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Abstract

Motivated by civic problems such as participatory budgeting and multiwinner elections, we consider the
problem of public good allocation: Given a set of indivisible projects (or candidates) of different sizes, and
voters with different monotone utility functions over subsets of these candidates, the goal is to choose a budget-
constrained subset of these candidates (or a committee) that provides fair utility to the voters. The notion of
fairness we adopt is that of core stability from cooperative game theory: No subset of voters should be able
to choose another blocking committee of proportionally smaller size that provides strictly larger utility to all
voters that deviate. The core provides a strong notion of fairness, subsuming other notions that have been
widely studied in computational social choice.

It is well-known that an exact core need not exist even when utility functions of the voters are additive
across candidates. We therefore relax the problem to allow approximation: Voters can only deviate to the
blocking committee if after they choose any extra candidate (called an additament), their utility still increases
by an α factor. If no blocking committee exists under this definition, we call this an α-core.

Our main result is that an α-core, for α < 67.37, always exists when utilities of the voters are arbitrary
monotone submodular functions, and this can be computed in polynomial time. This result improves to
α < 9.27 for additive utilities, albeit without the polynomial time guarantee. Our results are a significant
improvement over prior work that only shows logarithmic approximations for the case of additive utilities. We
complement our results with a lower bound of α > 1.015 for submodular utilities, and a lower bound of any
function in the number of voters and candidates for general monotone utilities.

1 Introduction

Consider the following scenario: A city is deciding what public projects to fund using its limited budget b. There
is a list of m candidate projects (forming a set C), where each j ∈ C is associated with a cost sj . The city needs
to select a subset O of these projects whose total cost is at most the budget, that is,

∑
j∈O sj ≤ b. There are n

residents or voters (forming a set V ) in the city, and each of them has preferences on how the city should spend its
budget. These preferences may not be perfectly compatible with each other: For instance, families with children
may prefer a public school, while others may prefer a park; people living in the east may prefer projects there,
and so for those living in the west. It is desirable to have a fair process to decide on the projects to pay for. In
participatory budgeting, voters express their preferences through their votes and influence the decision process.
The paradigm has been implemented in numerous cities across the world [13, 4, 1, 31].

A similar problem is seen in multiwinner elections [7, 24, 11, 15, 41], where voters select a committee of size b
from m candidates. Each voter holds her own opinions on the committees, and a fair method to incorporate the
preferences of all voters is called for. Mathematically, it is a special case of the participatory budgeting problem,
where each candidate has the same “cost”.

In these settings, simple methods to aggregate the preferences may have drawbacks. In majority voting,
the utilities of a coherent minority group might be entirely ignored in favor of the majority. Utilitarian ways
(maximizing the sum of utilities) may overly focus on a certain group, disregarding the welfare of the vast majority.
Indeed, many practically implemented voting rules for choosing parliaments and civic body members, such as the
well-known Single Transferable Voting (STV) [42], attempt to address precisely this issue. We naturally ask:
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What is a fair solution for participatory budgeting and multiwinner elections, and how do we reach
such a solution?

1.1 The Core and Its Multiplicative Approximation Recall that there are n voters forming a set V , and
m candidates forming a set C, where candidate j has size (or cost) sj . We need to choose a subset O of candidates
with total size at most b (that is,

∑
j∈O sj ≤ b). Following social choice terminology, this subset of candidates is

called a committee, and the problem of choosing a budget-constrained committee is called the committee selection
problem. Denote the utility of voter i for a committee T by a utility function ui(T ). We will assume this function
is non-negative and monotone, with ui(∅) = 0.

Although there are copious notions of fairness for committee selection, the core is a classic and influential
one among them. This idea has existed for more than a century [21, 41, 34], and serves as a strong notion of
proportional representation. Towards defining this concept, imagine we split the size b among the voters, so that
each voter has an endowment of b

n that they can use to “buy” candidates. A candidate of size sj requires an
endowment of sj to “buy”. A committee O ⊆ C with total size at most b is said to be in the core, if no subset S
of voters can deviate and purchase another committee T ⊆ C by pooling their endowments, so that each voter in
S prefers the new committee T to the original one O. Note that the total endowment of S is |S| bn , so that this

set of voters can buy a committee T of size at most |S| bn . Formally,

Definition 1.1. (Core) A committee O is in the core if there is no S ⊆ V and committee T ⊆ C with∑
j∈T sj ≤

|S|
n · b, such that ui(T ) > ui(O) for every i ∈ S.

The core has a “fair taxation” interpretation [34, 28]. The quantity b
n can be thought of as the tax contribution

of a voter, and a committee in the core has the property that no sub-group of voters could have spent their share
of tax money in a way that all of them were better off. As such it subsumes notions of fairness such as Pareto-
optimality, proportionality, and various forms of justified representation [5, 27, 6] that have been extensively
studied in multiwinner election and fairness literature.

Despite the satisfying properties of the core, its strength is also its limitation: Even in the simple setting of
unit sizes, integer budget, and additive utilities (the so-called approval-set setting with general utilities), the core
can be empty. (See for example, [26].)

A natural approach to circumvent this problem is to show the existence of a committee that multiplicatively
approximates the core. We define the α-core as follows.

Definition 1.2. (α-Core) A committee O is in the α-core if there is no S ⊆ V and T ⊆ C with
∑
j∈T sj ≤

|S|
n ·b,

such that ui(T ) > α · ui(O ∪ {q}) for every i ∈ S and q ∈ C. We call the candidate q an additament.

Note that we introduce the additament in the definition, since no multiplicative approximation is possible
without it even in the setting with unit candidate sizes and additive utilities. This follows from examples in
previous work [26, 19]. The idea of a bicriteria (multiplicative and additive) approximation to utilities was
first presented in [26]. The work of [40] presents an almost identical definition as Definition 1.2, except that the
additament q must come from the set T . This makes their definition more restrictive and the α-core smaller. They

show that when utilities are additive, an O
(

log umax

umin

)
-core solution not only exists, but can also be computed

in polynomial time, where umax and umin are the largest and smallest non-zero utilities any voter has for any
feasible committee.

1.2 Our Results Our main result in Section 3 is to show the existence of an O(1)-core when the utility
functions of the voters are monotone and submodular. Submodular utilities capture the notion of “diminishing
returns”, and are therefore well-motivated in participatory budgeting and multiwinner election settings where
each additional project or candidate provides diminishing marginal utility.

Our result is a significant improvement over the previous work mentioned above [40], which only presents a
logarithmic approximation for the restricted case of additive utilities. Our main result is formally the following.

Theorem 1.1. (Main Theorem) For monotone submodular utilities, a 67.37-core is always non-empty. One
such solution can be computed in polynomial time.
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Our second result in Section 4 is the following improved result for the well-studied special case of additive
utilities:

Theorem 1.2. (Additive Utilities) For additive utilities, a 9.27-core is always non-empty.

Unlike Theorem 1.1, we do not know how to implement the algorithm in Theorem 1.2 in polynomial time.
We remark that the previous two results can be combined to show that a 15.2-core solution for additive utilities
can be computed in polynomial time, without providing the details.

Lower Bounds. The next natural question is whether our results can be extended to arbitrary monotone
utilities. We show that this is not possible. We present an example in Section 5 to show that an O(1)-core (or
even any f(n,m)-core where n is the number of voters and m is the number of candidates) may not exist for
general monotone utilities.

Theorem 1.3. (General Utility Lower Bound) For general monotone utilities, for any function ϕ : Z+ ×
Z+ → R+, a ϕ(n,m)-core can be empty.

We also show that the case of submodular utilities does need a multiplicative approximation to the core, and
the 1-core can be empty. This justifies the form of Theorem 1.1 that involves both a multiplicative approximation
and an additament.

Theorem 1.4. (Submodular Lower Bound) For monotone submodular utilities, a 1.015-core can be empty.

1.3 Technical Contributions The main technical idea in our paper is to consider fractional relaxations of
the problem, via considering outcomes where candidates are fractionally allocated. For submodular utilities, we
extend the utility to fractional values via the so-called multilinear extension [43, 14]. For additive utilities, the
extension is straightforward. We then construct an exact or approximate core outcome for the fractional version.
We finally round this solution to find an integer core. We now describe these steps in more detail.

Fractional Core. We use two entirely different techniques for constructing fractional core outcomes to show
Theorem 1.1 and Theorem 1.2. For both solutions, we extend the standard core property and show a stronger
approximation property (Theorem 3.1 and Lemma 4.3) on how the size of a coalition of voters relates to the budget
of the committee to which they can deviate to and obtain a multiplicative factor larger utility.

The first approach that we use for arbitrary submodular functions is via optimizing the classic Nash Welfare
objective [37], that maximizes the product of utilities of the voters. Though the Nash Welfare is a convex
optimization problem when utilities are continuous, monotone, and concave, in our case, the utility is now defined
as the multilinear extension and this is only concave in positive directions [14]. Nevertheless, we show a simple
continuous local search procedure for the Nash Welfare objective, such that the local optimum is a 2-approximate
fractional core. For our rounding, we need a stronger approximation property that we prove in Theorem 3.1. This
property may be of independent interest.

The second approach that we use for additive utilities, finds an exact fractional core. This uses a classic
market clearing solution is termed the Lindahl equilibrium [34, 28]. In this equilibrium, candidates can be chosen
to any fraction (even greater than one). Each candidate is assigned a per-voter “price”, and the voters are
assigned an endowment of b

n just as in Definition 1.1. At these prices, if the voters choose their utility maximizing
allocation subject to spending their endowment, then (1) they all choose the same fractional committee, and they
spend their entire endowment; and (2) for each chosen candidate, the total price collected exactly pays for that
candidate. The work of [28] shows via a fixed point argument that such an equilibrium always exists when each
voter’s utility for fractional committees is any continuous, monotone, and concave function. Further, the resulting
equilibrium is a core outcome.

Rounding. We then construct the integer solution by rounding of the fractional core. Since the allocation
is common to all voters, it is easier to work with rounding processes that are oblivious to the utility functions,
and we therefore simply use randomized rounding. If we randomly round the allocation to integer values, the
expected utility of any voter is preserved. This can now be combined with Chernoff-type bounds for multilinear
extensions [16] to argue that a constant factor of voters see utility that is at least a constant factor of the
corresponding utility in the fractional solution. For additive utilities, we use dependent rounding [30, 12] to
provide an improved constant here.
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This brings up the next hurdle: The remaining unsatisfied set of voters can still deviate to a different coalition.
Our second ingredient is the iterative rounding framework of [32]: We recurse on the unsatisfied voters to find
a fractional solution with a smaller budget on total size. The key idea is that every voter is satisfied at some
level of the recursion. We now use the approximation property of the fractional solution at each level of recursion
to argue that the number of voters deviating to any fixed committee that provides them a constant factor more
utility is bounded. Summing this argument over all levels completes the proof.

Our overall argument in both cases – submodular and additive utilities – is quite delicate, and crucially
requires strong approximation properties of the fractional solutions of Lindahl equilibrium and locally optimal
Nash Welfare. This forms our main technical contribution.

1.4 Related Work
Proportionality and the Core. One classic objective in committee selection is achieving fairness via

proportionality, where different demographic slices of voters feel they have been represented fairly. This general
idea dates back more than a century [21], and has recently received significant attention [15, 35, 10, 5, 27, 6]. In
fact, there are several elections, both at a group level and a national level, that attempt to find committees
(or parliaments) that provide approximately proportional representation. For instance, the popular Single
Transferable Vote (STV) rule is used in parliamentary elections in Ireland and Australia, and in several municipal
elections in the USA. This rule attempts to find a proportional solution.

A long line of recent literature has studied the complexity and axiomatization of voting rules that achieve
proportionality; see [7, 24, 11] for recent surveys. Proportionality in committee selection arises in many other
applications outside of social choice as well. For example, consider a shared cache for data items in a multi-tenant
cloud system, where each data item is used by several long-running applications [33, 29]. Each data item can
be treated as a candidate, and each application as a voter whose utility for an item corresponds to the speedup
obtained by caching that item. In this context, a desirable caching policy provides proportional speedup to all
applications.

The core represents the ultimate form of proportionality: Every demographic of voters feel that they have
been fairly represented and do not have the incentive to deviate and choose their own committee of proportionally
smaller size which gives all of them higher utility. In the typical setting where these demographic slices are not
known upfront, the notion of core attempts to be fair to all subsets of voters. The work of [36] formally argues
that in certain multiwinner election settings, the core also approximately optimizes simpler diversity measures of
the resulting committee.

Fisher Markets. Our fractional solutions are superficially related to the Fisher market equilibrium [9, 37, 3]
when divisible items need to be allocated to agents, and agents’ utilities are additive. For the Fisher market, the
optimum Nash Welfare solution finds market clearing prices. However, in a Fisher market, the prices are common
to the agents while the allocations are different, while in a Lindahl equilibrium, the prices are per-voter while the
allocation (or committee) is common and provides shared utility to all the voters. This is a key difference – the
Fisher market has a polynomial time algorithm via convex programming [23], while no polynomial time algorithm
is known for the Lindahl equilibrium even when candidates have unit sizes and voters’ utilities are additive (or
linear till the maximum size of the candidate). Similarly, though the Nash Welfare solution finds market clearing
prices for the Fisher market via strong duality, in the case of public goods, there is no obvious way to interpret the
dual of the Nash Welfare solution as market clearing prices. Moreover, for submodular utilities and multilinear
extensions, the Nash Welfare objective is no longer a convex program, so that strong duality does not apply.

Approximate Core. In this paper, we have focused on approximating the utility voters obtain on deviating
(see Definition 1.2). As mentioned before, this notion first appeared in [26], and the notion of a single additament
in approximation is due to [40]. The latter work present a logarithmic approximation for the special case of
additive utilities. The work of [39] shows that the well-known Proportional Approval Voting method [41] achieves
a 2-core for the special case where the utilities are additive and candidates are unit size, with each voter having
utility either zero or one for each candidate. This algorithm can be viewed as a discrete version of Nash Welfare,
and in essence, Theorem 3.1 extends this result to the case of submodular utilities and general costs, showing
that it yields a 2-core for the fractional case of multilinear extension via a polynomial time local search algorithm.
The work of [18] presents a constant approximation for the K-clustering problem, where the committee is a set
of K centers in a metric space, and the cost of a voter is the distance to the closest center. However, these ideas
do not extend to the committee selection problem we consider in this paper.
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The work of [32] considers a different notion of approximation: Instead of approximating the utility, they
approximate the endowment that a voter can use to buy the deviating committee. Building on the work of [19],
it shows a different fractional relaxation, to which a 2-approximation always exists. They then iteratively round
this fractional solution to an integer solution that is a 32-approximation for all monotone utility functions. The
problem of approximating utilities is very different; indeed, Theorem 1.3 shows we cannot hope to have a similar
constant approximation for all utility functions. Nevertheless, we use the idea of iterative rounding from that
work, albeit with an entirely different fractional solution and analysis. In effect, we showcase the power of
iterative rounding as a unifying framework for finding approximate core solutions, regardless of the notion of
approximation.

Rounding Techniques. The notion of multilinear extension and correlation gap has been widely used in
stochastic optimization [2], mechanism design [44], and rounding [43, 14, 17]. Typically, it has been used to
develop computationally efficient approaches; on the other hand, we demonstrate an application to showing a
purely existential result. Similarly, rounding of market clearing solutions have been used to show approximately
fair allocations of indivisible goods among agents [8, 20]. The structure of these problems (common prices but
different allocations) is very different from ours (common allocations and different prices), and we need different
techniques. Again, in contrast with the resource allocation literature, we need the rounding just to show an
existence result as opposed to a computational one.

2 Model and Preliminaries

Recall that C is a set of m candidates and V is a set of n voters. Each candidate j ∈ C is associated with a size
sj > 0. For each i ∈ V and each T ⊆ C, we denote by ui(T ) the utility of voter i on committee T . We assume ui
is a monotone, submodular set function with ui(∅) = 0:

• Monotonicity: ui(T ) ≤ ui(T ′) ∀T ⊆ T ′.

• Submodularity: ui(T ∪ {t})− ui(T ) ≥ ui(T ′ ∪ {t})− ui(T ′) ∀T ⊆ T ′, t /∈ T ′.

We have a constraint of b on the total size of the committee. We call a committee O ⊆ C feasible (with
respect to b) if:

∑
j∈O sj ≤ b.

Our goal is to find a committee in the α-core for α = O(1). Recall its definition:

Definition 1.2. (α-Core) A committee O is in the α-core if there is no S ⊆ V and T ⊆ C with
∑
j∈T sj ≤

|S|
n ·b,

such that ui(T ) > α · ui(O ∪ {q}) for every i ∈ S and q ∈ C. We call the candidate q an additament.

Fractional Allocations and Core. In the sequel, we will consider continuous extensions of the committee
and the utility function. We define a fractional committee as a m-dimensional vector x ≥ 0. The quantity xj
denotes the fraction to which candidate j is allocated.

We denote by Cost(x) :=
∑
j∈C xj · sj as the cost of the allocation x. Without loss of generality, we assume

that
∑
j∈C sj > b.

Similarly, we consider continuous utilities Ui(x) for the voters, whose construction will be specified later.
Given this notation, an α-approximate fractional core, for α ≥ 1 is defined as follows:

Definition 2.1. (α-Approximate Fractional Core) A fractional committee x ≥ 0 with Cost(x) ≤ b lies in

the α-approximate fractional core if there is no S ⊆ V and allocation z ≥ 0 with Cost(z) ≤ |S|
|V | · b such that

Ui(z) > αUi(x) for all i ∈ S.

When α = 1, we call the fractional committee x as simply lying in the fractional core.

3 Constant Approximate Core for Submodular Utilities

Our overall algorithm proceeds via constructing approximate fractional core for a well-known continuous
relaxation, called the multilinear relaxation. We use a continuous time local search procedure for the Nash
Welfare objective to find this fractional solution. We show that it is almost in a 2-approximate fractional core,
and subsequently round it iteratively to find a solution in the approximate integer core. Our overall algorithm
runs in time polynomial in the number of voters and candidates. We first present the entire algorithm as an
existence proof, and then delve into the details of the running time in Section 3.5.
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3.1 First Observations The following steps are without loss of generality, aiming to simplify future derivations
in this section. We will assume ε ∈ (0, 1/20) is a small constant that we choose later. In a proof of existence we
can set ε = 0; however, we need ε > 0 to achieve polynomial running time.

• Let umax
i := maxj{ui({j})}, the maximum utility of voter i with a single item. We scale down every ui(T ) by

a factor of umax
i and denote this normalized utility as u′i(T ) := ui(T )

umax
i

. (We ignore every voter with ui(C) = 0,

since they will not deviate in any situation.) By submodularity of the utility functions, u′i(T ) ∈ [0,m] for
every i and T ⊆ C. This step preserves the original problem, since every voter multiplicatively compares
utilities of different committees in Definition 1.2 and different voters compare separately. Therefore, without
loss of generality, we assume maxj{ui({j})} = 1 and thus ui(T ) ∈ [0,m],∀T ⊆ C.

• We further assume sj ≤ b for each j ∈ C, as otherwise, the candidate cannot be selected in any feasible
committee.

• Now define

Cs := {j | sj ≤ εb/m}

as a set of “small enough” candidates. We place all these candidates in the solution. Clearly all candidates
in Cs take up a total budget of at most εb – the remaining budget is at least (1− ε)b. Our algorithm then
works with candidates in:

C` := C \ Cs = {j | sj > εb/m}.

Note that each candidate j in C` now has size sj > εb/m.

3.2 The 2-Approximate Fractional Core We now present a procedure that finds an approximate fractional
core solution for an arbitrary budget B ∈

[
ε

5mb, b
]
, and an arbitrary subset W ⊆ V of voters. We present

the algorithm and its optimality properties below; however, we defer the polynomial running time analysis to
Section 3.5.

3.2.1 Multilinear Extension Recall that the utility function ui(S) of voter i for S ⊆ C is non-negative,
monotone, and submodular. We first extend these utilities to fractional allocations. A natural way to do that is
to use the multilinear extension.

Definition 3.1. (Multilinear Extension, [14, 43]) Given a monotone, non-negative submodular function
f , its multilinear extension F is defined for any x ∈ [0, 1]m as:

F (x) =
∑
T⊆C

f(T )

∏
j∈T

xj

∏
j /∈T

(1− xj)

 .

We will apply the following property of this function.

Lemma 3.1. (Concavity along Positive Directions, [14]) Given a monotone, non-negative submodular
function f , its multilinear extension F is concave along positive directions, i.e., for all x0 and all d ≥ 0, we
have that Fx0,d(λ) = F (x0 + λd) is a monotone, non-negative and concave function of λ.

We denote the multilinear extension of voter i’s utility function ui for a fractional committee x as Ui(x). The
above lemma implies that ∂Ui

∂xj
≥ 0 for all i ∈W, j ∈ C. The next lemma upper bounds the gradient. Here, x−j is

x with the jth dimension removed, and T ∼ x−j means that T is chosen by including ` ∈ C \ {j} independently
with probability x`.

Lemma 3.2. (Bounded Gradient, [14])

∂Ui(x)

∂xj
=

∑
T⊆C\{j}

Pr
T∼x−j

[T ] · (ui(T ∪ {j})− ui(T )) ≤ max
j
ui({j}) = 1.
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3.2.2 Nash Welfare and Local Search The input of the algorithm consists of three parts: The utility
function ui(T ) for each committee T ⊆ C and voter i ∈W , the sizes of the candidates {sj} and the total budget
B ∈

[
ε

5mb, b
]

on candidates in C`. Recall that we assume all candidates in Cs have already been chosen. We
assume w.l.o.g. that

∑
j∈C` sj > B. In our algorithm, we treat the utility function as an oracle which returns the

utility of an agent i on a given committee in O(1) time.
In our algorithm, we will lower bound the allocation xj by an amount xj that is defined as follows.

xj =

{
1 j ∈ Cs,

B·ε∑
j∈C`

sj
j ∈ C`.

Nash Welfare. We will find a local optimum to the following Nash Welfare program to find the fractional
solution.

Maximize
∑
i∈W

logUi(x)

∑
j∈C` sjxj ≤ B

xj ∈ [xj , 1] ∀j ∈ C
Let φi(x) = logUi(x), and φ(x) =

∑
i∈W φi(x). This is the objective value of the above program.

Local Search. We call the local search procedure as NW(C,W, {Ui}, B). This procedure has a step-size

parameter δ = ε7b
312m6 . We start with any allocation x0 ∈ [xj , 1]m with

∑
j∈C` sjxj = B. Note that such an

allocation always exists since we assumed
∑
j∈C` sj > B, and further,

∑
j∈C` sjxj = εB.

Given the current allocation x, we find candidates j, ` ∈ C` such that (i) xj ≤ 1− δ
sj

; (ii) x` ≥ x` + δ
s`

; and

(iii) the following condition holds:

(3.1)
∂φ(x)

∂xj · sj
>

∂φ(x)

∂x` · s`
+
ε

b
.

Recall that b is the budget for the overall problem, not for the subroutine. While such a pair of candidates
(j, `) exists, the algorithm increases xj by δ/sj , and decreases x` by δ/s`. Note that this update is feasible for the
program, and preserves the cost of the allocation in C` at exactly B, and is hence feasible for the above program.
The procedure stops when such a pair of candidates (j, `) no longer exists.

3.2.3 Analysis In the analysis below, we assume the local optimum can be efficiently computed and present
properties of this solution. The running time analysis is presented in Section 3.5.

We show the following result, which at a high level, extends the analysis of the PAV rule for binary additive
utilities and unit sizes in [39] to the continuous setting, with submodular utilities and arbitrary sizes. This result
will show as a corollary that NW(C,W, {Ui}, B) finds a 2-approximate fractional core outcome.

Theorem 3.1. Given a set of voters W with utilities {ui} and multilinear extensions {Ui}, and a cost budget
B ∈

[
ε

5mb, b
]

on C`, let x denote the solution to NW(C,W, {Ui}, B). Suppose a subset S ⊆ W of voters can
choose an allocation y ∈ [0, 1]m with Cost(y) ≤ b such that Ui(y) > θUi(x) for all i ∈ S, where θ ≥ 1. Then:

|S| < |W |
B(1− ε)

· Cost(y)

θ − 1− 2ε
.

Proof. Given the local optimum x with
∑
j∈C` sjxj = B. Let M1 = {j ∈ C | xj + δ

sj
≤ yj} and

M2 = {j ∈ C | xj < yj < xj + δ
sj
}. Note that M1 ∪M2 ⊆ C`, since for all j ∈ Cs, we have xj = 1 ≥ yj .

Let y′ be the allocation where y′j = yj for j ∈M1, and y′j = xj otherwise. Note that when moving from x to
y′, utility increase for i ∈ S can only come from allocation increase of candidates in M1. Further, note that the
direction y′ − x is non-negative, since yj > xj for j ∈M1 and y′j = xj for j /∈M1.

By applying Lemma 3.1 to the multilinear function Ui and observing that ∂Ui
∂xj
≥ 0, we have∑

j∈M1

∂Ui(x)

∂xj
· yj + Ui(x) ≥

∑
j∈C

∂Ui(x)

∂xj
· (y′j − xj) + Ui(x) ≥ Ui(y′),
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where the last inequality follows from the concavity of Ui in non-negative directions.
Consider now the allocation z, where zj = yj if j ∈ M1 ∪M2, and zj = xj otherwise. Note that z ≥ y, so

that Ui(z) ≥ Ui(y). Further, the direction z−y′ is non-negative, since zj = yj ≥ xj = y′j for j ∈M2, and zj = y′j
otherwise. Applying Lemma 3.1 again gives

Ui(z) ≤ Ui(y′) +
∑
j

∂Ui(y
′)

∂y′j
· (zj − y′j) = Ui(y

′) +
∑
j∈M2

∂Ui(y
′)

∂xj
· (yj − y′j).

Combining the relations above and observing that Ui(z) ≥ Ui(y), we have∑
j∈M1

∂Ui(x)

∂xj
· yj + Ui(x) ≥ Ui(y′) ≥ Ui(y)−

∑
j∈M2

∂Ui(y
′)

∂xj
· (yj − y′j).

By Lemma 3.2, we have ∂Ui(y
′)

∂xj
≤ 1 for all j ∈ M2. Further, yj − y′j = yj − xj ≤ δ

sj
≤ ε6

312m5 , since sj ≥ ε
mb

and δ = ε7b
312m6 . Therefore, for any i ∈ S, we have:

∑
j∈M1

∂Ui(x)

∂xj
· yj ≥ Ui(y)− Ui(x)− ε6

312m4
> (θ − 1)Ui(x)− ε6

312m4
,

where we have used that Ui(y) > θUi(x) for all i ∈ S.
Note now that

(3.2) Ui(x) ≥ umax
i · xj =

B · ε∑
j∈C` sj

≥ ε2 · b/m
b ·m

=
ε2

m2
,

where we have used that sj ≤ b for all j ∈ C, and B ≥ ε
5mb. Combining the two inequalities above gives∑

j∈M1

∂Ui(x)

∂xj
· yj ≥ (θ − 1− ε) · Ui(x).

Summing this inequality over all candidates in S, we have∑
i∈S

∑
j∈M1

∂Ui(x)

∂xj
· yj
Ui(x)

≥ |S| · (θ − 1− ε).

Since ∂φi(x)
∂xj

= 1
Ui(x) ·

∂Ui(x)
∂xj

, we have

∑
j∈M1

(
yj · sj · ∂φ(x)

∂xj ·sj

)
∑
j∈M1

yj · sj
≥

∑
j∈M1

(∑
i∈S

∂φi(x)
∂xj ·sj · yj · sj

)
∑
j∈M1

yj · sj
≥
∑
i∈S
∑
j∈M1

∂Ui(x)
∂xj

· yj
Ui(x)∑

j∈M1
yj · sj

≥ |S| · (θ − 1− ε)
Cost(y)

.

Therefore,

max
j∈M1

∂φ(x)

∂xj · sj
>
|S| · (θ − 1− ε)

Cost(y)
≥ |S| · (θ − 1− 2ε)

Cost(y)
+ ε/b,

where we have used that Cost(y) ≤ b and |S| ≥ 1. Let j1 denote the j ∈ M1 that achieves the maximum in the
previous inequality.

Now, let R1 = {j ∈ C` | xj ≥ xj + δ
sj
}. Applying Lemma 3.1 along the positive direction x gives∑

j∈C xj ·
∂Ui(x)
∂xj

≤ Ui(x). Since ∂Ui(x)
∂xj

≥ 0 for all j ∈ C, we have

∑
j∈R1

xj ·
∂Ui(x)

∂xj
≤ Ui(x).
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Summing this over all i ∈W , we have:

∑
i∈W

∑
j∈R1

xj · sj ·
∂φi(x)

∂xj · sj
=
∑
i∈W

∑
j∈R1

xj · ∂Ui(x)
∂xj

Ui(x)
≤
∑
i∈W

Ui(x)

Ui(x)
= |W |.

Therefore, ∑
j∈R1

xj · sj · ∂φ(x)
∂xj ·sj∑

j∈R1
xj · sj

=

∑
i∈W

∑
j∈R1

xj · sj · ∂φi(x)
∂xj ·sj∑

j∈R1
xj · sj

≤ |W |∑
j∈R1

xj · sj
≤ |W |
B(1− ε)

.

The last inequality holds since
∑
j∈C`\R1

xj ·sj ≤
∑
j∈C`\R1

δ
sj
·sj ≤ mδ ≤ εB, where we have used that δ = ε7b

312m6

and B ≥ ε
5mb. This implies

∑
j∈R1

sjxj ≥ B(1− ε).
Therefore,

min
j∈R1

∂φ(x)

∂xj · sj
≤ |W |
B(1− ε)

.

Let j2 denote the j ∈ R1 that achieves this minimum.
Note that xj1 < yj1 and xj2 > xj2 by assumption. Further, since x is locally optimal, Eq. (3.1) cannot hold

for j = j2 and ` = j1. This means ∂φ(x)
∂xj1 ·sj1

≤ ∂φ(x)
∂xj2 ·sj2

+ ε/b. Therefore, we have

|S| · (θ − 1− 2ε)

Cost(y)
<

∂φ(x)

∂xj1 · sj1
− ε/b ≤ ∂φ(x)

∂xj2 · sj2
≤ |W |
B(1− ε)

.

Rearranging completes the proof.

As an aside, the following corollary is immediate if all one wants is an approximate fractional core on the
utilities {Ui} and budget b. Note that the proof trivially extends to any continuous, concave utilities {Ui}, since
these are concave in positive directions.

Corollary 3.1. The solution x of NW(C, V, {Ui}, b) is in a 2-approximate fractional core for any continuous
concave utilities {Ui}.

Proof. Setting θ = 2 and ε = 0 in Theorem 3.1, if there exists an S and a solution y such that Ui(y) > 2Ui(x)

for all i ∈ S, then |S| < |W |
b · Cost(y). This contradicts Definition 2.1 and thus completes the proof.

3.3 Randomized Rounding and Satisfied Voters We now present a randomized rounding scheme on the
fractional solution constructed above. Since the utilities of voters are different but the allocation is the same,
we will need the rounding of the fractional allocation to be oblivious to the utilities. The natural approach is
therefore randomized rounding. Clearly, if we randomly round, the expected utility of a voter in the integral
committee is at least that in the fractional core. However, the same cannot be said for an arbitrary realization of
the randomization: there can be many voters having lower-than-expected utilities, and they can form a coalition
and deviate. Further, the size of the resulting committee can exceed the bound B. Therefore, we cannot directly
argue that the resulting integral committee will lie in the core.

Our contribution in this section is to show a rounding procedure that ensures that with constant probability,
a constant fraction of voters obtain at least a constant fraction of the utilities they obtained in the fractional
solution. We will use this as a subroutine in our main procedure in Section 3.4 in order to argue that these voters
will not form part of any deviating coalition.

3.3.1 Rounding Procedure To begin with, in the sequel, we will distinguish between items that are
fractionally and integrally allocated as follows:

Definition 3.2. (Fully and Fractionally Allocated Items) An item j ∈ C in the fractional solution is
fully allocated if xj ≥ 1; we call it fractionally allocated if xj ∈ (0, 1). Note that all items in Cs are fully allocated.

The rounding procedure has a parameter κ ≤ 1, and executes as shown in Algorithm 1.
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Algorithm 1 Randomized Rounding of Fractional Allocation x

1: function Round(C,W, {Ui}, B)
2: x ← NW(C,W, {Ui}, κB)
3: O ← Cs
4: T2 ← {j ∈ C` | sj ≤ κB}
5: Include j ∈ T2 in O independently with probability min(1, xj)
6: return O
7: end function

3.3.2 Satisfied Voters We now define what it means for a voter to be satisfied, and present a bound on the
number of satisfied voters after the procedure Round is applied.

Definition 3.3. (γ-Satisfied) Let x be the fractional solution of NW(C,W, {Ui}, κB), and O be the resulting
integer committee found by Round(C,W, {Ui}, B). For γ ≥ 2, we say that voter i is γ-satisfied by O w.r.t.

solution x if there is a q ∈ C such that ui(O ∪ {q}) ≥ Ui(x)
γ .

Our main result in this section is the following theorem.

Theorem 3.2. (Constant Fraction of Constant-Satisfied Voters for Submodular Utilities)
Given the fractional solution x produced by NW(C,W, {Ui}, κB) where |W | = n′, there is a integral committee
O produced by Round(C,W, {Ui}, B) with at least (1− β)n′ γ-satisfied voters, where

(3.3) β =
(
κe1−κ) 1

κ + (γ − 1)e2−γ .

Further, this committee is feasible, so that
∑
j∈O∩C` sj ≤ B.

For the proof, we will need the following lemma, which is the analog of Lemma 4.1 for submodular functions.

Lemma 3.3. (Lower Tail Bound, [16]) Assume f({j}) ∈ [0, 1] for all j ∈ C, and let µ0 = F (x), where F
is the multilinear extension of f . Let O denote the outcome of independent randomized rounding applied to
x ∈ [0, 1]m. Then for any ρ > 1:

Pr

[
f(O) ≤ µ0

ρ

]
≤
(
ρe1−ρ)µ0

ρ .

Proof. (Proof of Theorem 3.2) We show that for each voter i, the probability that i is γ-satisfied is at least 1−β.
This implies the number of γ-satisfied voters is at least (1− β)n′ in expectation, and thus it is at least (1− β)n′

for some realization produced by Round.
Let T1 = {j ∈ C` | sj ≥ κB} and T2 = C \ T1. Fix voter i with utility function ui, and multilinear extension

Ui.
Let G1 denote the multilinear extension restricted only to candidates in T1, that is,

G1(x) =
∑
T⊆T1

ui(T )

∏
j∈T

xj

 ∏
j∈T1\T

(1− xj)

 ,

and similarly, G2 denote the multilinear extension restricted to T2, that is,

G2(x) =
∑
T⊆T2

ui(T )

∏
j∈T

xj

 ∏
j∈T2\T

(1− xj)

 .

By sub-additivity of ui, we have Ui(x) ≤ G1(x) + G2(x), and by monotonicity of ui, we have Ui(x) ≥
max (G1(x), G2(x)).

We now split the analysis into several cases:
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Case (1): Suppose G1(x) ≥ 1
γUi(x). In this case, we make two observations. First,

G1(x) ≤
∑
T⊆T1

∑
j∈T

ui({j})

∏
j∈T

xj

 ∏
j∈T1\T

(1− xj)

 ≤ ∑
j∈T1

xjui({j}).

Further, since
∑
j∈T1

sjxj ≤ κB, and since sj ≥ κB for all j ∈ T1, we have
∑
j∈T1

xj ≤ 1. Putting these together,
we have

G1(x) ≤ max
j∈T1

ui({j}).

Therefore, using j∗ = argmaxj∈T1
ui({j}) as additament makes i achieve utility at least 1/γ fraction of Ui(x).

Therefore, i is γ-satisfied just by the additament.
Case (2): We now assume G1(x) ≤ 1

γUi(x) and thus G2(x) ≥ (1− 1/γ)Ui(x). Suppose there exists ` ∈ T2 such

that ui({`}) ≥ 1
γ−1G2(x). Then, just using ` as additament causes the utility of i to be at least 1/γ fraction of

Fi(x) and voter i is γ-satisfied by the additament `.
Case (3): In the final case, we have G2(x) ≥ (1 − 1/γ)Ui(x), and we assume that for all j ∈ T2,
ui({`}) < 1

γ−1G2(x). Let O′ = O ∩ C`.

First note that E
[∑

j∈O′ sj

]
≤ κB, since O′ is the result of randomized rounding of x and since

∑
j∈C` sjxj ≤

κB. Further, O′ ⊆ T2 ∩ C`, and for all j ∈ T2 ∩ C`, we have sj ≤ κB. Therefore, a standard application of
Chernoff bounds yields:

Pr

∑
j∈O′

sj > B

 ≤ (κe1−κ) 1
κ .

Further, note that for all j ∈ T2, we have that the marginal ui({`}) < 1
γ−1G2(x). Applying Lemma 3.3 with

ρ = γ − 1, we have:

Pr

[
ui(O) ≤ G2(x)

γ − 1

]
≤ (γ − 1)e2−γ .

Therefore, by union bounds, with probability at least 1−β, we have both events: (1) The committee O′ is feasible

for size B; and (2) ui(O) ≥ G2(x)
γ−1 ≥

Ui(x)
γ , implying i is γ-satisfied by O. This completes the proof.

The following corollary shows that this step can be implemented in polynomial time.

Corollary 3.2. For β defined in Eq. (3.3), n′ = |W | and any ε ∈ (0, 1), a committee O ⊆ C with (1− β − ε)n′
γ-satisfied voters can be computed with probability 1− 1

poly(m,n)
in time poly(n,m, 1/ε).

Proof. Let X be the random variable indicating the number of γ-satisfied voters returned by
Round(C,W, {Ui}, B). By Theorem 3.2, we have E[X] = (1 − β)n′. Further, X ≤ n′. Therefore, Pr[X ≥
(1− β − ε)n] ≥ ε

β+ε ≥
ε
2 . A standard application of sampling bounds now completes the proof.

3.4 The Constant Approximation to the Core In this section, we design an algorithm for the overall
problem, and prove that it returns a committee in an O(1)-core. The algorithm will repeatedly construct fractional
solutions and round them, using the algorithms developed above as subroutines. The analysis critically requires
the local optimality property of the Nash Welfare objective, captured in Theorem 3.1.

3.4.1 Algorithm Algorithm 2 finds an approximate core solution in the following way: It iteratively computes
the fractional local optimum to Nash Welfare on the remaining voters with a scaled-down budget, rounds it,
eliminates voters that are γ-satisfied with respect to the solution at this iteration, scales down the budget again,
and iterates on the remaining voters with the smaller budget. The scaling parameter ω for the budget will be
determined later. The overall structure of the algorithm is similar to that in [32], though the details of constructing
the fractional solution, and the resulting proof of correctness are entirely different.
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Algorithm 2 Iterative Rounding of the Nash Welfare Solution

1: function IterRound(C, V, {uij}, b)
2: t ← 0
3: V0 ← V
4: T ∗ ← Cs
5: b0 ← (1− ε)(1− ω)b
6: while bt ≥ ε

mb do
7: xt ← NW(C, Vt, {Ui}, κbt)
8: Ot ← Solution of Round(C,W, {Ui}, bt) that satisfies Corollary 3.2
9: Wt ← Voters in Vt that are γ-satisfied by Ot with respect to the solution xt

10: Vt+1 ← Vt \Wt

11: T ∗ ← T ∗ ∪Ot
12: bt+1 ← ωbt
13: t ← t+ 1
14: end while
15: return T ∗ as the final integer solution
16: end function

3.4.2 Analysis Let n = |V |, and recall that b is the initial budget. We will show that the solution T ∗ lies in
the α-core for the set V of voters with size constraint b. First note that since

∑
j∈Cs sj ≤ εb, and since each Ot

is feasible for budget bt, we have:∑
j∈T∗

sj ≤ εb+
∑
t

∑
j∈Ot

sj ≤ εb+
∑
t

bt = εb+ (1− ε)(1− ω)
∑
t≥0

ωtb ≤ b.

Therefore, the solution T ∗ is feasible for the size b.
First note that when bt <

ε
mb, since all items in C` has sj >

ε
mb, we have

∑
j∈C` xjt < 1. Since Cs ⊆ T ∗,

for any fractional solution xt, we have maxj∈C u({j}) ≥ Ui(xt), so that all voters are 1-satisfied. This implies
Vt = ∅ at termination, so that any voter i ∈ V belongs to Wt′ for some t′.

For the purpose of contradiction, we assume the resulting solution T ∗ is not in the α-core (Definition 1.2),
where α ≥ 1 is a quantity we will determine later. Let S denote the set of voters that deviate, and let A denote

the set of items they deviate to. We have
∑
j∈A sj ≤

|S|
n · b, and A provides an α-factor larger utility to voters in

S even after including any additament.
Consider the voters in Wt, and let St = S ∩ Wt. These voters are γ-satisfied by Ot with respect to the

fractional solution xt (Definition 3.3). Therefore, if i ∈ St deviates to A to obtain an α-factor larger utility, it
must be that Ui(A) ≥ α

γ · Ui(xt). Let θ = α
γ . We will assume θ > 1 below.

Using Theorem 3.1, since xt is a local optimum, using y as the set St, and observing that all agents i ∈ St
have Ui(y) > θUi(xt), where θ = α

γ , we have:

|St| ≤
nt

κbt · (1− ε)
·
∑
j∈A sj

θ − 1− 2ε
.

Summing this over all t, and using
∑
j∈A sj ≤

|S|
n b, we have:

|S| =
∑
t

|St| ≤
∑
j∈A sj

(θ − 1− 2ε)(1− ε)
·
∑
t

nt
κbt
≤ |S|

n
· b

(θ − 1− 2ε)(1− ε)
·
∑
t

nt
κbt

.

Therefore, for a blocking coalition to exist, we need:

(3.4)
b

n
·
∑
t

nt
κbt
≥ (θ − 1− 2ε)(1− ε) =

(
α

γ
− 1− 2ε

)
(1− ε).
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We will now set the parameters ω, γ, α so that the above inequality is false. First note by Corollary 3.2 that
nt+1 ≤ (β + ε)nt where β satisfied Eq. (3.3). Further, bt+1 = ωbt. Therefore,

nt+1

bt+1
≤ β + ε

ω
· nt
bt

with n0

b0
= n

(1−ω)(1−ε)b . Therefore,

(3.5)
(1− ε)b

n
·
∑
t

nt
κbt
≤ 1

(1− ω)κ
·
∑
t≥0

(
β + ε

ω

)t
=

ω

(1− ω)(ω − β − ε)κ
.

Combining Eq. (3.4) and Eq. (3.5), for a blocking coalition to exist, we need

α ≤ ωγ

κ(1− ω)
(
ω − (γ − 1)e2−γ − (κe1−κ)

1
κ − ε

)
(1− ε)2

+ (1 + 2ε) · γ.

For an α slightly larger than the right-hand side, a blocking coalition will therefore not exist. Then The right-hand
side of the above inequality is approximately minimized when ω = 0.23, γ = 7.435, κ = 0.21 and ε→ 0, yielding
α < 67.37.1 This finally yields the following theorem; the only missing detail is the running time of local search
in Section 3.2, which we address in Section 3.5.

Theorem 3.3. (Main Theorem) For monotone submodular utilities, a 67.37-core is always non-empty. One
such solution can be computed in polynomial time.

3.5 The Running Time of Local Search We now show that Algorithm 2 runs in polynomial time. This
requires showing that the local search procedure in Section 3.2 runs in polynomial time; the rest of the steps in

Algorithm 2 can easily be implemented efficiently. We will show this in two parts: The partial derivatives ∂φi(x)
∂xj

can be approximately computed efficiently; and the number of iterations (finding the candidate pair (j, `) and
updating the allocations) performed by the local search procedure is polynomially bounded.

3.5.1 Estimating the Gradient of the Nash Welfare Objective We first show how to estimate the
derivative of φ(x) in the procedure in Section 3.2. First, the estimation procedure for Ui and its derivative is
the same as that in the work of [14]: Each time we compute Ui(x), we pretend x is a product distribution over
candidates, and sample it H times. Denote the samples as the committees Oh ∼ x where h ∈ {1, 2, . . . ,H}. We

calculate the quantity Ûi(x) = 1
H ·
∑H
h=1 ui(Oh) as the estimation of Ui(x). The following lemma gives a bound

on the additive error of estimation on Ui(x) if H is sufficiently large.

Lemma 3.4. (Chernoff Bound, [14]) Pr
[∣∣∣Ûi(x)− Ui(x)

∣∣∣ > ∆
]
< 2e−

∆2·H
m2 .

Since the derivative of Ui is given in Lemma 3.2, its error is bounded by estimating the multilinear function
twice. This yields the following lemma:

Lemma 3.5. In the local search procedure in Section 3.2, suppose the total number of times the multilinear function
Ui and its derivative is evaluated is N . Then, using poly

(
N,m, 1

∆

)
samples, the additive error in each estimate

is bounded by ∆ with probability 1− 1

poly(m,N)
.

In the sequel, we will set ∆ = ε6

64n·m5 . We denote the estimated derivative of the multilinear function as ∂̂Ui(x)

∂̂xi
,

and the estimated derivative of φi(x) and φ(x) as ∂̂φi(x)

∂̂xj
= 1

Ûi
· ∂̂Ui(x)

∂̂xj
and ∂̂φ(x)

∂̂xj
=
∑n
i=1

∂̂φi(x)

∂̂xj
respectively. We

have the following lemma for bounding the error of estimating ∂φ(x)
∂xj
· 1
sj

. For this proof and subsequent ones, we

crucially need that the Nash Welfare program in Section 3.2 lower bounds the allocations as xj ≥ xj .

1Note that for this choice of κ, the subroutine NW(C, Vt, {Ui}, κbt) is run with budget at least κbt ≥ κ ε
m
b ≥ ε

5m
b, so that the

precondition of Theorem 3.1 holds.
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Lemma 3.6. Let ∆ = ε6

64n·m5 , and suppose xj ≥ xj for all candidates j ∈ C`, where xj is as defined in Section 3.2.

If for any j ∈ C` and all i ∈ V , we have:
∣∣∣Ûi(x)− Ui(x)

∣∣∣ < ∆ and
∣∣∣ ∂̂Ui(x)

∂̂xj
− ∂Ui(x)

∂xj

∣∣∣ < ∆, then it holds that

1
sj
·
∣∣∣ ∂̂φ(x)

∂̂xj
− ∂φ(x)

∂xj

∣∣∣ ≤ ε
8b .

Proof. We have ∣∣∣∣∣ ∂̂φi(x)

∂̂xj
− ∂φi(x)

∂xj

∣∣∣∣∣ =

∣∣∣∣∣ 1

Ûi(x)
· ∂̂Ui(x)

∂̂xj
− 1

Ui(x)
· ∂Ui(x)

∂xj

∣∣∣∣∣
≤ 1

Ui(x)−∆
·
(
∂Ui(x)

∂xj
+ ∆

)
− 1

Ui(x)
· ∂Ui(x)

∂xj

≤

∣∣∣∣∣∣
∆ ·
(
Ui(x) + ∂Ui(x)

∂xj

)
(Ui(x)−∆)2

∣∣∣∣∣∣ .
By Lemma 3.2, we have ∂Ui(x)

∂xj
≤ 1. If ∆ ≤ ε2

2m2 , then by Eq. (3.2) we have 2∆ ≤ Ui(x), thus:

∣∣∣∣∣ ∂̂φi(x)

∂̂xj
− ∂φi(x)

∂xj

∣∣∣∣∣ =

∣∣∣∣∣∣
∆ ·
(
Ui(x) + ∂Ui(x)

∂xj

)
(Ui(x)−∆)2

∣∣∣∣∣∣ ≤
∣∣∣∣∆ · (Ui(x) + 1)

Ui(x)2/4

∣∣∣∣ ≤
∣∣∣∣∣ ∆ · 2
ε4

m4 /4

∣∣∣∣∣ ≤
∣∣∣∣8∆ ·m4

ε4

∣∣∣∣ .
Since sj ≥ ε

mb for j ∈ C`, we have

1

sj
·

∣∣∣∣∣∂φ(x)

∂xj
− ∂̂φ(x)

∂̂xj

∣∣∣∣∣ ≤ 1

sj

n∑
i=1

∣∣∣∣∣ ∂̂φi(x)

∂̂xj
− ∂φi(x)

∂xj

∣∣∣∣∣ ≤
∣∣∣∣8∆ ·m4

ε4

∣∣∣∣ · n · mb · ε ≤ 8∆ ·m5 · n
ε5 · b

=
ε

8b
,

finishing the proof.

3.5.2 Number of Iterations in Local Search The local search procedure in Section 3.2 iteratively finds a
pair of candidates (j, `) such that

(3.6)
∂̂φ(x)

∂̂xj
· 1

sj
>
∂̂φ(x)

∂̂x`
· 1

s`
+

3ε

4b
.

Each time it finds such a pair, it increases xj by δ · 1
sj

and decreases x` by δ · 1
s`

. Note that at stopping, Eq. (3.6)

does not hold, which by Lemma 3.6 implies Eq. (3.1) also does not hold with high probability. Therefore, the
termination condition in Section 3.2 is satisfied.

In order to bound the number of iterations of this procedure, we first show that the first and second partial
derivatives of φ are bounded from above.

Lemma 3.7. If φi(x) = logUi(x) and xj ≥ xj for all candidates j ∈ C`, where xj is as defined in Section 3.2,
then we have the following bounds for all j, k ∈ C` and i ∈W :

0 ≤ ∂φi(x)

∂xj
= O

(
m2

ε2

)
and

∣∣∣∣∂2φi(x)

∂xj∂xk

∣∣∣∣ = O

(
m4

ε4

)
.

Proof. Since φi(x) = logUi(x), using Lemma 3.2, we have ∂φi(x)
∂xj

≤ 1
Ui
. Combining this with Eq. (3.2) gives

∂φi(x)
∂xj

≤ 5m2

ε2 .

We next bound the second order derivatives as follows. Here, x−j,k is x with the jth and kth dimension
removed, and T ∼ x−j,k means that T is chosen by including ` ∈ C \ {j, k} independently with probability x`.
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The first inequality below uses Eq. (3.2).∣∣∣∣∂2φi(x)

∂xj∂xk

∣∣∣∣ =

∣∣∣∣− 1

Ui(x)2
· ∂Ui(x)

∂xj
+

1

Ui(x)
· ∂

2Ui(x)

∂xj∂xk

∣∣∣∣
≤ 25m4

ε4
+

∣∣∣∣∣∣5m
2

ε2
·

∑
T⊆C\{j,k}

Pr
T∼x−j,k

[T ] · (ui(T ∪ {j, k})− ui(T ∪ {j})− ui(T ∪ {k}) + ui(T ))

∣∣∣∣∣∣
≤ 25m4

ε4
+

5m2

ε2
·

∑
T⊆C\{j,k}

Pr
T∼x−j,k

[T ] ·
(
ui(T ∪ {k})− ui(T )− ui(T ∪ {j, k}) + ui(T ∪ {j})

)
≤ 25m4

ε4
+

5m2

ε2
·

∑
T⊆C\{j,k}

Pr
T∼x−j,k

[T ] · 1 ≤ 26m4

ε4
.

This finishes the proof.

The next lemma now follows from a standard application of first order Taylor approximation. We assume the
local search procedure in Section 3.2 iteratively finds a pair of candidates (j, `) such that Eq. (3.6) holds.

Lemma 3.8. Assuming all the estimates on ∂φ(x)
∂xj

during execution of local search are within ± ε
8b of the true

values, the total number of iterations is poly
(
m,n, 1

ε

)
.

Proof. Since all estimates of ∂φ(x)
∂xj

during execution of local search are within ± ε
8b of the true values, if Eq. (3.6)

holds for j, k ∈ C`, then:

∂φ(x)

∂xj
· 1

sj
>
∂̂φ(x)

∂̂xj
· 1

sj
− ε

8b
≥ ∂̂φ(x)

∂̂x`
· 1

s`
+

3ε

4b
− ε

8b
≥ ∂φ(x)

∂x`
· 1

s`
+

ε

2b
.

We lower bound the increase in φ(x) when x = (x−j,k, xj , xk) moves to x′ =
(
x−j,k, xj + δ

sj
, x` − δ

s`

)
. By Taylor

approximation, we have:

φ(x′)− φ(x) ≥ (x′ − x) · ∇φ(x)−
m∑
r=1

(x′r − xr)2M

2

where M is an upper bound on the absolute value of the second derivatives of φ. Since M = O
(
m4

ε4

)
by

Lemma 3.7, this implies:

φ(x′)− φ(x) ≥ δ ·
(
∂φ(x)

xj
· 1

sj
− ∂φ(x)

x`
· 1

s`

)
− 26m4

ε4
· 3δ2

s2
min

,

where smin = min`∈C` s` ≥ ε
mb and δ = ε7b

312m6 . Plugging these values in and simplifying, we have:

φ(x′)− φ(x) = Ω

(
εδ

b

)
= poly

(
ε,

1

n
,

1

m

)
.

Since φ(x) lies in
(

log
(

ε2

5m2

)
, n logm

)
, the number of iterations is poly

(
m,n, 1

ε

)
.

Combining the previous lemmas, the following theorem is now immediate by union bounds, where we assume
ε > 0 is a small enough constant. This completes the proof of Theorem 1.1.

Theorem 3.4. With probability at least 1− 1

poly(n,m, 1
ε )

, the local search algorithm in Section 3.2 has running

time poly(n,m, 1
ε ).
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Proof. By Lemma 3.8, if we estimate all the Ui(x) and ∂Ui(x)
∂xj

within ±∆ additive error, the algorithm ends in

poly(n,m, 1
ε ) iterations. Since within each iteration we estimate Ui and ∂Ui(x)

∂xj
for poly(m) times, the total number

of evaluations is bounded by N = poly(n,m, 1
ε ). Then by Lemma 3.5, we need at most poly(N,m, 1

∆ ) samples for

all additive errors to be bounded by ±∆ with probability 1− 1

poly(N)
. Since ∆ = ε6

64n·m5 = 1

poly(n,m, 1ε )
and the

number of iterations is bounded by poly(n,m, 1
ε ), the total running time including sampling steps is poly(n,m, 1

ε ).

4 Improved Approximation for Additive Utilities

In this section, we present a 9.27-core for the special case of additive utilities. Recall that for such utilities,
ui(S) =

∑
j∈S uij , where S ⊆ C is a subset of candidates and i ∈ W is a voter. Though we could use the

approach in the previous section, we lose constant factors first because the local optimum to the Nash Welfare
objective only finds an approximate fractional core, and secondly because the randomized rounding needs to scale
down budgets to satisfy the size constraints.

We address the first issue by using an exact core solution to the fractional problem. We do this via the classic
Lindahl equilibrium that we describe in Section 4.1. To address the second issue, we use dependent rounding that
preserves the budget constraint with probability one for additive utilities, and we describe this in Section 4.2.
This yields a 9.27-core, though we do not know how to implement the resulting algorithm in polynomial time,
since the fractional solution is now via a fixed point argument.

4.1 Fractional Solution: Lindahl Equilibrium Our algorithm for constructing a committee in the
approximate core will make use of the Lindahl equilibrium [34, 28]. This equilibrium yields a fractional committee
that lies in the fractional core (Definition 2.1 for α = 1).

We follow the approach in [25] for specifying the Lindahl equilibrium. Let xj ≥ 0 denote the fraction to which
candidate j is chosen. Here, we will assume for technical reasons that this can be a quantity greater than 1. We
assign endowment b

n to each voter i ∈ V , and a price pij of j ∈ C for i ∈ V . The Lindahl equilibrium is now
defined as follows.

Definition 4.1. (Lindahl Equilibrium) Let pij be the price of j ∈ C for i ∈ V , and let xj ≥ 0 be the fraction
with which item j is allocated. The prices and allocations constitute a Lindahl Equilibrium if:

1. For all i ∈ V , suppose the voter computes allocation y ≥ 0 that maximizes her utility Ui(y) subject to her
endowment constraint

∑
j∈C pijyj ≤

b
n , then we have that y = x.

2. The profit of the allocation given by
∑
i∈V

∑
j∈C yjpij −

∑
j∈C sjyj, is maximized when y = x.

The main result in [28] is the following theorem proved by a fixed point argument. The setting in [28] is much
more general. Therefore, for the purpose of completeness, we present a simple and direct proof of this theorem
and its consequences via complementarity theory [22] in Appendix A.

Theorem 4.1. ([28]) If the utility functions Ui(x) have continuous derivatives, are strictly increasing, and are
strictly concave, then a Lindahl equilibrium always exists.

4.1.1 Properties of the Lindahl Equilibrium We will need the following corollary to Theorem 4.1, which
for the purpose of completeness, we also prove in Appendix A.

Corollary 4.1. It holds for a Lindahl equilibrium that:

1. For all voters i ∈ V , we have
∑
j pijxj = b

n .

2. For each candidate with xj > 0, we have
∑
i pij = sj, and for each candidate with xj = 0, we have∑

i pij ≤ sj.

3.
∑
j∈C sjxj = b.

Given Corollary 4.1, it is easy and instructive to see that a Lindahl equilibrium lies in the core. Since this
proof idea will be crucial to our analysis, we present it for completeness.
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Corollary 4.2. ([28]) The Lindahl equilibrium lies in the fractional core (Definition 2.1 for α = 1).

Proof. Given the equilibrium x, suppose for the purpose of contradiction that there exists a subset S ⊆ V of t
voters that can deviate and choose a committee z of size

∑
j sjzj ≤

t
nb such that Ui(z) > Ui(x) for all i ∈ V .

Since x is utility maximizing for the voter i at endowment b
n , and since by Item 1 of Corollary 4.1, this endowment

is spent exactly, the committee z must cost more than b/n. Therefore, for all i ∈ V , we have:∑
j

pijzj >
b

n
.

However, by Item 2 of Corollary 4.1,
∑
i pij ≤ sj for all i ∈ S, j ∈ C. Summing the previous inequality over all

i ∈ S, and applying
∑
i pij ≤ sj , we obtain:

∑
j

sjzj ≥
∑
j,i∈V

pijzj ≥
∑
i∈S

∑
j

pijzj

 >
∑
i∈S

b

n
= t

b

n
.

This contradicts the fact that z could have been purchased with the endowments of i ∈ S, that is,
∑
j sjzj ≤ t

b
n ,

and thus completes the proof.

4.1.2 Lindahl Equilibrium for Additive Utilities So far, we have presented the Lindahl equilibrium in its
generality for continuous, concave, non-decreasing utilities. We now specialize it to additive utilities. Given the
additive utility function ui, we make it continuous and unconstrained using the following natural definition:

Ui(x) :=
∑
j∈C

min(1, xj) · ui({j}).

It is clearly a concave function.2 Given this utility function, the Lindahl equilibrium is defined exactly as in
Definition 4.1, and this implies Corollary 4.1 holds as is. The Lindahl equilibrium computation will be encapsulated
by a subroutine below.

Definition 4.2. (Subroutine Lindahl(C,W, {Ui}, B)) Given the set of candidates C, a subset W ⊆ V of
voters with continuous and concave utilities {Ui}, and a size constraint B, this procedure finds a fractional solution
x ≥ 0 over C with

∑
j∈C sjxj ≤ B, such that this solution is a Lindahl equilibrium.

Note that the size B could be different from b. Using Definition 2.1, the solution x of this subroutine satisfies
the following condition: There is no subset S ⊆ W of voters who can find a committee z ≥ 0 over E, with∑
j∈E sjzj ≤

|S|
|W | ·B such that Ui(z) > Ui(x) for all i ∈ S.

4.2 Randomized Rounding and Satisfied Voters Note that if in the Lindahl equilibrium, we have xj > 1
for some j ∈ C, then all items must be integrally allocated. This is because we assumed Ui(x) = u+

i (y) where
yj = min(1, xj). This means that if xj > 1, then it can be reduced to 1 without affecting any utilities. Therefore,
if some item is fractionally allocated, we can decrease the allocation of j with xj > 1 and increase the allocation of
a fractional item, improving the utility of some agent. This violates the core condition. We will therefore assume
throughout that xj ∈ [0, 1] for all j ∈ C.

4.2.1 Rounding Procedure Round(C,W, {ui}, B) Assume we are given a fractional solution x ≥ 0 to
Lindahl(C,W, {uij}i,j , B). The procedure Round(C,W, {uij}, B) uses the algorithm of [12] to the fractionally
allocated items in this solution. This produces a committee (O, `), where the candidates in O are chosen integrally,
at most candidate ` is chosen fractionally, and the total size is always at most B.

2As a technicality, to make the function satisfy the preconditions in Theorem 4.1, we perturb Ui slightly to make it be strictly

increasing, strictly concave, and have continuous derivative. This perturbation preserves Ui to within a (1 + ε) approximation for
ε > 0 being arbitrary small, which will suffice for our approximation guarantees.
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Let Xj be the random variable denoting whether candidate j is selected: Xj = 1 if j ∈ O, Xj = 0 of
j /∈ O ∪ {`}, and Xj is the fractional weight if j = `. Then the procedure Round preserves the marginals:
E[Xj ] = min(1, xj) for all j ∈ C, and the {Xj} are negatively correlated [30, 38]. Note that the candidates with
Xj = 1 define O, while the one with X` ∈ (0, 1) is the fractionally chosen candidate (it may not exist).

Note that

(4.7) E

ui` +
∑
j∈O

uij

 ≥ E

∑
j∈C

uijXj

 =
∑
j∈C

uij min(1, xj) = Ui(x)

where the expectation is over the random choice of O. Further, the size constraint is never violated, so that:∑
j∈O

sj ≤
∑
j∈C

sjXj ≤ B

regardless of the outcome of the rounding procedure. Note finally that any candidate that is fully allocated by x,
that is, with xj ≥ 1, must be present in O.

4.2.2 Satisfied Voters The procedure Round(C,W, {uij}, B) returns the committee O. Given the definition
of γ-satisfied from Definition 3.3, we can strengthen Theorem 3.2 as follows:

Theorem 4.2. (Constant Fraction of Constant-Satisfied Voters) Given the fractional solution x pro-
duced by Lindahl(C,W, {uij}, B) where |W | = n′, there is a integral committee O produced by
Round(C,W, {uij}, B) with at least (1− β)n′ γ-satisfied voters, where β = γe1−γ .

Proving Theorem 4.2 requires a concentration bound for the sum of negatively correlated weighted Bernoulli
random variables.

Lemma 4.1. ([38]) Let B1, B2, . . . , Bk be k negatively correlated Bernoulli random variables. Let X =
∑k
i=1 βiBi,

where βi ∈ [0, 1]. Let E[X] ≥ µ. Then for any constant δ ∈ (0, 1) we have:

Pr[X < (1− δ)µ] <

(
e−δ

(1− δ)(1−δ)

)µ
.

Using the above bound, we complete the proof of Theorem 4.2.

Proof. (Proof of Theorem 4.2) Let I ⊆ C be the set of fully allocated candidates in Lindahl(C,W, {uij}i,j , B)
(i.e. I = {j ∈ C | xj ≥ 1}), and let F ⊆ C be the set of fractionally allocated ones (i.e. F = {j ∈ C | xj ∈ (0, 1)}).
Let ui(F ) =

∑
j∈F xjuij . There are two cases:

Case (1): Suppose these is some candidate q ∈ F so that uiq ≥ ui(F )
γ . In this case, voter i is γ-satisfied with

probability 1, since

uiq +
∑
j∈O

uij ≥
∑
j∈F xjuij

γ
+
∑
j∈I

uij ≥
∑
j∈E uij min(1, xj)

γ
,

where the first step uses that I ⊆ O.

Case (2): Suppose for every candidate j ∈ F , uij <
ui(F )
γ . In this case, we consider the candidate ` from

the procedure Round as the additament, and invoke our concentration bound of Lemma 4.1. Notice Xj ’s are

negatively correlated Bernoulli random variables. Let µ = E
[∑

j∈F uij ·
γ

ui(F ) ·Xj

]
= γ and δ = 1 − 1

γ . By

Lemma 4.1, we have

Pr

∑
j∈F

uij ·
γ

ui(F )
·Xj < 1

 < ( e−δ

(1− δ)(1−δ)

)µ
= γe1−γ .
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If the event
∑
j∈F uij ·

γ
ui(F ) ·Xj < 1 does not happen, the utility of i with additament ` is at least

ui` +
∑
j∈O

uij ≥ ui`X` +
∑

j∈F\{`}

uijXj +
∑
j∈I

uij =
∑
j∈F

uijXj +
∑
j∈I

uij

≥ ui(F )

γ
+
∑
j∈I

uij ≥
∑
j∈E uij min(1, xj)

γ
,

where the first step again uses that I ⊆ O.

4.3 The Constant Approximation to the Core In this section, we modify the algorithm in Section 3.4
and prove that it returns a committee in an O(1)-core. The analysis of our algorithm now critically requires the
market-clearing properties of the Lindahl equilibrium presented in Definition 4.1, Corollary 4.1, and Corollary 4.2.

Algorithm. The algorithm is the same as Algorithm 2, except the following lines:

• Line 7: xt ← Lindahl(C, Vt, {Ui}, bt).

• Line 8: Ot ← Solution of Round(C, Vt, {ui}, bt) that satisfies Theorem 4.2.

Analysis. The analysis follows the same outline as that in Section 3.4.2. First, using the same argument as
in that section, the solution T ∗ is feasible for the size b.

As before, we proceed to show a contradiction. Let S denote the set of voters that deviate, and let A denote

the set of items they deviate to. We have
∑
j∈A sj ≤

|S|
n · b, and A provides an α-factor larger utility to voters

in S even after including any additament. Consider the voters in Wt, and let St = S ∩Wt. These voters are
γ-satisfied by Ot with respect to the fractional solution xt (Definition 3.3). Therefore, if i ∈ St deviates to A to
obtain an α-factor larger utility, it must be that Ui(A) ≥ α

γ · Ui(xt). Let θ = α
γ . We will assume θ > 1 below.

We will now show the analog of Theorem 3.1 using the prices computed by the Lindahl equilibrium. Let
pt denote the prices computed by Lindahl(C, Vt, {Ui}, bt), and let nt = |Vt|. The following lemma generalizes
Corollary 4.2 and bounds the price of the set A via the optimality conditions of the Lindahl equilibrium xt.

Lemma 4.2. For all i ∈ St, we have
∑
j∈A p

t
ij ≥ θ · btnt .

Proof. First note that xtj ≤ 1 for all items j. If any xtj > 1, then all items must be integrally allocated (see
Section 4.1), which means A cannot achieve a θ-factor larger utility. Note that x is the utility maximizing solution
to a packing problem for voter i where the “size” of item j is ptij and the “size” constraint is bt

nt
. This constraint is

exactly satisfied by Item 1 of Corollary 4.1. Since Ui is concave, any solution that produces θ factor more utility
must have “size” at least θ times larger. Therefore, the price of A is θ times larger than that of xt, completing
the proof.

We now bound the size of set St as follows:

Lemma 4.3. (Analog of Theorem 3.1) |St| ≤ nt
bt
·
∑
j∈A sj

θ .

Proof. Summing the bound in Lemma 4.2 over i ∈ St, we have∑
i∈St

∑
j∈A

ptij ≥ |St| · θ ·
bt
nt
.

By Item 2 of Corollary 4.1, we have∑
i∈Vt

ptij ≤ sj ∀j =⇒
∑
i∈St

∑
j∈A

ptij ≤
∑
j∈A

sj .

Combining these inequalities completes the proof.
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This proves the analog of Theorem 3.1. Continuing as before, we sum Lemma 4.3 over all t, and using∑
j∈A sj ≤

|S|
n b, we have:

|S| =
∑
t

|St| ≤
∑
j∈A sj

θ
·
∑
t

nt
bt
≤ |S|

n
· b
θ
·
∑
t

nt
bt
.

Therefore, for a blocking coalition to exist, we need:

(4.8)
b

n
·
∑
t

nt
bt
≥ θ =

α

γ
.

We will now set the parameters ω, γ, α so that the above inequality is false. First note by Theorem 4.2 that
nt+1 ≤ βnt where β = γe1−γ . Further, bt+1 = ωbt. Therefore,

nt+1

bt+1
≤ β

ω
· nt
bt

with n0

b0
= n

(1−ω)b . Therefore,

(4.9)
b

n
·
∑
t

nt
bt
≤ 1

(1− ω)
·
∑
t≥0

(
β

ω

)t
=

ω

(1− ω)(ω − β)
.

Combining Eq. (4.8) and Eq. (4.9), for a blocking coalition to exist, we need

α ≤ ωγ

(1− ω) (ω − β)
=

ωγ

(1− ω) (ω − γe1−γ)
,

where the last step uses β = γe1−γ according to Theorem 4.2.
For an α slightly larger than the right-hand side, a blocking coalition will therefore not exist. Plugging

ω = 0.15 and γ = 6.7 shows α < 9.27, which yields the following theorem:

Theorem 4.3. (Additive Utilities) For additive utilities, a 9.27-core is always non-empty.

5 Lower Bounds

In this section, we provide lower bound examples for general monotone utilities and monotone submodular utilities.
The former result rules out extending our constant factor bound to general monotone utilities, while the latter
shows that for submodular utilities, there is a lower bound on approximation of an absolute constant c > 1.

5.1 General Monotone Utilities

Theorem 5.1. (General Utility Lower Bound) For general monotone utilities, for any function ϕ : Z+ ×
Z+ → R+, a ϕ(n,m)-core can be empty.

Theorem 1.3 is proved by the following example. (The same structure of 2 groups of 3 cyclically symmetric
voters appears in [26, 40].)

Example. We have n = 6 voters and m = 30 candidates. The candidates are grouped into 6 disjoint sets, each of
which contains 5 candidates and is called a “gadget”. We name the gadgets g1, . . . , g6. Each voter i has a favorite
gadget gfi and a second favorite gadget gsi , given by:

f1 = 1, f2 = 2, f3 = 3, f4 = 4, f5 = 5, f6 = 6;

s1 = 2, s2 = 3, s3 = 1, s4 = 5, s5 = 6, s6 = 4.

For any committee E, let xi(E) = 1
5 |E ∩ gfi | and yi(E) = 1

5 |E ∩ gsi |, denoting the fraction of candidates in the
favorite / second favorite gadget of voter i being selected into E, respectively. The utility of voter i on E is given
by

ui(E) = (α+ 1) · 1[xi(E) = 1] + 1[yi(E) = 1].
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Here α = ϕ(n,m) = ϕ(6, 30). Her utility is monotone and supermodular.
Each candidate is of unit size 1 and the budget b = 15. For any feasible committee E, there must be at

least 3 gadgets g’s with |E ∩ g| ≤ 3 – otherwise the committee has at least 4 · 4 = 16 > b candidates. Therefore,
either {g1, g2, g3} or {g4, g5, g6} includes at least 2 gadgets with |E ∩ g| ≤ 3. Without loss of generality, assume
{g1, g2, g3} does and |E ∩ g1| ≤ 3, |E ∩ g2| ≤ 3. In this case, voters 1 and 2 can deviate and buy g2, as they have
a budget of b · 2

n = 5. For any additaments q and q′:

u1(g2) = 1, u1(E ∪ {q}) = 0;

u2(g2) = α+ 1, u2(E ∪ {q′}) ≤ 1.

We have u1(g2) > αu1(E ∪ {q}) and u2(g2) > αu2(E ∪ {q′}).

5.2 Submodular Utilities Next, we modify Section 5.1 to show a lower bound for monotone submodular
utilities.

Theorem 5.2. (Submodular Lower Bound) For monotone submodular utilities, a 1.015-core can be empty.

Example. We use the same setting as Section 5.1, except the utility of each voter i is given by

ui(E) = xi(E) + z · (1− xi(E)) · yi(E),

where z ∈ (0, 1) is a constant to be determined later.

Lemma 5.1. The function ui is monotone and submodular.

Proof. Fix any E ⊆ C and t /∈ E and consider ui(E ∪ {t})− ui(T ). Since gfi ∩ gsi = ∅, this t lies in one of these
two sets but not both. Suppose t ∈ gsi . Then,

ui(E ∪ {t})− ui(E) = z · (1− xi(E)) · (yi(E ∪ {t})− yi(E)) ≥ 0.

Similarly, if t ∈ gfi , we have

ui(E ∪ {t})− ui(E) = (1− zyi(E)) · (xi(E ∪ {t})− xi(E)) ≥ 0,

where we have used that yi(E) ≤ 1 and z ∈ [0, 1]. This shows that ui is a monotone function.
Similarly, if E ⊆ E′, then 1 − xi(E) ≥ 1 − xi(E′) since the coverage function is monotone. Further, by the

submodularity of the coverage function, we have

yi(E ∪ {t})− yi(E) ≥ yi(E′ ∪ {t})− yi(E′).

Therefore, if t ∈ gsi , then

ui(E ∪ {t})− ui(E) = z · (1− xi(E)) · (yi(E ∪ {t})− yi(E))

≥ z · (1− xi(E′)) · (yi(E′ ∪ {t})− yi(E′))
= ui(E

′ ∪ {t})− ui(E′).

A similar argument for the case where t ∈ gfi completes the proof of submodularity.

For any feasible committee E, again without loss of generality, assume |E ∩ g1| ≤ 3, |E ∩ g2| ≤ 3. In this case,
voters 1 and 2 can deviate and buy g2. For any additaments q and q′:

u1(g2) = z, u1(E ∪ {q}) ≤ 0.8 + z · 0.2 · 0.6;

u2(g2) = 1, u2(E ∪ {q′}) ≤ 0.8 + z · 0.2 · 1.

When z =
√

689−17
10 ≈ 0.925, the gap is min

(
u1(g2)

u1(E∪{q}) ,
u2(g2)

u2(E∪{q′})

)
≥ 5
√

689−115
16 > 1.015.
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6 Conclusions and Open Questions

Our work brings up several open questions. First is the existence of polynomial time computable pricing rules
that approximate the core. The work of [40] shows a price increase process that runs in polynomial time and
provides a logarithmic approximation to the core for additive utilities. However, the prices are common to the
voters, as opposed to the per-voter market clearing prices of the Lindahl equilibrium, and we do not know how
to compute the latter in polynomial time. Is there an intermediate price tattonnement scheme that not only runs
in polynomial time, but also achieves a constant approximation?

Next, our approximation bounds are far from tight. In particular, we have not ruled out the existence of a
1-core for additive utility, or an O(1)-core for subadditive or XOS utilities. To address the latter, we would need
to understand the approximability of the core when utilities of voters are continuous and the maximum of linear
functions. Such utilities are convex, but have a specific form that may be amenable to better approximation
results than the worst case illustrated in Theorem 1.3. We leave this as an interesting open question.

A Existence of Lindahl Equilibrium

For the purpose of completeness, we present a direct proof of the existence of Lindahl equilibrium, showing
Theorem 4.1 and Corollary 4.1. We restate Theorem 4.1 below.

Theorem A.1. ([28]) If the utility functions Ui(x) have continuous derivatives, are strictly increasing, and are
strictly concave, then a Lindahl equilibrium always exists.

Following [25], define

fj(x) = −
∑
i∈V

∂Ui(x)
∂xj∑

`∈C x`
∂Ui(x)
∂x`

.

Applying the constrained complementarity theorem of [22] to this continuous function {fj} with the constraint∑
j∈C sjxj ≤ b, there exists x,y ≥ 0, and scalar z ≥ 0 such that:

• For all j ∈ C, fj + zsj = yj ; and x · y = 0.

•
∑
j∈C xjsj ≤ b, and z(b−

∑
j∈C xjsj) = 0.

In the sequel, we will focus on this solution. We will first show that z > 0 so that
∑
j∈C sjxj = b. Otherwise,

for all j ∈ C, we have fj = yj . However, fj < 0 since the utilities are strictly increasing, while yj ≥ 0 by
assumption. This is a contradiction.

Let C ′ = {j ∈ C | xj > 0}. For j ∈ C ′, we have yj = 0 so that fj = −zsj . Multiplying by xj and summing,
we have ∑

j∈C′
xjfj = −

∑
i∈V

∑
j∈C′ xj

∂Ui(x)
∂xj∑

`∈C x`
∂Ui(x)
∂x`

= −
∑
i∈V

1 = −n = −z
∑
j∈C′

sjxj = −zb.

Therefore, z = n/b.

Set pij = b
n

∂Ui(x)

∂xj∑
`∈C x`

∂Ui(x)

∂x`

for all i ∈ V, j ∈ C. Note that
∑
i pij = − b

nfj . This implies the following:

• For all i ∈ V , we have
∑
j pijxj = b

n

∑
j∈C xj

∂Ui(x)

∂xj∑
`∈C x`

∂Ui(x)

∂x`

= b
n .

• For all j ∈ C ′, since fj + zsj = 0 and z = b
n , we have

∑
i pij = sj .

• For all j ∈ C, since fj + zsj = yj ≥ 0, we have
∑
i pij ≤ sj .

• For all i ∈ V and for all j, ` ∈ C, we have pij
∂Ui
∂x`

= pi`
∂Ui
∂xj

.

The first three consequences, along with
∑
j∈C sjxj = b prove Corollary 4.1. By simple gradient optimality,

these conditions also show Item 2 of Definition 4.1. To see this, note that Definition 4.1 does not constrain the
allocation y. Therefore, for the profit to be finite, we have

∑
i pij − sj ≤ 0 for all j. Further, if any of these
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inequalities is strict, the profit is only larger if xj = 0. Therefore, if xj > 0, it must force this inequality to be
tight. These are exactly the conditions we derived above, which means this solution satisfies Item 2. Similarly,
since Ui is strictly increasing and concave, the last condition derived above is the gradient optimality condition
for Item 1 in Definition 4.1. To see this, note that the gradient optimality condition of Item 1 can be written as
∂Ui
∂xj

= λipij for all i ∈ V, j ∈ C. Therefore, pij
∂Ui
∂x`

= pi`
∂Ui
∂xj

, so that any solution satisfying the latter and with∑
j pijxj = b

n must satisfy Item 1.
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