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Abstract. We consider a two-species Lotka-Volterra competition-diffusion model with a shifting
habitat. The growth rate of each species is nondecreasing along the x-axis, and it changes sign and
shifts rightward at a speed c. We investigate the population dynamics of the model in the habitat
suitable for growth of both species for two cases: (i) one species is competitively stronger and has a
slower spreading speed, and (ii) both species coexist. We obtain conditions under which the outcome
of competition depends critically on a number c(∞) given by the model parameters. We show that
under appropriate conditions, if c(∞) > c then the species with the faster spreading speed spreads
into the open space at its own speed and the species with the slower spreading speed spreads into its
rival at speed c(∞), and if c(∞) < c then the species with the slower spreading speed eventually dies
out in space. Our results particularly demonstrate the possibility that a competitively weaker species
with a faster spreading speed can drive a competitively stronger species with a slower spreading speed
to extinction. The mathematical proofs involve linear determinacy analysis, integral equations, and
comparison.
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1. Introduction. Ecologists globally are focused intently on the challenges that
climate change will have for species persistence. Of particular concern is the possibil-
ity that habitat shifts mediated by climate change may outpace the ability of some
species to stay within tolerable zones that feature the correct temperature, rainfall,
phenology, or other seasonal patterns necessary for their persistence. To date, the
vast majority of ecological studies of climate change have focused on species as in-
dependent responders to the challenges imposed by climate change-mediated habitat
shifts. However, there is increasing recognition that species interactions can play a
central role in the ability of individual species to respond to such shifts (e.g., Gilman
et al. [7], Urban et al. [23]). The idea that species that currently coexist and inter-
act through competition, predation, or other interspecific interactions may respond
quite differently to climate change processes (and thus exhibit differential matching
to the resultant habitat shifts) underlies the key ecological concept of ‘no-analogue’
communities (Gilman et al. [7], Reu et al [21]). In this no-analogue framework, fu-
ture communities whose composition has been shaped by differential spatial shifts in
response to climate change will likely feature unusual combinations of species and
species interactions that have no modern-day equivalent (Urban et al. [23]). Likewise,
retrospective analyses suggest the widespread existence of no-analogue communities
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thousands to millions of years in the past when climatic conditions were quite different
(Huntley [15], Graham [9], Watrin et al. [25]).

Here we consider mechanisms that may contribute to the existence of no-analogue
communities, specifically differential dispersal abilities between species that currently
compete for resources. HilleRisLambers and colleagues [12] provide a synthetic re-
view of empirical examples in which different types of species interactions, in concert
with differential dispersal abilities, may shape the structure of future communities
as climate change mediates the spatial shift of tolerable conditions. For competitive
interactions, HillRisLambers et al. [12] report findings from their experimental studies
of the competitive coexistence of three conifer species along an altitudinal transect at
Mt. Rainier, Washington, that is expected to experience significant climate change in
the coming decades. Focusing on coexistence among Pacific silver fir (Abies amabilis),
western hemlock (Tsuga heterophylla), and mountain hemlock (Tsuga mertensiana),
interspecific competitive interactions during early life-history stages (rather than cli-
matic constraints) determine species’ performance at lower range limits. In contrast,
the direct effect of climate on performance is strongest at upper range limits, but only
for adult trees and saplings (HillRisLambers et al. [12]). Spatial shifts in species dis-
tribution are expected to be slow because of low levels of adult mortality, and range
shifts of the focal conifers are unlikely to keep pace with climate velocity at lower
range limits, due to the interacting effects of competition and long generation times
(HillRisLambers et al. [12]). Studies on competitive exclusion for species in shifting
habitats are documented in HillRisLambers et al. [12]. One example is the widespread
native annual legume, Chamaecrista fasciculata, interacting with competitors in its
contracting habitat range and beyond [12, 22].

Understanding biological invasions within the context of climate change requires
modeling approaches that incorporate dynamic landscapes. Li et al. [18] considered
the following reaction-diffusion model to study the impact of climate change on inva-
sion of species

(1.1) ut(t, x) = duxx(t, x) + u(t, x)(r(x− ct)− u(t, x)).

In this model, r(x) is continuous, nondecreasing and bounded with r(−∞) < 0 <
r(∞). r(x− ct) thus divides the spatial domain into two parts: the region with good
quality habitat suitable for growth (i.e., r(x − ct) > 0), and the region with poor
quality habitat unsuitable for growth (i.e., r(x − ct) < 0). c describes the speed at
which the edge of the habitat suitable for species growth shifts. It was shown that
if c > c∗(∞) := 2

√
dr(∞) then solutions with compactly supported initial values

converge to zero uniformly and if c∗(∞) > c then solutions with compactly supported
initial values persist in space and spread rightward at the asymptotic speed c∗(∞).
The rightward and leftward spreading speeds for (1.1) with more general r(x − ct)
can be found in Hu et al. [13]. The problem of existence and stability of traveling
waves for reaction-diffusion equations with shifting habitats related to (1.1) has been
extensively studied; see, for example, Berestycki and Fang [3], Fang et al. [6], Bouhours
and Giletti [5], Berestycki et al. [2], Berestycki and Rossi [4], Hamel [10], Hamel
and Roques [11]. The reader is refereed to Li et al. [17], Li and Wu [19], Hu et
al. [13], and Wang et al. [20, 24] for studies in spreading speeds and traveling waves
in temporal-spatial models with shifting habitats in other forms including integro-
difference equations and integral-differential equations.

Model (1.1) describes the persistence and spread of a single species with a shift-
ing habitat edge, without referring to its interactions with existing species. In this
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paper we consider a two-species competition model, which is an extended form of the
equation (1.1):{

ut(t, x) = d1uxx(t, x) + u(t, x)(r1(x− ct)− u(t, x)− a1v(t, x)),

vt(t, x) = d2vxx(t, x) + v(t, x)(r2(x− ct)− v(t, x)− a2u(t, x)).
(1.2)

This is a Lotka-Volterra type competition model. u(t, x), v(t, x) denote the densities
of two competing species, respectively, at time t and space x; di > 0 are diffusion
coefficients; ai > 0 represent interspecific competition coefficients; each ri(x − ct)
describes a population growth rate as a function of x − ct, which is bounded and
nondecreasing in x − ct, and it changes sign in x − ct; c > 0 is a speed at which the
habitat shifts. Here the habitat in which two species grow and compete is shrinking
in time. We investigate the population dynamics of (1.2) when two competitors
consecutively or simultaneously invade the shifting habitat with compactly supported
initial values. We consider c∗2(∞) := 2

√
d2r2(∞) > c∗1(∞) := 2

√
d1r1(∞) > c so

that in the absence of its rival, species u (v) persists and spreads rightward at speed
c∗1(∞) (c∗2(∞)), and species v spreads faster. We investigate the population dynamics
of (1.2) in the habitat suitable for growth of both species for two cases: (i) species u is
competitively stronger (with the slower spreading speed), and (ii) both species coexist.
We obtain conditions under which the outcome of competition depends critically on
a number c(∞) given by the model parameters. We show that under appropriate
conditions, if c(∞) > c then the species with the faster spreading speed spreads into
the open space at its own speed and the species with the slower spreading speed
spreads into its rival at speed c(∞), and if c(∞) < c then the species with the slower
spreading speed eventually dies out in space. Our results particularly demonstrate
the possibility that a competitively weaker species with a faster spreading can drive
a competitively stronger species with a slower spreading to extinction. Case (ii) was
studied by Zhang el al. [28] and Yuan et al. [27] where c̄(∞) was shown to be a
lower bound of the speed at which u spreads into v, and the population dynamics was
not explored for c(∞) < c. Our results indicate that c̄(∞) serves as both an upper
and a lower bound of the speed for Case (i) and Case (ii) under certain conditions.
We obtain the results by extending the framework of linear determinacy, which was
developed by Weinberger, Lewis and Li [16, 26] to study the invasion of a species
into an equilibrium distribution of its competitor in a temporal-spatial system with
constant coefficients. We particularly make use of integral equations and solutions of
linearized systems to approximate the solutions of (1.2) in moving intervals.

This paper is organized as follows. The main results are given in the next section.
Section 3 is about an upper bound for spreading speeds and Section 4 is about a
lower bound for spreading speeds. Section 5 contains the proofs of the theorems.
Section 6 is on numerical simulations. Section 7 includes some concluding remarks
and discussions.

2. Main results. We begin with making the following hypothesis:
(H) For i = 1, 2, ri(x) is nondecreasing, bounded, and piecewise continuously dif-

ferentiable function in x for −∞ < x < ∞, and ri(−∞) and ri(∞) satisfy
−∞ < ri(−∞) < 0 < ri(∞) <∞.

The spatial region with r1(x − ct) > 0 (or r2(x − ct) > 0) is suitable for the growth
of species u (or species v), and the spatial region with r1(x − ct) < 0 (or r2(x −
ct) < 0) is unsuitable for the growth of species u (or species v). The population
dynamics of two species depends on competition between two species in the region
with r1(x − ct) > 0 and r2(x − ct) > 0. In this region, according to the standard



4 F.-D. DONG, J. SHANG, W.F. FAGAN, AND B. LI

outcomes of two-species Lotka-Volterra type competition, at the location x − ct, (a)
u is competitively stronger than v if r1(x − ct)/r2(x − ct) > max{a1, 1/a2}, (b) u
and v coexist if a1 < r1(x − ct)/r2(x − ct) < 1/a2, (c) v is competitively stronger
than u if r2(x − ct)/r1(x − ct) > max{a2, 1/a1}, and (d) u is competitively stronger
than v or v is competitively stronger than u if 1/a2 < r1(x − ct)/r2(x − ct) < a1. If
r1(x − ct)/r2(x − ct) > max{a1, 1/a2} in the region where both ri(x − ct) > 0, then
r1(∞)/r2(∞) ≥ max{a1, 1/a2}. We consider the following slightly stronger condition
Case (i) r1(∞)/r2(∞) > max{a1, 1/a2}.
This condition can be used to describe that u is competitively stronger than v in the
entire habitat and more generally in an unbounded region suitable for growth of both
species. Similarly
Case (ii) a1 < r1(∞)/r2(∞) < 1/a2

can be used to describe that u and v coexist in the entire habitat and more generally
in an unbounded region suitable for growth of both species.

In this paper we explore the spatial dynamics of model (1.2) for Case (i) and Case
(ii). The study for the scenario that v is competitively stronger than u in the habitat
is similar to that for Case (i). See Yuan et al. [27] for some results obtained for the
scenario that u is competitively stronger than v or v is competitively stronger than u
in the habitat.

We introduce the linear determinacy condition:
(LD) 2− d2/d1 > r2(∞)(max{a1a2, 1} − 1)/(r1(∞)− a1r2(∞)).
This was first given by Lewis et al. [16] (where the inequality is not strict) for studying
(1.2) with ri(x−ct) replaced by ri(∞). The authors showed that under this condition,
for cases (i)-(ii), u spreads into an equilibrium distribution of v at the speed

c(∞) = 2
√
d1(r1(∞)− a1r2(∞)),(2.1)

which is the spreading speed of the linearized system about the leading edge of inva-
sion. The linear determinacy analysis provided in [16] does not work for (1.2) as the
growth rates are variables depending on x− ct. We extend the framework developed
in [16] by using integral recursions and solutions of linearized systems to approximate
the solutions of (1.2) in moving intervals.

Throughout this paper, we consider solutions of (1.2) with continuous initial val-
ues satisfying the following hypothesis:
(IV) There is a number τ0 ≥ 0 such that either (i) u(−τ0, x), v(0, x) ∈ C(R), 0 ≤

u(−τ0, x) ≤ r1(∞), u(−τ0, x) 6≡ 0 and u(−τ0, x) ≡ 0 outside a bounded inter-
val, 0 ≤ v(0, x) ≤ r2(∞), v(0, x) 6≡ 0 and v(0, x) ≡ 0 outside a bounded in-
terval, or (ii) u(0, x), v(−τ0, x) ∈ C(R), 0 ≤ v(−τ0, x) ≤ r2(∞), v(−τ0, x) 6≡ 0
and v(−τ0, x) ≡ 0 outside a bounded interval, 0 ≤ u(0, x) ≤ r1(∞), u(0, x) 6≡
0 and u(0, x) ≡ 0 outside a bounded interval.

Here the species arriving later invades in time τ0 since the invasion of the earlier
species if τ0 > 0. Both species invade simultaneously if τ0 = 0. The initial value
problem of (1.2) with the initial values described by (IV) has a unique classical solution
(u(t, x), v(t, x)) with 0 ≤ u(t, x) ≤ r1(∞), 0 ≤ v(t, x) ≤ r2(∞) [27, 28].

Throughout this paper, (u1(t, x), v1(t, x)) ≤ (≥)(u2(t, x), v2(t, x)) means that
u1(t, x) ≤ (≥)u2(t, x), v1(t, x) ≤ (≥)v2(t, x).

We now provide the main results.

Theorem 2.1. Consider Case (i). Assume that (H), (LD) and (IV) hold and
c∗2(∞) > c∗1(∞) + c(∞). Then for any small ε > 0,
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(i) if 0 ≤ c < c(∞),

lim
t→∞

sup
x≥(c(∞)+ε)t

u(t, x) = 0,

lim
t→∞

[
sup

(c(∞)+ε)t≤x≤(c∗2(∞)−ε)t
|r2(∞)− v(t, x)|

]
= 0,

lim
t→∞

[
sup

(c+ε)t≤x≤(c(∞)−ε)t
{|r1(∞)− u(t, x)|+ v(t, x)}

]
= 0,

lim
t→∞

[
sup

x≤(c−ε)t
(u(t, x) + v(t, x))

]
= 0, and lim

t→∞
sup

x≥(c∗2(∞)+ε)t

v(t, x) = 0; and

(ii) if c(∞) < c < c∗1(∞),

lim
t→∞

sup
x∈R

u(t, x) = 0,

lim
t→∞

[
sup

(c+ε)t≤x≤(c∗2(∞)−ε)t
|r2(∞)− v(t, x)|

]
= 0,

lim
t→∞

sup
x≤(c−ε)t

v(t, x) = 0, and lim
t→∞

sup
x≥(c∗2(∞)+ε)t

v(t, x) = 0.

This theorem states that when v is a weaker species and has a much faster spreading
speed and the linear determinacy condition is satisfied, (i) if 0 < c < c(∞) then v
spreads rightward at its own speed c∗2(∞) and u spreads into v at speed c(∞), and
(ii) if c > c(∞) then v spreads rightward at its own speed c∗2(∞) and stronger species
u dies out eventually in space.

Define u∗ = (r1(∞)−a1r2(∞))/(1−a1a2) and v∗ = (r2(∞)−a2r1(∞))/(1−a1a2).
For Case (ii) both u∗ and v∗ are positive.

Theorem 2.2. Consider Case (ii). Assume that (H), (LD) and (IV) hold and
c∗2(∞) > c∗1(∞) + c(∞). Then for any small ε > 0,
(i) if 0 ≤ c < c(∞),

lim
t→∞

sup
x≥(c(∞)+ε)t

u(t, x) = 0,

lim
t→∞

[
sup

(c(∞)+ε)t≤x≤(c∗2(∞)−ε)t
|r2(∞)− v(t, x)|

]
= 0,

lim
t→∞

inf
(c+ε)t≤x≤(c(∞)−ε)t

u(t, x) ≥ u∗, lim
t→∞

sup
(c+ε)t≤x≤(c(∞)−ε)t

v(t, x) ≤ v∗,

lim
t→∞

[
sup

x≤(c−ε)t
(u(t, x) + v(t, x))

]
= 0, and lim

t→∞
sup

x≥(c∗2(∞)+ε)t

v(t, x) = 0; and

(ii) if c(∞) < c < c∗1(∞),

lim
t→∞

sup
x∈R

u(t, x) = 0,

lim
t→∞

[
sup

(c+ε)t≤x≤(c∗2(∞)−ε)t
|r2(∞)− v(t, x)|

]
= 0,

lim
t→∞

sup
x≤(c−ε)t

v(t, x) = 0, and lim
t→∞

sup
x≥(c∗2(∞)+ε)t

v(t, x) = 0.
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This theorem states that when u and v can coexist, v has a much faster spreading
speed, and the linear determinacy condition is satisfied, (i) if 0 < c < c(∞) then v
spreads rightward at its own speed c∗2(∞) and u spreads into v at speed c(∞), and
(ii) if c > c(∞) then v spreads rightward at its own speed c∗2(∞) and species u dies
out eventually in space.

Remark 2.3. If c(∞) ≤ 2
√
d2(r2(∞)− a2r1(∞)), then the statement

lim
t→∞

inf
(c+ε)t≤x≤(c(∞)−ε)t

u(t, x) ≥ u∗, lim
t→∞

sup
(c+ε)t≤x≤(c(∞)−ε)t

v(t, x) ≤ v∗

in (i) of Theorem 2.2 can be replaced by the following stronger statement

lim
t→∞

sup
(c+ε)t≤x≤(c(∞)−ε)t

[
|u(t, x)− u∗|+ |v(t, x)− v∗|

]
= 0.

The proof of this result is similar to that of Theorem 2.7 in [27] where r1(x − ct) ≡
r2(x− ct) is assumed.

3. Upper bound for speed. In this section we provide an upper bound for
the speed at which u spreads into v by establishing an upper solution for a related
cooperative system (see (3.4)). For the sake of simplicity, we use u0(x) (or v0(x)) to
denote the actual initial value of species u (or v). That is, if u(−τ0, x) is given, we
say u0(x) = u(−τ0, x), and if τ0 = 0 we say (u0(x), v0(x)) = (u(0, x), v(0, x)).

3.1. Upper solutions for the case of c(∞) > c ≥ 0.

Lemma 3.1. Assume (H) and (IV) hold and c∗2(∞) > c ≥ 0. Let c∗2(∞) > c0 ≥ 0.
If

lim
t→∞

sup
x≥c0t

u(t, x) = 0,

then for any small positive ε,

lim
t→∞

[
sup

(max{c0,c}+ε)t≤x≤(c∗2(∞)−ε)t
|r2(∞)− v(t, x)|

]
= 0.

Proof. Since limt→∞ supx≥c0t u(t, x) = 0, for any small η > 0, there exists T0 > 0
such that for t > T0 and x ≥ c0t, u(t, x) ≤ η. On the other hand, since u0(x) ≡ 0
outside a bounded domain, there exists x0 > 0 such that for t ≤ T0 and x ≥ x0,
u(t, x) ≤ η. Define

σ(x) =

{
a2η, if x ≥ 0,

a2r1(∞), if x < 0.

Let x1 = max{0, x0−c0t, t ≤ T0}. Some calculations lead to that for any t > −τ0, x ∈
R,

a2u(t, x) ≤ σ(x− x1 − c0t).(3.1)

If c0 ≥ c, then r2(x − ct) ≥ r2(x − c0t) for all t ≥ 0 and x ∈ R. By (3.1) and the
second equation of (1.2), we get

vt(t, x) ≥ d2vxx(t, x) + v(t, x)(r2(x− c0t)− σ(x− x1 − c0t)− v(t, x)).(3.2)
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Note that the spreading speed for the corresponding equation is

c∗c0(∞) = 2
√
d2(r2(∞)− a2η),

which is greater that c∗2(∞)−ε for small η. Let V (t, x) be the solution of the equation
corresponding to (3.2) with the initial value V 0(x) = v0(x). A direct application
of Theorem 2.2 (iii) in [18] and comparison show that for every ε0 with 0 < ε0 <
(c∗2(∞)− c0 − ε)/2,

lim
t→∞

[
sup

(c0+ε0)t≤x≤(c∗2(∞)−ε−ε0)t

|r2(∞)− a2η − V (t, x)|
]

= 0.

Because η > 0 is arbitrary and 0 ≤ V (t, x) ≤ v(t, x) ≤ r2(∞), for ε = ε0 + ε,

lim
t→∞

[
sup

(c0+ε)t≤x≤(c∗2(∞)−ε)t
|r2(∞)− v(t, x)|

]
= 0.(3.3)

If c0 ≤ c, then σ(x − x1 − c0t) ≤ σ(x − x1 − ct) for all t ≥ 0 and all x ∈ R. Hence
(3.1) leads to

a2u(t, x) ≤ σ(x− x1 − ct), ∀t ≥ 0, x ∈ R.

This and the second equation of (1.2) indicate

vt(t, x) ≥ d2vxx(t, x) + v(t, x)(r2(x− ct)− σ(x− x1 − ct)− v(t, x)).

Using an argument similar to that used to show (3.3), we have for any small ε > 0,

lim
t→∞

[
sup

(c+ε)t≤x≤(c∗2(∞)−ε)t
|r2(∞)− v(t, x)|

]
= 0.

This and (3.3) lead to the desired result. The proof is complete.

The variable change w(t, x) = r2(∞) − v(t, x) converts (1.2) to the following
cooperative system


ut(t, x) = d1uxx(t, x) + u(t, x)(r1(x− ct)− a1r2(∞)− u(t, x) + a1w(t, x)),

wt(t, x) = d2wxx(t, x) + (r2(∞)− w(t, x))(r2(∞)− r2(x− ct) + a2u(t, x)

− w(t, x)).

(3.4)

Lemma 3.2. Consider Case (i) and Case (ii). Assume that (H), (LD), and (IV)
hold, and c∗2(∞) > c∗1(∞) + c(∞). If c(∞) > c ≥ 0, then for any small ε > 0,

lim
t→∞

sup
x≥(c(∞)+ε)t

u(t, x) = 0, and lim
t→∞

[
sup

(c(∞)+ε)t≤x≤(c∗2(∞)−ε)t
w(t, x)

]
= 0.(3.5)

Proof. For simplicity, we denote c(∞), µ(∞) =
√

(r1(∞)− a1r2(∞))/d1, µ
∗
1(∞)

=
√
r1(∞)/d1 by c, µ, µ∗1, respectively. It suffices to show that for any small ε > 0

and η > 0, there exist A1, T1, δ > 0 such that for t ≥ T1 + δ,

u(t, x) ≤ u(t, x), ∀x ∈ R, and w(t, x) ≤ w(t, x), ∀x ≤ (c∗2(∞)− ε)t,(3.6)
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where

u(t, x) = A1ξη1(µ)e−µ(x−(c+ε)(t−T1)), w(t, x) = A1ξη2(µ)e−µ(x−(c+ε)(t−T1)) + η,

and ξη1(µ), ξη2(µ) are given by (3.13). Since η is arbitrary, (3.5) follows from (3.6)
with ε = 2ε. To prove (3.6), we will first show that for any small ε > 0 and η > 0,
there exist A1, T1 such that (3.6) holds for t = T1, we will then prove that there exist
h > δ > 0 such that (3.6) holds for t ∈ [T1 + δ, T1 + h] using integral recursions, and
we will finally establish (3.6) for t ∈ [T1 + δ,∞).

Step 1: We first show that (3.6) holds for t = T1. For any given sufficiently small
ε > 0 with ε ≤ min{1/r2(∞), 1, (c∗1(∞)− c)}/2, since

lim
t→∞

sup
x≥(c∗1(∞)+ε)t

u(t, x) = 0,

by Lemma 3.1,

lim
t→∞

[
sup

(c∗1(∞)+ε)t≤x≤(c∗2(∞)−ε)t
w(t, x)

]
= 0.

Then for any small η > 0 satisfying

(3a1 + ρ+ r1(∞))η ≤ 2µε,(3.7)

where ρ is a constant independent on η and ε, and is given by (3.19), there exists
T0 > 0 such that for any t ≥ T0 and (c∗1(∞) + ε)t ≤ x ≤ (c∗2(∞)− ε)t,

0 ≤ w(t, x) ≤ η.(3.8)

Let L be a constant such that∫ ∞
−L

1√
π
e−x

2

dx =

∫ L

−∞

1√
π
e−x

2

dx ≥ 1

1 + εη
.(3.9)

On the other hand, since limt→∞ supx≥(c+ε/2)t

[
r2(∞)−r2(x−ct)

]
= 0, for ε1 = εη/2,

choose

T1 ≥ max
{
T0,

L
√

4d1

c∗2(∞)− ε− c∗1(∞)− c

}
(3.10)

such that for t ≥ T1 and x ≥ (c+ ε/2)t,

r2(∞)− r2(x− ct) ≤ ε1,(3.11)

and for t ≥ T1,

(c+ ε)t > (c+ ε/2)t+ L
√

4d2(t− T1).(3.12)

Define

Bη(µ) :=

(
d1µ

2 + r1(∞)− a1r2(∞) + a1η, 0
a2r2(∞), d2µ

2 − r2(∞) + 2η

)
.

The eigenvalues of the matrix Bη(µ) are

λη1(µ) = d1µ
2 + r1(∞)− a1r2(∞) + a1η, λη2(µ) = d2µ

2 − r2(∞) + 2η.
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By virtue of (LD) and η > 0 sufficiently small, we have λη1(µ) > λη2(µ). An eigen-
vector of Bη(µ) corresponding to λη1(µ) is ξξξη(µ) = (ξη1(µ), ξη2(µ)), where

ξη1(µ) = (d1 − d2)µ2 + r1(∞)− a1r2(∞) + r2(∞) + η(a1 − 2), ξη2(µ) = a2r2(∞).

(3.13)

Clearly ξη2(µ) > 0 and ξη1(µ) > 0 according to (LD), which also implies

ξη1(µ) ≥ max{a1, 1/a2}ξη2(µ).(3.14)

Since λη1(µ)/µ→ c as η → 0, for small η > 0,

λη1(µ) ≤ µ(c+ ε).(3.15)

Observe that the equation ut(t, x) = d1uxx(t, x) + r1(∞)u(t, x) has a solution
ϕ(t, x) = e−µ

∗
1(x−c∗1(∞)(t−T1)). Since u0(x) satisfies (IV), there exists a large A0 > 0

such that u0(x) ≤ A0ξη1(µ)ϕ0(x) for x ∈ R, where ϕ0(x) = ϕ(0, x) if u0(x) = u(0, x),
otherwise ϕ0(x) = ϕ(−τ0, x). Comparison leads to

u(t, x) ≤ A0ξη1(µ)ϕ(t, x) = A0ξη1(µ)e−µ
∗
1(x−c∗1(∞)(t−T1)),∀t ≥ 0, x ∈ R.(3.16)

(3.16), u(t, x) ≤ r1(∞), µ < µ∗1, (3.8) and w(t, x) ≤ r2(∞) indicate that there exists
a larger constant A1 ≥ A0 such that A1ξη2(µ)e−µ(c+ε)T1 ≥ r2(∞),

0 ≤ u(T1, x) ≤ A1ξη1(µ)e−µx, ∀x ∈ R,(3.17)

and

0 ≤ w(T1, x) ≤ A1ξη2(µ)e−µx + η, ∀x ≤ (c∗2(∞)− ε)T1.(3.18)

Step 2: We next show that there exist h > δ > 0 such that (3.6) holds for t ∈ [T1+
δ, T1 +h] by using integral recursions. Let (u0(T1, x), w0(T1, x)) = (u(T1, x), w(T1, x)).
Consider

(
u(n)(t, x), w(n)(t, x)

)
given by



u(n+1)(t, x) =
∫
RK1(t− T1, x− y)u0(T1, y)dy +

∫ t
T1

∫
RK1(t− τ, x− y)u(n)(τ, y)[

ρ+ r1(y − cτ)− a1r2(∞)− u(n)(τ, y) + a1w
(n)(τ, y)

]
dydτ,

w(n+1)(t, x) =
∫
RK2(t− T1, x− y)w0(T1, y)dy +

∫ t
T1

∫
RK2(t− τ, x− y)

×
{

[r2(∞)− w(n)(τ, y)][r2(∞)− r2(y − cτ) + a2u
(n)(τ, y)

− w(n)(τ, y)] + ρw(n)(τ, y)
}
dydτ,

(3.19)

where
(
u(0)(t, x), w(0)(t, x)

)
≡ (0, 0),Ki(t, x) = e

−ρt− x2

4dit /
√

4πdit, i = 1, 2, and ρ is a
constant with ρ > max{1, a1r2(∞)+2r1(∞)−r1(−∞), a2r1(∞)+2r2(∞)−r2(−∞)}.
Both u[ρ + r1(x − ct) − a1r2(∞) − u + a1w] and (r2(∞) − w)[r2(∞) − r2(x − ct) +
a2u − w] + ρw are nondecreasing in u and w. Induction shows that for t ≥ T1 and
x ∈ R,

(0, 0) ≤ (u(n)(t, x), w(n)(t, x)) ≤ (u(n+1)(t, x), w(n+1)(t, x)) ≤ (r1(∞), r2(∞)).

(u(n)(t, x), w(n)(t, x)) converges to the unique solution (u(t, x), w(t, x)) for t ≥ T1.
(3.17) implies for t ≥ T1 and x ∈ R,∫

R
K1(t− T1, x− y)u0(T1, y)dy
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≤
∫
R

1√
4πd1(t− T1)

e
−ρ(t−T1)− y2

4d1(t−T1)A1ξη1(µ)e−µ(x−y)dy

=A1ξη1(µ)e(d1µ
2−ρ)(t−T1)e−µx.(3.20)

So, for t ≥ T1 and x ∈ R,

u(1)(t, x) ≤ A1ξη1(µ)e(d1µ
2−ρ)(t−T1)e−µx ≤ A1ξη1(µ)e−µ(x−(c+ε)(t−T1)).(3.21)

Let h > 0 be a constant satisfying

√
h < min

{
1,

(c∗2(∞)− c− 3ε/2)T1

2L
√

4d2 + c+ ε/2
,

(c∗2(∞)− c∗1(∞)− 2ε)T1

L
√

4d2 + c∗1(∞) + ε

}
.

This implies that for t ∈ [T1, T1 + h], we have{
(c+ ε/2)t+ L

√
4d2(t− T1) < (c∗2(∞)− ε)T1 − L

√
4d2(t− T1),

(c∗1(∞) + ε)t < (c∗2(∞)− ε)T1 − L
√

4d2(t− T1).
(3.22)

So for t ∈ [T1, T1 + h] and x ≤ (c∗2(∞)− ε)T1 − L
√

4d2(t− T1), by (3.18),∫
R
K2(t− T1, x− y)w0(T1, y)dy

≤
∫ (c∗2(∞)−ε)T1

−∞
K2(t− T1, x− y)

[
A1ξη2(µ̄)e−µ̄y + η

]
dy

+ r2(∞)

∫ ∞
(c∗2(∞)−ε)T1

K2(t− T1, x− y)dy

≤
∫
R

1√
π
e−ρ(t−T1)−z2[A1ξη2(µ̄)e−µ̄(x−

√
4d2(t−T1)z) + η

]
dz

+ r2(∞)e−ρ(t−T1)

∫ −L
−∞

1√
π
e−z

2

dz

=A1ξη2(µ)e(d2µ
2−ρ)(t−T1)e−µx +

[
η + r2(∞)

∫ −L
−∞

1√
π
e−z

2

dz
]
e−ρ(t−T1).(3.23)

On the other hand, for t ≥ T1 and x satisfying

x ≥ (c+ ε/2)t+ L
√

4d2(t− T1),(3.24)

if y ≤ L
√

4d2(t− T1), then x − y ≥ (c + ε/2)t. Hence for t ≥ T1 and x satisfying
(3.24), by (3.9), (3.11) and ε1 = εη/2,∫ t

T1

∫
R
K2(t− τ, x− y)(r2(∞)− r2(y − cτ))dydτ

=

∫ t−T1

0

∫ L

−∞

1√
π
e−ρτ−z

2

(r2(∞)− r2(x−
√

4d2τz − c(t− τ)))dzdτ

+

∫ t−T1

0

∫ ∞
L

1√
π
e−ρτ−z

2

(r2(∞)− r2(x−
√

4d2τz − c(t− τ)))dzdτ

≤ε1
∫ t−T1

0

e−ρτ
∫ L

−∞

1√
π
e−z

2

dzdτ + r2(∞)

∫ t−T1

0

e−ρτ
∫ ∞
L

1√
π
e−z

2

dzdτ
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≤ε1
ρ

(
1− e−ρ(t−T1)

)
+
r2(∞)

ρ

(
1− e−ρ(t−T1)

) εη

1 + εη

≤
(
ε1 +

εη

2

)(
1− e−ρ(t−T1)

)
= εη

(
1− e−ρ(t−T1)

)
.(3.25)

For t ∈ [T1, T1 + h] and x satisfying

(c+ ε/2)t+ L
√

4d2(t− T1) ≤ x ≤ (c∗2(∞)− ε)T1 − L
√

4d2(t− T1),(3.26)

(3.9), (3.22), (3.23) and (3.25) imply that

w(1)(t, x) ≤A1ξη2(µ)e(d2µ
2−ρ)(t−T1)e−µx +

[
η + r2(∞)

∫ −L
−∞

1√
π
e−z

2

dz
]
e−ρ(t−T1)

+ r2(∞)εη
(
1− e−ρ(t−T1)

)
≤A1ξη2(µ)e−µ(x−(c+ε)(t−T1)) + g(t),

where

g(t) = ηe−ρ(t−T1) + r2(∞)εη
(

1− e−ρ(t−T1)
)

+
r2(∞)εη

1 + εη
.

Note g(T1) = η + r2(∞)εη/(1 + εη) and g′(t) < 0 for small ε, η. It follows that for
t ∈ [T1, T1 + h] and x satisfying (3.26),

w(1)(t, x) ≤ A1ξη2(µ)e−µ(x−(c+ε)(t−T1)) + η +
r2(∞)εη

1 + εη
.(3.27)

Moreover, since w(n)(t, x) ≤ w(t, x) for all n, t and x, (3.8) implies that for t ∈
[T1, T1 + h] and (c∗1(∞) + ε)t ≤ x ≤ (c∗2(∞)− ε)t,

w(1)(t, x) ≤ η.(3.28)

For c < c and x ≤ (c + ε)t, e−µ(x−(c+ε)t) ≥ 1. By the choose of A1, for t ≥ T1 and
x ≤ (c+ ε)t,

w(1)(t, x) ≤ r2(∞) ≤ A1ξη2(µ)e−µ(c+ε)T1 ≤ A1ξη2(µ)e−µ(x−(c+ε)(t−T1)).(3.29)

(3.12), (3.22), (3.27), (3.28), (3.29) and 2ε ≤ c∗1(∞)−c indicate that for t ∈ [T1, T1+h],

w(1)(t, x) ≤ w̄(t, x) +
r2(∞)εη

1 + εη
, ∀x ≤ (c∗2(∞)− ε)t.

This and (3.21) show that for t ∈ [T1, T1 + h],{
u(1)(t, x) ≤ u(t, x), ∀x ∈ R,
w(1)(t, x) ≤ w(t, x) + r2(∞)εη

1+εη , ∀x ≤ (c∗2(∞)− ε)t.
(3.30)

Next, we assume for some positive integer k ≥ 1 and for t ∈ [T1, T1 + h],{
u(k)(t, x) ≤ u(t, x), ∀x ∈ R,
w(k)(t, x) ≤ w(t, x) + r2(∞)εη

1+εη , ∀x ≤ (c∗2(∞)− ε)t.
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(3.14) implies for t ≥ T1, x ∈ R,

a1w̄(t, x)− a1η − ū(t, x) ≤ 0, w̄(t, x)− η − a2ū(t, x) ≤ 0.(3.31)

For τ ∈ [T1, T1 + h], y ∈ R, define

F1(u(k), w(k), τ, y) = u(k)(τ, y)
[
ρ+ r1(y − cτ)− a1r2(∞)− u(k)(τ, y) + a1w

(k)(τ, y)
]
.

For τ ∈ [T1, T1 + h] and y ≤ (c∗2(∞)− ε)τ , by ε ≤ 1/(2r2(∞)) and (3.31),

F1(u(k), w(k), τ, y)

≤ū(τ, y)
[
ρ+ r1(∞)− a1r2(∞)− ū(τ, y) + a1w̄(τ, y) + a1

r2(∞)εη

1 + εη

]
=ū(τ, y)

[
ρ+ r1(∞)− a1r2(∞) + a1

r2(∞)εη

1 + εη
+ a1η

]
+ ū(τ, y)[a1w̄(τ, y)− a1η − ū(τ, y)]

≤ū(τ, y)
[
ρ+ r1(∞)− a1r2(∞) + 3a1η/2

]
.(3.32)

Since F1(u(k), w(k), τ, y) is nondecreasing in w(k) and w(k)(t, x) ≤ r2(∞), for τ ∈
[T1, T1 + h] and y ∈ R,

F1(u(k), w(k), τ, y) ≤ ū(τ, y)[ρ+ r1(∞)].(3.33)

Note that ∫ t−T1

0

∫
R

1√
π
e−ρτ−z

2

u(t− τ, x−
√

4d1τz)dzdτ

=A1ξη1(µ)e−µ(x−(c+ε)(t−T1)) 1− e−(ρ+µ(c+ε)−d1µ2)(t−T1)

ρ+ µ(c+ ε)− d1µ
2 .(3.34)

Therefore, for t ∈ [T1, T1 + h] and x ≤ (c∗2(∞)− ε)t− L
√

4d1(t− T1), by (3.7), (3.9),
(3.32), (3.33), (3.34) and ε ≤ 1/2, we have∫ t

T1

∫
R
K1(t− τ, x− y)F1(u(k), w(k), τ, y)dydτ

≤
∫ t

T1

∫ (c∗2(∞)−ε)τ

−∞
K1(t− τ, x− y)

[
ρ+ r1(∞)− a1r2(∞) + 3a1η/2

]
ū(τ, y)dydτ

+

∫ t

T1

∫ ∞
(c∗2(∞)−ε)τ

K1(t− τ, x− y)
[
ρ+ r1(∞)

]
ū(τ, y)dydτ

≤
[
ρ+ r1(∞)− a1r2(∞) + 3a1η/2

] ∫ t−T1

0

∫
R

1√
π
e−ρτ−z

2

ū(t− τ, x−
√

4d1τz)dzdτ

+ [ρ+ r1(∞)]

∫ t−T1

0

∫ −L
−∞

1√
π
e−ρτ−z

2

ū(t− τ, x−
√

4d1τz)dzdτ

≤ρ+ r1(∞)− a1r2(∞) + 3a1η/2 + (ρ+ r1(∞))εη

ρ+ µ̄(c̄+ ε)− d1µ̄2
A1ξη1(µ)e−µ(x−(c+ε)(t−T1))

×
[
1− e−(ρ+µ(c+ε)−d1µ2)(t−T1)

]
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≤A1ξη1(µ)e−µ(x−(c+ε)(t−T1))
[
1− e−(ρ+µ(c+ε)−d1µ2)(t−T1)

]
.

(3.35)

Therefore for t ∈ [T1, T1 +h] and x ≤ (c∗2(∞)− ε)t−L
√

4d1(t− T1), (3.20) and (3.35)
imply

u(k+1)(t, x) ≤A1ξη1(µ)e(d1µ
2−ρ)(t−T1)e−µx +A1ξη1(µ)e−µ(x−(c+ε)(t−T1))

[
1

− e−(ρ+µ(c+ε)−d1µ2)(t−T1)
]

= A1ξη1(µ)e−µ(x−(c+ε)(t−T1)).(3.36)

Furthermore by (3.10) and the fact µ∗1c̄ = µ̄c∗1(∞),

T1 ≥
L
√

4d1

(
µ∗1 − µ̄

)(
c∗2(∞)− ε− c∗1(∞)− c

)(
µ∗1 − µ̄

)
≥ (µ∗1 − µ)L

√
4d1

(c∗2(∞)− ε)(µ∗1 − µ)− (µ∗1c
∗
1(∞)− µ(c+ ε))

.

This implies for t ≥ T1,

(c∗2(∞)− ε)T1 −
µ∗1c
∗
1(∞)− µ(c+ ε)

µ∗1 − µ
T1 − L

√
4d1

+

(
(c∗2(∞)− ε)− µ∗1c

∗
1(∞)− µ(c+ ε)

µ∗1 − µ

)
(t− T1) ≥ 0.

It follows that for t ≥ T1, (c
∗
2(∞) − ε)t − L

√
4d1 ≥ (µ∗1c

∗
1(∞)t − µ(c + ε)t)/(µ∗1 − µ).

This shows that for t ∈ [T1, T1 + h], if x ≥ (c∗2(∞)− ε)t− L
√

4d1(t− T1),

x ≥ µ∗1c
∗
1(∞)t− µ(c+ ε)t

µ∗1 − µ
.

This leads to µ∗1(x− c∗1(∞)t) ≥ µ(x− (c+ ε)t). Hence

µ∗1(x− c∗1(∞)(t− T1)) =µ∗1(x− c∗1(∞)t) + µ∗1c
∗
1(∞)T1

≥µ(x− (c+ ε)t) + µ(c+ ε)T1 = µ(x− (c+ ε)(t− T1)).

Therefore, for t ∈ [T1, T1 + h] and x ≥ (c∗2(∞)− ε)t− L
√

4d1(t− T1), we have

A1ξη1(µ)e−µ
∗
1(x−c∗1(∞)(t−T1)) ≤ A1ξη1(µ)e−µ(x−(c+ε)(t−T1)).

This and (3.16) imply that for t ∈ [T1, T1 +h] and x ≥ (c∗2(∞)− ε)t−L
√

4d1(t− T1),
u(t, x) ≤ u(t, x), and thus u(k+1)(t, x) ≤ u(t, x). Here we used the simple fact u(n)(t, x)
≤ u(t, x) for all n, t and x. This and (3.36) imply for t ∈ [T1, T1 + h],

u(k+1)(t, x) ≤ u(t, x), ∀x ∈ R.(3.37)

On the other hand, by Bη(µ)ξξξη(µ) = λη1(µ)ξξξη(µ) and (3.15),

(ρ− r2(∞) + 3η/2)ξη2(µ) + a2r2(∞)ξη1(µ) ≤ ξη2(µ)(ρ+ µ(c+ ε)− d2µ
2 − η/2).

Thus for t ≥ T1,

(ρ− r2(∞) + 3η/2)ξη2(µ) + a2r2(∞)ξη1(µ)

ρ+ µ(c+ ε)− d2µ
2

[
1− e−(ρ+µ(c+ε)−d2µ2)(t−T1)

]
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≤ξη2(µ)
ρ+ µ(c+ ε)− d2µ

2 − η/2
ρ+ µ(c+ ε)− d2µ

2

[
1− e−(ρ+µ(c+ε)−d2µ2)(t−T1)

]
≤ξη2(µ)

[
1− e−(ρ+µ(c+ε)−d2µ2)(t−T1)

]
.

This implies∫ t−T1

0

∫
R

1√
π
e−ρτ−z

2
[
(ρ− r2(∞) + 3η/2)w(t− τ, x−

√
4d2τz)

+ a2r2(∞)u(t− τ, x−
√

4d2τz)
]
dzdτ

=A1e
−µ(x−(c+ε)(t−T1))

[
(ρ− r2(∞) + 3η/2)ξη2(µ) + a2r2(∞)ξη1(µ)

]
×
∫ t−T1

0

e−(ρ+µ(c+ε))τ

∫
R

1√
π
e−z

2+µ
√

4d2τzdzdτ + η(ρ− r2(∞) + 3η/2)

×
∫ t−T1

0

e−ρτ
∫
R

1√
π
e−z

2

dzdτ

≤A1ξη2(µ)e−µ(x−(c+ε)(t−T1))
[
1− e−(ρ+µ(c+ε)−d2µ2)(t−T1)

]
+ η(1− e−ρ(t−T1))

(
1− r2(∞)− 3η/2

ρ

)
.(3.38)

For τ ∈ [T1, T1 + h], y ∈ R, define

F2(u(k), w(k), τ, y) =
[
r2(∞)− w(k)(τ, y)

][
a2u

(k)(τ, y)− w(k)(τ, y)
]

+ ρw(k)(τ, y).

Then for τ ∈ [T1, T1 + h] and y ≤ (c∗2(∞)− ε)τ , by ε ≤ 1/2r2(∞) and (3.31),

F2(u(k), w(k), τ, y)

≤a2r2(∞)ū(τ, y) +
[
ρ− r2(∞) + η +

r2(∞)εη

1 + εη

][
w̄(τ, y) +

r2(∞)εη

1 + εη

]
+
[
w̄(τ, y) +

r2(∞)εη

1 + εη

][
w̄(τ, y)− η − a2ū(τ, y)

]
≤a2r2(∞)ū(τ, y) +

[
ρ− r2(∞) + 3η/2

][
w̄(τ, y) +

r2(∞)εη

1 + εη

]
(3.39)

Since F2(u(k), w(k), τ, y) is nondecreasing in w(k) and w(k)(t, x) ≤ r2(∞), for τ ∈
[T1, T1 + h] and y ∈ R,

F2(u(k), w(k), τ, y) ≤ ρr2(∞).(3.40)

Therefore for t ∈ [T1, T1 +h], x ≤ (c∗2(∞)− ε)t−L
√

4d2(t− T1), by (3.38), (3.39) and
(3.40), we get∫ t

T1

∫
R
K2(t− τ, x− y)F2(u(k), w(k), τ, y)dydτ

≤
∫ t

T1

∫ (c∗2(∞)−ε)τ

−∞
K2(t− τ, x− y)

{
a2r2(∞)ū(τ, y) +

[
ρ− r2(∞) + 3η/2

]
×
[
w̄(τ, y) +

r2(∞)εη

1 + εη

]}
dydτ + ρr2(∞)

∫ t

T1

∫ ∞
(c∗2(∞)−ε)τ

K2(t− τ, x− y)dydτ
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=

∫ t−T1

0

∫ ∞
x−(c∗2(∞)−ε)(t−τ)√

4d2τ

1√
π
e−ρτ−z

2
{
a2r2(∞)ū(t− τ, x−

√
4d2τz)

+ (ρ− r2(∞) + 3η/2)
[
w̄(t− τ, x−

√
4d2τz) + r2(∞)εη/(1 + εη)

]}
dzdτ

+ ρr2(∞)

∫ t−T1

0

∫ x−(c∗2(∞)−ε)(t−τ)√
4d2τ

−∞

1√
π
e−ρτ−z

2

dzdτ

≤
∫ t−T1

0

∫
R

1√
π
e−ρτ−z

2
{
a2r2(∞)ū(t− τ, x−

√
4d2τz)

+ (ρ− r2(∞) + 3η/2)
[
w̄(t− τ, x−

√
4d2τz) + r2(∞)εη/(1 + εη)

]}
dzdτ

+ ρr2(∞)

∫ t−T1

0

∫ −L
−∞

1√
π
e−ρτ−z

2

dzdτ

≤A1ξη2(µ)e−µ(x−(c+ε)(t−T1))
[
1− e−(ρ+µ(c+ε)−d2µ2)(t−T1)

]
+ η
(
1− e−ρ(t−T1)

)

×
(

1 +
r2(∞)ε

1 + εη

)(
1− r2(∞)− 3η/2

ρ

)
+ r2(∞)

(
1− e−ρ(t−T1)

) ∫ −L
−∞

1√
π
e−z

2

dz.

(3.41)

Then (3.9), (3.22), (3.23), (3.25) and (3.41) imply that for t ∈ [T1, T1 + h] and (c +
ε/2)t+ L

√
4d2(t− T1) ≤ x ≤ (c∗2(∞)− ε)T1 − L

√
4d2(t− T1),

w(k+1)(t, x)

≤A1ξη2(µ)e(d2µ
2−ρ)(t−T1)e−µx + ηe−ρ(t−T1) + r2(∞)e−ρ(t−T1)

×
∫ −L
−∞

1√
π
e−z

2

dz +A1ξη2(µ)e−µ(x−(c+ε)(t−T1))
[
1− e−(ρ+µ(c+ε)−d2µ2)(t−T1)

]
+ η
(
1− e−ρ(t−T1)

)(
1 +

r2(∞)ε

1 + εη

)(
1− r2(∞)− 3η/2

ρ

)
+ r2(∞)

(
1− e−ρ(t−T1)

)
×
∫ −L
−∞

1√
π
e−z

2

dz + r2(∞)εη
(
1− e−ρ(t−T1)

)
≤A1ξη2(µ)e−µ(x−(c+ε)(t−T1)) +G(t),

where

G(t) =ηe−ρ(t−T1) + η
(
1− e−ρ(t−T1)

)(
1 +

r2(∞)ε

1 + εη

)(
1− r2(∞)− 3η/2

ρ

)
+ r2(∞)εη

(
1− e−ρ(t−T1)

)
+
r2(∞)εη

1 + εη
.

Note G(T1) = η + r2(∞)εη/(1 + εη) and G′(t) < 0 for small ε, η. It shows that for
t ∈ [T1, T1 +h] and (c+ ε/2)t+L

√
4d2(t− T1) ≤ x ≤ (c∗2(∞)− ε)T1−L

√
4d2(t− T1),

w(k+1)(t, x) ≤ A1ξη2(µ)e−µ(x−(c+ε)(t−T1)) + η +
r2(∞)εη

1 + εη
.(3.42)

For c < c and x ≤ (c+ ε)t, e−µ(x−(c+ε)t) ≥ 1. By the choose of A1, for t ≥ T1 and
x ≤ (c+ ε)t,

w(k+1)(t, x) ≤ r2(∞) ≤ A1ξη2(µ)e−µ(c+ε)T1 ≤ A1ξη2(µ)e−µ(x−(c+ε)(t−T1)).(3.43)
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Moreover, since w(n)(t, x) ≤ w(t, x) for all n, t and x. It then follows from (3.8),
(3.12), (3.22), (3.42), (3.43) and 2ε ≤ c∗1(∞)− c that for t ∈ [T1, T1 + h],

w(k+1)(t, x) ≤ w̄(t, x) +
r2(∞)εη

1 + εη
, ∀x ≤ (c∗2(∞)− ε)t.

This and (3.37) show that for t ∈ [T1, T1 + h],{
u(k+1)(t, x) ≤ ū(t, x), ∀x ∈ R,
w(k+1)(t, x) ≤ w̄(t, x) + r2(∞)εη

1+εη , ∀x ≤ (c∗2(∞)− ε)t.
(3.44)

(3.30) and induction show that (3.44) is true for all integer k ≥ 0.
Choose δ with 0 < δ < h such that for above sufficiently small ε and η,

(1− e−ρδ)
[r2(∞)

ρ
− 3η

2ρ
− r2(∞)ε− r2(∞)ε

1 + εη

]
≥ εr2(∞)

1 + εη
.

Such δ can be arbitrarily small for sufficiently small ε and η. This implies for t ∈
[T1 + δ, T1 + h],

(1− e−ρ(t−T1))
[
1− r2(∞)ε−

(
1 +

εr2(∞)

1 + εη

)(
1− r2(∞)− 3η/2

ρ

)]
≥ εr2(∞)

1 + εη
.

We therefore have G(t) ≤ η for t ∈ [T1 + δ, T1 + h]. Hence for t ∈ [T1 + δ, T1 + h] and
(c+ ε/2)t+ L

√
4d2(t− T1) ≤ x ≤ (c∗2(∞)− ε)T1 − L

√
4d2(t− T1),

w(k+1)(t, x) ≤ A1ξη2(µ)e−µ(x−(c+ε)(t−T1)) + η.(3.45)

Similarly, since w(n)(t, x) ≤ w(t, x) for all n, t and x. It then follows from (3.8), (3.12),
(3.22), (3.43), (3.45) and 2ε ≤ c∗1(∞)− c that for t ∈ [T1 + δ, T1 + h],

w(k+1)(t, x) ≤ w̄(t, x), ∀x ≤ (c∗2(∞)− ε)t.

Using this, (3.37) and g(t) ≤ G(t) for t ≥ T1, we have that for all integer k ≥ 0 and
any t ∈ [T1 + δ, T1 + h],{

u(k+1)(t, x) ≤ ū(t, x), ∀x ∈ R,
w(k+1)(t, x) ≤ w̄(t, x), ∀x ≤ (c∗2(∞)− ε)t.

Letting k →∞, for t ∈ [T1 + δ, T1 + h],

u(t, x) ≤ u(t, x), ∀x ∈ R, and w(t, x) ≤ w(t, x), ∀x ≤ (c∗2(∞)− ε)t.

That is, (3.6) holds.
Step 3: We finally prove that (3.6) holds for t ≥ T1 + δ using induction. For any

t̄ ∈ [T1 +δ, T1 +h], repeating the above proof with T1 replaced by t̄, we obtain that for
t ∈ [T1 +h, T1 + 2h], (3.6) is true. By induction, (3.6) is valid for t ∈ [T1 + δ, T1 +mh]
for any positive integer m, and thus (3.6) is true for all t ≥ T1 + δ. Since η > 0 is
arbitrary, we have

lim
t→∞

[
sup

x≥(c+2ε)t

u(t, x)

]
= 0, and lim

t→∞

[
sup

(c+2ε)t≤x≤(c∗2(∞)−2ε)t

w(t, x)

]
= 0.

Let ε = 2ε. The proof is complete.
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3.2. Upper solutions for the case of c∗1(∞) > c > c(∞).

Lemma 3.3. Consider Case (i) and Case (ii). Assume that (H), (LD), and (IV)
hold, and c∗2(∞) > c∗1(∞) + c(∞). If c∗1(∞) > c > c(∞), then for any small ε > 0,

lim
t→∞

sup
x∈R

u(t, x) = 0, and lim
t→∞

sup
(c+ε)t≤x≤(c∗2(∞)−ε)t

w(t, x) = 0.

Proof. We still denote µ(∞) by µ. For t ≥ T1 and x ∈ R, define

u(t, x) = A1ξη1(µ)e−µ(x−(c−ε)(t−T1)), w(t, x) = A1ξη2(µ)e−µ(x−(c+ε)(t−T1)) + η,

where A1, ε, η, T1 > 0 and ξη1(µ), ξη2(µ) are given by (3.13), T1 makes (3.11) and
(3.12) true. We choose A1 sufficiently large such that A1ξη2(µ)e−µ(c+ε)T1 ≥ r2(∞).
By (LD), we can choose η satisfying η(2 − a1) < (r1(∞) − a1r2(∞))(2 − d2/d1) −
r2(∞)(max{a1a2, 1} − 1) such that the inequality in (3.14) is strict, i.e.,

ξη1(µ) > max{a1, 1/a2}ξη2(µ).

We can further choose a smaller ε such that 0 < 2ε < c− c(∞) and

ξη1(µ) ≥ max{a1, 1/a2}ξη2(µ)e2µε.(3.46)

One can slightly modify the proof of Lemma 3.2 by replacing (3.14) with (3.46) to
show that there exists δ1 > 0 such that for t ≥ T1 + δ1,

u(t, x) ≤ u(t, x), ∀x ∈ R, and w(t, x) ≤ w(t, x), ∀x ≤ (c∗2(∞)− ε)t.

Since η > 0 is arbitrary, we have

lim
t→∞

sup
x≥(c−ε/2)t

u(t, x) = 0, and lim
t→∞

sup
(c+2ε)t≤x≤(c∗2(∞)−2ε)t

w(t, x) = 0.(3.47)

By virtue of Theorem 2.2 (i) in [18], for above ε > 0, limt→∞ supx≤(c−ε/4)t u(t, x) = 0.
This and (3.47) lead to the desired results by letting ε = 2ε. The proof is complete.

4. Lower bound for speed. In this section, we show that c(∞) is a lower
bound for the speed at which u spread into v. We have the following two lemmas
whose proofs are similar to that of Theorem 2.7 in [27] and are omitted.

Lemma 4.1. Consider Case (i). Assume that (H) and (IV) hold. Let w(t, x) =
r2(∞)− v(t, x). If c(∞) > c ≥ 0, then for any given ε ∈ (0, (c(∞)− c)/2),

lim
t→∞

[
sup

(c+ε)t≤x≤(c(∞)−ε)t
|r1(∞)− u(t, x)|+ |r2(∞)− w(t, x)|

]
= 0.

Lemma 4.2. Consider Case (ii). Assume that (H) and (IV) hold. Let w(t, x) =
r2(∞) − v(t, x). If c(∞) > c ≥ 0, then for w∗ = r2(∞) − v∗ and any given ε ∈
(0, (c(∞)− c)/2),

lim
t→∞

inf
(c+ε)t≤x≤(c(∞)−ε)t

u(t, x) ≥ u∗, and lim
t→∞

inf
(c+ε)t≤x≤(c(∞)−ε)t

w(t, x) ≥ w∗.
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5. Proofs of theorems. In this section, we provide proofs for Theorems 2.1-2.2.

Proof of Theorem 2.1. The statement limt→∞ supx≥(c∗2(∞)+ε)t v(t, x) = 0 follows

from Theorem 2.2 (ii) in [18] and simple comparison. limt→∞ supx≤(c−ε)t(u(t, x) +
v(t, x)) = 0 comes from Theorem 2.2 (i) in [18] and simple comparison. The rest
of statement (i) follows from Lemmas 3.2 and 4.1, and statement (ii) follows from
Lemma 3.3. The proof is complete.

Proof of Theorem 2.2. limt→∞ supx≥(c∗2(∞)+ε)t v(t, x) = 0 is valid as shown in the

proof of Theorem 2.1. limt→∞ supx≤(c−ε)t(u(t, x)+v(t, x)) = 0 follows from Theorem
2.2 (i) in [18] and simple comparison. The rest of statement (i) follow from Lemmas
3.2 and 4.2, and statement (ii) follows from Lemma 3.3. The proof is complete.

6. Simulations. In this section, we present numerical simulations with

r1(x− ct) =

{
−0.5, if x ≤ ct,
1, elsewhere,

r2(x− ct) =

{
−0.3, if x ≤ ct,
2, elsewhere,

where c > 0, the initial data u0(x) = 0.8 sin(x − 10) for 10 ≤ x ≤ 10 + π and 0
otherwise, and v0(x) = 0.5 sin(x−20) for 20 ≤ x ≤ 20+π and 0 otherwise. We always
choose a1 = 4/9 and d1 = 1, and choose different values for a2 to study competitive
exclusion and competitive coexistence and different values for d2 to consider the linear
determinacy condition (LD) and the condition c∗2(∞) > c∗1(∞) + c(∞) given in the
theorems.

We first choose a2 = 9/4, d2 = 49/32. It is easily seen that

c∗1(∞) = 2, c∗2(∞) = 3.5, c(∞) = 2/3,

and the assumptions in Theorem 2.1 are satisfied. In this case competitive exclusion
occurs, and u is completely stronger and has a slower spreading speed. Figure 6.1
with c = 0.25 < c(∞) displays the numerical solution supported by Theorem 2.1 (i),
which shows that u spreads into v at speed c̄(∞) and v spreads rightward at its own
speed c∗2(∞). Figure 6.2 with c = 1 > c(∞) displays the numerical solution supported
by Theorem 2.1 (ii), which indicates that v spreads rightward at its own speed c∗2(∞)
and stronger species u dies out eventually in space.

We next choose a2 = 1, d2 = 49/32. It is easily seen

c∗1(∞) = 2, c∗2(∞) = 3.5, c(∞) = 2/3,

and the assumptions in Theorem 2.2 are satisfied. In this case, u and v can coexist and
v has a faster spreading speed. Figure 6.3 with c = 0.1 < c(∞) displays the numerical
solution supported by Theorem 2.2 (i), which shows that v spreads rightward at its
own speed c∗2(∞) and u spreads into v at speed c̄(∞). Figure 6.4 with c = 1.5 > c(∞)
displays the numerical solution supported by Theorem 2.2 (ii), which indicates that
v spreads rightward at its own speed c∗2(∞) and u dies out eventually in space.

We now consider a2 = 9/4 and d2 = 441/800, which lead to

c∗1(∞) = 2, c∗2(∞) = 2.1, c(∞) = 2/3.

It is easily verified that all the assumptions except c∗2(∞) > c∗1(∞)+c(∞) in Theorem
2.1 are satisfied. Figure 6.7 with c = 0.25 < c(∞) shows that the speed at which the
boundary between the two species moves is no longer c(∞).
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Fig. 6.1. Simulations for a1 = 4/9, a2 = 9/4, d1 = 1, d2 = 49/32. Choose c = 0.25 < c(∞) =
2/3. v spreads rightward at a speed numerically close to c∗2(∞) and u spreads into v at a speed
numerically close to c(∞).

Fig. 6.2. Simulations for a1 = 4/9, a2 = 9/4, d1 = 1, d2 = 49/32. Choose c = 1 > c(∞) = 2/3.
The competitively stronger species u dies out eventually in space.

Fig. 6.3. Simulations for a1 = 4/9, a2 = 1, d1 = 1, d2 = 49/32. Choose c = 0.1 < c(∞) = 2/3.
v spreads rightward at a speed numerically close to c∗2(∞) and u spreads into v at a speed numerically
close to c(∞), and both species coexist in a moving interval.

Fig. 6.4. Simulations for a1 = 4/9, a2 = 1, d1 = 1, d2 = 49/32. Choose c = 1.5 > c(∞) = 2/3.
Species u dies out eventually in space.

Fig. 6.5. Simulations for a1 = 4/9, a2 = 9/4, d1 = 1, d2 = 441/800. Choose c = 0.25 <
c(∞) = 2/3. Species u spreads into v at a speed, which is numerically very different from c(∞).

We finally consider a2 = 9/4, d2 = 32, which result in

c∗1(∞) = 2, c∗2(∞) = 16, c(∞) = 2/3,
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and that all the assumptions except (LD) in Theorem 2.1 are satisfied. Figure 6.6
with c = 0.25 < c(∞) shows that the speed at which the boundary between the two
species moves is no longer c(∞).

Fig. 6.6. Simulations for a1 = 4/9, a2 = 9/4, d1 = 1, d2 = 32. Choose c = 0.25 < c(∞) = 2/3.
Species u spreads into v at a speed, which is numerically very different from c(∞).

The above simulations show that the linear determinacy condition (LD) and
c∗2(∞) > c∗1(∞) + c(∞) are important in determining the population dynamics. If
one of them is not satisfied, the speed at which the slower species spreads into its
rival may not be c(∞). In all the simulations above, two species initially invade the
region with good quality habitat suitable for growth. Figure 6.7 shows the solution
with the same parameter values and same ri(x − ct), i = 1, 2 as in Figure 6.1 and
initial values u0(x) = 0.8 sin(x+10) for −10 ≤ x ≤ −10+π and v0(x) = 0.5 sin(x+20)
for −20 ≤ x ≤ −20 +π with compact support in the region with poor quality habitat
unsuitable for growth. Figure 6.1 and Figure 6.7 indicate basically the same long
term spreading dynamics. Our extensive simulations have shown that the locations
of initial invasions will not affect the spreading speeds of species.

Fig. 6.7. Simulations for a1 = 4/9, a2 = 9/4, d1 = 1, d2 = 49/32, u0(x) = 0.8 sin(x + 10)
for −10 ≤ x ≤ −10 + π and v0(x) = 0.5 sin(x + 20) for −20 ≤ x ≤ −20 + π. Choose c = 0.25 <
c(∞) = 2/3. v spreads rightward at a speed numerically close to c∗2(∞) and u spreads into v at a
speed numerically close to c(∞).

7. Discussion. In this paper, we studied the two-species reaction-diffusion com-
petition model (1.2) with a shifting habitat. It is assumed that the growth rate for
each species is nondecreasing along the x-axis, and it changes sign and shifts right-
ward at speed c > 0. It is also assumed that the spreading speed of each species is
greater than c so that each species can persist and spread in the absence of its rival.
We determined the population dynamics of the model by examining competition be-
tween two species in the region suitable for growth of both species. We showed that
under appropriate conditions, the number c̄(∞) given by (2.1), plays an important
role in determining long-term behavior of solutions. Specifically, (i) in the case that
one species is competitively weaker and has the faster spreading speed and (LD) is
satisfied, if c̄(∞) > c then the weaker species spreads rightward at its own speed and
the stronger species spreads into the weaker species at speed c̄(∞), and if c̄(∞) < c
then the stronger species eventually dies out in space; and (ii) in the case that both
species may coexist and (LD) is satisfied, if c̄(∞) > c then the species with the faster
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spreading speed spreads rightward at its own speed and its competitor spreads at
speed c̄(∞), and if c̄(∞) < c then the species with the slower spreading speed even-
tually becomes extinct in space. Our results particularly demonstrate that a species
with a faster spreading speed can eventually win the competition. Thus mobility
may be more important than competitive capability for species survival in a shifting
environment.

As illustrated in Figures 6.1-6.7, a pair of competing species that differ in dispersal
ability may face a range of alternative futures when their landscape is changing un-
derneath them. We found scenarios where 1) both species may continue to exist in the
same relative abundance (i.e., the density of the dominant competitor is consistently
greater than that of the inferior competitor), 2) this pattern of relative abundance is
reversed, and 3) one of the interacting species (surprisingly, sometimes the dominant
competitor) is lost from the system. Even with only two interacting species, this set
of possible outcomes includes two ‘no-analogue’ communities (scenarios 2 and 3) that
do not match the situation that occurs in the absence of climate change. It seems
logical that with a modestly larger set of competing species, vastly more alternative
futures (with different combinations of species at different relative abundances) would
be possible. Importantly, our results suggest that it is not just species’ competitive
abilities but rather their relative dispersal abilities that will shape the no-analogue
communities that emerge as a result of climate. How other types of species inter-
actions, such as predation, parasitism, and mutualism, will act together with sets
of competing species to form future communities remains an open, and intriguing,
question.

The method of linear determinacy was first developed by Weinberger, Lewis, and
Li [26] in studying spatial-temporal models with constant coefficients, and specifically
model (1.2) with ri(x − ct) ≡ ri(∞) [16]. We successfully applied the method to
(1.2) with variable ri(x− ct) by using integral recursions and developing sequences of
functions approaching real solutions in appropriate moving intervals. The condition
c∗2(∞) > c∗1(∞) + c̄(∞) in both Theorems 2.1-2.2 may not be simplified to c∗2(∞) >
c∗1(∞). The kind of condition that one speed is bigger than the other speed plus a
positive number may be necessary to determine spreading dynamics of competition
models where both species expand their spatial ranges even for the constant coefficient
case; see Girardin and Lam [8]. Huang [14] and Alhasanat and Ou [1] obtained linear
determinacy conditions that improve the results in [16] for (1.2) with ri(x − ct) ≡
ri(∞). It would be of interest to find linear determinacy conditions weaker than (LD)
for (1.2) with a shifting habitat.

Some results obtained in this paper might be extended to n-species competition
models. For example, in a habitat shifting rightward at speed c, if n − 1 competing
species have developed waves, and if the ith species among the n− 1 invaders has the
largest rightward spreading speed c∗i (∞) with c∗i (∞) > c. The framework provided in
this paper shows that the species i can establish a wave in front of all other species
and spread rightward at speed c∗i (∞). The proof of Theorem 2.1 involves useful upper
solution and lower solution obtained on moving intervals on which at most one species
persists. This provides a possible way to study the population dynamics when an n-th
species is introduced into competition under the condition that for two species with
closest spreading speeds, one species is competitively stronger than the other. We
leave this problem for further investigation.
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