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Abstract 

Voltage controlled magnetic anisotropy (VCMA) is a low-energy alternative to manipulate the 

ferromagnetic state, which has been recently considered also in antiferromagnets (AFMs). Here, we 

theoretically demonstrate that VCMA can be used to excite linear and parametric resonant modes in 

easy-axis AFMs with perpendicular anisotropy, thus opening the way for an efficient electrical 

control of the Néel vector, and for detection of high-frequency dynamics. Our work leads to two key 

results: (i) VCMA parametric pumping experiences the so-called “exchange enhancement” of the 

coupling efficiency and, thus, is 1-2 orders of magnitude more efficient than microwave magnetic 

fields or spin-orbit-torques, and (ii) it also allows for zero-field parametric resonance, which cannot 

be achieved by other parametric pumping mechanisms in AFMs with out-of-plane easy axis. 

Therefore, we demonstrate that the VCMA parametric pumping is the most promising method for 

coherent excitation and manipulation of AFM order in perpendicular easy-axis AFMs. 
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I. INTRODUCTION 

Parametric resonance, discovered first in mechanical systems, occurs in various harmonic 

oscillators in nature, when at least one of their parameters varies periodically in time with an 

amplitude overcoming a threshold value. In Magnetism, the parametric resonance and other 

parametric phenomena are very rich, including excitation and amplification of spin waves (SWs), 

wave front reversal and reversal of momentum relaxation, magnetic soliton compression, and 

condensation of magnons ([1–5] and references therein). Parametric pumping is usually achieved by 

external microwave magnetic fields[1,6]. However, in ferromagnets, more energetically-efficient 

methods involve parametric pumping created by acoustic waves[7,8] or by microwave electric fields 

via the voltage-controlled magnetic anisotropy (VCMA)[9]. The latter is especially efficient at 

nanoscale size due to vanishing Ohmic losses[10], and offers a uniquely efficient mechanism of 

parametric coupling to short (tens of nanometers wavelength) exchange SWs[11].  

VCMA has been extensively studied in ferromagnetic metal/dielectric interfaces, typically 

Fe/MgO or CoFeB/MgO [11–15]. Recently, a very large linear voltage control coefficient 0.3   

pJ/Vm [16] has been achieved, which can be increased to 1.2  pJ/Vm [17] in interfaces where ion 

migration controls the anisotropy. VCMA-driven magnetization dynamics have shown beneficial 

effects in different applications, such as memory [18,19], magnonic devices [20,21], low-energy 

motion of skyrmions [22,23], as well as ferromagnetic resonance excitation [14]. 

Lately, the VCMA effect has been theoretically predicted in antiferromagnets (AFMs) and 

proposed as an efficient mechanism for the excitation of AFM dynamics[24–28]. In particular, 

magnetoelectric coefficients as large as 1.5   pJ/Vm have been predicted in MgO-capped MnPt 

films[28]. In addition, indirect evidence of VCMA in AFM thin films was experimentally found in 

Ref. [29]. AFMs are more abundant in nature than ferromagnets. Recently, they have been receiving 

a renewed interest thanks to their outstanding properties such as low susceptibility, lack of stray fields, 

and THz dynamics [30,31]. However, manipulation of AFM order is a more complex task than in 

ferromagnets due to the high exchange interaction, making it hard to manipulate them by magnetic 

fields. Recent experiments have demonstrated that the Néel vector dynamics can be driven by 

electrical currents via spin-orbit torque (SOT) effects [32–38]. This is especially important for the 

implementation of AFMs in hybrid CMOS/spintronic circuits. VCMA constitutes another viable 

alternative for electrically driving AFM dynamics, which promises to be more energy-efficient due 

to reduced Ohmic losses[14,22]. 

In this work, we demonstrate that VCMA can be successfully applied for the excitation of 

AFM resonance modes, both in the linear and parametric resonance regimes. Our results point out 

that parametric resonance in AFMs is very efficient for the excitation of large-amplitude precession 
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of the Néel vector. Although parametric resonance in AFMs driven by microwave magnetic fields 

has been known for fifty years [39–42], here we show that the mechanism of parametric coupling of 

VCMA drive to AFM resonance modes is completely different from the one of microwave magnetic 

field. Therefore, VCMA parametric pumping is not only 1-2 orders of magnitude more efficient than 

microwave magnetic field pumping, but also allows for parametric excitation in zero bias magnetic 

field, which is impossible to achieve with magnetic field pumping. Our results open the possibility of 

realization of power-efficient high frequency AFM-based devices, such as tunable electrical detectors 

[43,44]. 

The paper is organized as follows. In Sec. II, theoretical analysis of VCMA-driven AFM 

dynamics is performed. Section III presents results of micromagnetic simulations of AFM dynamics 

under VCMA drive and comparison with theoretical prediction. In Sec. IV, we consider the efficiency 

of VCMA drive by comparing it to alternative excitation mechanisms, i.e. microwave magnetic field, 

and SOT. Finally, conclusions are made in Sec. V. 

 

II. THEORY 

A. Model and basic equations 

We study the magnetization dynamics of a thin AFM nanoelement with out-of-plane (OOP) 

uniaxial magnetic anisotropy, as AFMs with OOP anisotropy were predicted to demonstrate VCMA. 

In both analytical calculations and micromagnetic simulations, we use a continuous two-sublattice 

model of an AFM, which rigorously applies for many AFMs, and is one of the most comprehensive 

model of AFM dynamics[45]. In particular, this model has been already used to describe AFM-based 

THz oscillators [46], detectors [44], and soliton dynamics [47–49]. The model describes the 

antiferromagnetic order by considering two sublattices characterized by a normalized magnetization 

vectors /jj sM=m M , j = 1,2 ( sM  is the saturation magnetization of the two sublattices 

1 2s s sM M M= = ), which dynamics is governed by two coupled Landau-Lifshitz-Gilbert (LLG) 

equations[46,47]  

 0 eff , j
j j

Gj j tt
 


=


 − +

 
B

m m
mm ,                                         (1) 

where 0  is the gyromagnetic ratio, G  is the Gilbert damping parameter, and eff , jB  is the effective 

field acting on j-th sublattice, which consists of the exchange (homogeneous intersublattice AFM 

interaction and nonuniform intrasublattice exchange), uniaxial perpendicular anisotropy, VCMA, 

magneto-dipolar dipB , as well as external field contributions.  
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Here, we are concentrating on the VCMA contribution. When an electric field Eac is applied 

to the AFM surface - using a gate separated by a dielectric layer, see Sec. III below - at a microwave 

frequency fac, the perpendicular magnetic anisotropy is modulated with the same frequency. The 

resulting effective anisotropy field acting on j-th sublattice, thus, becomes  

( ) ( )a,0 VCMA ac VC A za M z, sin 2j jB B f t  = +  +  B m e e ,                        (2) 

where a,0 ,02 /u sB K M= , Ku,0 is the uniaxial anisotropy constant at zero applied voltage, 

( )VCMA ac AFM2 / sB E t M =  is the anisotropy field modulation due to VCMA, with   being the 

magnetoelectric coefficient (VCMA efficiency), and tAFM being the AFM film thickness, and VCMA  

is the phase of the applied microwave voltage signal. It is worth noting that the VCMA-related 

effective field is proportional both to the external voltage, and to the OOP (z) component of the 

sublattice magnetization (in general, time-dependent). This aspect makes the effect of the VCMA 

completely different from the microwave magnetic field effect, as shown in the following. 

 

B. Coupling of VCMA drive to AFM eigenmodes 

The expression of the VCMA-related effective field in Eq. (2) is used for the analysis of the 

VCMA action on AFM dynamic modes. Here, we restrict the analysis to the case of spatially-uniform 

AFM dynamics, i.e. we consider the case of AFM resonance, which is typically achieved in 

submicron thin AFM elements, as confirmed below by micromagnetic simulations. The VCMA 

interaction with propagating SWs or spatially-nonuniform AFM modes can be carried out within the 

same formalism.  

We assume that the AFM can be biased by an in-plane magnetic field Bx, applied, for 

definiteness, in the x direction. Under such a field, the static magnetization ,0j j=μ m  of the 

sublattices tilts, so that 1 sin ,0,cosμ , 2 sin ,0, cosμ , where 

a,0 exsin / 2xB B B . Here, Bex is the effective fields of the homogeneous AFM exchange, which 

is the strongest effective field in an AFM, dip,ex aB B B . Excitations of an AFM with uniaxial 

anisotropy are well-known. The excitation spectrum consists of 2 linear modes, lower frequency 

Mode1 and higher frequency Mode 2. Their frequencies, when accounting for the demagnetization 

fields of thin AFM nanoelement, are[1,4,50]: 

( )
2

2 H a
(1) a a ex

a ex

2
2

 
   

 
= + −

+
                                                 (3) 

( )2 2 ex a M
(2) a a ex H

a ex

2 2
2

2
  

    
 

− +
= + +

+
                                        (4) 
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where a 0 aB = , ex 0 exB = , H 0 xB = , M 0 0 sM  = . At low and moderate fields ( ex2xB B

), the frequencies of linear modes can be approximated to [1,51]: 
2

2 2 2H a
(1) a ex (2) a ex H

ex

2 ; 2
2
 

      


 −  +                                       (5) 

The frequency of Mode 1 is slightly dependent (decreasing) on the field, while the frequency of Mode 

2 increases with xB  (examples are shown below in Sec. III). At zero field, the modes are, naturally, 

degenerated. Comparing to ferromagnets, where the linear mode has a frequency of the order of 

FM a~   (in an unbiased case), the frequencies of the AFM modes are ex a2 / 1   times larger, 

which constitutes the so-called effect of “exchange enhancement” of AFM dynamic characteristics, 

caused by huge effective fields of homogeneous AFM exchange[45,51]. Many, but not all AFM 

characteristics experiences this enhancement. 

The structure of the AFM modes are fully characterized by a net dynamic magnetization 

( )( ) 1,( ) 2,( ) / 2  = +m m m , and a dynamic Neel vector ( )( ) 1,( ) 2,( ) / 2  = −l m m , where ν = 1,2 is the 

mode index (in order not to mix mode index and sublattice index, here and in the following the mode 

index is in the brackets). The net magnetic moment and dynamic AFM vector of the lower mode 

(Mode 1) are: 

 a ex a1 1
1 1

0cos
1 10 , cos 2 / ,

0 sin

i
A A

m l   (6) 

where the coefficient a1 14 /A  is chosen so that the norm of spin-wave modes 

*
,( ) ,( ) 1j j jj

i m μ m [50]. This mode has only in-plane net magnetization mx, and, thus, can 

linearly couple to in-plane microwave magnetic field bx only, while the dynamic Neel vector is 

characterized by nonzero y and z components (the latter, however, is present only under a nonzero 

bias field and is, typically, weak). The AFM vector of the upper mode, in contrast, is x-polarized, 

while the net magnetization has y and z components: 

 a ex2 2 2
2 2

0 cos
1 1/ 2 , 0 ,

0sin

i
A A

m l   (7) 

with a ex2 24 / 2A . 

The coupling of the VCMA to the AFM eigenmodes is convenient to consider within the 

framework of SW perturbation theory [50]. Using the expression for the VCMA effective field in Eq. 
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(1), one finds, in a general case, that the linear coupling to the VCMA is proportional to the OOP 

dynamic component of the AFM vector lz. Therefore, there is no coupling to the Mode 2, and the 

coupling to the Mode 1 appears only at a nonzero bias field and is proportional to sin . The fact that 

the linear coupling is defined by lz and not by mz - as the coupling with the external field -, underlines 

a crucial difference in the action of the VCMA on the AFM dynamics compared to the magnetic field 

action, in which it is also the key element to excite parametric dynamics (see below). Indeed, the 

linear components (at the excitation frequency) of the VCMA effective field are opposite in the two 

sublattices eff , VCMA ,j z j zBB e  because of the opposite orientations of the OOP static 

magnetization components, hence it could excite modes with anti-phase OOP dynamic magnetization. 

In contrast, an external magnetic field, obviously, acts in phase on both sublattices.  

 The effective driving field acting on the Mode 1 is equal to  

 VCMA

a1

sin cos
2 /

B
b ,  (8) 

and corresponding excited mode amplitude is  

 1
ac 1 1

bc
i

, (9) 

which is related with the amplitude of Neel vector oscillations as 
2

max 2 1 / 4c cl l . 

In Eq. (9), Γ is the damping rate, which is given by ( ) ( ) ( )G  
   =  with  

 
22 2 2

1 2
1 2

1 2

2
,

2 2 2
a a ex

a a ex

.  (10) 

being the coefficients dependent on the precession ellipticity of the modes[50]. In the range of small 

bias fields ex a1 2 / 2 , we can approximate the damping rate to ex1 2 G . It is 

clear that the damping rate also exhibits the effect of exchange enhancement, leading to wide AFM 

resonance curves. 

The enhanced damping rate results in a weak efficiency of the linear excitation of the AFM 

modes. The coupling efficiency in Eq. (8) shows no exchange enhancement, and it is also proportional 

to small values of sin , and 4
a ex a1/ 1 / 2 / . Therefore, the amplitude of the excited 

mode, given by the coupling efficiency and damping, is small. We can conclude that the VCMA is a 

good mechanism for the linear excitation of AFM resonance modes. Nevertheless, in the case of 

sufficient bias magnetic field, the VCMA could be the most efficient mechanism for the excitation of 

the Mode 1. This aspect is promising from an experimental point of view because the VCMA can 
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provide a larger dynamical contribution to the effective field and low parasitic losses simultaneously. 

The same problem of small excitation rate stands true for other linear excitation mechanisms, 

especially for microwave field, as discussed in Sec. IV. 

Now, we consider the parametric coupling of the VCMA to the AFM modes. The calculation 

of the parametric interaction efficiency due to the VCMA pumping is done within the same SW 

perturbation formalism[50]. In a general case, we obtain 

 

2 2 2 2ex
1

a1

2
(2) 2 2

2 2
a ex2

2
cos sin cos sin ,

1 cos sin
( 2 )

iV
A

iV
A

. (11)  

The parametric coupling coefficients V are defined as usual, so that the parametric term in the 

equation of motion of the mode amplitude is derived as 
( ) ( ) ( )

*/ ... pi t
pdc dt V b c e 

  

−
+ = , where bp = 

ΔBVCMA is the pumping amplitude, and ωp is the VCMA pumping frequency. In the range of small 

bias fields, expressions (11) are reduced to: 
3

ex ex
1 2

a a

2 2cos cos 2, ,
4 4

V i V i                                 (12) 

These expressions clearly demonstrate that the parametric coupling to VCMA pumping in small bias 

fields also exhibit the exchange enhancement, as it follows from the multiplier ex a2 / . This 

exchange enhancement is related to strong ellipticity of the magnetization precession, which creates 

a large longitudinal component at the double oscillation frequency, responsible for the parametric 

coupling.  

The exchange enhancement of the parametric coupling to VCMA is a key result of our 

theoretical calculations. This enhancement retains the parametric excitation mechanism efficient 

despite the exchange enhanced damping rates. Indeed, the threshold of the parametric excitation is 

determined by the ratio bth = V/Γ, and the exchange enhancement of the coupling efficiency 

“compensates” the one of the damping rate, resulting in accessible values of the excitation threshold. 

Below, by means of micromagnetic simulations, we also show that, above the threshold, the 

amplitudes of parametrically-excited modes grows fast, and can reach large values up to c ~ 1.  

With the increase of the bias field, the efficiency of ellipticity-caused parametric coupling 

decreases, as it is usual for the so-called “tilted” parametric pumping[1,2], and vanishes at / 2  

(this contribution is described by the first term in Eq. (11)). Another contribution to the parametric 

coupling efficiency ( 2sin   term in Eq. (11)) is specific for anisotropy-driven parametric 
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pumping[8,20], and therefore for VCMA, and it increases with the static magnetization tilt. However, 

this contribution does not exhibit the exchange enhancement, and the VCMA driven parametric 

excitation becomes much less efficient at / 2 . 

III. MICROMAGNETIC SIMULATIONS 

A. Micromagnetic model 

In order to verify our theoretical predictions, we performed systematic micromagnetic 

simulations of the AFM dynamics using an in-house numerical framework[46,47]. In addition, 

micromagnetic simulations allow us to study overthreshold dynamics, find stationary amplitudes of 

parametrically excited modes, and compare excitation efficiency by VCMA with other possible 

driving forces. Last but not least aim is to validate the above used approximation of spatially-uniform 

dynamics, and excitation of linear eigenmodes of the AFM sample. Indeed, AFMs are characterized 

by nonlinear dynamics even in small samples, as proved by excitations of magnetic solitons and 

domain walls [45,51]. Therefore, it is not straightforward that the parametric excitation gives rise to 

uniform AFM modes. 

The magnetization dynamics of an AFM nanoelement with OOP uniaxial magnetic 

anisotropy, which can be also biased by an in-plane (IP) magnetic field Bx, is studied, and different 

driving forces – magnetic fields, SOT [32,34,35,52], as well as VCMA – are considered and 

compared. A sketch of the studied structure is shown in Fig. 1. It is a 5-terminal device where a 

squared 200x200 nm2 AFM voltage gate [53,54] is placed on top of a Heavy Metal (HM) cross bar. 

The four terminals of the cross bar allow for injecting an ac electrical current 

( ) ( )HM HM ac HMsin 2j t J f t = +  into the Platinum HM, thus generating the SOT with spin-polarization 

py (px) along the y-direction (x-direction) when the current flows between the terminals A-A’ (B-B’). 

The fifth terminal is used to apply an ac voltage ( )ac VCMA( ) sin 2V t V f t = +  (Fig. 1(b)), which 

modulates the OOP anisotropy ( )u ,0 u ac VCMA( ) sin 2uK t K K f t = +  +  of the AFM because of the VCMA 

effect. Also, a microwave magnetic field ( )tb  with different polarizations could be applied to the 

structure. The proposed structure can be used for experimental investigation of the VCMA and SOT-

driven AFM dynamics in the same sample, as well as charting an experimentally-viable pathway 

towards practical implementation of the discussed phenomena. 
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FIG.1 A sketch of the studied structure, (a) -the top view of the AFM/Pt cross bar bilayer, (b) - the x-z view of the AFM 

voltage gate on top of the Pt cross bar.  

 
The micromagnetic simulations are based on the above mentioned two-sublattice continuous 

model of AFM in Eq. (1). The exchange effective field acting on the 1st sublattice include three terms: 

 2 20
1,ex 2

11 12
1 2 2

42
,

s ss

A
Ma

A A
M M

= + + B m m m                           (13) 

and the expression for B2,ex is achieved by the index permutation 1 2 . Here, a  is the lattice 

constant, 11 0A   and 22 0A   are the inhomogeneous intra-lattice contributions (assumed to be equal, 

A11 = A22), 12 0A   is the inhomogeneous inter-sublattice contribution, which is neglected in this study, 

and 0 0A  , is the homogeneous inter-sublattice contribution to the exchange energy. The effect of 

SOT from the spin-Hall effect (SHE) is described by addition of the following torque [35] to Eq. (1): 

( )
( )i DLT HM

j J j j
AFM

j t
d

t
 − 

=   
 

Τ m m p                                       (14) 

with Jd  being the torque coefficient given by 
2

B
J

S

gd
eM


= , where g is the Landè factor, B  is the 

Bohr magneton, and e is the electron charge. The coefficient i DLT −
 takes into account the efficiency 

of the charge/spin current conversion of the current ( ) ( )HM HM ac HMsin 2j t J f t = +  flowing in the 

HM. The vector p is the direction of the spin-polarization. The physical parameters in the simulations 

are similar to previous studies on metallic AFMs, such as PtMn, FeMn and FeRh, namely s 566M =  

kA/m, 11 22 5.0A A= =  pJ/m, 0 0.248A = −  pJ/m, u 28.3K =  kJ/m3, a=0.5 nm, 0.15i DLT − = , and 

0.02 =  [35]. The thickness of AFM layer is AFM 1 nmt . The cell size in the simulation was set 

to 4 x 4 x 1 nm3. 

  

B. VCMA-driven AFM dynamics  

First, we performed characterization of linear eigenmodes by exciting them with different 

drives (details on which mode is excited by microwave field or SOT with a given polarization are 
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discussed in Sec. IV). The frequencies of the simulated linear modes (which, obviously, does not 

depend on the type of linear drive) coincide with analytical calculations – in the range of small and 

moderate bias fields, the frequency of Mode 1 is weakly field-dependent, while the frequency of 

Mode 2 increases with the field (Fig. 2). In the following, if other is not stated, the external filed is 

fixed to Bx = 1800 mT in order to easily distinguish between the modes. 

 

 
FIG.2 Resonance frequency of the Mode 1 and 2 versus external bias field. The solid lines represent the analytical results 

from Eqs. (3-4), the symbols are related to the micromagnetic results 
 

Now, we focus on the VCMA-driven excitation of the AFM resonance modes. The simulated 

resonance curves under the VCMA drive of different amplitude are shown in Fig. 3. At small 

amplitudes of VCMA drive (BVCMA < 45 mT), the resonance curve exhibits a broad resonance peak 

at the frequency of 33 GHz (Fig. 3(a)), which is the Mode 1 eigenfrequency. In contrast, we find no 

linear response of the Mode 2 to the VCMA drive. This behaviour is in full accordance with our 

theoretical calculations, which shows that the linear VCMA couples only to the Mode 1. The 

amplitude of the linearly-excited Mode 1 nicely follows the calculated linear dependence in Eq. (9). 

However, even applying a large VCMA drive of ΔBVCMA = 80 mT leads to very small oscillations 

amplitude of the linearly-excited mode 0.08yl  . 

At larger VCMA drive amplitudes, BVCMA ≥ 45 mT, the simulations show the appearance of 

a second peak, which is located at about the double frequency of Mode 1. The amplitude of this peak 

abruptly increases with VCMA beyond a threshold value (see Figs. 3(a) – (c)). These characteristics 

are a clear evidence of the parametric resonance. Importantly, the parametrically-driven dynamics of 

the AFM nanoelement remains almost perfectly spatially-uniform (in all the studied range of VCMA 

drives, as well as at different bias magnetic fields,), thus validating our theoretical approach.  

The theoretically-calculated parametric excitation threshold for Bx = 1800 mT is 

VCMA,th 48.6 mTB = , which agrees well with the simulation result VCMA,th 48 mTB  . If we consider 
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the predicted VCMA magnetoelectric coefficient of 1.5   pJ/Vm [28], and an MgO thickness of 2 

nm in the structure, the required voltage to achieve the parametric resonance is about 17 mV, which 

should be not hard to access in experiments and utilize for various applications. At higher excitation 

frequency and higher VCMA drive (central frequency 124.4 GHz and the threshold of 96.5 mT), we 

also observe parametric resonance of the Mode 2 in the simulations (not shown), which also correlates 

well with theoretical predictions.  

 

 
FIG. 3 (a, b) Resonant response of the Néel vector y-component for different values of the VCMA drive at Bx = 1800 mT; 

inset in (b) shows theoretical shape of the parametric resonance peak (Eq. (15)) – typically, the peak has the green-curve-

like shape, solid blue curve can be accessed in specific cases (see text). (c) Amplitude of the Néel vector oscillations 

excited by linear (33 GHz) and parametric (65 GHz) VCMA drive. (d). Parametric excitation of the Néel vector x-

component when the VCMA drive of 50 mT is applied to an unbiased AFM.  

 

Just above the parametric excitation threshold, the resonance peak is narrow, especially in 

comparison with linear resonance (Fig. 3(a)). With the increase of the parametric pumping, the peak 

becomes wider and acquires a characteristic antisymmetric “triangle-like” shape (Fig. 3(b)). To 

describe the peak shape as well as finding the amplitudes of the parametrically-excited modes, we 

need to consider nonlinear effects, which limit the growth of the parametric instability. In a confined 

geometry with discrete SW spectrum, typically, the most important nonlinear effect is the nonlinear 
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frequency shift of the ν-th mode frequency 
( ) ( ) ( ) ( )

2

,0 T c
   

 = + , accounting for which, the 

amplitude c(ν) of the parametrically-excited mode is calculated as[9]: 

( )
( )

( ) ( )

( )

2
2

2 VCMAV B
c

T T

 



 

  − 


= + ,                                            (15) 

where
( )p ,02


   = − is the detuning from the exact parametric resonance. Although the 

calculation of the nonlinear frequency shift is a complex task, one can use the following trick in the 

case of the low-frequency mode. The relation between both static and dynamic magnetization 

components of the sublattices is the same (mx,1 = mx,2, my,1 = -my,2, mz,1 = -mz,2), which allows for 

reducing the two coupled LLG equations for the sublattices into one effective equation, and apply 

ready-to-use equations based on the Hamiltonian formalism [55,56]. In this way, we find 

1 / 2exT  (for ex2xB B ). In fact, the excited mode amplitude given by Eq. (15) not always 

can be reached. In the case of low thermal noise, the SW mode is excited within the frequency range 

( ) ( )

2
2

th VCMAV B
 

    =  − , in which small-amplitude SWs become unstable due to the 

parametric pumping. In this case, the parametric resonance curve has a characteristic “triangular” 

shape (see green curve in the inset of Fig. 3(b)) with the maximum at the left (right) edge for negative 

(positive) nonlinear frequency shift equal to 
( ) ( ) ( ) ( )

2 2
2

VCMA,max 2 /c V B T
   

=  − . This result 

reproduces well the micromagnetic outcomes (Fig. 3(c)). Some discrepancy at large VCMA drive is 

common and related with the utilization of Taylor expansion in the Hamiltonian formalism, which 

becomes less accurate at large precession amplitudes (typically, for 0.5yl ). However, if thermal 

fluctuations are large (overcoming the dashed curve in the inset of Fig. 3(b)), or the excitation 

frequency is continuously swept from the right, one can access the part of the curve beyond th− . 

The maximal frequency detuning and peak amplitude in this more complex case are determined by 

other nonlinear mechanisms (nonlinearity of parametric interaction efficiency or/and nonlinearity of 

damping), consideration of which lies beyond the scope of this work. 

 

IV. COMPARISON WITH ALTERNATIVE DRIVES 

Above, we found that, by means of VCMA parametric pumping, it is possible to excite large-

amplitude SW modes in an AFM nanoelement. Let us briefly consider alternative mechanism and the 

efficiency of spin wave excitation by their means, starting in this subsection from the linear excitation. 
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The oldest and well-established mechanism involves the use of microwave magnetic fields. 

Depending on the polarization of the magnetic field, it can excite either Mode1 or Mode 2, or both 

modes, which is determined by the net dynamic magnetization of the modes ( )
m . Thus, according to 

Eqs. (6) and (7), the microwave field bx excites only Mode 1, while fields by and bz excite Mode 2 

(the last one only in the presence of static bias field Bx), in full accordance with micromagnetic data. 

The coupling efficiency, however, shows the same problem as the linear coupling with VCMA drive 

– they are inversely proportional to 4
ex a2 /   and, accounting for the enhanced damping, the 

excited SW amplitudes at the experimentally-achievable microwave drive are very low. The 

exception is OOP microwave field. The coupling to it exhibits a “partial exchange enhancement” 

4
ex a~ 2 /b   , being, however, proportional to another weak value sin . Thus, microwave 

magnetic field is not a choice for the linear excitation of OOP easy-axis AFM independently of the 

polarization. 

Much recent approach to excite AFM dynamics is the application of SOT, e.g., by means of SHE.  

In the simulations, Mode 1 (2) was observed when a SOT with a spin-polarization parallel 

(perpendicular) to the external field is applied and the dynamic AFM vector has y (x)-component of 

the Néel vector ly (x) at the excitation frequency. Exemplary resonance curves of SOT-driven AFM 

dynamics are shown in the inset of Fig. 4, additionally underlining large width of the resonance curves 

in the linear excitation regime. The mode selectivity is also easy to find theoretically considering the 

mode structure and SOT effective field.  

 Figure 4 shows the Néel vector oscillation amplitude excited by SOT. Here, the ac electrical 

current is chosen large but achievable in experiment – it is sufficiently small to prevent non-magnetic 

phenomena, such as electromigration [38], but is not far from this limit. The amplitude of Mode 1 is 

larger than the one of Mode 2 and is weakly dependent on the field in the studied range. Contrarily, 

the amplitude of Mode 2 decreases with the field. Overall, the maximum achievable oscillation 

amplitude is reasonable lmax ~ 0.075, and significantly larger than ones achievable with microwave 

magnetic field excitation. Nevertheless, such oscillation level can be insufficient for some 

applications, e.g., for application of these devices as detectors, considering that the magnetization 

precession is at not large amplitude and the electrical readout mechanisms for AFM order, developed 

so far, are not very efficient. Also, large precession amplitudes are indispensable for devices based 

on nonlinear SW interactions.  
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FIG.4 Micromagnetic results for the amplitude of the Mode 1 and 2 (ly or lx, respectively) as a function of external bias 

field when a SOT with py or px is applied. Inset shows exemplary resonance curves at Bx = 1800 mT. Driving current 

density in HM layer is JHM=1.0 MA/cm2.  

 

We have already mentioned above that the coupling efficiency of SOT to AFM modes 

experiences “partial exchange enhancement”, being proportional to 4
ex a~ 2 /b   . It is much better 

than the microwave field excitation, but not enough to fully compensate the exchange enhancement 

of the damping. Thus, SOT in AFM is less efficient for linear SW excitation than in ferromagnets. In 

a general case, field-like SOT can be also present in AFMs, but it does not lead to any significant 

differences in the excitation efficiency, as is discussed in the Appendix A.  

Now, let us look on the parametric excitation. First, it is worth noting that microwave field-driven 

parametric resonance in AFMs is generally well-known. However, almost all the previous works 

considered easy-plane AFMs [40–42], which demonstrate good parametric coupling with magnetic 

field pumping. Easy-axis AFMs, considered in this work, show a completely different behavior. The 

parametric coupling with OOP magnetic field bz is identically zero since it affects the sublattices with 

opposite phases. The parametric resonance is possible only in a biased state (Bx >0) under “parallel 

pumping” bp=bxex. The efficiency of the parametric coupling to this pumping is easy to calculate 

within the same approach, as for VCMA, which yields  

sin

2
V i ,                        (16)  

where ellipticity-related coefficient  is given by Eq. (10). Although this coupling efficiency also 

demonstrates exchange enhancement ( ex a~ 2 / ), it is also proportional to sin , and, 

consequently, at low and moderate bias fields, is small. In particular, it is much smaller than the 

parametric coupling for the VCMA pumping, as shown in Fig. 5. In addition, this figure clearly shows 

that the VCMA-driven parametric excitation is achievable in zero bias magnetic field, as also 
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confirmed by the micromagnetic simulations (see Fig. 3(d)). This is important both from a 

fundamental and practical point of view, since this behavior cannot be obtained by any other here-

studied means, and underlines one more time the crucial difference between the VCMA action on 

AFM materials compared to the field action.  

 

 
FIG. 5 Parametric interaction efficiency of the VCMA pumping and magnetic field pumping with both AFM resonance 

modes. 

 

 Finally, let us consider the possibility of parametric resonance excitation by SOT. The 

effective field of SOT is given by 

( ) ( )( ) ( )( ) ( )* *
SOT, SOT SOT , ,j j jj jb b c c  

 =  =  +  + 
 

b m p m p m p μ p . Within the framework of 

perturbation theory[50], the coefficients, which describe parametric coupling, are ( )
b


 for the part of 

perturbation field, linear in *c , and ,S   in calculation of which only the static part of perturbation 

field is accounted for (see Eqs. (2.4-2.5) in[50]). Both of them are identically zero independently of 

the spin current polarization, since ( ) ( ) ( )( )* *
, ,~ 0jj jj

b
  

   m m p  and 

( ) ( ) ( ), ~ 0j j jj
S

 
   μ μ p . Thus, degenerate parametric process cannot be driven by SOT from 

SHE. Nondegenerate process (splitting of pumping into 2 different modes, ( ) ( )1 2P  → + ) is also 

impossible – its efficiency is given by ( ) ( )( )* *
, 1 , 2 0jj jj
   m m p  and one can easily check that 

contributions from different sublattices compensate each other. 

 To summarize, we put all the considered cases in Table I, that shows the correspondence 

between drive and excited AFM mode, as well as how the coupling relates to the exchange 

enhancement rate ex a2 /  = . One can see that, among all the considered mechanisms, SOT is 

the most suitable for linear excitation of AFM eigenmodes. The most efficient mechanism is, 
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however, the VCMA-driven parametric resonance, as it is the only mechanism exhibiting a “full 

exchange enhancement” ex a~ 2 /V    both for unbiased and weakly biased AFMs. It is worth 

noting that the exchange enhancement rate is, indeed, large and is of a principal importance for the 

AFM dynamics. For the studied AFM, this ratio is ex a2 / 11.84  = , and could reach even higher 

values for other AFMs with stronger homogeneous AFM exchange interaction. In addition to high 

“magnetic efficiency”, the VCMA drive has a perfect electric efficiency in terms of low Joule heating 

losses and other parasitic losses. Overall, the VCMA parametric pumping results to be the most 

promising method for coherent excitation and manipulation of AFM order in easy-axis AFMs with 

OOP anisotropy. 

 

Drive Type 

Coupling efficiency 

Linear coupling, b  
Parametric 
coupling, V 

Mode 1 Mode 2 Both modes 
SOT with spin-polarization perpendicular to Bx 0 ~   0 

SOT with spin-polarization parallel to Bx ~   0 0 

Microwave field bx  ~ 1/   0 ~ sin   

Microwave field by 0 ~ 1/   0 

Microwave field bz 0 ~ sin   0 

VCMA ~ sin /   0 ~    
TABLE I. Summary of the excited modes of an AFM with OOP easy axis for different excitation sources. The order of 

the coupling efficiency is also indicated, where ex a2 / 1  =  is the “exchange enhancement ratio”. The 

proportionality to sin  underlines that the excitation mechanism can only work for an AFM biased by an external 

magnetic field. 
 

V. CONCLUSIONS 

In summary, we have analyzed, by means of micromagnetic simulations and analytical theory, 

the excitation of resonant modes in a uniaxial perpendicular AFM comparing different excitation 

source: magnetic fields, SOT, and VCMA. The linear excitation can be achieved by all the sources, 

where the particular excited mode depends on combination of field/SOT polarization, and bias 

magnetic field. However, amplitudes of SW modes, which could be reached in an experiment, are not 

large and does not exceed li ~ 0.05-0.1, because of the exchange enhancement of the damping rate, 

which cannot be completely balanced by any linear drive source. 

In contrast, VCMA parametric pumping demonstrates exchange enhancement of the coupling 

rate, allowing, thus, for the excitation of SW modes with unprecedentedly large precession amplitude. 

The parametric resonance could in principle be excited by microwave magnetic fields, however, the 
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parametric interaction efficiency for the field pumping is much lower than the one for VCMA 

pumping. In addition, the VCMA advantageously allows for parametric excitation even at zero 

magnetic field.  

Compared to SOT, which can only excite linear modes, the VCMA stands as an unique electrical 

pumping source for efficient excitation of large-amplitude coherent dynamics in easy-axis AFMs. 

This is a key and promising result for AFMs device applications, which should not be based on linear 

modes but on parametric excitation.  
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APPENDIX A: EFFECT OF THE FIELD-LIKE TORQUE 

We simulated the effect of the SO-field-like torque (FLT) FLTB . We performed systematic 

micromagnetic simulations to study how FLTB  affects the Néel vector dynamics acting simultaneously 

with the damping-like torque-related field (DLT) DLT 0 0 AFM2 j i DLT HMB d j t t , where 

2
B

J
S

gd
eM


= , with g being the Landè factor, B  the Bohr magneton, e the electron charge, and SM  

the saturation magnetization. 0  is the vacuum permeability, i DLT −  takes into account the efficiency 

of the charge/spin current conversion of the current HMj t  flowing in the heavy metal, 0  is the 

gyromagnetic ratio, and AFMt  is the AFM thickness.  

In Fig. 6, we  summarize the results (the time evolution of the spatially-averaged Néel vector 

components) achieved at the resonance frequency, where the larger effect is observed, for spin-

polarization px and py and three different bias fields Bx. We consider four values of the ratio 
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FLT DLTB B   respectively equal to 0.0, 0.2, 0.4, and 0.6 (which we also refer to as FLT0.0, FLT0.2, 

FLT0.4, and FLT0.6). The FLT is considered along the x- (y-) direction according to the direction of 

the spin-polarization py (px), and the two torques are perpendicular in the sample plane. 

 

 
FIG. 6 Time evolution of the spatially-averaged Néel vector components for four values of the FLT DLTB B  ratio equal to 

0.0, 0.2, 0.4, and 0.6 at the corresponding resonant frequency. (a) – (c) x-component and (d) – (f) y-component as a 

function of Bx=500, 1000, and 1500 mT respectively.  
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For spin-polarization px, the y- and z-components do not exhibit significant changes under the FLT. 

On the other hand, the x-component <lx> oscillation amplitude increases as a function of the FLT 

strength for each Bx, but such an increase is smaller as Bx gets larger (see also Fig. 7(a)).  

For spin-polarization py, the x- and z-components do not exhibit significant changes under the FLT. 

Whereas, the y-component <ly> not only increases its oscillation amplitude (see also Fig. 7(b)), but 

also changes its oscillation frequency (Fig 6(d) – (f)). Specifically, at zero FLT, the DLT promotes 

an oscillation at twice the input frequency, while a non-zero FLT leads the oscillation frequency to 

be at the same frequency as the input one. Therefore, we observe a trade-off between these two effects, 

which yields the existence of a threshold value of the FLT for each Bx. Below such a threshold, <ly> 

is characterized by those two modes simultaneously, and beyond the threshold, <ly> oscillates at the 

input frequency. For instance, we can compare the blue curve in Fig. 6(d) for FLT<0.3DLT (double 

mode) with the grey curve at zero FLT (single mode at twice the input frequency), and with the green 

and red curves at higher FLT (single mode at the input frequency). 

The different behavior for different spin-polarizations is ascribed to the relative orientation between 

the ac field responsible for the FLT and the bias field Bx. In the first case (px), they are perpendicular 

to each other and the only effect is the increase of the oscillation amplitude. In the second case (py), 

they are parallel to each other and both amplitude and frequency change. 

 

 
FIG. 7 Amplitude of the Néel vector x- (a) and y-(b) component as a function of the FLT and for three values of the 

external field at the corresponding resonance frequency. 
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