens, a 5-qubit device.
(Lower dTV is better.)

C. Running on Real Hardware

To measure how much improvement our QGo technique can

achieve on the current available NISQ machines, we perform

our experiments on quantum devices. Since our medium-size

and large-size circuits are too deep for the current quantum

devices to generate meaningful results, we choose small-size

circuits for this evaluation. We run the small-size benchmarks

on IBM’s Athens device [40]. We use total variation distance,

dTV , to compare measurement samples of the real device

with those of the ideal simulation. Total variation distance is

commonly used as a metric for QC experiments [7], [8], [28],

[48]. Lower dTV means the samples of the real device are

closer to the ideal distribution. Figure 10 shows the results on

IBM’s Athens, a 5-qubit device; each data point is obtained

from 8192 shots of the circuit execution. We observe that

QGo achieves lower total variation distance for all benchmarks

compared with the baseline optimization, and the distance

results are correlated to the number of CNOT reduction. Even

though the synthesis distance with 4-qubit blocks is larger

than with 3-qubit blocks, QGo-4 can achieve lower dTV due

to more CNOT reduction. The results suggest that our QGo

optimization technique is important in the NISQ era, and is

applicable to the current quantum devices.

D. Running on Noise Simulation

To understand the performance of QGo optimization for

medium circuits, we run the experiments on IBM Qiskit Aer

noise simulation [2] because the medium circuits are too deep

to get meaningful results on the current available real devices.

To validate the trends shown by our simulations, we run
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Fig. 11. Running optimized small circuits on Qiskit noise simulation. (Lower
dTV is better.)

small circuits on both real devices and simulations to see the

correlation between them. Figure 11 shows the results from

noise simulation. Compared with the results on IBM’s Athens

(Figure 10), the dTV improvements are correlated in both

experiments. There is a 98% correlation between our real-

device results and our simulation results on small circuits.

We perform sensitivity analysis by running noise simu-

lations for medium circuits with different gate errors. Fig-

ure 12 shows the noise simulation results. We simulate de-

polarize noise for two-qubit gate noises with the gate error

probability from 0.1% to 2.5%. We can observe that QGo can

reduce more dTV when the gate error is large.

E. Scalability

To demonstrate the scalability of our QGo technique, we

optimize the large-scale (60+ qubits) benchmarks using QGo.

We map the large-scale circuits on a 2D (8 × 8) lattice

of physical qubits. Figure 13 shows the total number of

CNOTs optimized by the baseline compiler and QGo, and

Figure 15 shows the CNOT reduction rate. With large-size

circuits, QGo-3 and QGo-4 achieves 22.8% and 28.9% CNOT

reduction on average. QGo-4 performs better than QGo-3

in terms of CNOT reduction, but it takes longer time to

complete the optimization. Figure 14 shows the compilation

time of large-scale circuit optimization. QGo-3 can complete

the optimization within a few minutes, and QGo-4 can finish

the optimization process within a few hours.

Since the scale is too large to perform noise simulation, we

use an analytical model to estimate the success rate of each

circuit. The success rates in our evaluation are computed by a

worst-case analysis using gate success rates. Multiplying the

gate success rates, we can obtain the estimated success rate for

the whole circuit. Figure 16 shows the results under different

gate error models. Since our QGo-4 has the lowest CNOT

count, it is projected to achieve the highest success rates for

all benchmarks. The success rate improvement is greater when

there is a larger gate error.

F. Discussion

The results show the general applicability of our approach.

Having access to 3-qubit block synthesis already enables good

optimization results on large circuits. In general, larger block

size can achieve more CNOT reduction. Running synthesis

with 5-qubit blocks is possible, but the solving time is much

longer.
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Fig. 15. CNOT reduction rate of large-scale circuits.

QGo allows composability with any mapper available for

a given platform and we have experimented with t|ket〉 com-

piler. Our preliminary sensitivity analysis of circuit quality to

mapping quality indicates there is a direct correlation between

QGo efficacy and mapping quality. The best quality mappings

have highly interconnected components. In our conjecture, the

better mapper provides the higher opportunity of forming large

blocks, thus motivating improvements in both mapping and

synthesis. Our study offers insights for future compiler design.

VI. FUTURE WORK

Even though QGo already achieves successful results in op-

timizing different sizes of circuits, we discuss a few directions

that would further extend the line of this research and improve

the development of quantum computing.

A. Pulse-Level Optimization

The objective of optimization using synthesis is to reduce

the CNOT count. In some cases, it may be desirable to

make approximations to reduce the number of CNOTs at

the expense of how closely the final circuit approximates the

desired unitary. An intuitive way to achieve this is to relax

a synthesis threshold. In order to effectively trade accuracy

for CNOT count, a threshold-controllable synthesis tool is

necessary. Integrating a different synthesis tool or heuristic

that is designed for approximate synthesis may further im-

prove the optimization. Since the device-level control of a

quantum computer is operated via analog pulses, recent pulse

optimization studies aim to generate shorter pulses [17], [18],

[33]–[35], [61]. Pulse optimization can also be integrated into

our QGo technique as a backend optimization. The current

synthesis output is a sequence of quantum gates. To integrate

pulse optimization into this work, we can synthesize the block

into a sequence of pulses.

B. Partial Optimization

Since our approach already partitions a circuit into multiple

blocks, we can simply only perform synthesis on some critical

blocks to reduce the compilation time. Also, we can combine

different sizes of blocks in the optimization according to the

importance of a block.
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Fig. 16. Circuit success rate under different levels of gate errors. (Higher circuit success rate is better.)

C. QGo in Parallel

In this work, we perform the quantum synthesis in serial.

However, since we partition a circuit into a sequence of circuit

blocks, each block is independent for the synthesis process. As

a result, the synthesis of blocks can be executed in parallel.

Running the entire QGo on a supercomputing system can

reduce the overall compilation time significantly.

D. Crosstalk Mitigation

Our optimization tool that can be applied with any other

existing optimization to improve the overall circuit fidelity.

For cross talk, we can apply crosstalk mitigation to address

this issue, and as we reduce the CNOT count, it would be

easier to mitigate crosstalk.

VII. RELATED WORK

Several studies of circuit optimization have been carried

out. Most of the existing techniques focus on optimizing the

qubit mapping and swap insertion to reduce circuit depth. One

common approach is to describe the problem in a mathematical

form, such as integer linear programming, and then find the

optimal solutions by using solvers [9], [37], [49], [51], [70].

This approach only works for small circuits since the time

scaling is exponential. Another approach is to find the optimal

solutions by using dynamic programming [41], [65]. However,

since the solving time grows exponentially, this method only

works for a handful of qubits. Recent studies propose using

heuristic search algorithms to find good solutions to avoid long

execution times [3], [11], [41], [46], [47], [59], [69], [73].

However, these approaches keep the original CNOT count and

only reduce the additional swap count. Our synthesis approach

can reduce both swap count and CNOT count used in the

circuits.

Previous studies have applied synthesis technique to opti-

mize some specific circuits such as classical reversible cir-

cuits [4], [10], [37], [68], a specific gate set [5], or Clifford+T

circuits [55]. [25] proposes architecture-aware synthesis for

phase polynomials. This manner can be applied to circuits con-

taining only CNOT and Rz gates. In our work, our approach

is designed for general circuits. However, since we can easily

change the core synthesis tool, these synthesis approaches

can be integrated in our compiler framework to improve the

optimization for these specific circuits.

Our approach relies on synthesis techniques that are able

to produce extremely short circuits. Otherwise, it is unlikely

that we will be able to see an improvement when resynthesiz-

ing sub-circuits. The KAK decomposition could be used for

resynthesizing 2-qubit blocks [67]. We have seen improvement

when using larger block sizes, so we use the search-based

technique found in [23], which can handle circuits as large as

4 qubits. For scaling further, we are considering the approach

found in [72], which produces slightly longer circuits, but

offers a better scaling runtime when compared to the search-

based approach.

Recent studies such as [13] propose the removal of the

constraint of unitary operations by adding ancilla qubits. Ad-

ditionally, [15] uses ancillas and an approximation technique

to produce very short circuits. To achieve greater CNOT

reduction, integrating ancillas and approximate synthesis into

our QGo is a promising research direction.

VIII. CONCLUSION

In the NISQ era, since two-qubit gates are much noisier

than single-qubit gates, it is essential to minimize their count.

Synthesis is a powerful tool for circuit optimization to pro-

duce shorter circuits to improve the overall circuit fidelity.

However, synthesis is only applicable for small circuits. In

this work, we present an automated compilation framework,

QGo. It partitions the circuit into blocks, and re-generates

each optimized block by using synthesis, and re-composes

the circuit by stitching all the blocks together. Our approach

to circuit optimization offers a role for quantum synthesis

algorithms in large-scale quantum computing scenarios. We

evaluate fidelity improvements using 3 metrics for 3 scaling

regimes: small-size circuits using fidelity on real devices,

medium-size circuits using fidelity using simulations with

noise, and large-size circuits using CNOT reduction measured

statically by our compiler. The results show that our technique

has practical value on current devices and is reliable in the

NISQ era. We also discuss using approximate synthesis to

further trade for circuit depth and pulse-level optimization.

Circuit fidelity improvement is critical. Our approach provides

a next-level optimization that is robust for direct incorporation

in existing compiler tools. Our study of circuit optimization

using synthesis offers insights for future compiler design.
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