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Abstract—The ability to model and predict ego-vehicle’s sur-
rounding traffic is crucial for autonomous pilots and intelligent
driver-assistance systems. Acceleration prediction is important
as one of the major components of traffic prediction. This
paper proposes novel approaches to the acceleration prediction
problem. By representing spatial relationships between vehicles
with a graph model, we build a generalized acceleration
prediction framework. This paper studies the effectiveness
of proposed Graph Convolution Networks, which operate on
graphs predicting the acceleration distribution for vehicles
driving on highways. We further investigate prediction im-
provement through integrating of Recurrent Neural Networks
to disentangle the temporal complexity inherent in the traffic
data. Results from simulation with comprehensive performance
metrics support that our proposed networks outperform state-
of-the-art methods in generating realistic trajectories over a
prediction horizon.

I. INTRODUCTION

Autonomous pilots or intelligent driving assistants predict
the future state of traffic in order to warn human drivers about
collision risks. The autonomous system in the ego-vehicle
should consider not only the ego-vehicle’s interactions with
its immediate neighbors, but also hierarchical and chains of
interactions that might affect the ego-vehicle’s future state.

Many approaches have been proposed to predict the
behavior of vehicles, with most methods falling into the
broad categories of regression formulations or classification
formulations. While formulating the problem of predicting
vehicle behaviors as a classification problem makes it eas-
ier to train the model and compare its performance, this
classification approach fails to provide detailed future traffic
information for planning the future trajectory. Regression
methods, however, are able to infer the future state of traffic,
such as vehicle position, velocity and acceleration. In the
literature, many of the methods for the regression formulation
of traffic prediction employ Recurrent Neural Networks
(RNNs). RNNs are widely used to study time-series data. In
particular, researchers have been successfully applying Long-
Short Term Memory (LSTM) network to various applications
such as speech generation, machine translation, and speech

1Jianyu Su is a doctoral student in the Department of Engineering
Systems and Environment, University of Virginia, 151 Engineer’s Way,
Charlottesville, VA, 22904, U.S.A js9wv@virginia.edu

2Peter A. Beling is a professor in the Department of Engineering
Systems and Environment, University of Virginia, 151 Engineer’s Way,
Charlottesville, VA, 22904, U.S.A pb3a@virginia.edu

3Rui Guo is a principal researcher in Toyota InfoTech Labs, 465 N
Bernardo Ave, Mountain View, CA, U.S.A rui.guo@toyota.com

4Kyungtae Han is a principal researcher in Toyota InfoTech
Labs, 465 N Bernardo Ave, Mountain View, CA, U.S.A
kyungtae.han@toyota.com

recognition [1]. In this work, we also use an RNN structure
as part of our proposed framework.

A principal weakness of existing driving behavior predic-
tion methods is that they use models that require inputs of
fixed size and fixed spatial organization, making it difficult
to generalize from training sets into practice. In [2], for
instance, the proposed method uses a leader-follower model
that focuses only on the interactions between the ego-vehicle
and its leading vehicle. More recently, neighbor models
that capture more interactions between ego-vehicle and its
surrounding vehicles have been proposed [3], [4]. Though
these neighbor methods show some success in predicting the
ego-vehicle’s future acceleration, they only consider a fixed
number of neighbor vehicles. In addition, they need to deal
with information padding if one of the pre-defined neighbors
is absent.

Graph neural networks (GNNs) are a type of neural
network designed for the analysis of graphs [5]. Recently,
GNNs have been drawing increasing attention from both
academia and industry for the flexibility that the graph data
structure provides and for their convincing performance on
various tasks in different domains, such as social science
[6], [7], neural science [8], and knowledge graphs [9]. For
instance, motivated by a first-order approximation of spec-
tral convolution on a graph, Graph Convolution Networks
(GCNs) are a computationally efficient variant of GNNs
that have shown success in achieving fast and scalable
classification of nodes in a graph [7]. Another class of GNNs
is the Graph Attention Network (GAT), which utilizes self-
attention [10] to allow for inductive reasoning among nodes,
thereby providing additional interpretability while matching
other GNNs on benchmark evaluation.

In this paper, we propose a flexible driving behavior pre-
diction framework that we call the Traffic Graph Framework.
Combining GCNs and LSTMs, our proposed method is able
to capture not only spatial features of various sizes but also
temporal features. This framework consists of undirected
graphs that represent the interactions between vehicles, a
multi-layer graph convolution neural network used to directly
encode the graph structure, and a fully-connected or LSTM
mixture density network used to predict future acceleration
distributions.

In series of empirical tests, we investigate the the per-
formance of our proposed models relative to baselines,
including GAT and other GCN variants. The test environment
for our methods is a simulation designed to mimic real-
world traffic. The simulation is built using the NGSIM I-
80 dataset, which contains vehicle trajectories of more than
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2000 individual drivers [11]. In the simulation, ego-vehicles’
traffic states are propagated based on models’ predictions.
Models are evaluated by comprehensive metrics to measure
the discrepancy between the generated trajectories and the
ground truth. Furthermore, ablation studies were performed
to analyze the effectiveness of the proposed GCNs and
RNN architectures. Results show that including the proposed
GCNs and RNN structure improves model’s prediction qual-
ity.

Our principal contributions are three-fold:
• We propose a graph structure to denote vehicle’s spatial
relationships in a dynamic traffic environment. Our
structure supports modeling at fine time scales and can
be scaled to include an arbitrary number of neighbors
for the ego vehicle.

• We introduce new variants of GCN layer-wise prop-
agation rule in the context of traffic modeling and
we propose a new acceleration prediction framework
combining GCNs and LSTM. We successfully applied
our framework to a simulation built from real-world
data. The resulting systems outperform others from the
literature on the task of acceleration prediction.

• We demonstrate that GAT models fail to make accu-
rate acceleration predictions. This result is significant
because GATs have been successful in other traffic
modeling settings, notably the work by Diehl et al. [12].
From an investigation of the attention weights generated
by the self-attention mechanism, we identify the causes
of GAT underperformance on our problem.

The rest of this paper is organized as follows: In the Re-
lated Work section, we summarize prior arts. In the Method-
ology section, we introduce our framework and our proposed
GCN variants. In the Experiment section, we present the
training procedure, baselines, and simulation results for all
models. In the Discussion section, we elaborate on our
findings about GCNs and LSTM in the experiment and
demonstrate why GAT fails to generate realistic trajectories.
The final section concludes the study.

II. RELATED WORK

The task of modeling driving behavior consists of mod-
eling car-following behavior and lane-changing behavior. In
our work, we focus on augmenting the car-following model.

Car-following models capture the interaction between
the ego-vehicle and the vehicles directly adjacent on the
microscopic level of the traffic. Based on the number of
interactions captured, models can be categorized as being
either a single-lane or multiple-lanes.

A single-lane model focuses on the interactions between
vehicles in a single lane. This model considers up to two
kinds of interactions: namely, the ego-vehicle with its leading
vehicle, and the ego-vehicle with its following vehicle. Many
traditional fixed-form models fall into this category, includ-
ing the Gazis-Herman Rothery model [13], the collision
avoidance model [14], linear models [15], psycho-physical
models [16], and fuzzy logic-based models [17].

Some recent general driving models have moved away
from making assumptions about drivers. Lefvre et al. com-
pare the performance of feed-forward mixture density net-
work against traditional baselines [18]. Their empirical tests
suggest that the proposed method is able to achieve per-
formance comparable to the baselines. Morton et al. study
the effectiveness of LSTM in predicting driving behavior on
highways. They reveal that the LSTM’s ability to remember
historic states of the ego-vehicle appears to be the key to
achieving the state-of-art performance [2].

More recently, multiple-lane models that consider more
interactions, coupled with neural networks, have been in-
troduced in the literature. Kim et al. propose a framework
based on LSTM to predict vehicle’s future position over the
occupancy grid [19]. Altche et al. use LSTM that predicts
traffic using as input state information on the ego-vehicle
states and up to 9 of its neighbors. The model is trained and
evaluated on the NGSIM 101 dataset which has trajectories
from more than 6000 individual drivers [3].

Diehl et al. [12] used GNNs for vehicle coordinates
prediction and demonstrated that GAT models outperform
other baselines. Note that our method differs from that work
in three main ways. First, we are interested in generating ve-
hicle trajectories. Hence, our models are structured to predict
0.1-second future acceleration, which can be propagated to
vehicle trajectories of any length with velocity, acceleration,
and coordinates information. Diehl et al. aim to predict
the 5-second-later coordinates of a vehicle, which contains
limited information for the construction of realistic vehicle
trajectories. Second, our framework allows for including an
arbitrary number of neighbors. The models of Diehl et al., by
contrast, consider only up to 8 neighbors, which might result
in ignoring important information about the state of traffic
around ego-vehicles. Third, we believe that information of
ego-vehicle’s past states affects future actions. Diehl et al.
does not consider RNN structure, whereas we include this
structure because it acts to memorize the past states of a
vehicle. Furthermore, we analyze the performance of GNNs
with and without RNNs.

III. METHODOLOGY

This section describes the construction of traffic graphs
and our proposed graph convolution network variants.

A. Traffic Graph and Features
To leverage the spatial relationships and interactions between
vehicles on the highway, we use an undirected graph G =
(E,V ) with N nodes vi 2V , edges (vi,v j) 2 E, an adjacency
matrix A 2 RN⇥N , a degree matrix with Dii = Â j Ai j, and a
nodes feature information matrix X 2 RN⇥F to model the
interactions between vehicles. As shown in Figure 1, for a
vehicle pair (vi,v j) where vi 2V and v j 2V , the edge (vi,v j)
is connected if and only if:

• vehicle v j and vi appear at the same frame; and
• vehicle v j is less than one lane away from vehicle vi at
the current frame(vehicle v j should be on the same lane
with vehicle vi or on vehicle i’s left, right lanes); and



(a) An ego-vehicle considers ve-
hicles only within 1 lanes away
as potential neighbor vehicles.
A potential neighbor vehicle
will be deemed as ego-vehicle’s
neighbor if and only if the ab-
solute value of their headway
distance is smaller than t

(b) A graph is constructed by
connecting every vehicle with
their neighbor vehicles. Graph
nodes share the same feature
fields

(c) A box plot of the number
of nodes in graphs. This depicts
the size of traffic graphs

(d) A box plot of the number of
neighbours possessed by every
vehicle node in graphs. This in-
dicates the number of edges per
each node possessed in traffic
graphs

Fig. 1: Mapping from real world traffic to traffic graph

• the absolute value difference of vehicle v j’s y-coordinate
and vehicle vi’s y-coordinate is less than the designated
value t at the current frame.

Note that there is no fixed limit on the number of neighbors;
all vehicles within an ego-vehicle’s designated distance t
are its neighbor vehicles. In NGSIM I-80 dataset, the traffic
of the study area changes frequently. The traffic, hence, is
updated at the same frequency as data was collected in the
original dataset. Figure 1c, and Figure 1d present statistics
regarding graphs.

In this work, we adopt the features used in [4]. For a
vehicle node in the graph at frame t, its feature vector
includes the following elements: vehicle lane id lt , vehicle
class id c, vehicle velocity vt , vehicle acceleration at , relative
distance from 3 nearest front neighbor vehicles {d f1 ,d f2 ,d f3}
(pad t if the number of front neighbors is smaller than 3),
and negative relative distance from 3 nearest rear neighbor
vehicles {�dr1 ,�dr2 ,�dr3} (pad �t if the number of rear
neighbors is less than 3).

B. Graph Convolution Network

GCN takes input as a graph G and output nodes encodings.
We consider the propagation rule originally introduced in [7]
as our base model:

Hl+1 = s
�
D̂� 1

2 ÂD̂� 1
2HlWl�, (1)

where Â = A + IN is the summation of the undirected
graph G’s adjacency matrix with binary entries A and self-
connection lN 2 RN , lN 2 RN is a identity matrix, D is a
degree matrix with Dii = Â j A, Wl 2 RN⇥Cl is a matrix of
trainable weights at depth l, s is an activation function,
and Hl is the encoding of all nodes in the graph at depth l
(H0 = X).

This layer-wise propagation rule can be rewritten in the

following vector form:

hl+1
vi = s

�
Â
j

hlv j
ci j

W l +
hlvi
cii

W l�. (2)

Here, j indexes neighboring nodes of vi, normalization
factor 1

ci j
is an entry located at the ith row, jth column of

D̂� 1
2 ÂD̂� 1

2 .
The propagation rule represented by Equation 1 is a first-

order approximation of spectral convolution on a graph. It
provides two advantages when used to analyze graphs: first,
it enables to aggregate lth order neighborhood of a central
node during the encoding process; second, it prevents us from
prohibitively expensive eigendecomposition of the graph
Laplacian compared with spectral convolution models [7].
Those properties offer us a computational efficient approach
to learn the interactions between vehicles that are not directly
connected in the graph.

Ego-discriminated GCN (EGCN): During the implemen-
tation of the base model, we find that self-connection affects
the performance of the system, an observation that leads to
our adaptation of the base model. Self-connection was used
to alleviate the problem of vanishing/exploding gradients in
GCNs [7]. However, this method applies the same weight
Wl to both the central node and its surrounding nodes. In
our experiments, we find it is beneficial to remove the self-
connection and apply different layer weights to discriminate
the central node from its surrounding node. This leaves us
with the ego-discriminated propagation rule, which can be
represented as follows:

Hl+1 = s
⇣
D� 1

2AD� 1
2HlWl + INHlBl

⌘
, (3)

where lN 2RN is an identity matrix, Bl 2RN⇥Cl is trainable
weights at depth l for central nodes. The corresponding



vector form is given in the following expression:

hl+1
vi = s

⇣
Â
j

hlv j
ci j

W l +
hlvi
cii

Bl
⌘
. (4)

C. Distance-Aware Graph Convolution Network
For the models mentioned in the previous section, their

adjacency matrices Â and A only denote whether a pair of
vehicles is close or not, but they do not describe the degree
of closeness. Based on our empirical driving experience–
the closer our neighbor vehicle is, the more attention we
will pay to it–we use absolute inverse relative distances as
entries for our adjacency matrix Ã to differentiate the degree
of closeness between vehicles. Therefore, we introduce the
following distance-aware layer-wise propagation rule in our
multi-layer GCN (DGCN):

Hl+1 = s
⇣
D̃� 1

2 ÃD̃� 1
2HlWl + INHlBl

⌘
. (5)

Here, Ã is an adjacency matrix with Ãi j =
1

|yvi�yv j |
where yi

represents vehicle vi’s y-coordinate. D̃ is a degree matrix with
D̃ii = Â j Ai j. In this propagation rule, Ã’s entries denote the
degree of closeness between vehicles. To stablize gradients
during training, we discretize the degree of closeness into
three levels: 1,2, and 3, which represent far away, medium
close and very close, respectively. Equation 5 can also be
rewritten in the following vector form:

hl+1
vi = s

⇣
Â
j

hlv j
c̃i j

W l +hlviB
l
⌘
, (6)

where c̃i j is an entry located at ith row and jth column of
D̃� 1

2 ÃD̃� 1
2 .

D. Gaussian Mixture Model
In this work, we aim to predict human driver’s acceler-

ation distribution given the current traffic state. Hence the
output of our network model is Gaussian mixture model
(GMM) parameters that characterize the future acceleration
distribution. This mixture density network (MDN) is first
proposed by Bishop [20] and been successfully applied in
speech recognition and other fields [21]. For a K-component
GMM, the probability of the predicted acceleration follows
this equation:

p(a) =
K

Â
i=1

wiN (a|µi,s2
i ), (7)

where wi,µi, and si are the weight, mean, standard deviation
of the ith mixture component respectively.

IV. EXPERIMENT

A. Dataset
The NGSIM I-80 dataset contains detailed vehicle trajec-

tory data collected using synchronized digital video cameras
on eastbound I-80 in Emeryville, CA. This dataset provides
precise positions, velocities and other vehicle information
over three 15-minute periods at 10 Hz. The study area

covers approximately 500 meters in length and consists of
six freeway lanes, including a high-occupancy lane and an
on-ramp lane. We use the NGSIM I-80 reconstructed dataset,
which contains vehicles position, velocity, acceleration from
4:00 p.m. to 4:15 p.m., because it corrects errors such as
extreme acceleration, and inconsistent vehicle IDs [22] [23].
We split the data into training sets and testing sets by a ratio
of 4 to 1.

B. Data Preparation

Both training set and testing set are divided into 12-
second segments (120 frames). The first 2-second segments
(20 frames) are used to initialize the internal state of LSTM
networks. Since the aim of the research is to predict driving
acceleration using GCNs, we need to prepare traffic graphs
from the raw data.

C. Baselines

Our proposed models are compared with the following
non-GNN models and GAT models.

Fully-connected (FC): This model shares the same con-
figuration and input features as the GCN without LSTM
models.

LSTM: This model’s configuration and input features are
the same with GCN-LSTM models.

Our proposed models use heuristics to define normaliza-
tion factors between nodes. For instance, DGCN uses inverse
distance as entries for adjacency matrix A based on the
heuristic that the ego-vehicles should pay more attention to
closer neighbors compared with distant neighbours. In con-
trast, GAT , which applies self-attention, learns to generate
the normalization factors for neighbouring nodes rather than
resorting to weights in adjacency matrix A:

ai j =
exp

⇣
LeakyReLU

�
BWahi+WWahj)

�⌘

Âk2Ni exp
⇣
LeakyReLU

�
BWahi+WWahk)

�⌘ , (8)

where i indexes the central node, j indexes the surrounding
nodes, Wa, B and W are weights in self-attention with B
applied to central nodes andW applied to surrounding nodes,
LeakyReLU is an activation function, and ai j is equivalent
to normalization factor 1

ci j
mentioned in previous equations.

Following the practice in [12], we utilized different layer
weights, B and W , to attend to central and neighbouring
nodes respectively. Self-attention weights Wa, B, and W are
updated such that GAT learns how to distribute ai j.
GAT: This model shares the same configuration and input

features as other models without LSTM.
GAT with LSTM: This model’s configuration and input

features are the same with other LSTM models.

D. Implementation

All models are trained to output predicted parameters for
distributions over future acceleration values. Note that every
model in this work shares the same hyperparameters because
we aim to compare the effectiveness of GNN and LSTM on



improving model performance in the task of driver behavior
prediction. We set t = 20 feet, empirically.

Model structures are shown in Table I. Each model con-
sists of 3 hidden layers and a 30-component MDN layer.
Layer 1 applies Relu activation while other layers do not
use any activation. Layer 1 and layer 2 are followed by
batch normalization. Batch normalization is a mechanism
to address the problem of internal covariate shift. It has
been reported that adding batch normalization to state-of-the-
art image classification networks yields higher classification
accuracy compared with the original networks [24]. The
performance of our models is also found to improve when
batch normalization is applied. Layer 3 is either an FC
layer or an LSTM layer. The final 30-component MDN
layer follows layer 3 and has an output size of 90, which
corresponds to a 30-component GMM’s parameters.

All models are trained for 5 epochs. During training, the
models are optimized by the Adam optimizer with a learning
rate of 1⇥10�3 [25]. A dropout of 10 percent is applied to
help prevent overfitting. Gradient norm clipping is also used
to deal with gradient vanishing and gradient explosion [26].
All networks are implemented in TensorFlow [27] based on
Kpif’s GCN package [7] and Veličković’s GAT package [28].

E. Evaluation

Once trained, each model is used to generate simulated
trajectories. For every trajectory in the test set, the first 2-
second segments (20 frames) of true data are used to initialize
LSTM’s internal state. In the following 10 seconds, ego-
vehicle’s velocity and position can be updated by assuming
the following equations:

v(t+d t) = v(t)+a(t+d t)⇥d t
y(t+d t) = y(t)+ v(t+d t)⇥d t, (9)

where v is ego-vehicle’s velocity, y is ego-vehicle’s Y -
coordinate and a is vehicle’s acceleration. The graph and
node features are updated by propagating other vehicles’
true trajectory data and ego-vehicle’s simulated trajectory.
Following the practice in [2], we evaluate the quality of
simulated trajectories by the following metrics:

• Root Mean Squared Error (RMSE): We use root mean
squared error to evaluate the discrepancy of speed values
between simulated trajectories and true trajectories at
designated horizons for a given ego-vehicle:

RMSEvelocity =

s
1
mn

m

Â
i=1

n

Â
j=1

(viH � v̂i, jH )2, (10)

where m is the number of true trajectories, n = 20 is
the number of simulated trajectories per true trajectory,
viH is the velocity of ith true trajectory at horizon H,
v̂i, jH is the value in jth simulated trajectory at time
horizon H. Similarly, we also use root mean squared
error to evaluate the displacement in Y -coordinate at 10
second horizon between simulated trajectories and true

trajectories:

RMSEY =

s
1
mn

m

Â
i=1

n

Â
j=1

(yi10� ŷi, j10)2, (11)

where yi10 is the Y -coordinate of ith true trajectory at
10 second, ŷi, j10 is the simulated Y -coordinate value for
sample j in the ith trajectory at 10 second horizon.

Fig. 2: RMSE results for all models

Figure 2 shows the velocity RMSE for the top 6 models
over prediction horizons between 1 and 10 seconds.
Models with original GCN [7] and GAT [28] are not
included because of their bad performance in generating
predicted trajectories. In general, the velocity RMSE
accumulates over the time horizon. Our adapted GCN
models outperform non-GCN models. For non-GCN
models, LSTM outperforms the fully-connected model
because LSTM is able to access past information. For
GCN models, EGCN model and DGCN with LSTM
outperform other GCN models.
The Y -coordinate RMSE column in Table II denotes the
displacement in Y -coordinate between simulated trajec-
tories and their corresponding true trajectories. EGCN
model outperforms other models. Velocity RMSE at
10 second horizon reveals the discrepancy of speed
between simulated trajectories and the ground truth.
DGCN with LSTM outperforms other models in this
metric.

• Negative Headway Distance Occurrence: This metric
is used to evaluate models’ robustness. It records the
occurrences of unrealistic states led by models’ poor de-
cision making. Two types of negative headway distances
are considered: (1) ego-vehicle’s negative headway dis-
tance representing collisions with the front vehicle;
and (2) following vehicle’s negative headway distance
denoting collisions between the ego-and its following
vehicle. A robust model will have minimal negative
headway distance occurrence.
Table III shows the number of negative headway oc-
currences over number of simulated trajectories for all
models. Consistent with RMSE analysis, the results



TABLE I: Model Configuration

Model layer 1 layer 2 layer 3 MDN layer LSTM clip norm adjacency type
Fully-connected 128 256 128 90 no 5 /

GCN base 128 256 128 90 no 5 binary
GAT 128 256 128 90 no 5 binary
EGCN 128 256 128 90 no 5 binary
DGCN 128 256 128 90 no 5 inverse distance
LSTM 128 256 128 90 yes 5 /

GCN with LSTM 128 256 128 90 yes 5 binary
GAT with LSTM 128 256 128 90 yes 5 binary
EGCN with LSTM 128 256 128 90 yes 5 binary
DGCN with LSTM 128 256 128 90 yes 5 inverse distance

TABLE II: RMSE Analysis

Model Y RMSE @ 10 s (m) Velocity RMSE @ 10 s (m/s)
Fully-connected (FC) 2.89 0.526

GCN base 3.52 0.622
GAT 4.13 0.688
EGCN 1.40 0.258
DGCN 1.91 0.360
LSTM 1.61 0.331

GCN with LSTM 3.40 0.653
GAT with LSTM 4.09 0.728
EGCN with LSTM 1.86 0.321
DGCN with LSTM 1.63 0.256

from Table III demonstrates that original GCN models
often produce poor acceleration predictions which lead
to unrealistic states. EGCN model and DGCN with
LSTM model are robust because there are no unrealistic
states occurring in their simulated trajectories.

• Jerk Sign Inversions: We use the number of jerk sign in-
versions per trajectory to evaluate the similarity between
the smoothness of the true and simulated trajectories.
This metric is used to quantify oscillations in model’s
acceleration predictions.
Simulated trajectories of most of models have slightly
higher jerk sign inversions than the true trajectories
while the LSTM baseline model is not able to generate
smooth trajectories. In addition, jerk sign inversions,
combined with previous metrics, indicate that the trajec-
tories generated by GAT with LSTM model fail to react
against the changes of the ego-vehicle’s surrounding
traffic.

Figure 3 shows the sample simulated trajectories by mod-
els, including adapted GCN models and non-GCN models.
It can be seen that non-GCN models predict poorly if the
ground truth trajectory includes a long period of acceleration
values that are very close to zero while GCN models is able
to generate smooth trajectories close to the ground truth.
In addition, non-GCN models are prone to predict extreme
acceleration values, which is compensated by oscillation of
acceleration values.

V. DISCUSSION

Our experiments are designed to answer the following
research questions:

• Does GCN improve model performance and are our
adaptations to GCN beneficial?

• Does including LSTM increase prediction quality?

• Why do GAT models fail to generate realistic trajecto-
ries?

First, we discover that we improve GCN’s performance
when we delete self-connections and apply different weights
to the central nodes and their surrounding nodes. For GCN
base model, we reduced velocity RMSE by 58.5% at 10
seconds horizon and negative headway occurrence by 17%
during simulation. For GCN with LSTM model, we reduced
its 10 seconds horizon velocity RMSE by 50.8% and negative
headway occurrence by 15%.

Second, our experiments demonstrated that GCNs im-
prove model performance. GCN models are able to generate
smooth and robust trajectories close to the ground truth.
For both LSTM and fully-connected models, the non-GCN
baseline model is outperformed by its GCN couterparts, in
general. Note that, in the experiments, our GCN models
and non-GCN models share the same number of hidden
layers and the same number of neurons in each hidden
layer. Compared with non-GCN fully-connected model, our
EGCN model reduced the negative headway occurrence
rate from 0.08 to 0, 10 seconds horizon velocity RMSE
by 59.6%. Compared with non-GCN LSTM, our DGCN
with LSTM reduced the negative headway occurrence rate
from 0.02 to 0, jerk sign inversions from 13.7 to 7.3 and
10 seconds horizon velocity RMSE by 22.7%. This trend
can also be observed in Figure 3. The multi-layer GCN’s
ability to capture multitudes of interactions between vehicles
hierarchically improves model’s prediction quality in terms
of our evaluation metrics.

In general, we find that adding LSTM structure improves
model prediction quality. Among all models, the best model
is DGCN with LSTM. During simulation, this model is able
to generate robust and smooth driving trajectories with 0
negative headway, 7.3 jerk sign inversions and 0.256 for 10-



TABLE III: Jerk Sign Inversions Per Trajectory

Model Jerk Sign Inversions Negative Headway Occurrence Rate
Fully-connected (FC) 7.5 0.08

GCN base 7.5 0.17
GAT 5.9 0.27
EGCN 7.5 0
DGCN 7.3 0.03
LSTM 13.7 0.02

GCN with LSTM 6.7 0.17
GAT with LSTM 0.0 0.27
EGCN with LSTM 9.5 0.01
DGCN with LSTM 7.3 0
True trajectory 6.3 /

(a) LSTM models (b) Fully-connected models

(c) LSTM models (d) Fully-connected models

Fig. 3: Simulated Trajectories For All Models (Orignial GCN and GAT models are excluded for their bad performance)

second horizon velocity RMSE.
GATs utilize self-attention to assign attentional weights ai j

for neighbouring node j. The attentional weights ai j indicate
the relationship between the central node and its surrounding
nodes. Following [10], we investigated ai j to understand why
GAT models fail in our experiment. The investigation shows
that the relational kernel in the baseline GAT models fails
to learn the relationships between central nodes and their
surrounding nodes. From the sample in the vehicle 829 at the
frame 2373, the relational kernel in the second GAT layer
of the GAT model assigns the same weights to every node:
vehicle 829 initially has two neighbours, 818 and 835. The

attentional weights for each node, including the central node
829, is 0.333. Later in the trajectory, another vehicle 795
approaches the ego-vehicle 829 and the attentional weights
assigned to all 4 nodes are 0.25.

VI. CONCLUSION

In this paper, we propose the use of graphs defined by
the spatial relationships between vehicles, to model traffic.
We further build GCN models, operating on graphs, to
predict future acceleration distributions. We propose two
GCN models adapted from the state-of-art GCN and studied
the effectiveness of LSTM architectures in our prediction



models. Our resulting frameworks outperform others on the
task of acceleration prediction.

While our proposed methods have been shown to improve
prediction performance, much work remains to be done.
This work can be extended to prediction in two dimensions,
which is an important problem in autonomous driving. At
the same time, it will be interesting to evaluate different
graph construction strategies, such as strategies that include
multiple layers of relationships.
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