


operation and data migration both in its indexing and network inter-

actions. Hence, it shifts load in 17 s to improve cluster throughput

by 10 Mops/s with little disruption. Compared to the state-of-the-

art, it has 8× better throughput (than Seastar+memcached [10])

while avoiding I/O to move cold data during migration (compared

to Rocksteady [32]).

In this paper, we describe and evaluate three key pieces of Shad-

owfax that eliminate coordination throughout the client and server

side by eliminating cross-request and cross-core coordination:

Low-cost Coordination via Global Cuts: In contrast to totally-

ordered or stop-the-world approaches used by most systems, cores

in Shadowfax avoid stalling to synchronize with one another, even

when triggering complex operations like scale-out, which require

defining clear before/after points in time among concurrent op-

erations. Instead, each core participating in these operations –

both at clients and servers – independently decides a point in an

asynchronous global cut that defines a boundary between oper-

ation sequences in these complex operations. In this paper, we

extend asynchronous cuts from cores within one process [16, 52]

to servers and clients in a cluster, and we show how they coordi-

nate server and client threads (through partitioned sessions) by

detailing their role in Shadowfax’s low-coordination data migra-

tion and reconfiguration protocol.

End-to-end Asynchronous Clients: All requests from a client

on one machine to Shadowfax are asynchronous with respect to

one another all theway throughout Shadowfax’s client- and server-

side network submission/completion paths and servers’ indexing

and (SSD and cloud storage) I/O paths. This avoids all client- and

server-side stalls due to head-of-line blocking, ensuring that clients

can always continue to generate requests and servers can always

continue to process them. In turn, clients naturally batch requests,

improving server-side high throughput especially under high load.

This batching also suits hardware accelerated network offloads

available in cloud platforms today further lowering CPU load and

improving throughput. Hence, despite batching, requests complete

in less than 40 µs to 1.3 ms at more than 120 Mops/s/VM, depend-

ing on which transport and hardware acceleration is chosen.

Partitioned Sessions, Shared Data: Asynchronous requests elim-

inate blocking between requests within a client, but maintaining

high throughput also requires minimizing coordination costs be-

tween cores at clients and servers. Instead of partitioning data

among cores to avoid synchronization on record accesses [10, 30,

41, 54], Shadowfax partitions network sessions across cores; its

lock-free hash index and log-structured record heap are shared

among all cores. This risks contention when some records are hot

and frequently mutated, but this is more than offset by the fact

that no software-level inter-core request forwarding or routing

is needed within server VMs.

The rest of the paper is organized as follows. We provide back-

ground on the FASTER key-value store and its use of epochs within

a machine (§2). Next, we overview Shadowfax’s design, including

partitioned client sessions with global cuts and how they enable

reconfiguration (§3). We then provide details on our parallel non-

blocking migration and scale-out techniques (§4). Next, we evaluate

Shadowfax in detail against other state-of-the-art shared-nothing

approaches (§6), showing that by eliminating record ownership

SSD (Stable)
Read

Only
Mutable

Hash Table

HybridLog

Reverse Linked 

List

B
u

c
k

e
ts

Bucket Entries

Figure 2: FASTER’s HybridLog spansmemory and SSD.

checks and cross-core communication for routing requests it im-

proves per-machine throughput by 8.5× on commodity cloud VMs.

We also show it retains high throughput during migrations and

scaled it to a cluster that ingests and indexes 930 Mops/s, which, to

the best of our knowledge, is the highest reported throughput for

a distributed KVS used for large-scale data ingestion and indexing.

Finally, we cover related work (§7) and conclude (§8).

2 BACKGROUNDON FASTER

Shadowfax is built over the FASTER single-node KVS, which it relies

on for hash indexing and record storage. Here, we describe some

key aspects of FASTER, since Shadowfax’s design integrates with

it and builds on its mechanisms. More details about FASTER itself

can be found elsewhere [16, 52]. Specifically, Shadowfax extends

FASTER’s asynchronous cuts, which help avoid coordination, and

its HybridLog, which transparently spans DRAM and SSD.

In most ways, FASTER works like most durable hash table li-

braries. It includes a lock-free hash table divided into cacheline-

sized buckets (Figure 2). Each 8 byte bucket entry contains a pointer

to a record whose key hashes to that bucket. Each record points

to another record, forming a linked list of records with common

significant key hash bits. Each bucket entry contains additional bits

from the associated records’ key hash, increasing hashing resolu-

tion and disambiguating what records the bucket entry points to

without extra cache misses and without full key comparisons. Each

record pointed to by the hash table is stored in the HybridLog.

FASTER clients can use it like any other library, but a common

pattern is to pin one client application thread per CPU core to

eliminate scheduler overheads. Each client thread calls read or

read-modify-write operations on keys in FASTER. FASTER’s cache-

conscious design and lock-freedom are key in its ability to perform

more than 100 Mops/s on a single multicore machine.

2.1 HybridLogAllocator

FASTER allocates and stores all records in its HybridLog, which

spans memory and SSD (Figure 2). The HybridLog combines in-

place updates (for records in memory) and log-structured organiza-

tion (for records on SSD), and provides lock-free access to records.

The portion of the HybridLog’s address space on SSD forms the

stable region. It contains cold records that have not been recently

updated. The portion in memory is composed of two regions: a

(larger) mutable region and a (smaller) read-only region. Records

in the mutable region can be modified in-place with appropriate

synchronization that is chosen by the application using FASTER

(for example, atomic operations, locks, or validation). This region

acts as a cache for recently updated records and avoids expensive

per-update allocations.









Normal Sampling

PrepareTransferMigrate

Complete

Migrate()

Figure 7: Migration statemachine on the source.

Once all threads have entered into the phase and have completed

all work relating to it, the server transitions to the next phase.

Migration is driven by the source as we outline below (Figure 7):

Sampling: Initiated by receiving a Migrate() RPC from a client,

whereupon the source

(1) atomically remaps ownership of hash ranges from the source to

the target, increments the source’s and target’s view numbers,

and registers a dependency between the source and target (for

crash recovery, §4.4) within the metadata store; and

(2) begins sampling hot records by forcing all accessed records to

be copied to the HybridLog tail.

Since the records are not yet at the target and a migration is in

progress, both the source and the target continue to temporarily

operate in the old ownership view; at this point the source is still

servicing requests for records in the migrating ranges. To ensure

that sampled records only get copied once, the source only copies

records whose address is lower than the HybridLog tail address

at the start of this phase.

Prepare: Initiated after all source threads have completed the Sam-

pling phase. The source sends a PrepForTransfer() RPC to the

target asynchronously, transitioning the target to its own Target-

Prepare phase. The Target-Prepare phase tells the target that own-

ership transfer is imminent. The target temporarily pends requests

in the migrating hash ranges (since some clients may discover the

new views) and services them after the source indicates that it

has stopped servicing requests in the old view.

Transfer: Initiated after all source threads have completed the Pre-

pare phase. The sourcemoves into its new view and stops servicing

requests on the migrating hash ranges. When all server threads

are in the new view, it sends out a TransferedOwnership() RPC

to the target asynchronously, which also includes the hot records

sampled in the Sampling phase. This moves the target into its

Target-Receive phase, whereupon it inserts the sampled records

into its FASTER instance and then begins servicing requests for

the migrating hash ranges. This also triggers the target to service

any requests pending from the Target-Prepare phase.

Migrate: Initiated after all source threads have completed the

Transfer phase. The source uses thread-local sessions to send

records in the migrating hash ranges to the target. Threads inter-

leave processing normal requests with sending batches of migrat-

ing records collected from the source’s hash table to the target.

Each thread works on independent, non-overlapping hash table

regions, avoiding contention.

Complete: Initiated after all source threads have completed the

Migrate phase. The source sends a CompleteMigration() RPC

asynchronously, moving the target to the Target-Complete phase.

Then, the source sets a flag in the metadata store indicating that its

role in migration is complete, and it returns to normal operation.

Normal

Prepare

Receive

Complete

PrepForTransfer()/

Observe New View

TransferredOwnership()/

Records From Source
CompleteMigration()

Figure 8: Migration statemachine on the target.

The target is mostly passive during migration; most of its phase

changes are triggered by source RPCs (Figure 8). Requests for a

record may arrive after a TransferredOwnership() RPC is re-

ceived by the target, but before the source has sent that record. The

target marks these requests pending, and it processes them when

it receives the corresponding record.

When the target receives the CompleteMigration() RPC, it

also sets a flag at the metadata store indicating that its role in the

migration is complete, and it returns to normal operation.

Migration has succeeded once both servers have set their respec-

tive flags at the metadata store. A cluster management thread will

have to periodically check these flags; on finding both set, it deletes

the dependency at the metadata store to complete migration.

Shadowfax maintains high throughput during scale up via low-

coordination, non-blocking epoch actions and purely asynchro-

nous inter-machine communication. The source prioritizes request

processing, making progress in between request batches. Its state

machine transitions are independent of the target; all migration

RPCs and checkpoints are asynchronous. The target prioritizes

request processing in the same way. Early ownership transfer, sam-

pled records, and pending operations let the target start servicing

requests on moved ranges quickly, improving throughput recovery.

Sessions let the source collect and asynchronously transmit records

in parallel while the target receives and inserts them in parallel.

4.2 Leveraging Shared Storage for Decoupling

Migration cannot complete until all records have been moved to

the target, so Shadowfax must ensure that this happens quickly.

However, FASTER’s larger-than-memory index makes this challeng-

ing: entries in its hash table point to linked lists of records, which

can span onto local SSD. Performing I/O (sequential or random) to

migrate these records can slow migration and hurt throughput.

Shadowfax’s shared remote tier helps solve this problem. Records

on local SSD are always eventually flushed to this tier, so migration

can avoid accessing them. When the source encounters an address

for a record in a list that is on the SSD, it sends an indirection record

to the target that indicates this record’s location in the shared tier.

This indirection record contains the next address in the list, an iden-

tifier for the source’s log, the hash range being migrated, and the

hash entry that pointed to the list. The target inserts these records

into its hash table using the hash entry contained in the record.

Overall, these fine-grained inter-log dependencies represented by

indirection records accelerate migration completion by eliminating

all I/O that would otherwise be needed to consolidate records and

transmit them to the target.

During normal operation, if the target encounters an indirection

record when processing a request and the request’s key falls in

the hash range contained in the record, the target asynchronously



Shared Tier SSD RAM

Shared Tier SSD RAM

Shared Tier

Log 0

Log 2

Log 1

Scale Up

Scale 

Down

Lazy Compaction

Indirection

Records

Indirection

Records

1

2

3

Figure 9: Indirection records create inter-log dependencies.

retrieves the actual record from the shared tier using the contained

address and log identifier, inserts it into its hash table, and then

completes the request.

4.3 Cleaning Up Indirection Records

Migrations can accumulate indirection records between server logs

for records that are never accessed (Figure 9). On scaling up (①) by

moving a hash range from Log 0 to Log 2, Log 2 contains indirection

records that point to Log 0 on the shared tier. Dependencies are also

created during scale down (②) when records on Log 1 are migrated

to Log 2. These dependencies must eventually be cleaned up.

Shadowfax must already periodically do log compaction to elim-

inate stale versions of records from its shared tier; resolving and

removing indirection records can be piggybacked on this process

to eliminate overheads for cleaning them (③). When compacting

its log, if a server encounters a record belonging to a hash range

it no longer owns, the server transmits the record to the current

owner. On receiving such a record, the owner first looks up the key.

If it encounters an indirection record while doing so and the key

falls in the contained hash range, then it means that the key was

not retrieved from the shared tier after migration. In this case, the

server inserts the received record; otherwise, it discards the record.

Barring normal case request processing, this lazy approach en-

sures that records not in main memory are accessed only once,

during the sequential I/O of compaction, which has to be done

anyway. It is also deadlock-free: two servers might have indirection

records pointing to each others’ log, but the resulting dependencies

are cleaned up independently.

4.4 Fault Tolerance

Migrations in Shadowfax can be easily made fault tolerant. During

their respective Complete phases in the protocol, the source and

target would first have to take a checkpoint before setting their flags

at the metadata store. This would make the migration durable; if

either machine crashes hereafter, it can be independently recovered

from a checkpoint containing the effects of the migration.

If either server crashes during the process, recovery must involve

both, which is why the metadata store tracks the dependency be-

tween them. This is because of early ownership transfer; during mi-

gration, the target services operations on the migrating ranges, but

many records belonging to it may still be on the source.When recov-

ering a server, if Shadowfax finds a migration dependency involving

the serverwithout both completion flags set, it cancels themigration

by setting a cancellation flag in the metadata server. Then, it trans-

fers ownership of hash ranges back to the source (incrementing the

source and target’s view), restores both machines using their pre-

migration checkpoints, and recovers requests on hash ranges that

were issued during migration at the source. This cancellation proce-

dure ensures thatmigration is deadlock-free by effectivelywrapping

the entire migration in a form of two-phase commit that supports

unilateral abort [26]. Migration need not lock or pause operation

on the hash ranges under migration except from the time that

TransferredOwnership is issued until the time that it is received.

Another challenge with crashes is in revocation of hash range

ownership from an unavailable server to ensure it does not accept

requests in a stale view for hash ranges it no longer owns. Views

only help here if unanimity can be reached both among clients

and servers, which generally is not practical at scale. To solve this,

Shadowfax can rely on classic lease-based approaches [25, 35].

We are working on implementing such crash recovery extensions

as future work. For example, our recent work on distributed prefix

recoverability [42] addresses the problem of consistently recovering

client sessions that span accesses to multiple shards.

5 DISCUSSION

Shadowfax’s techniques are not restricted to KVSs and can be ap-

plied to other systems as well. Its partitioned sessions can be used

by stateful cloud services to preserve throughput over the network.

In fact, our implementation of sessions is templated on the service;

we used FASTER for the purpose of this paper, but one could also

use parameter servers, graph stores, model serving systems etc.

Likewise, asynchronous global cuts can be used to scale out these

services while preserving throughput. Since these cuts help prop-

agate changes in ownership across cores and machines, they can

also be used for other operations that involve changes in ownership

like failure detection and crash recovery.

Shadowfax’s migration protocol can also be used for scale in.

Since this protocol is fast and has low impact, it can also be used

to correctly partition records across servers. In a distributed set-

ting, partitioning becomes critical to performance; pre-partitioning

records between servers results in load imbalances, which signifi-

cantly hurts throughput [13, 18]. Migration allows Shadowfax to

dynamically partition its hash space into arbitrary, fine-grained

splits and avoid pre-partitioning. Using load information available

at runtime, it can first determine the ideal way to split its hash

space across servers. It can then quickly migrate these splits be-

tween them. View validation helps too; a server can own many

fine-grained splits and still serve 100 Mops/s.

6 EVALUATION

To evaluate Shadowfax, we focused on six key questions:

Does it preserve FASTER’s performance? §6.2 shows that Shad-

owfax preserves FASTER’s scalability and adds in negligible over-

head. Its throughput scales to 130 Mops/s on 64 threads on a VM

even when using Linux TCP.

How does it compare to an alternate design? §6.2 shows that

Shadowfax performs 4x better than a state-of-the-art approach

that partitions dispatch as well as data.

Does it provide low latency? §6.3 shows that while serving a

throughput of 130 Mops/s, Shadowfax’s median latency is 1.3 ms

on Linux TCP. Using two-sided RDMA decreases this to 40 µs.



CPU Xeon E5-2673 v4 2.3 GHz, 64 vCPUs in total

RAM 432 GB

SSD 96,000 IOPS, 500 MB/s sequential writes

Network 30 Gbps, Hardware accelerated

OS Ubuntu 18.04, Linux 5.0.0-1036-azure

Table 1: Virtualmachine details used to evaluate Shadowfax.

Can it maintain high throughput during scale out? In §6.5, we

see that when migrating 10% of a server’s hash range, Shadow-

fax’s scale-out protocol can maintain throughput above 80 Mops/s.

Parallel data migration can help complete scale out in under 17 s,

and sampled records help recover throughput 30% faster (§6.5.3).

Do indirection records help scale out? §6.5.2 shows that by re-

stricting migration to main memory, indirection records avoid

the cost of immediate post-migration I/O that other approaches

require. They also have a negligible impact on server throughput

once scale out completes.

Do views reduce scale out’s impact on normal operation? In

§6.5.4, we show that validating ownership using views has a neg-

ligible impact on normal case server throughput. When compared

to hash validating each request within a batch, views improve

throughput by as much as 17% depending on the number of hash

ranges owned by the server.

Can it scale across scales? §6.6 shows that when scaled across

machines, Shadowfax continues to retain FASTER’s high through-

put. A cluster consisting of 768 threads spread across 12 servers

scales linearly to 930 Mops/s while servicing 2304 client sessions.

6.1 Experimental Setup

We evaluated Shadowfax on the Azure public cloud [17]. We ran all

experiments on the E64_v3 series of virtual machines [5] (Table 1).

Experiments use 64 cores unless otherwise noted. Each VM uses

accelerated networking, which offloads much of the networking

stack onto FPGAs [1], allowing us to evaluate Shadowfax over reg-

ular Linux TCP. Shadowfax’s remote tier uses Azure’s paged blobs

on premium storage [3], which offer 7,500 random IOPS with a

throughput of 250 MB/s per blob.

We used a dataset of 250 million records, each consisting of an

8 byte key and 256 byte value (totalling 80 GB in Shadowfax). To

evaluate the system under heavy ingest, we used YCSB’s F work-

load [12] consisting of read-modify-write requests. Each request

reads a record, increments a counter within the record, and writes

back the result. This counter could represent heartbeats for a sensor

device, click counts for an advertisement or views/likes on a social

media profile. Unless noted, requested keys follow YCSB’s default

Zipfian distribution (\ =0.99). The experiments do not use check-

pointing, which is needed for durability and to bound recovery

times. FASTER’s checkpointing and durability scheme is described

in related work [42, 52].

We compare to two baselines; one representing the state-of-the-

art in fast request processing, the other representing the state-of-

the-art in data migration.

Seastar+Memcached [10] is an open-source framework for build-

ing high performance multi-core services. Its shared-nothing design

constrasts with Shadowfax; servers partition data across cores, elim-

inating the need for locking. Clients can send requests to any server

thread; Seastar uses message passing via shared memory queues

to route each request to the core that processes requests for that

data item. Seastar represents a best case for the state-of-practice;

it is highly optimized. It uses lightweight, asynchronous futures to

avoid context switch overheads, and it uses advanced NIC features

like FlowDirector [6] to partition and scale network processing. We

used an open-source, lock-free, shared-nothing version of Mem-

cache on Seastar as a baseline [9]. We batched 100 operations per

request, which maximized its throughput.

Rocksteady [32] is a state-of-the-art migration protocol for RAM-

Cloud [50]. To accelerate migration, it immediately routes requests

for migrated records to the target, while it is transfering records

(which only reside in memory). It slowly performs disk I/O in the

background to incorporate the migrated records into durable, on-

disk replicas that belong to the target; this must complete before

the source and target can be independently recovered. We modified

Shadowfax to use a similar approach as a baseline. Instead of using

indirection records, first, all in-memory records are moved; then,

the source performs a sequential scan over all records on durable

storage, where all encountered live are sent to the target.

6.2 Throughput Scalability

Shadowfax partitions request dispatching across threads for perfor-

mance. It shares access to FASTER between threads to provide high

throughput even under skew. To demonstrate this, we measured

throughput while scaling the number of threads on one server ma-

chine with one client machine. The entire dataset resides inmemory,

ensuring the experiment is CPU-limited. Figure 10 shows the re-

sults on Shadowfax, on FASTER when requests are generated on the

same machine (i.e., no networking involved), and on Shadowfax

without hardware accelerated networking.

Shadowfax retains FASTER’s scalability. FASTER scales to service

128 Mops/s on 64 threads. Adding in the dispatch layer and remote

client preserves performance; Shadowfax scales to 130 Mops/s on

64 threads. This is because it avoids cross-thread synchronization

or communication for request processing from the point a client

thread issues a request until the server thread executes it on FASTER.

Client threads’ pipelined batches of asynchronous requests also

avoid any slowdown from stalls induced by network delay, keeping

all threads at the client and server busy at all times.

Hardware network acceleration also plays an important role in

maintaining performance; when disabled, throughput reaches only

58% (75 Mops/s) of accelerated TCP. Here, CPU overhead for TCP

transport processing increases, so the server slows due to additional

time spent in recv() syscalls instead of doing work. Hardware ac-

celeration offloads a significant portion of packet processing to a

SmartNIC, allowing Shadowfax to maintain FASTER’s scalability

without relying on kernel-bypass networking (DPDK or RDMA).

Next, we compared Shadowfax to Seastar+memcached (Figure 11)

using a uniform key access distribution; this is the only distribution

that Seastar’s client harness supports (this advantages Seastar’s

shared-nothing approach, which suffers imbalance under skew).

Seastar scales to 10 Mops/s on 28 threads, after which throughput is

flat. Shadowfax scales linearly to 85Mops/s on 64 threads; even at 28

threads, it is already 4x faster than Seastar. This is because Seastar



●
●

●

●

● ●
●

●

● ●
● ●

●
●

●
●

●

0

25

50

75

100

125

1 8 16 24 32 40 48 56 64

Number of Threads

T
h
ro

u
g
h
p
u
t 

(M
il

li
o
n
 O

p
s/

s)

● Faster Shadowfax w/o Accel

Figure 10: Throughput scalability.

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0

25

50

75

100

125

1 8 16 24 32 40 48 56 64

Number of Threads

T
h
ro

u
g
h
p
u
t 

(M
il

li
o
n
 O

p
s/

s)

● Seastar Seastar−NOP Shadowfax

Figure 11: Shadowfax vs Seastar.

●

●

●

●
●

●
● ●

● ● ● ●
●

● ●
●

●

0

2

4

6

8

10

1 8 16 24 32 40 48 56 64

Number of Threads

T
h
ro

u
g
h
p
u
t 

(M
il

li
o
n
 O

p
s/

s)

Figure 12: Insert-only workload.

partitions work at the wrong layer; threads maintain independent

indices to avoid synchronizing on records, but this forces threads

to use inter-core message passing when they receive a request to

route it to the thread that has that record. To ensure that this is

the case and that it is not the result of a bottleneck in Seastar’s

shared-nothing memcached implementation, we also measured the

throughput of Seastar’s when each request is a no-op (by disabling

its index, see Seastar-NOP). This improves Seastar’s throughput, but

it is still 4× slower than Shadowfax on 64 threads. This reinforces

that simply attaching a more scalable index like FASTER to Seastar’s

networking and dispatch layers is not sufficient to get good perfor-

mance; forced cross-core routing of requests is the bottleneck.

In contrast, Shadowfax’s design helps it exploit its shared FASTER

instance, which is lock-free and minimizes cache footprint. It leaves

all synchronization and communication to the hardware cache co-

herence, which is more efficient than explicit software coordination

and only incurs high costs when real contention arises in data

access patterns, rather than pessimistically synchronizing on all

requests. Shadowfax’s advantage grows with skew; comparing

Figures 10 and 11 shows Shadowfax’s performance improves by

1.5x under skew, whereas Seastar’s performance would decrease.

6.2.1 Insertonlyworkload FASTER’s HybridLog is key to Shad-

owfax’s high throughput since it allows records to be updated in

place. However, in-place updates might not always be possible.

For workloads that are insert only, throughput will be limited by

the rate at which records can be appended to the HybridLog’s tail.

Figure 12 presents scalability for a workload that inserts 250 mil-

lion records into Shadowfax. Throughput scales to 8 Mops/s on

16 threads. Beyond 16 threads, increments to the HybridLog’s tail

bottleneck the system, and throughput saturates.

6.3 Batching and Latency

Shadowfax clients send requests in pipelined batches to amortize

network overheads and keep servers busy. Asynchronous requests

with hardware network acceleration help reduce batch sizes and

latency. To show this, we measured its median latency and batch

size at server saturation. Table 2 shows results with TCP, TCP with

hardware acceleration disabled, and two-sided RDMA (Infrc). We

used Azure’s HC44rs [4] instances for Infrc, since they support

(100 Gbps) RDMA; they have Xeon Platinum 8168s with 44 vCPUs.

Most of Shadowfax’s latency comes from batching, which amor-

tizes CPU costs. Accelerated networking reduces CPU load, decreas-

ing the batching needed to retain throughput. With acceleration,

small 32 KB batches saturate server throughput with a low latency

low of 1.3 ms. Without acceleration, increased batch size doesn’t

Network
Throughput

(Mops/s)

Batching

(KB)

MedianLa-

tency (µs)

Queue

Depth

TCP 130 32 1300 1927

TCP, 1 KB 19 1 212 60

w/o Accel 75 32 2200 1927

Infrc 126 1 38.6 60

TCP-IPoIB 125 8 260 482

Table 2: Shadowfax’s latency at server saturation.

●

●

●

●

● ●

●
●

●

●
0.1

1

10

100

T
h

ro
u

g
h

p
u

t

(M
il

li
o

n
 O

p
s/

s)

● Uniform Distribution Zipfian Distribution

●

●

●

●

● ●

●
●

●

●

100.0
99.9

99.0

90.0

10.0

100 90 80 70 60 50 40 30 20 10

Memory Budget (GB)

H
it

 R
at

e 
(%

)

Figure 13: Throughput under decreasingmemory budgets.

help; with 32 KB batches throughput drops to 75 Mops/s, and me-

dian latency increases to 2.2 ms. Finally, the TCP 1 KB case uses

a small batch size with hardware acceleration; latency drops by

6.1× but throughput also drops by 6.8× showing the combined

importance of acceleration and proper batch size.

The batch size required to saturate throughput on Infrc is sig-

nificantly lower at 1 KB, dropping median latency to 40 µs. This

is because the network is faster and the stack is implemented in

hardware; servers and clients can receive and transmit batches with

near-zero software overhead (including system calls). Secondly, vC-

PUs on these instances are faster with a base clock rate of 2.7 GHz

compared to 2.3 GHz on the TCP instances (Table 1). This speeds

servers and clients, reducing the batch size and threads (from 64 to

44) required to reach the same throughput. To evaluate this further,

we ran Shadowfax using TCP over IPoIB [7] on the Infrc instances

(Table 2, TCP-IPoIB). Throughput still saturates at 125Mops/s. Com-

pared to hardware accelerated TCP, faster vCPUs reduce the batch

size by 4x (8 KB) and median latency by 5x (260 µs).



(a) All Data In Memory (b) Indirection Records (c) Rocksteady

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0

20

40

60

80

100

120

0

20

40

60

80

100

120

0

20

40

60

80

100

120

Time since start of experiment (minutes)

S
y

st
em

 T
h

ro
u

g
h

p
u

t

(M
il

li
o

n
 o

p
s/

se
c)

Figure 14: Running throughput when 10% of a server’s load is migrated to an idle target.

Source

Target

Source

Target

Source

Target

(a) All Data In Memory (b) Indirection Records (c) Rocksteady

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0

20

40

60

80

100

120

0

20

40

60

80

100

120

0

20

40

60

80

100

120

Time since start of experiment (minutes)

S
er

v
er

 T
h

ro
u

g
h

p
u

t

(M
il

li
o

n
 o

p
s/

se
c)

Figure 15: Source and target throughput during scale up.

6.4 Memory Budget

FASTER’s throughput eventually becomes limited by the SSD when

the entire dataset does not fit in main memory. Shadowfax’s dis-

patch layer and client library ensure that this does not change when

requests are generated over the cloud network. To show this, we

measured throughput under a decreasing main-memory budget for

the HybridLog. We also measured the hit rate (the percentage of

requests that were served from main-memory) during this exper-

iment. Figure 13 presents the results (please note the log scale).

Overall, throughput drops as the memory budget decreases.

This is because the system needs to issue random I/O to fetch

records from SSD. Once fetched, these records are appended to the

HybridLog’s tail which flushes records at its head to SSD leading to

more random I/O during future requests. For a uniform distribution,

throughput begins to drop at 80 GB. Since all records are equally

hot, even a small set on SSD hurts the hit rate and saturates SSD

IOPS (Table 1). For a Zipfian distribution, a smaller hot set ensures

that this begins to happen only at 50 GB. Throughput still drops

because of low SSD IOPS (Azure throttled our VMs to 96,000 IOPS),

decreasing to 3.5 Mops/s at 20 GB. However, this is still 24× better

than the uniform case which drops to 0.146 Mops/s.

6.5 Scale Out

Shadowfax’s migration transfers hash ranges between two ma-

chines and minimizes throughput impact while doing so. Indirec-

tion records help restrict migration to memory, speeding up scale

out, decoupling the source and target sooner. To demonstrate this,

we measured throughput during scale up.

In a 5-minute experiment with one client and two servers (a

source and a target), the entire hash space initially resides at the

source. After one minute, 10% of this hash range is moved to the

target. Figure 14 shows system throughput during the experiment;

Figure 15 shows source and target throughput separately. In (a), all

records are placed in memory. In (b) and (c), servers are restricted

to a memory budget of 60 GB, allowing us to compare the impact

of indirection records (in (b)) against Rocksteady’s scan-the-log

approach (in (c)).

6.5.1 All-In-MemoryScaleOut Global cuts for ownership trans-

fer avoid stalling cores at migration start, but the view change for

this cut has some impact; request batches are invalidated, causing re-

quests to be shuffled among sessions buffers at the client (≈250,000

requests per view change based on Table 2 Queue Depths). This

is visible in Figure 14 (a); throughput at the start of scale out (1

minute) briefly drops to 80 Mops/s.

Figure 15 (a) shows that throughput on the source stays at

85 Mops/s after this. This is because the source is collecting and

transmitting records as it services requests. Parallel migration limits

the length of this impact in two ways. First, it accelerates migration,

completing in 17 s and restoring full throughput. Second, as more

records shift to the target, it serves more requests, causing system

throughput to recover even before scale up completes. Once scale

up completes, system throughput increases by 10% as expected.

Shadowfax’s asynchronous client library helps limit the impact

too. When the target receives a request for a record that has not

been migrated yet, it marks the request as pending. This keeps

clients from blocking, allowing them to continue sending requests.

To prevent a buildup of pending requests, the target periodically

tries to complete them. Figure 16 (a) shows the number of pending

operations at the target during migration. When migration starts,

requests flood the target, pending 100 million requests. As records

migrate, these requests complete, with the last pending operation

completing 100 s after migration start. Hence, practical migrations

must be small and incremental to bound delay; however, through-

put recovery is more important in Shadowfax’s target applications

whereas latency can be tolerated with asynchrony.



(a) All Data In Memory (b) Indirection Records (c) Rocksteady

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0.1

1

10

100

0.1

1

10

100

0.1

1

10

100

Time since start of experiment (minutes)

P
en

d
in

g
 s

et
 s

iz
e 

(M
il

li
o

n
)

Figure 16: Number of pending operations during scale up.

Config DataMigrated (GB)

All Data InMemory 7.44

Indirection Records 16.47

Rocksteady 5.60

Table 3: Impact of indirection records onmigration size.

We also ran the above experiment on a larger cluster of four 64-

core machines (3 servers, 1 client) on CloudLab [53] and obtained

similar results; aggregate cluster throughput is only impacted by

20% in the worst case during migration, since throughput is only

reduced at the source during migration.

6.5.2 Indirection Records With a 60 GB memory budget, some

records to be migrated are on the source’s SSD. Rocksteady’s ap-

proach (Figure 14 (c)) migrates records from memory and then

scans the on-SSD log to migrate colder records. Parallel migration

completes the in-memory phase in just 14 s. Thoughput improves

quickly after this phase, since these are hotter records. However,

the second phase is single threaded, scans over files on SSD, and

takes 165 s to complete; during this phase the source and target

remain inter-dependent for fault tolerance.

Indirection records solve this, completing migration in 32 s (Fig-

ure 14 (b)) by avoiding this I/O as part of migration. By sending out

records that point to shared remote storage, migration is restricted

to memory and avoids I/O at the source altogether. However, this

approach increases the amount of data transmitted to the target.

Table 3 show this effect. Compared to Rocksteady’s 5.60 GB, in-

direction records cause 16.47 GB to be transmitted from memory

to the target. This is because we must send about one indirection

record per hash table bucket entry, totaling 11 GB here. The larger

migration takes 18 s longer than Rocksteady’s in-memory phase,

but it decreases the total duration of migration by 150 s.

After migration, requests that hit indirection records at the tar-

get cause remote accesses to shared cloud storage. These requests

are infrequent (these records are cold), and they have little impact

on throughput (Figure 14 (b)). However, cloud storage is slow, so

in the time it takes to retrieve one such record, the target receives

many requests for it which must pend. Requests that pend during

scale out complete by 4 minutes (Figure 16 (b)). The gradual upward

slope after this is due to the requests that pend on access to remote

shared storage. Requests never pend after scale out with Rock-

steady; however, its slow sequential scan causes requests to pend

awaiting transmission from the source during its longer migration.

We also measured the impact of fetching records from shared

remote storage when resolving indirection records during com-

paction, but its throughput impact was neglible (Figure 17).

6.5.3 Sampled Records Shadowfax sends a small set of hot

records to the target during ownership transfer, which allows the

target to start servicing requests and recovering throughput quickly.

Figure 18 shows target throughput when this is enabled (Sampling)

and when it is disabled (No Sampling). In this experiment, all data

starts in the source’s memory, so scale out completes in 17 s. When

enabled, throughput at the target rises up to 8 Mops/s immediately

after ownership transfer. If disabled, this happens 5 s later, once

sufficient records have been migrated over. At this point, nearly

30% of scale out has completed, meaning that by sampling and

shipping hot records during ownership transfer, the target starts

contributing to system throughput 30% faster. Measurements on

the source show that the SAMPLING phase lasted 4 ms and had no

noticeable overhead.

6.5.4 Ownership Validation Views allow Shadowfax to fluidly

move ownership of hash ranges between servers and help minimize

the overhead of scale out on normal operation of the system. Fig-

ure 19 demonstrates this; it presents normal case server throughput

under an increasing number of hash splits. When using views to

validate record ownership at the server (View Validation), through-

put stays fairly constant. On switching over to an approach that

hashes every received key and looks up a trie of owned hash ranges

at the server (Hash Validation), throughput gradually drops as the

number of hash splits increase.

This figure shows the benefit of using views given a particular

scale out granularity; if scale out always moves 7% of a server’s

load (16 hash splits), then view validation can improve normal case

throughput by 5%. Similarly, if it always moves 0.2% of a server’s

load (512 hash splits), then this improvement increases to 10%.

6.6 System Scalability

In addition to retaining FASTER’s throughput within a machine,

Shadowfax also retains throughput across machines. To demon-

strate this, we first hash partitioned 2 billion records across a clus-

ter consisting of 12 servers on CloudLab [53] (each server had 64

threads, 128 GB RAM and one 100 Gbps Mellanox CX5 NIC). Next,

we measured the total throughput of this cluster while varying the

number of clients issuing requests (clients had the same hardware

as servers). Because each client thread opens up a session to one

thread on each server, each client added in 64 sessions to each server

and hence 768 sessions to the cluster (64 threads/client * 12 servers).



Compaction Starts Compaction Ends

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9 10

Time since start of experiment (minutes)

S
y
st

em
 T

h
ro

u
g
h
p
u
t

(M
il

li
o
n
 o

p
s/

se
c)

Figure 17: Cleaning indirection records.

0

5

10

15

20

0.5 1 1.5

Time since start of the experiment (minutes)

T
ar

g
et

 T
h
ro

u
g
h
p
u
t

(M
il

li
o
n
 o

p
s/

se
c)

Sampling No Sampling

Figure 18: Sampled records impact.

● ● ● ● ● ● ● ● ● ● ● ●

0

20

40

60

80

100

120

1 2 4 8 16 32 64 256 2048

Number of Hash Splits on Server

T
h
ro

u
g
h
p
u
t

(M
il

li
o
n
 O

p
s/

s)

● View Validation Hash Validation

Figure 19: View validation overhead.

●

●

●

1 Client

768 Sessions

2 Clients

1536 Sessions

3 Clients

2304 Sessions

0

200

400

600

800

1000

1200

64 128 192

Number of Client Threads

T
h
ro

u
g
h
p
u
t 

(M
il

li
o
n
 o

p
s/

s)

● Uniformly Balanced Unbalanced

Figure 20: Shadowfax system scalability.

Figure 20 shows the results. "Unbalanced" shows results for a

Zipfian skewed workload. Cluster throughput scales to 890 Mops/s

but sub-linearly when moving from two clients to three. This was

with 12 coarse-grained hash ranges, one per server. This is insuf-

ficient to uniformly distribute load across servers. Shadowfax’s

migration is designed to fix this via fine-grained hash splits. Load

distributions can be monitored to determine ideal hash splits [13].

Once determined, these splits can be quickly migrated with low

throughput impact. "Uniformly Balanced" (Figure 20) shows an

upper bound that could be achieved this way. It represents a case

where splits uniformly distribute load over all servers, improving

throughput by 40 Mops/s (4.5%) to 930 Mops/s.

Finally, beyond high throughput, this experiment also demon-

strates that Shadowfax can scale to support a large number of client

sessions (connections); at saturation, each server has 192 sessions

open to it, resulting in a total of 2304 sessions across the cluster.

7 RELATEDWORK

Shadowfax builds on several areas of recent research.

Epochs and Cuts. There are many schemes for synchronization

and memory protection in lock-free concurrent data structures

including hazard pointers [44], read-copy-update [43] and epoch-

based schemes [24, 33]. Like FASTER and Shadowfax, several other

systems [36–39] use epochs for this purpose. Shadowfax’s use of

epochs to avoid strong ordering among requests except on coarse

boundaries resembles Silo’s, a (single-node) in-memory store [55].

Shadowfax extends epochs back to clients by asynchronously choos-

ing points in server execution and correlating these back to per-

client sequence numbers, effectively pushing the overhead of log-

ging out of servers altogether. Similarly, Scalog’s persistence-before-

ordering approach uses global cuts that define and order shards of

operations on different machines [19].

High-throughput Networked Stores. Some in-memory stores

exploit kernel-bypass networking or RDMA and optimize for mul-

ticore. Many of these focus on throughput but do not provide scale

out [29, 41, 45], both of which can slow normal-case request pro-

cessing. RAMCloud focuses on low latency and has migration,

but its throughput is two orders of magnitude less than Shadow-

fax [49, 50]. FaRM [20, 21] uses one-sided RDMA reads to con-

struct data structures like hash tables and supports scale out via

in-memory replication. FaRM’s reported per-core throughput is

about 300,000 reads/s/core, compared to Shadowfax’s 1.5 million

read-modify-writes/s/core, though there are differences in exper-

imental set up. For example, FaRM doesn’t report numbers for

read-modify-write or write-only workloads which are significantly

more expensive in FaRM, since they involve server CPU, require

replication, and cannot be done with one-sided RDMA operations.

Elasticity. Scale out and migration are key features in shared, repli-

cated stores [2, 8, 18]. High-throughput, multicore stores complicate

this because normal-case request processing is highly optimized

and migration competes for CPU. Some stores rely on in-memory

replicas for fast load redistribution [21, 56]; this is expensive due to

DRAM’s high cost and replication overhead. Squall [22] migrates

data in the H-Store [30] database; it exploits skew via on-demand

record pulls from source to target with colder data moved in the

background. Rocksteady [32] uses this idea in RAMCloud along

with a deferred replication scheme that avoids write-ahead logging.

8 CONCLUSION

Practical KVSs must ingest events over the network and elastically

scale across machines. Shadowfax does this with state-of-the-art

performance that reaches 130 Mops/s/VM by relying on its global

cuts, partitioned sessions, and end-to-end asynchronous clients.

ACKNOWLEDGMENTS

This work was started at Microsoft Research during an internship

by Chinmay Kulkarni and a visit by Ryan Stutsman. We thank Don-

ald Kossmann and the anonymous reviewers for their comments

and suggestions. Chinmay Kulkarni is supported by a Google PhD

Fellowship, which partially supported this work. This material is

based upon work supported by the National Science Foundation

under Grant No. CNS-1750558. Any opinions, findings, and conclu-

sions or recommendations expressed in this material are those of

the author(s) and do not necessarily reflect the views of the National

Science Foundation.



REFERENCES

[1] Accelerated Networking. https://docs.microsoft.com/en-us/azure/virtual-
network/create-vm-accelerated-networking-cli. Accessed: 4/22/2020.

[2] Apache Cassandra. http://cassandra.apache.org/. Accessed: 2/28/2020.
[3] Azure Blob storage. https://docs.microsoft.com/en-us/azure/storage/blobs/

storage-blob-pageblob-overview. Accessed: 4/22/2020.
[4] Azure HPC VMs. https://azure.microsoft.com/en-us/blog/introducing-the-new-

hb-and-hc-azure-vm-sizes-for-hpc/. Accessed: 4/27/2020.
[5] Azure Memory Optimized VMs. https://docs.microsoft.com/en-us/azure/virtual-

machines/ev3-esv3-series. Accessed: 4/22/2020.
[6] Intel Flow Director. http://www.intel.com/content/dam/www/public/us/en/

documents/white-papers/intel-ethernet-flow-director.pdf. Accessed: 4/22/2020.
[7] IPoIB. https://www.advancedclustering.com/act_kb/ipoib-using-tcpip-on-an-

infiniband-network/. Accessed: 4/28/2020.
[8] Redis. http://redis.io/. Accessed: 2/28/2020.
[9] Seastar Applications. http://seastar.io/seastar-applications/. Accessed: 4/22/2020.
[10] Seastar Framework. http://seastar.io. Accessed: 4/22/2020.
[11] Spark Streaming. https://spark.apache.org/streaming/.
[12] YCSB Workloads. https://github.com/brianfrankcooper/YCSB/wiki/Core-

Workloads. Accessed: 4/22/2020.
[13] Adya, A., Myers, D., Howell, J., Elson, J., Meek, C., Khemani, V., Fulger, S., Gu,

P., Bhuvanagiri, L., Hunter, J., Peon, R., Kai, L., Shraer, A., Merchant, A.,

and Lev-Ari, K. Slicer: Auto-sharding for datacenter applications. In Proceedings
of the 12th USENIX Conference on Operating Systems Design and Implementation
(Berkeley, CA, USA, 2016), OSDI’16, USENIX Association, pp. 739–753.

[14] Birman,K. P., and Joseph,T.A. Reliable communication in thepresence of failures.
ACM Transactions on Computer Systems 5, 1 (1987), 47–76.

[15] Chandramouli, B., Goldstein, J., Barnett, M., DeLine, R., Fisher, D., Platt,

J. C., Terwilliger, J. F., andWernsing, J. Trill: A high-performance incremental
query processor for diverse analytics. Proc. VLDB Endow. 8, 4 (Dec. 2014), 401–412.

[16] Chandramouli, B., Prasaad, G., Kossmann, D., Levandoski, J., Hunter, J., and

Barnett, M. Faster: A concurrent key-value store with in-place updates. In
Proceedings of the 2018 International Conference onManagement of Data (NewYork,
NY, USA, 2018), SIGMOD ’18, ACM, pp. 275–290.

[17] Copeland, M., Soh, J., Puca, A., Manning, M., and Gollob, D. Microsoft Azure:
Planning, Deploying, and Managing Your Data Center in the Cloud, 1st ed. Apress,
USA, 2015.

[18] DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A.,

Pilchin, A., Sivasubramanian, S., Vosshall, P., and Vogels, W. Dynamo:
Amazon’s highly available key-value store. In Proceedings of Twenty-First ACM
SIGOPS Symposium on Operating Systems Principles (New York, NY, USA, 2007),
SOSP ’07, Association for Computing Machinery, p. 205–220.

[19] Ding, C., Chu, D., Zhao, E., Li, X., Alvisi, L., and Renesse, R. V. Scalog: Seamless
Reconfiguration and Total Order in a Scalable Shared Log. In 17th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI 20) (Santa Clara, CA,
Feb. 2020), USENIX Association, pp. 325–338.

[20] Dragojević, A., Narayanan, D., Castro, M., and Hodson, O. Farm: Fast remote
memory. In 11th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 14) (Seattle, WA, Apr. 2014), USENIX Association, pp. 401–414.

[21] Dragojević, A., Narayanan, D., Nightingale, E. B., Renzelmann, M., Shamis,

A., Badam, A., and Castro, M. No compromises: distributed transactions with
consistency, availability, and performance . In SOSP (2015), pp. 85–100.

[22] Elmore, A. J., Arora, V., Taft, R., Pavlo, A., Agrawal, D., and El Abbadi, A.

Squall: Fine-grained live reconfiguration for partitioned main memory databases.
In Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data (New York, NY, USA, 2015), SIGMOD ’15, ACM, pp. 299–313.

[23] Fischer, M. J., Lynch, N. A., and Paterson, M. S. Impossibility of Distributed
Consensus with One Faulty Process. J. ACM 32, 2 (Apr. 1985), 374–382.

[24] Fraser, K. Practical lock-freedom. PhD thesis, University of Cambridge, UK, 2004.
[25] Gray, C. G., and Cheriton, D. R. Leases: An Efficient Fault-Tolerant Mechanism

for Distributed File Cache Consistency. In Proceedings of the Twelfth ACM Sym-
posium on Operating System Principles, SOSP 1989, TheWigwam, Litchfield Park,
Arizona, USA, December 3-6, 1989 (1989), ACM, pp. 202–210.

[26] Gray, J. Notes on Database Operating Systems. Lecture Notes in Computer Science
Volume 60 (1978), 393–481.

[27] Herlihy, M. Wait-free synchronization. ACM Transactions on Programming
Languages and Systems 13, 1 (1991), 124–149.

[28] Hunt, P., Konar, M., Junqeira, F. P., and Reed, B. ZooKeeper: Wait-free Coor-
dination for Internet-scale Systems. In 2010 USENIX Annual Technical Conference,
Boston, MA, USA, June 23-25, 2010 (2010), USENIX Association.

[29] Kalia, A., Kaminsky, M., and Andersen, D. G. Using RDMA efficiently for key-
value services. In ACM SIGCOMM 2014 Conference, SIGCOMM’14, Chicago, IL,
USA, August 17-22, 2014 (2014), pp. 295–306.

[30] Kallman, R., Kimura, H., Natkins, J., Pavlo, A., Rasin, A., Zdonik, S., Jones, E.

P. C.,Madden, S., Stonebraker,M., Zhang, Y., Hugg, J., andAbadi, D. J. H-store:
A High-performance, Distributed Main Memory Transaction Processing System.
Proc. VLDB Endow. 1, 2 (Aug. 2008), 1496–1499.

[31] Kaufmann, A., Peter, S., Sharma, N. K., Anderson, T., and Krishnamurthy, A.

High performance packet processing with flexnic. In Proceedings of the Twenty-
First International Conference on Architectural Support for Programming Languages
and Operating Systems (New York, NY, USA, 2016), ASPLOS ’16, Association for
Computing Machinery, p. 67–81.

[32] Kulkarni, C., Kesavan, A., Zhang, T., Ricci, R., and Stutsman, R. Rocksteady:
Fast migration for low-latency in-memory storage. In Proceedings of the 26th
Symposium on Operating Systems Principles (New York, NY, USA, 2017), SOSP ’17,
ACM, pp. 390–405.

[33] Kung, H. T., and Lehman, P. L. Concurrent manipulation of binary search trees.
ACM Trans. Database Syst. 5, 3 (Sept. 1980), 354–382.

[34] Lamport, L. Paxos Made Simple. SIGACT News 32, 4 (Dec. 2001), 51–58.
[35] Lamport, L., Malkhi, D., and Zhou, L. Vertical Paxos and Primary-Backup

Replication. In Proceedings of the 28th ACM Symposium on Principles of Distributed
Computing (New York, NY, USA, 2009), PODC ’09, Association for Computing
Machinery, p. 312–313.

[36] Levandoski, J., Lomet, D., Sengupta, S., Stutsman, R., and Wang, R. High
Performance Transactions in Deuteronomy. In Conference on Innovative Data
Systems Research (CIDR 2015) (2015).

[37] Levandoski, J., Lomet, D., Sengupta, S., Stutsman, R., and Wang, R. Multi-
version Range Concurrency Control in Deuteronomy. Proceedings of the VLDB
Endowment 8, 13 (Sept. 2015), 2146–2157.

[38] Levandoski, J. J., Lomet, D. B., and Sengupta, S. The Bw-Tree: A B-tree for new
hardware platforms. In 29th IEEE International Conference on Data Engineering,
ICDE 2013, Brisbane, Australia, April 8-12, 2013 (2013), pp. 302–313.

[39] Levandoski, J. J., Lomet,D. B., Sengupta, S., Birka,A., andDiaconu,C. Indexing
onModern Hardware: Hekaton and Beyond. In SIGMOD (2014), pp. 717–720.

[40] Li, B., Ruan, Z., Xiao, W., Lu, Y., Xiong, Y., Putnam, A., Chen, E., and Zhang, L.

Kv-direct: High-performance in-memory key-value store with programmable nic.
In Proceedings of the 26th Symposium on Operating Systems Principles (New York,
NY, USA, 2017), SOSP ’17, ACM, pp. 137–152.

[41] Li, S., Lim, H., Lee, V. W., Ahn, J. H., Kalia, A., Kaminsky, M., Andersen, D. G.,

Seongil, O., Lee, S., and Dubey, P. Architecting to achieve a billion requests per
second throughput on a single key-value store server platform. In Proceedings of
the 42Nd Annual International Symposium on Computer Architecture (New York,
NY, USA, 2015), ISCA ’15, ACM, pp. 476–488.

[42] Li, T., Chandramouli, B., Faleiro, J., Madden, S., and Kossmann, D. Asynchro-
nous Prefix Recoverability for Fast Distributed Stores. In Proceedings of the 2021
International Conference on Management of Data (2021), SIGMOD ’21.

[43] McKenney, P. E., and Slingwine, J. D. Read-copy update: Using execution history
to solve concurrency problems. In Parallel and Distributed Computing and Systems
(1998), pp. 509–518.

[44] Michael, M. M. Safe Memory Reclamation for Dynamic Lock-free Objects Using
Atomic Reads andWrites. In Proceedings of the Twenty-first Annual Symposium on
Principles of Distributed Computing (New York, NY, USA, 2002), PODC ’02, ACM,
pp. 21–30.

[45] Mitchell, C., Geng, Y., and Li, J. Using One-Sided RDMA Reads to Build a Fast,
CPU-Efficient Key-Value Store. In 2013 USENIX Annual Technical Conference, San
Jose, CA, USA, June 26-28, 2013 (2013), pp. 103–114.

[46] Nishtala, R., Fugal, H., Grimm, S., Kwiatkowski, M., Lee, H., Li, H. C., McElroy,

R., Paleczny,M., Peek, D., Saab, P., Stafford, D., Tung, T., andVenkataramani,

V. Scaling Memcache at Facebook. In Proceedings of the 10th USENIX Symposium
on Networked Systems Design and Implementation, NSDI 2013, Lombard, IL, USA,
April 2-5, 2013 (2013), N. Feamster and J. C. Mogul, Eds., USENIX Association,
pp. 385–398.

[47] Oki, B. M., and Liskov, B. H. Viewstamped replication: A new primary copy
method to support highly-available distributed systems. In Proceedings of the
Seventh Annual ACM Symposium on Principles of Distributed Computing (New
York, NY, USA, 1988), PODC ’88, Association for Computing Machinery, p. 8–17.

[48] Ongaro, D., and Ousterhout, J. K. In Search of an Understandable Consen-
sus Algorithm. In 2014 USENIX Annual Technical Conference, USENIX ATC ’14,
Philadelphia, PA, USA, June 19-20, 2014 (2014), USENIX Association, pp. 305–319.

[49] Ongaro, D., Rumble, S. M., Stutsman, R., Ousterhout, J., and Rosenblum,

M. Fast Crash Recovery in RAMCloud. In Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles (2011), ACM, pp. 29–41.

[50] Ousterhout, J., Gopalan, A., Gupta, A., Kejriwal, A., Lee, C., Montazeri, B.,

Ongaro, D., Park, S. J., Qin, H., Rosenblum,M., and et al. The ramcloud storage
system. ACM Trans. Comput. Syst. 33, 3 (Aug. 2015).

[51] Phothilimthana, P.M., Liu,M., Kaufmann, A., Peter, S., Bodik, R., andAnder-

son, T. Floem: A programming system for nic-accelerated network applications.
In Proceedings of the 12th USENIX Conference on Operating Systems Design and
Implementation (USA, 2018), OSDI’18, USENIX Association, p. 663–679.

[52] Prasaad, G., Chandramouli, B., and Kossmann, D. Concurrent Prefix Recovery:
Performing CPR on a Database. In Proceedings of the 2019 International Conference
on Management of Data (New York, NY, USA, 2019), SIGMOD ’19, Association for
Computing Machinery, p. 687–704.

[53] Ricci, R., Eide, E., and The CloudLab Team. Introducing CloudLab: Scientific
infrastructure for advancing cloud architectures and applications. USENIX ;login:



39, 6 (Dec. 2014).
[54] Stonebraker, M., andWeisberg, A. The voltdb main memory DBMS. IEEE Data

Eng. Bull. 36, 2 (2013), 21–27.
[55] Tu, S., Zheng,W., Kohler, E., Liskov, B., andMadden, S. Speedy transactions

in multicore in-memory databases. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles (New York, NY, USA, 2013), SOSP ’13,
Association for Computing Machinery, p. 18–32.

[56] Wei, X., Shen, S., Chen, R., and Chen, H. Replication-driven live reconfiguration
for fast distributed transaction processing. In 2017 USENIX Annual Technical
Conference, USENIX ATC 2017, Santa Clara, CA, USA, July 12-14, 2017. (2017),
pp. 335–347.

[57] Wu, C., Faleiro, J., Lin, Y., andHellerstein, J. Anna: A kvs for any scale. In 2018
IEEE 34th International Conference on Data Engineering (ICDE) (2018), pp. 401–412.


