Achieving High Throughput and Elasticity in a Larger-than-Memory Store

Chinmay Kulkarni
University of Utah
chinmayk@cs.utah.edu

ABSTRACT

Millions of sensors, mobile applications and machines now generate
billions of events. Specialized many-core key-value stores (KVSs)
can ingest and index these events at high rates (over 100 Mops/s on
one machine) if events are generated on the same machine; how-
ever, to be practical and cost-effective they must ingest events over
the network and scale across cloud resources elastically.

We present Shadowfax, a new distributed KVS based on FASTER,
that transparently spans DRAM, SSDs, and cloud blob storage while
serving 130 Mops/s/VM over commodity Azure VMs using conven-
tional Linux TCP. Beyond high single-VM performance, Shadowfax
uses a unique approach to distributed reconfiguration that avoids
any server-side key ownership checks or cross-core coordination
both during normal operation and migration. Hence, Shadowfax
can shift load in 17 s to improve system throughput by 10 Mops/s
with little disruption. Compared to the state-of-the-art, it has 8x
better throughput (than Seastar+memcached) and avoids costly I/O
to move cold data during migration. On 12 machines, Shadowfax
retains its high throughput to perform 930 Mops/s, which, to the
best of our knowledge, is the highest reported throughput for a
distributed KVS used for large-scale data ingestion and indexing.

PVLDB Reference Format:

Chinmay Kulkarni, Badrish Chandramouli, Ryan Stutsman. Achieving High
Throughput and Elasticity in a Larger-than-Memory Store. PVLDB, 14(8):
1427 - 1440, 2021. doi:10.14778/3457390.3457406

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://aka.ms/Shadowfax.

1 INTRODUCTION

Millions of sensors, mobile applications, users, and machines contin-
uously generate billions of events that are are processed by stream-
ing engines [11, 15] and ingested and aggregated by state manage-
ment systems (Figure 1). Real-time queries are issued against this
ingested data to train and update models for prediction, to analyze
user behavior, or to generate device crash reports, etc. Hence, these
state management systems are a focal point for massive numbers
of events and queries over aggregated information about them.
This has led to specialized KVSs that can ingest and index these
events at high rates (100 million operations (Mops) per second (s)
per machine) using many-core hardware [16, 57]. They are efficient
if events are generated on the same machine as the KVS, but, in

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 8 ISSN 2150-8097.
doi:10.14778/3457390.3457406

1427

Badrish Chandramouli
Microsoft Research
badrishc@microsoft.com

Ryan Stutsman
University of Utah
stutsman@cs.utah.edu

Events,

2 » */w Data C10}1d J Ad hoc
Fe pe & Services Analvsi
o %y Streaming] [

ACRY A

&). gg@ | Ifgeit L Q_uer_y

b S?HSO;S’T State Management
evices, IoT...

Figure 1: A typical data processing pipeline.

practice, events must be aggregated from wide and distributed sets
of data sources. Hence, fast indexing only solves part of the problem.
To be practical and cost-effective, a complete system for aggregat-
ing events must ingest them over the network, must scale across
machines and cores, and must be elastic (by provisioning and recon-
figuring over inexpensive cloud resources as workloads change).
Existing KVSs with similar performance [31, 40, 41, 51] rely on
application-specific hardware acceleration, making them impossible
to deploy on today’s cloud platforms. These systems also only store
data in DRAM and do not scale across machines; adding support
to do so without hurting normal-case performance is not straight-
forward. For example, many of them statically partition records
across cores to eliminate cross-core synchronization. This optimizes
normal-case performance, but it makes concurrent operations like
migration and scale out impossible; transferring records and own-
ership between machines and cores requires a stop-the-world ap-
proach due to these systems’ lack of fine-grained synchronization.
Achieving this level of performance while fulfilling all of these
requirements on commodity cloud platforms requires solving two
key challenges simultaneously. First, workloads change over time
and cloud VMs fail, so systems must tolerate failure and recon-
figuration. Doing this without hurting normal-case performance
at 100 Mops/s is hard, since even a single extra server-side cache
miss to check key ownership or reconfiguration status would cut
throughput by tens of millions of operations per second. Second,
the high CPU cost of processing incoming network packets easily
dominates in these workloads, especially since, historically, cloud
networking stacks have not been designed for high data rates and
high efficiency. We show this is changing; by careful design of
each server’s data path, cloud applications can exploit transparent
hardware acceleration and offloading offered by cloud providers to
process more than 100 Mops/s per cloud virtual machine (VM).
We present Shadowfux, a distributed KVS built over FASTER,
our high-performance open-source single-node KVS!. Shadowfax
transparently spans DRAM, SSDs, and cloud storage while serv-
ing 130 Mops/s/VM on commodity Azure VMs [17] with conven-
tional Linux TCP. Beyond high per-VM performance, its unique
approach to distributed reconfiguration avoids any server-side key
ownership checks and any cross-core coordination during normal

'FASTER is available at https://github.com/microsoft/FASTER.

operation and data migration both in its indexing and network inter-

actions. Hence, it shifts load in 17 s to improve cluster throughput

by 10 Mops/s with little disruption. Compared to the state-of-the-

art, it has 8X better throughput (than Seastar+memcached [10])

while avoiding I/O to move cold data during migration (compared

to Rocksteady [32]).

In this paper, we describe and evaluate three key pieces of Shad-
owfax that eliminate coordination throughout the client and server
side by eliminating cross-request and cross-core coordination:
Low-cost Coordination via Global Cuts: In contrast to totally-

ordered or stop-the-world approaches used by most systems, cores
in Shadowfax avoid stalling to synchronize with one another, even
when triggering complex operations like scale-out, which require
defining clear before/after points in time among concurrent op-
erations. Instead, each core participating in these operations —
both at clients and servers — independently decides a point in an
asynchronous global cut that defines a boundary between oper-
ation sequences in these complex operations. In this paper, we
extend asynchronous cuts from cores within one process [16, 52]
to servers and clients in a cluster, and we show how they coordi-
nate server and client threads (through partitioned sessions) by
detailing their role in Shadowfax’s low-coordination data migra-
tion and reconfiguration protocol.

End-to-end Asynchronous Clients: All requests from a client
on one machine to Shadowfax are asynchronous with respect to
one another all the way throughout Shadowfax’s client- and server-
side network submission/completion paths and servers’ indexing
and (SSD and cloud storage) I/O paths. This avoids all client- and
server-side stalls due to head-of-line blocking, ensuring that clients
can always continue to generate requests and servers can always
continue to process them. In turn, clients naturally batch requests,
improving server-side high throughput especially under high load.
This batching also suits hardware accelerated network offloads
available in cloud platforms today further lowering CPU load and
improving throughput. Hence, despite batching, requests complete
in less than 40 ps to 1.3 ms at more than 120 Mops/s/VM, depend-
ing on which transport and hardware acceleration is chosen.

Partitioned Sessions, Shared Data: Asynchronous requests elim-
inate blocking between requests within a client, but maintaining
high throughput also requires minimizing coordination costs be-
tween cores at clients and servers. Instead of partitioning data
among cores to avoid synchronization on record accesses [10, 30,
41, 54], Shadowfax partitions network sessions across cores; its
lock-free hash index and log-structured record heap are shared
among all cores. This risks contention when some records are hot
and frequently mutated, but this is more than offset by the fact
that no software-level inter-core request forwarding or routing
is needed within server VMs.

The rest of the paper is organized as follows. We provide back-
ground on the FASTER key-value store and its use of epochs within
a machine (§2). Next, we overview Shadowfax’s design, including
partitioned client sessions with global cuts and how they enable
reconfiguration (§3). We then provide details on our parallel non-
blocking migration and scale-out techniques (§4). Next, we evaluate
Shadowfax in detail against other state-of-the-art shared-nothing
approaches (§6), showing that by eliminating record ownership

Bucket Entries

¥ =
Hash Table E ™, Reverse Linked
\ List
1
_ - g
Read
El SSD (Stable) I Only I Mutable

HybridLog
Figure 2: FASTER’s HybridLog spans memory and SSD.

checks and cross-core communication for routing requests it im-
proves per-machine throughput by 8.5X on commodity cloud VMs.
We also show it retains high throughput during migrations and
scaled it to a cluster that ingests and indexes 930 Mops/s, which, to
the best of our knowledge, is the highest reported throughput for
a distributed KVS used for large-scale data ingestion and indexing.
Finally, we cover related work (§7) and conclude (§8).

2 BACKGROUND ON FASTER

Shadowfax is built over the FASTER single-node KVS, which it relies
on for hash indexing and record storage. Here, we describe some
key aspects of FASTER, since Shadowfax’s design integrates with
it and builds on its mechanisms. More details about FASTER itself
can be found elsewhere [16, 52]. Specifically, Shadowfax extends
FASTER’s asynchronous cuts, which help avoid coordination, and
its HybridLog, which transparently spans DRAM and SSD.

In most ways, FASTER works like most durable hash table li-
braries. It includes a lock-free hash table divided into cacheline-
sized buckets (Figure 2). Each 8 byte bucket entry contains a pointer
to a record whose key hashes to that bucket. Each record points
to another record, forming a linked list of records with common
significant key hash bits. Each bucket entry contains additional bits
from the associated records’ key hash, increasing hashing resolu-
tion and disambiguating what records the bucket entry points to
without extra cache misses and without full key comparisons. Each
record pointed to by the hash table is stored in the HybridLog.

FASTER clients can use it like any other library, but a common
pattern is to pin one client application thread per CPU core to
eliminate scheduler overheads. Each client thread calls read or
read-modify-write operations on keys in FASTER. FASTER’s cache-
conscious design and lock-freedom are key in its ability to perform
more than 100 Mops/s on a single multicore machine.

2.1 HybridLog Allocator

FASTER allocates and stores all records in its HybridLog, which
spans memory and SSD (Figure 2). The HybridLog combines in-
place updates (for records in memory) and log-structured organiza-
tion (for records on SSD), and provides lock-free access to records.

The portion of the HybridLog’s address space on SSD forms the
stable region. It contains cold records that have not been recently
updated. The portion in memory is composed of two regions: a
(larger) mutable region and a (smaller) read-only region. Records
in the mutable region can be modified in-place with appropriate
synchronization that is chosen by the application using FASTER
(for example, atomic operations, locks, or validation). This region
acts as a cache for recently updated records and avoids expensive
per-update allocations.

1428

The read-only region mostly contains records that are being
asynchronously written to SSD. These records cannot be updated
in place since they must remain stable during I/O. The read-only
region represents records that are becoming cold, and it acts as a
second-chance cache. FASTER uses a read-copy-update to modify
records in this region: the updated record version is appended to
the mutable region, and the hash table is updated to point to it. This
helps provide good cache hit rates without fine-grained metadata.

Each record entry in FASTER’s hash table points to a reverse
linked list of records on the HybridlLog, allowing it to maintain
a compact hash table for larger-than-memory datasets that span
storage media. Note, that a consequence of this is that hash table
lookups in FASTER may need to traverse chains of records that span
from memory onto SSD. Section 4.2 describes how Shadowfax ex-
tends HybridLog so that it also spans shared cloud storage and how
this accelerates the completion of scale out and data migration.

2.2 Asynchronous Cuts

Lock-freedom makes FASTER fast, but it creates challenges for syn-
chronization and memory safety. Updated versions of records may
be installed in its hash table, even as old versions of that record
are still being read by other threads. This is a common problem in
all lock-free, RCU-like schemes [43]. To solve this, FASTER uses an
epoch-based memory-protection scheme [33]. All threads calling
into FASTER are registered with an epoch manager that tracks when
threads begin and end access to FASTER’s internal structures. When
a page is evicted to SSD, the epoch-based scheme ensures that the
memory is not reused while any thread could still be accessing it.
The full details of this scheme are beyond the scope of this paper.

Critically, this epoch-based scheme also plays a key role in coor-
dinating information across threads lazily without inducing stalls.
During complex, process-wide events (such as page eviction and
checkpointing), threads lazily coordinate by registering callback
actions that are eventually executed once each thread synchronizes
some local state with an updated process-global value. The same
mechanism can also be used to trigger a function only once all
threads are guaranteed to have updated their local state from some
process-global state. In effect, this allows trigger actions that are
guaranteed to take effect only after all threads agree on and have
each locally observed some transition in process-global state. This
can be used to create a process-wide asynchronous cut, where events
such as process state transitions are realized asynchronously and
lazily over a set of independent thread-local state transitions.

For instance, consider the read-offset address that demarcates
read-only records from mutable records on the HybridLog (Sec-
tion 2.1). When this address is updated, each thread may notice
the update at different points in time, depending on when they
refresh their epoch. Eventually, when all threads have observed
the update, the records between the old and new read-offsets have
become read-only, and a function is triggered to write the pages
to disk. Using the same mechanism, addresses for which threads
do not yet agree on the mutability status can be handled efficiently.
Figure 3 shows this process in action.

FASTER’s epoch protection works within a single shared memory
process on one machine. Section 3.2.1 shows how Shadowfax ex-
tends the notion of cuts to apply globally across machines — with the

1429

Threads

Asyne
Cut
Old view
——
New view

Shared Memory FASTER Key-Value Store
Figure 3: Asynchronous cuts in FASTER.

assistance of client threads - to safely move ownership of records
between servers while preserving throughput.

3 SHADOWFAX DESIGN

Shadowfax is a distributed key-value store. Each server in the sys-
tem stores records inside an instance of FASTER, and clients issue
requests for these records over the network. These requests can be
of three types: reads that return a record’s value, upserts that blindly
update a record’s value, and read-modify-writes that first read a
record’s value and then update a particular field within it. Within
a server, records are allocated on FASTER’s HybridLog, whose sta-
ble region is extended by Shadowfax to also span a shared remote
storage tier in addition to main memory and local SSD.

Each server runs one thread per core, and it shares its FASTER
instance among all threads. Threads on remote clients directly es-
tablish a network session with one server thread on the machine
that owns the record being accessed (§3.1.1). Sessions are the key to
retaining FASTER’s throughput over the network: they allow clients
to issue asynchronous requests; they batch requests to improve
server-side throughput and avoid head-of-line blocking; and they
avoid software-level inter-core request dispatching.

Shadowfax uses hash partitioning to divide records among servers.
The set of hash ranges owned by a server at a given logical point
of time is associated with a per-server strictly increasing view num-
ber. A fault-tolerant, external metadata store (e.g. ZooKeeper [28])
durably maintains these view numbers along with mappings from
hash ranges to servers and vice versa. View numbers serve two
key purposes in Shadowfax. First, they help minimize the impact of
record ownership checks at servers, helping them retain FASTER’s
performance. Second, they allow the system to make lazy and asyn-
chronous progress through record ownership changes (§3.2).

Sessions and low-coordination global cuts via views play a key
role in Shadowfax’s reconfiguration, data migration, and scale out.
Its scale-out protocol migrates hash ranges from a source server to
a target server and is designed to minimize migration’s impact to
throughput. The protocol uses a view change to transfer ownership
of the hash range from the source to the target along with a small set
of recently accessed records. This allows the target to immediately
start serving requests for these records and helps maintain high
throughput during scale out. Since views are per-server, this also
ensures that multiple migrations between disjoint sets of machines
can take place simultaneously. Next, threads on the source work in
parallel to collect records from FASTER and transmit them over ses-
sions to the target. Similarly, threads on the target work in parallel
to receive these records and insert them into its FASTER instance.
This parallel approach helps migrate records quickly, reducing the

Cloud VM
Dispatcher | FASTER Key-Value Store |
: : : Unpacked
O o
o l E E E Request
- Batches
R
4
Cloud
Smart NIC Network

Figure 4: Server threading and dispatch.

duration of scale out’s impact on throughput. Scale out completes
once all records have been moved to the target.

3.1 Partitioned Dispatch & Sessions

Shadowfax’s network request dispatching mechanism and client
library need to be capable of saturating servers inside FASTER. One
option would be to maintain a FASTER instance per server thread,
partitioning records across them to avoid cache coherence costs.
However, this would create a routing problem at the server; requests
picked up from the network would need to be routed to the cor-
rect thread. This would require cross-thread coordination, hurting
throughput and scalability. Clients could be made responsible for
routing requests to the correct server thread, but this would require
every client thread to open a connection to every server thread and
would not scale. To avoid this, client threads could partition and
shuffle requests between themselves to directly transmit requests
to the correct server thread, but this would require cross-thread
coordination at the client which would also not scale well.

Using a connectionless transport like UDP could make client-
side routing feasible without introducing cross-thread coordina-
tion [41, 46]. However, the system would lose its ability to perform
congestion control and flow control or tolerate packet loss, which
are basic requirements for running a networked storage system.

Shadowfax avoids cross-thread coordination by sharing a single
instance of FASTER between server threads. FASTER defers cross-
core communication to hardware cache coherence on the accessed
records themselves, cleanly partitioning the rest of the system (Fig-
ure 4). Each server runs a pinned thread on each vCPU inside a
cloud VM. Each server thread runs a continuous loop that does two
things. First, it polls the network for new incoming connections.
Next, it polls existing connections for requests, and it unpacks these
requests, calling into FASTER to handle each of them. After requests
are executed, the returned results are transmitted back over the ses-
sion they were received on. Since FASTER is shared, neither requests
nor results are ever passed across server threads.

3.1.1 Client Sessions Shadowfax’s partitioned-dispatch/shared-
data approach also extends to clients. Since they don’t need to route
requests to specific server threads, they can reduce connection state
while avoiding cross-thread coordination.

However, clients must also avoid stalling due to network delay in
order to saturate servers. To do this, each client thread is pinned to
a different vCPU of a cloud VM, and it issues asynchronous requests
against an instance of Shadowfax’s client library (Figure 5). The
library pipelines batches of these requests to servers.

The client library achieves this through sessions. When the li-
brary receives a request, it first checks if it has a connection to the

1430

Cloud VM
Application

Request

Request
Batches

Cloud g @
Network<:I

Figure 5: Client threading and dispatch.

o

server that owns the corresponding record. If it does not, it looks up
a cached copy of ownership mappings (periodically refreshed from
the metadata store), establishes a connection to a thread on the
server that owns the record, and associates a new session with the
connection. Next, it buffers the request inside the session, enqueues
a completion callback for the request inside the session, and returns.
This allows the client thread to continue issuing requests without
blocking. Once enough requests have been buffered inside a session,
the library sends them out in a batch to the server thread. On receiv-
ing a batch of results from the server, the library dequeues callbacks
and executes them to complete the corresponding requests.
Sessions are fully pipelined, so multiple batches of requests can
be sent to a server thread without waiting for responses. This also
means that a client thread can continue issuing asynchronous re-
quests into session buffers while waiting for results. This pipelined
approach hides network delays and helps saturate servers. It also
helps keep request batch sizes small, which is good for latency.

3.1.2 Exploiting Cloud Network Acceleration The cloud net-
work has traditionally not been designed for high data rates and
efficiency. The high CPU cost of processing packets over this net-
work can easily prevent servers and clients from retaining FASTER’s
throughput. However, this is beginning to change; many cloud
providers are now transparently offloading parts of their network-
ing stack onto SmartNIC FPGAs to reduce this cost. Shadowfax’s
design interplays well with this acceleration; batched requests avoid
high per-packet overheads and its reduced connection count avoids
the performance collapse some systems experience [20].

Since threads do not communicate or synchronize, all CPU cycles
recovered from offloading the network stack can be used for exe-
cuting requests at the server and issuing them from the client. This
allows Shadowfax to retain FASTER’s high throughput using the
Linux kernel’s TCP stack on cloud networks, avoiding dependence
on kernel bypass or RDMA.

3.2 Record Ownership

To support distributed operations such as scale out and crash recov-
ery, Shadowfax must move ownership of records between servers
at runtime. This creates a problem during normal operation: a client
might send out a batch of requests to a server after referring to its
cache of ownership mappings. By the time the server receives the
batch, it might have lost ownership of some of the requested records
in the batch (e.g. due to scale out). Hence, the server must validate
that it still owns the requested records before it processes the batch.
This would hurt throughput if each request was cross-checked
against a set of hash ranges owned by the server.

ENE e

O g g g

Client

ENaHENE]

o QO g

Client

Sessions

vCPU

Figure 6: Ownership transfer over a global cut.

To solve this, each set of hash ranges owned by a server is associ-
ated with a per-server strictly-increasing view number. All request
batches are tagged with a view number, so servers can quickly assess
whether a batch only includes requests for records that it currently
owns. When a server’s set of owned ranges changes, its view num-
ber is advanced. Each server’s latest view number is durably stored
along with a list of the hash ranges it owns in the metadata store.

When a client connects to a server, it caches a copy of the server’s
latest view (a view number and its hash ranges) inside the session.
Every batch sent on that session is tagged with this number, and
clients only put requests for keys into batches that were owned by
that server in that view number. Upon receiving a batch, the server
always checks its current view number against the view number
tagged on the batch. If they match, then the server and client agree
about which hash ranges are owned by the server, ensuring the
batch is safe to process without further key or hash range checks. If
they don’t match, then the client or server has out-of-date informa-
tion about which hash ranges the server owns. Hence, the server
rejects the batch and refreshes its view from the metadata server.
Upon receiving this rejection, the client refreshes its view from the
metadata server and reissues requests from the rejected batch.

View numbers offload expensive hash range checks on each re-
quested key to clients, reducing server load. For a server that owns
P ranges accepting R requests in batches of size B, views reduce the
cost of checks from O(RlogP) to O(R/B). Since it is one integer com-
parison per batch; it also ensures we never take a cache miss to per-
form ownership checks, which would be prohibitive at 100 Mops/s.
Hence, views are key in supporting dynamic movement of owner-
ship between servers while preserving normal case throughput.

3.2.1 Ownership Transfer When ownership of a hash range
needs to be transferred to or away from a server, its ownership
mappings are first atomically updated at the metadata store. This
increments its view number and adds or removes the hash range
from its mapping. Servers and clients observe this view change
either when they refresh their local caches of views and ownership
mappings (via an epoch action) or when they communicate with
a machine that has already observed this change.

When a server involved in the transfer observes that its view
has changed, it must move into the new view. However, this step
is not straightforward; keeping with Shadowfax’s design princi-
ple, it must be achieved without stalling server threads. Within
the server, this view change is propagated asynchronously across
threads via an epoch action (Figure 6). Threads each mark a point
in their sequence of operations, collectively creating an async cut

1431

among all of the operations on all of the threads at the server (§2.2).
This cut unambiguously ensures no two servers concurrently serve
operations on an overlapping hash range. This approach is free of
synchronous coordination, helping maintain high throughput.

The server might be connected to clients still using the old view;
it must also propagate the view change to clients in a similar way
without stalling client threads. Sessions help Shadowfax achieve
this. When a server thread moves into a new view, view valida-
tions on request batches received over sessions with clients still
in an older view are rejected. On receiving a rejected batch over a
session, each client thread first independently updates its thread
local cache of ownership mappings and views. Next, the thread
marks the point in the sessions’ sequence of operations after which
batches were rejected by the server (since there can be multiple such
batches because of pipelining, this has to be the earliest such point).
Collectively, these points help create an implicit async cut across
threads within a client. Thus, clients avoid cross-thread coordina-
tion when observing an ownership change. Each client connected
to the server creates its async cut independently, resulting in a
cluster wide asynchronous global cut for ownership transfer.

Once it has observed ownership transfer, each client thread must
reissue requests that were rejected by the previous owner. It does so
by shuffling these requests between its sessions to the previous and
new owners of the transferred hash range. First, they are marked in-
valid within the previous session’s buffer. Next, they are (re)buffered
into the correct session based on the updated ownership mappings.

These views are a form of view synchronous communication [14]
and are similar to other view-based approaches used for agree-
ment [34, 47, 48]. Though, here we apply the technique to hash
range ownership rather than group membership for replication or
multicast. This approach contrasts with lease-based approaches [25]
(e.g. Vertical Paxos [35]) that are commonly used for this pur-
pose [20, 50], which depend on a synchronicity assumption for
safety and can block awaiting lease expiry in the case of slow
machines. This view-based approach sidesteps this limitation for
migrations; any agent can drive the process to completion (either
a successful migration with ownership moved to the target or a
failed migration with ownership reverted to the source), provid-
ing a form of wait-freedom [27] (aside from writes to the highly
available metadata store, which must rely on (weak) synchronicity
assumptions to ensure progress [23]).

4 SCALE-OUT AND HASH MIGRATION

Shadowfax migrates hash ranges from a source to a target server
to scale out. Migration uses global cuts to proceed in asynchronous
phases that transfer hash range ownership to the target before
migrating records, as described next.

4.1 Migration Protocol

Migration is implemented as a state machine on the source and
target. Both servers transition through migration phases on global
cuts, created in the same non-blocking, low-coordination way de-
scribed in §2.2. First, each thread enters into a phase at a point
in the sequence of requests that it is processing that it chooses (a
point that makes up part of the global cut for the transition into
that phase), and then it starts performing the work of that phase.

Migrate

0
[>Sampling
(i S

Figure 7: Migration state machine on the source.

Once all threads have entered into the phase and have completed
all work relating to it, the server transitions to the next phase.
Migration is driven by the source as we outline below (Figure 7):

Sampling: Initiated by receiving a Migrate() RPC from a client,
whereupon the source

(1) atomically remaps ownership of hash ranges from the source to

the target, increments the source’s and target’s view numbers,
and registers a dependency between the source and target (for
crash recovery, §4.4) within the metadata store; and

(2) begins sampling hot records by forcing all accessed records to

be copied to the HybridLog tail.

Since the records are not yet at the target and a migration is in
progress, both the source and the target continue to temporarily
operate in the old ownership view; at this point the source is still
servicing requests for records in the migrating ranges. To ensure
that sampled records only get copied once, the source only copies
records whose address is lower than the HybridLog tail address
at the start of this phase.

Prepare: Initiated after all source threads have completed the Sam-
pling phase. The source sends a PrepForTransfer () RPC to the
target asynchronously, transitioning the target to its own Target-
Prepare phase. The Target-Prepare phase tells the target that own-
ership transfer is imminent. The target temporarily pends requests
in the migrating hash ranges (since some clients may discover the
new views) and services them after the source indicates that it
has stopped servicing requests in the old view.

Transfer: Initiated after all source threads have completed the Pre-
pare phase. The source moves into its new view and stops servicing
requests on the migrating hash ranges. When all server threads
are in the new view, it sends out a TransferedOwnership() RPC
to the target asynchronously, which also includes the hot records
sampled in the Sampling phase. This moves the target into its
Target-Receive phase, whereupon it inserts the sampled records
into its FASTER instance and then begins servicing requests for
the migrating hash ranges. This also triggers the target to service
any requests pending from the Target-Prepare phase.

Migrate: Initiated after all source threads have completed the
Transfer phase. The source uses thread-local sessions to send
records in the migrating hash ranges to the target. Threads inter-
leave processing normal requests with sending batches of migrat-
ing records collected from the source’s hash table to the target.
Each thread works on independent, non-overlapping hash table
regions, avoiding contention.

Complete: Initiated after all source threads have completed the
Migrate phase. The source sends a CompleteMigration() RPC
asynchronously, moving the target to the Target-Complete phase.
Then, the source sets a flag in the metadata store indicating that its
role in migration is complete, and it returns to normal operation.

1432

PrepForTransfer()/
Observe New View

)=

ansferredOwnership()/
Records From Source

=4

CompleteMigration()

Receive

7
Q0

Figure 8: Migration state machine on the target.

The target is mostly passive during migration; most of its phase
changes are triggered by source RPCs (Figure 8). Requests for a
record may arrive after a TransferredOwnership() RPC is re-
ceived by the target, but before the source has sent that record. The
target marks these requests pending, and it processes them when
it receives the corresponding record.

When the target receives the CompleteMigration() RPC, it
also sets a flag at the metadata store indicating that its role in the
migration is complete, and it returns to normal operation.

Migration has succeeded once both servers have set their respec-
tive flags at the metadata store. A cluster management thread will
have to periodically check these flags; on finding both set, it deletes
the dependency at the metadata store to complete migration.

Shadowfax maintains high throughput during scale up via low-
coordination, non-blocking epoch actions and purely asynchro-
nous inter-machine communication. The source prioritizes request
processing, making progress in between request batches. Its state
machine transitions are independent of the target; all migration
RPCs and checkpoints are asynchronous. The target prioritizes
request processing in the same way. Early ownership transfer, sam-
pled records, and pending operations let the target start servicing
requests on moved ranges quickly, improving throughput recovery.
Sessions let the source collect and asynchronously transmit records
in parallel while the target receives and inserts them in parallel.

4.2 Leveraging Shared Storage for Decoupling

Migration cannot complete until all records have been moved to
the target, so Shadowfax must ensure that this happens quickly.
However, FASTER’s larger-than-memory index makes this challeng-
ing: entries in its hash table point to linked lists of records, which
can span onto local SSD. Performing I/O (sequential or random) to
migrate these records can slow migration and hurt throughput.

Shadowfax’s shared remote tier helps solve this problem. Records
on local SSD are always eventually flushed to this tier, so migration
can avoid accessing them. When the source encounters an address
for a record in a list that is on the SSD, it sends an indirection record
to the target that indicates this record’s location in the shared tier.
This indirection record contains the next address in the list, an iden-
tifier for the source’s log, the hash range being migrated, and the
hash entry that pointed to the list. The target inserts these records
into its hash table using the hash entry contained in the record.
Overall, these fine-grained inter-log dependencies represented by
indirection records accelerate migration completion by eliminating
all I/O that would otherwise be needed to consolidate records and
transmit them to the target.

During normal operation, if the target encounters an indirection
record when processing a request and the request’s key falls in
the hash range contained in the record, the target asynchronously

i Log 1
Sl e Indirection 8
Scale ecords
@ Down ll
Indirection Shared Tier | SSD | RAM | Log 2
Records
TTScale Up @
| Shared Tier SSD | RAM | Log 0

|::> Lazy Compaction@

Figure 9: Indirection records create inter-log dependencies.

retrieves the actual record from the shared tier using the contained
address and log identifier, inserts it into its hash table, and then
completes the request.

4.3 Cleaning Up Indirection Records

Migrations can accumulate indirection records between server logs
for records that are never accessed (Figure 9). On scaling up (@) by
moving a hash range from Log 0 to Log 2, Log 2 contains indirection
records that point to Log 0 on the shared tier. Dependencies are also
created during scale down (@) when records on Log 1 are migrated
to Log 2. These dependencies must eventually be cleaned up.

Shadowfax must already periodically do log compaction to elim-
inate stale versions of records from its shared tier; resolving and
removing indirection records can be piggybacked on this process
to eliminate overheads for cleaning them (®). When compacting
its log, if a server encounters a record belonging to a hash range
it no longer owns, the server transmits the record to the current
owner. On receiving such a record, the owner first looks up the key.
If it encounters an indirection record while doing so and the key
falls in the contained hash range, then it means that the key was
not retrieved from the shared tier after migration. In this case, the
server inserts the received record; otherwise, it discards the record.

Barring normal case request processing, this lazy approach en-
sures that records not in main memory are accessed only once,
during the sequential I/O of compaction, which has to be done
anyway. It is also deadlock-free: two servers might have indirection
records pointing to each others’ log, but the resulting dependencies
are cleaned up independently.

4.4 Fault Tolerance

Migrations in Shadowfax can be easily made fault tolerant. During
their respective Complete phases in the protocol, the source and
target would first have to take a checkpoint before setting their flags
at the metadata store. This would make the migration durable; if
either machine crashes hereafter, it can be independently recovered
from a checkpoint containing the effects of the migration.

If either server crashes during the process, recovery must involve
both, which is why the metadata store tracks the dependency be-
tween them. This is because of early ownership transfer; during mi-
gration, the target services operations on the migrating ranges, but
many records belonging to it may still be on the source. When recov-
ering a server, if Shadowfax finds a migration dependency involving
the server without both completion flags set, it cancels the migration
by setting a cancellation flag in the metadata server. Then, it trans-
fers ownership of hash ranges back to the source (incrementing the

1433

source and target’s view), restores both machines using their pre-
migration checkpoints, and recovers requests on hash ranges that
were issued during migration at the source. This cancellation proce-
dure ensures that migration is deadlock-free by effectively wrapping
the entire migration in a form of two-phase commit that supports
unilateral abort [26]. Migration need not lock or pause operation
on the hash ranges under migration except from the time that
TransferredOwnership is issued until the time that it is received.

Another challenge with crashes is in revocation of hash range
ownership from an unavailable server to ensure it does not accept
requests in a stale view for hash ranges it no longer owns. Views
only help here if unanimity can be reached both among clients
and servers, which generally is not practical at scale. To solve this,
Shadowfax can rely on classic lease-based approaches [25, 35].

We are working on implementing such crash recovery extensions
as future work. For example, our recent work on distributed prefix
recoverability [42] addresses the problem of consistently recovering
client sessions that span accesses to multiple shards.

5 DISCUSSION

Shadowfax’s techniques are not restricted to KVSs and can be ap-
plied to other systems as well. Its partitioned sessions can be used
by stateful cloud services to preserve throughput over the network.
In fact, our implementation of sessions is templated on the service;
we used FASTER for the purpose of this paper, but one could also
use parameter servers, graph stores, model serving systems etc.

Likewise, asynchronous global cuts can be used to scale out these
services while preserving throughput. Since these cuts help prop-
agate changes in ownership across cores and machines, they can
also be used for other operations that involve changes in ownership
like failure detection and crash recovery.

Shadowfax’s migration protocol can also be used for scale in.
Since this protocol is fast and has low impact, it can also be used
to correctly partition records across servers. In a distributed set-
ting, partitioning becomes critical to performance; pre-partitioning
records between servers results in load imbalances, which signifi-
cantly hurts throughput [13, 18]. Migration allows Shadowfax to
dynamically partition its hash space into arbitrary, fine-grained
splits and avoid pre-partitioning. Using load information available
at runtime, it can first determine the ideal way to split its hash
space across servers. It can then quickly migrate these splits be-
tween them. View validation helps too; a server can own many
fine-grained splits and still serve 100 Mops/s.

6 EVALUATION

To evaluate Shadowfax, we focused on six key questions:

Does it preserve FASTER’s performance? §6.2 shows that Shad-
owfax preserves FASTER’s scalability and adds in negligible over-
head. Its throughput scales to 130 Mops/s on 64 threads on a VM
even when using Linux TCP.

How does it compare to an alternate design? §6.2 shows that
Shadowfax performs 4x better than a state-of-the-art approach
that partitions dispatch as well as data.

Does it provide low latency? §6.3 shows that while serving a
throughput of 130 Mops/s, Shadowfax’s median latency is 1.3 ms
on Linux TCP. Using two-sided RDMA decreases this to 40 ps.

CPU Xeon E5-2673 v4 2.3 GHz, 64 vCPUs in total
RAM 432 GB

SSD 96,000 IOPS, 500 MB/s sequential writes
Network 30 Gbps, Hardware accelerated

(O Ubuntu 18.04, Linux 5.0.0-1036-azure

Table 1: Virtual machine details used to evaluate Shadowfax.

Can it maintain high throughput during scale out? In §6.5, we
see that when migrating 10% of a server’s hash range, Shadow-
fax’s scale-out protocol can maintain throughput above 80 Mops/s.
Parallel data migration can help complete scale out in under 17 s,
and sampled records help recover throughput 30% faster (§6.5.3).

Do indirection records help scale out? §6.5.2 shows that by re-
stricting migration to main memory, indirection records avoid
the cost of immediate post-migration I/O that other approaches
require. They also have a negligible impact on server throughput
once scale out completes.

Do views reduce scale out’s impact on normal operation? In
§6.5.4, we show that validating ownership using views has a neg-
ligible impact on normal case server throughput. When compared
to hash validating each request within a batch, views improve
throughput by as much as 17% depending on the number of hash
ranges owned by the server.

Can it scale across scales? §6.6 shows that when scaled across
machines, Shadowfax continues to retain FASTER’s high through-
put. A cluster consisting of 768 threads spread across 12 servers
scales linearly to 930 Mops/s while servicing 2304 client sessions.

6.1 Experimental Setup

We evaluated Shadowfax on the Azure public cloud [17]. We ran all
experiments on the E64_v3 series of virtual machines [5] (Table 1).
Experiments use 64 cores unless otherwise noted. Each VM uses
accelerated networking, which offloads much of the networking
stack onto FPGAs [1], allowing us to evaluate Shadowfax over reg-
ular Linux TCP. Shadowfax’s remote tier uses Azure’s paged blobs
on premium storage [3], which offer 7,500 random IOPS with a
throughput of 250 MB/s per blob.

We used a dataset of 250 million records, each consisting of an
8 byte key and 256 byte value (totalling 80 GB in Shadowfax). To
evaluate the system under heavy ingest, we used YCSB’s F work-
load [12] consisting of read-modify-write requests. Each request
reads a record, increments a counter within the record, and writes
back the result. This counter could represent heartbeats for a sensor
device, click counts for an advertisement or views/likes on a social
media profile. Unless noted, requested keys follow YCSB’s default
Zipfian distribution (6=0.99). The experiments do not use check-
pointing, which is needed for durability and to bound recovery
times. FASTER’s checkpointing and durability scheme is described
in related work [42, 52].

We compare to two baselines; one representing the state-of-the-
art in fast request processing, the other representing the state-of-
the-art in data migration.

Seastar+Memcached [10] is an open-source framework for build-
ing high performance multi-core services. Its shared-nothing design

1434

constrasts with Shadowfax; servers partition data across cores, elim-
inating the need for locking. Clients can send requests to any server
thread; Seastar uses message passing via shared memory queues
to route each request to the core that processes requests for that
data item. Seastar represents a best case for the state-of-practice;
it is highly optimized. It uses lightweight, asynchronous futures to
avoid context switch overheads, and it uses advanced NIC features
like FlowDirector [6] to partition and scale network processing. We
used an open-source, lock-free, shared-nothing version of Mem-
cache on Seastar as a baseline [9]. We batched 100 operations per
request, which maximized its throughput.

Rocksteady [32] is a state-of-the-art migration protocol for RAM-
Cloud [50]. To accelerate migration, it immediately routes requests
for migrated records to the target, while it is transfering records
(which only reside in memory). It slowly performs disk I/O in the
background to incorporate the migrated records into durable, on-
disk replicas that belong to the target; this must complete before
the source and target can be independently recovered. We modified
Shadowfax to use a similar approach as a baseline. Instead of using
indirection records, first, all in-memory records are moved; then,
the source performs a sequential scan over all records on durable
storage, where all encountered live are sent to the target.

6.2 Throughput Scalability

Shadowfax partitions request dispatching across threads for perfor-
mance. It shares access to FASTER between threads to provide high
throughput even under skew. To demonstrate this, we measured
throughput while scaling the number of threads on one server ma-
chine with one client machine. The entire dataset resides in memory,
ensuring the experiment is CPU-limited. Figure 10 shows the re-
sults on Shadowfax, on FASTER when requests are generated on the
same machine (i.e., no networking involved), and on Shadowfax
without hardware accelerated networking.

Shadowfax retains FASTER’s scalability. FASTER scales to service
128 Mops/s on 64 threads. Adding in the dispatch layer and remote
client preserves performance; Shadowfax scales to 130 Mops/s on
64 threads. This is because it avoids cross-thread synchronization
or communication for request processing from the point a client
thread issues a request until the server thread executes it on FASTER.
Client threads’ pipelined batches of asynchronous requests also
avoid any slowdown from stalls induced by network delay, keeping
all threads at the client and server busy at all times.

Hardware network acceleration also plays an important role in
maintaining performance; when disabled, throughput reaches only
58% (75 Mops/s) of accelerated TCP. Here, CPU overhead for TCP
transport processing increases, so the server slows due to additional
time spent in recv() syscalls instead of doing work. Hardware ac-
celeration offloads a significant portion of packet processing to a
SmartNIC, allowing Shadowfax to maintain FASTER’s scalability
without relying on kernel-bypass networking (DPDK or RDMA).

Next, we compared Shadowfax to Seastar+memcached (Figure 11)
using a uniform key access distribution; this is the only distribution
that Seastar’s client harness supports (this advantages Seastar’s
shared-nothing approach, which suffers imbalance under skew).
Seastar scales to 10 Mops/s on 28 threads, after which throughput is
flat. Shadowfax scales linearly to 85 Mops/s on 64 threads; even at 28
threads, it is already 4x faster than Seastar. This is because Seastar

—o— Faster —A— Shadowfax —#— w/o Accel —o— Seastar —&— Seastar-NOP —#— Shadowfax 3 101
T % 5 s
& 125 &125 £ 6
5100 5100 g
E 75 g 75 24
E‘* 50 g 50 %‘7 5
5 25 £] 25 0 o =
LEN i - T == L
= I8 16 24 32 40 48 56 o4 I8 16 24 32 40 48 56 64 I8 16 24 32 40 48 56 64
Number of Threads Number of Threads Number of Threads
Figure 10: Throughput scalability. Figure 11: Shadowfax vs Seastar. Figure 12: Insert-only workload.
partitions work at the wrong layer; threads maintain independent Throughput Batching MedianLa- Queue
. . i . Network
indices to avoid synchronizing on records, but this forces threads (Mops/s) (KB) tency (us) Depth
to use inter-core message passing when they receive a request to TCP 130 39 1300 1927
route it to the thread that has that record. To ensure that this is TP 1KB o ; 1 o
the case and that it is not the result of a bottleneck in Seastar’s ’
shared-nothing memcached implementation, we also measured the w/o Accel 75 32 2200 1927
throughput of Seastar’s when each request is a no-op (by disabling Infre 126 1 38.6 60
its index, see Seastar-NOP). This improves Seastar’s throughput, but
TCP-IPoIB 125 8 260 482

it is still 4x slower than Shadowfax on 64 threads. This reinforces
that simply attaching a more scalable index like FASTER to Seastar’s
networking and dispatch layers is not sufficient to get good perfor-
mance; forced cross-core routing of requests is the bottleneck.

In contrast, Shadowfax’s design helps it exploit its shared FASTER
instance, which is lock-free and minimizes cache footprint. It leaves
all synchronization and communication to the hardware cache co-
herence, which is more efficient than explicit software coordination
and only incurs high costs when real contention arises in data
access patterns, rather than pessimistically synchronizing on all
requests. Shadowfax’s advantage grows with skew; comparing
Figures 10 and 11 shows Shadowfax’s performance improves by
1.5x under skew, whereas Seastar’s performance would decrease.

6.2.1 Insertonly workload FASTER’s HybridLog is key to Shad-
owfax’s high throughput since it allows records to be updated in
place. However, in-place updates might not always be possible.
For workloads that are insert only, throughput will be limited by
the rate at which records can be appended to the HybridLog’s tail.
Figure 12 presents scalability for a workload that inserts 250 mil-
lion records into Shadowfax. Throughput scales to 8 Mops/s on
16 threads. Beyond 16 threads, increments to the HybridLog’s tail
bottleneck the system, and throughput saturates.

6.3 Batching and Latency

Shadowfax clients send requests in pipelined batches to amortize
network overheads and keep servers busy. Asynchronous requests
with hardware network acceleration help reduce batch sizes and
latency. To show this, we measured its median latency and batch
size at server saturation. Table 2 shows results with TCP, TCP with
hardware acceleration disabled, and two-sided RDMA (Infrc). We
used Azure’s HC44rs [4] instances for Infrc, since they support
(100 Gbps) RDMA; they have Xeon Platinum 8168s with 44 vCPUs.

Most of Shadowfax’s latency comes from batching, which amor-
tizes CPU costs. Accelerated networking reduces CPU load, decreas-
ing the batching needed to retain throughput. With acceleration,
small 32 KB batches saturate server throughput with a low latency
low of 1.3 ms. Without acceleration, increased batch size doesn’t

1435

Table 2: Shadowfax’s latency at server saturation.

—e— Uniform Distribution =#— Zipfian Distribution

100 4
10 4

1

Throughput
(Million Ops/s)

o
)

2

N=}

X o
o o
P

Hit Rate (%)
el
S
(=}
.

10.0

100 90 80 70 60 50 40 30 20 10

Memory Budget (GB)

Figure 13: Throughput under decreasing memory budgets.

help; with 32 KB batches throughput drops to 75 Mops/s, and me-
dian latency increases to 2.2 ms. Finally, the TCP 1 KB case uses
a small batch size with hardware acceleration; latency drops by
6.1x but throughput also drops by 6.8x showing the combined
importance of acceleration and proper batch size.

The batch size required to saturate throughput on Infrc is sig-
nificantly lower at 1 KB, dropping median latency to 40 ps. This
is because the network is faster and the stack is implemented in
hardware; servers and clients can receive and transmit batches with
near-zero software overhead (including system calls). Secondly, vC-
PUs on these instances are faster with a base clock rate of 2.7 GHz
compared to 2.3 GHz on the TCP instances (Table 1). This speeds
servers and clients, reducing the batch size and threads (from 64 to
44) required to reach the same throughput. To evaluate this further,
we ran Shadowfax using TCP over IPoIB [7] on the Infrc instances
(Table 2, TCP-IPoIB). Throughput still saturates at 125 Mops/s. Com-
pared to hardware accelerated TCP, faster vCPUs reduce the batch
size by 4x (8 KB) and median latency by 5x (260 ps).

(a) All Data In Memory

(b) Indirection Records

(c) Rocksteady

= 120 W o - 120 it 120 oo
5 o~ e b
£3 100 ") 4 100 W 1003 smrsmere S
22 80 80 80
£z 00 60 60
= 40 40 40
z22 20 20 20
i () T T T T T T () T T T T T T 0 T T T T T T

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

Time since start of experiment (minutes)
Figure 14: Running throughput when 10% of a server’s load is migrated to an idle target.
(a) All Data In Memory (b) Indirection Records (c) Rocksteady

s 120 Source 120 Source 120 Source .
£ 8 100 f ” 100 t 1004 # W—v -
22z 80 80 80
E2 60 60 60
=5
5= 40 40 40
25 n Target Target Target
R I o [I '

0 i 2 3 4 5 0 i 2 3 4 5 0 i 2 3 4 5

Time since start of experiment (minutes)

Figure 15: Source and target throughput during scale up.

6.4 Memory Budget

FASTER’s throughput eventually becomes limited by the SSD when
the entire dataset does not fit in main memory. Shadowfax’s dis-
patch layer and client library ensure that this does not change when
requests are generated over the cloud network. To show this, we
measured throughput under a decreasing main-memory budget for
the HybridLog. We also measured the hit rate (the percentage of
requests that were served from main-memory) during this exper-
iment. Figure 13 presents the results (please note the log scale).

Overall, throughput drops as the memory budget decreases.
This is because the system needs to issue random I/O to fetch
records from SSD. Once fetched, these records are appended to the
HybridLog’s tail which flushes records at its head to SSD leading to
more random I/O during future requests. For a uniform distribution,
throughput begins to drop at 80 GB. Since all records are equally
hot, even a small set on SSD hurts the hit rate and saturates SSD
IOPS (Table 1). For a Zipfian distribution, a smaller hot set ensures
that this begins to happen only at 50 GB. Throughput still drops
because of low SSD IOPS (Azure throttled our VMs to 96,000 IOPS),
decreasing to 3.5 Mops/s at 20 GB. However, this is still 24X better
than the uniform case which drops to 0.146 Mops/s.

6.5 Scale Out

Shadowfax’s migration transfers hash ranges between two ma-
chines and minimizes throughput impact while doing so. Indirec-
tion records help restrict migration to memory, speeding up scale
out, decoupling the source and target sooner. To demonstrate this,
we measured throughput during scale up.

In a 5-minute experiment with one client and two servers (a
source and a target), the entire hash space initially resides at the
source. After one minute, 10% of this hash range is moved to the
target. Figure 14 shows system throughput during the experiment;
Figure 15 shows source and target throughput separately. In (a), all

1436

records are placed in memory. In (b) and (c), servers are restricted
to a memory budget of 60 GB, allowing us to compare the impact
of indirection records (in (b)) against Rocksteady’s scan-the-log
approach (in (c)).

6.5.1 All-In-Memory Scale Out Global cuts for ownership trans
fer avoid stalling cores at migration start, but the view change for
this cut has some impact; request batches are invalidated, causing re-
quests to be shuffled among sessions buffers at the client (~250,000
requests per view change based on Table 2 Queue Depths). This
is visible in Figure 14 (a); throughput at the start of scale out (1
minute) briefly drops to 80 Mops/s.

Figure 15 (a) shows that throughput on the source stays at
85 Mops/s after this. This is because the source is collecting and
transmitting records as it services requests. Parallel migration limits
the length of this impact in two ways. First, it accelerates migration,
completing in 17 s and restoring full throughput. Second, as more
records shift to the target, it serves more requests, causing system
throughput to recover even before scale up completes. Once scale
up completes, system throughput increases by 10% as expected.

Shadowfax’s asynchronous client library helps limit the impact
too. When the target receives a request for a record that has not
been migrated yet, it marks the request as pending. This keeps
clients from blocking, allowing them to continue sending requests.
To prevent a buildup of pending requests, the target periodically
tries to complete them. Figure 16 (a) shows the number of pending
operations at the target during migration. When migration starts,
requests flood the target, pending 100 million requests. As records
migrate, these requests complete, with the last pending operation
completing 100 s after migration start. Hence, practical migrations
must be small and incremental to bound delay; however, through-
put recovery is more important in Shadowfax’s target applications
whereas latency can be tolerated with asynchrony.

(a) All Data In Memory

(b) Indirection Records

(c) Rocksteady

2
£ 100 100 100
g
g 10 10 10
g 1 1
2
=
5 0114 - - - - — 0114 - - - — — 0l - - - - -

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

Time since start of experiment (minutes)
Figure 16: Number of pending operations during scale up.
Config Data Migrated (GB) We also measured the impact of fetching records from shared
All Data In Memory 744 rem(.)te stora}ge when resolymg 1nd1rect10n. recor.ds during com-
paction, but its throughput impact was neglible (Figure 17).

Indirection Records 16.47
Rocksteady 5.60 6.5.3 Sampled Records Shadowfax sends a small set of hot

Table 3: Impact of indirection records on migration size.

We also ran the above experiment on a larger cluster of four 64-
core machines (3 servers, 1 client) on CloudLab [53] and obtained
similar results; aggregate cluster throughput is only impacted by
20% in the worst case during migration, since throughput is only
reduced at the source during migration.

6.5.2 Indirection Records With a 60 GB memory budget, some
records to be migrated are on the source’s SSD. Rocksteady’s ap-
proach (Figure 14 (c)) migrates records from memory and then
scans the on-SSD log to migrate colder records. Parallel migration
completes the in-memory phase in just 14 s. Thoughput improves
quickly after this phase, since these are hotter records. However,
the second phase is single threaded, scans over files on SSD, and
takes 165 s to complete; during this phase the source and target
remain inter-dependent for fault tolerance.

Indirection records solve this, completing migration in 32 s (Fig-
ure 14 (b)) by avoiding this I/O as part of migration. By sending out
records that point to shared remote storage, migration is restricted
to memory and avoids I/O at the source altogether. However, this
approach increases the amount of data transmitted to the target.
Table 3 show this effect. Compared to Rocksteady’s 5.60 GB, in-
direction records cause 16.47 GB to be transmitted from memory
to the target. This is because we must send about one indirection
record per hash table bucket entry, totaling 11 GB here. The larger
migration takes 18 s longer than Rocksteady’s in-memory phase,
but it decreases the total duration of migration by 150 s.

After migration, requests that hit indirection records at the tar-
get cause remote accesses to shared cloud storage. These requests
are infrequent (these records are cold), and they have little impact
on throughput (Figure 14 (b)). However, cloud storage is slow, so
in the time it takes to retrieve one such record, the target receives
many requests for it which must pend. Requests that pend during
scale out complete by 4 minutes (Figure 16 (b)). The gradual upward
slope after this is due to the requests that pend on access to remote
shared storage. Requests never pend after scale out with Rock-
steady; however, its slow sequential scan causes requests to pend
awaiting transmission from the source during its longer migration.

1437

records to the target during ownership transfer, which allows the
target to start servicing requests and recovering throughput quickly.
Figure 18 shows target throughput when this is enabled (Sampling)
and when it is disabled (No Sampling). In this experiment, all data
starts in the source’s memory, so scale out completes in 17 s. When
enabled, throughput at the target rises up to 8 Mops/s immediately
after ownership transfer. If disabled, this happens 5 s later, once
sufficient records have been migrated over. At this point, nearly
30% of scale out has completed, meaning that by sampling and
shipping hot records during ownership transfer, the target starts
contributing to system throughput 30% faster. Measurements on
the source show that the SAMPLING phase lasted 4 ms and had no
noticeable overhead.

6.5.4 Ownership Validation Views allow Shadowfax to fluidly
move ownership of hash ranges between servers and help minimize
the overhead of scale out on normal operation of the system. Fig-
ure 19 demonstrates this; it presents normal case server throughput
under an increasing number of hash splits. When using views to
validate record ownership at the server (View Validation), through-
put stays fairly constant. On switching over to an approach that
hashes every received key and looks up a trie of owned hash ranges
at the server (Hash Validation), throughput gradually drops as the
number of hash splits increase.

This figure shows the benefit of using views given a particular
scale out granularity; if scale out always moves 7% of a server’s
load (16 hash splits), then view validation can improve normal case
throughput by 5%. Similarly, if it always moves 0.2% of a server’s
load (512 hash splits), then this improvement increases to 10%.

6.6 System Scalability

In addition to retaining FASTER’s throughput within a machine,
Shadowfax also retains throughput across machines. To demon-
strate this, we first hash partitioned 2 billion records across a clus-
ter consisting of 12 servers on CloudLab [53] (each server had 64
threads, 128 GB RAM and one 100 Gbps Mellanox CX5 NIC). Next,
we measured the total throughput of this cluster while varying the
number of clients issuing requests (clients had the same hardware
as servers). Because each client thread opens up a session to one
thread on each server, each client added in 64 sessions to each server
and hence 768 sessions to the cluster (64 threads/client * 12 servers).

120 4 ' [_ 20 120
1 " 23 2 100 S—a—t—t-
- 1001 ! o £215 =3 —
£3 : : Ed £5 80
<2 380 ' ' £%10 22 60
22 L Compaction Starts Compaction Ends o) 2.2 40
£2 60 5% s =hE]
£g O E R 2
£ S 1 E2 < 20
25 4] 01 : . Y
22 1
@ 20 4 0.5 1 1.5 I 2 4 8 16 32 64 256 2048
0 : Time since start of the experiment (minutes) Number of Hash Splits on Server

5

—— Sampling —— No Sampling

Time since start of experiment (minutes)

Figure 17: Cleaning indirection records.

—o— Uniformly Balanced —#— Unbalanced

é 1200 1 Client ! 2 Clients ! 3 Clients !
g 1000 768 Sessions | 1536 Sessions | 2304 Sessions
2 800 ! ! !
€ 600 : \ |
é 400 ! . '
%“ 200 . , ,
E o : ' :
- 9

64 128
Number of Client Threads

—_

Figure 20: Shadowfax system scalability.

Figure 20 shows the results. "Unbalanced" shows results for a
Zipfian skewed workload. Cluster throughput scales to 890 Mops/s
but sub-linearly when moving from two clients to three. This was
with 12 coarse-grained hash ranges, one per server. This is insuf-
ficient to uniformly distribute load across servers. Shadowfax’s
migration is designed to fix this via fine-grained hash splits. Load
distributions can be monitored to determine ideal hash splits [13].
Once determined, these splits can be quickly migrated with low
throughput impact. "Uniformly Balanced" (Figure 20) shows an
upper bound that could be achieved this way. It represents a case
where splits uniformly distribute load over all servers, improving
throughput by 40 Mops/s (4.5%) to 930 Mops/s.

Finally, beyond high throughput, this experiment also demon-
strates that Shadowfax can scale to support a large number of client
sessions (connections); at saturation, each server has 192 sessions
open to it, resulting in a total of 2304 sessions across the cluster.

7 RELATED WORK

Shadowfax builds on several areas of recent research.

Epochs and Cuts. There are many schemes for synchronization
and memory protection in lock-free concurrent data structures
including hazard pointers [44], read-copy-update [43] and epoch-
based schemes [24, 33]. Like FASTER and Shadowfax, several other
systems [36—39] use epochs for this purpose. Shadowfax’s use of
epochs to avoid strong ordering among requests except on coarse
boundaries resembles Silo’s, a (single-node) in-memory store [55].
Shadowfax extends epochs back to clients by asynchronously choos-
ing points in server execution and correlating these back to per-
client sequence numbers, effectively pushing the overhead of log-
ging out of servers altogether. Similarly, Scalog’s persistence-before-
ordering approach uses global cuts that define and order shards of
operations on different machines [19].

Figure 18: Sampled records impact.

1438

—e— View Validation —#&— Hash Validation

Figure 19: View validation overhead.

High-throughput Networked Stores. Some in-memory stores
exploit kernel-bypass networking or RDMA and optimize for mul-
ticore. Many of these focus on throughput but do not provide scale
out [29, 41, 45], both of which can slow normal-case request pro-
cessing. RAMCloud focuses on low latency and has migration,
but its throughput is two orders of magnitude less than Shadow-
fax [49, 50]. FaRM [20, 21] uses one-sided RDMA reads to con-
struct data structures like hash tables and supports scale out via
in-memory replication. FARM’s reported per-core throughput is
about 300,000 reads/s/core, compared to Shadowfax’s 1.5 million
read-modify-writes/s/core, though there are differences in exper-
imental set up. For example, FaRM doesn’t report numbers for
read-modify-write or write-only workloads which are significantly
more expensive in FaRM, since they involve server CPU, require
replication, and cannot be done with one-sided RDMA operations.
Elasticity. Scale out and migration are key features in shared, repli-
cated stores [2, 8, 18]. High-throughput, multicore stores complicate
this because normal-case request processing is highly optimized
and migration competes for CPU. Some stores rely on in-memory
replicas for fast load redistribution [21, 56]; this is expensive due to
DRAM’s high cost and replication overhead. Squall [22] migrates
data in the H-Store [30] database; it exploits skew via on-demand
record pulls from source to target with colder data moved in the
background. Rocksteady [32] uses this idea in RAMCloud along
with a deferred replication scheme that avoids write-ahead logging.

8 CONCLUSION

Practical KVSs must ingest events over the network and elastically
scale across machines. Shadowfax does this with state-of-the-art
performance that reaches 130 Mops/s/VM by relying on its global
cuts, partitioned sessions, and end-to-end asynchronous clients.

ACKNOWLEDGMENTS

This work was started at Microsoft Research during an internship
by Chinmay Kulkarni and a visit by Ryan Stutsman. We thank Don-
ald Kossmann and the anonymous reviewers for their comments
and suggestions. Chinmay Kulkarni is supported by a Google PhD
Fellowship, which partially supported this work. This material is
based upon work supported by the National Science Foundation
under Grant No. CNS-1750558. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the National
Science Foundation.

REFERENCES

Accelerated Networking. https://docs.microsoft.com/en-us/azure/virtual-
network/create-vm-accelerated-networking-cli. Accessed: 4/22/2020.

Apache Cassandra. http://cassandra.apache.org/. Accessed: 2/28/2020.

Azure Blob storage. https://docs.microsoft.com/en-us/azure/storage/blobs/
storage-blob-pageblob-overview. Accessed: 4/22/2020.

Azure HPC VMs. https://azure.microsoft.com/en-us/blog/introducing-the-new-
hb-and-hc-azure-vm-sizes-for-hpc/. Accessed: 4/27/2020.

Azure Memory Optimized VMs. https://docs.microsoft.com/en-us/azure/virtual-
machines/ev3-esv3-series. Accessed: 4/22/2020.

Intel Flow Director. http://www.intel.com/content/dam/www/public/us/en/
documents/white-papers/intel-ethernet-flow-director.pdf. Accessed: 4/22/2020.
IPoIB. https://www.advancedclustering.com/act_kb/ipoib-using-tcpip-on-an-
infiniband-network/. Accessed: 4/28/2020.

Redis. http://redis.io/. Accessed: 2/28/2020.

Seastar Applications. http://seastar.io/seastar-applications/. Accessed: 4/22/2020.
Seastar Framework. http://seastar.io. Accessed: 4/22/2020.

Spark Streaming. https://spark.apache.org/streaming/.

YCSB Workloads. https://github.com/brianfrankcooper/YCSB/wiki/Core-
Workloads. Accessed: 4/22/2020.

ADYA, A., MYERS, D., HOWELL, J., ELSON, J., MEEK, C., KHEMANT, V., FULGER, S., GU,
P., BHUVANAGIRIL L., HUNTER, J., PEON, R,, KA1, L., SHRAER, A., MERCHANT, A.,
AND LEV-ARL K. Slicer: Auto-sharding for datacenter applications. In Proceedings
of the 12th USENIX Conference on Operating Systems Design and Implementation
(Berkeley, CA, USA, 2016), OSDI’16, USENIX Association, pp. 739-753.

BIRMAN, K. P., AND JosEPH, T. A. Reliable communication in the presence of failures.
ACM Transactions on Computer Systems 5, 1 (1987), 47-76.

CHANDRAMOULI, B., GOLDSTEIN, J., BARNETT, M., DELINE, R., FISHER, D., PLATT,
J. C., TERWILLIGER,]. F., AND WERNSING, J. Trill: A high-performance incremental
query processor for diverse analytics. Proc. VLDB Endow. 8, 4 (Dec. 2014), 401-412.
CHANDRAMOULI B., PRASAAD, G., KOSsSMANN, D., LEVANDOSKI, J., HUNTER, J., AND
BARNETT, M. Faster: A concurrent key-value store with in-place updates. In
Proceedings of the 2018 International Conference on Management of Data (New York,
NY, USA, 2018), SIGMOD ’18, ACM, pp. 275-290.

COPELAND, M., SoH, J., Puca, A., MANNING, M., AND GOLLOB, D. Microsoft Azure:
Planning, Deploying, and Managing Your Data Center in the Cloud, 1st ed. Apress,
USA, 2015.

DEeCANDIA, G., HAsTORUN, D., JaAmpPaNI, M., KAKULAPATI, G., LAKSHMAN, A.,
PILcHIN, A., SIVASUBRAMANIAN, S., VOssHALL, P., AND VoGeLs, W. Dynamo:
Amazon’s highly available key-value store. In Proceedings of Twenty-First ACM
SIGOPS Symposium on Operating Systems Principles (New York, NY, USA, 2007),
SOSP °07, Association for Computing Machinery, p. 205-220.

Ding, C., Cuu, D., ZHAO, E., L1, X., ALvISL, L., AND RENESSE, R. V. Scalog: Seamless
Reconfiguration and Total Order in a Scalable Shared Log. In 17th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI 20) (Santa Clara, CA,
Feb. 2020), USENIX Association, pp. 325-338.

DRAGOJEVIC, A., NARAYANAN, D., CASTRO, M., AND HoDsoN, O. Farm: Fast remote
memory. In 11th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 14) (Seattle, WA, Apr. 2014), USENIX Association, pp. 401-414.
DRAGOJEVIC, A., NARAYANAN, D, NIGHTINGALE, E. B., RENZELMANN, M., SHAMIS,
A.,BADAM, A., AND CASTRO, M. No compromises: distributed transactions with
consistency, availability, and performance . In SOSP (2015), pp. 85-100.

ELMORE, A. J., ARORA, V., TAFT, R, PAvLO, A., AGRAWAL, D., AND EL ABBADI, A.
Squall: Fine-grained live reconfiguration for partitioned main memory databases.
In Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data (New York, NY, USA, 2015), SIGMOD °15, ACM, pp. 299-313.

FiscHER, M. J., LynNcH, N. A., AND PATERSON, M. S. Impossibility of Distributed
Consensus with One Faulty Process. 7 ACM 32, 2 (Apr. 1985), 374-382.

FRASER, K. Practical lock-freedom. PhD thesis, University of Cambridge, UK, 2004.
GRraAY, C. G., AND CHERITON, D. R. Leases: An Efficient Fault-Tolerant Mechanism
for Distributed File Cache Consistency. In Proceedings of the Twelfth ACM Sym-
posium on Operating System Principles, SOSP 1989, The Wigwam, Litchfield Park,
Arizona, USA, December 3-6, 1989 (1989), ACM, pp. 202-210.

GRray, J. Notes on Database Operating Systems. Lecture Notes in Computer Science
Volume 60 (1978), 393-481.

HEerLIHY, M. Wait-free synchronization. ACM Transactions on Programming
Languages and Systems 13,1 (1991), 124-149.

HunT, P., KONAR, M., JUNQUEIRA, F. P., AND REED, B. ZooKeeper: Wait-free Coor-
dination for Internet-scale Systems. In 2010 USENIX Annual Technical Conference,
Boston, MA, USA, June 23-25, 2010 (2010), USENIX Association.

KaL1a, A., KAMINSKY, M., AND ANDERSEN, D. G. Using RDMA efficiently for key-
value services. In ACM SIGCOMM 2014 Conference, SGCOMM’14, Chicago, IL,
USA, August 17-22, 2014 (2014), pp. 295-306.

KarLmaN, R, KIMURA, H., NATKINS, J., PAvLO, A., RASIN, A., ZDONIK, S., JONES, E.
P.C., MADDEN, S., STONEBRAKER, M., ZHANG, Y., HUGG, J., AND ABADI, D. J. H-store:
A High-performance, Distributed Main Memory Transaction Processing System.
Proc. VLDB Endow. 1, 2 (Aug. 2008), 1496-1499.

(31

(32

[37

[38

W
20,

[40

[41

N
B

[45

[46

[47]

[48

[49

[50

[51

(52

[53

KAUFMANN, A., PETER, S., SHARMA, N. K., ANDERSON, T., AND KRISHNAMURTHY, A.
High performance packet processing with flexnic. In Proceedings of the Twenty-
First International Conference on Architectural Support for Programming Languages
and Operating Systems (New York, NY, USA, 2016), ASPLOS ’16, Association for
Computing Machinery, p. 67-81.

KuLkARNT, C., KESAVAN, A., ZHANG, T., Ricct, R., AND STUTSMAN, R. Rocksteady:
Fast migration for low-latency in-memory storage. In Proceedings of the 26th
Symposium on Operating Systems Principles (New York, NY, USA, 2017), SOSP ’17,
ACM, pp. 390-405.

Kung, H. T., AND LEHMAN, P. L. Concurrent manipulation of binary search trees.
ACM Trans. Database Syst. 5, 3 (Sept. 1980), 354-382.

LAMPORT, L. Paxos Made Simple. SIGACT News 32, 4 (Dec. 2001), 51-58.
LAMPORT, L., MALKHI, D., AND ZHoU, L. Vertical Paxos and Primary-Backup
Replication. In Proceedings of the 28th ACM Symposium on Principles of Distributed
Computing (New York, NY, USA, 2009), PODC ’09, Association for Computing
Machinery, p. 312-313.

LEVANDOSKI, J., LOMET, D., SENGUPTA, S., STUTSMAN, R., AND WANG, R. High
Performance Transactions in Deuteronomy. In Conference on Innovative Data
Systems Research (CIDR 2015) (2015).

LEVANDOSKT, J., LOMET, D., SENGUPTA, S., STUTSMAN, R., AND WANG, R. Multi-
version Range Concurrency Control in Deuteronomy. Proceedings of the VLDB
Endowment 8, 13 (Sept. 2015), 2146-2157.

LEVANDOSKT, J. J., LOMET, D. B., AND SENGUPTA, S. The Bw-Tree: A B-tree for new
hardware platforms. In 29th IEEE International Conference on Data Engineering,
ICDE 2013, Brisbane, Australia, April 8-12, 2013 (2013), pp. 302-313.
LEVANDOSKTL]. J., LOMET, D. B., SENGUPTA, S., BIRKA, A., AND D1aconU, C. Indexing
on Modern Hardware: Hekaton and Beyond. In SIGMOD (2014), pp. 717-720.

L1, B,,RuaN, Z., X140, W,, LU, Y., XIONG, Y., PuUTNAM, A., CHEN, E., AND ZHANG, L.
Kv-direct: High-performance in-memory key-value store with programmable nic.
In Proceedings of the 26th Symposium on Operating Systems Principles (New York,
NY, USA, 2017), SOSP *17, ACM, pp. 137-152.

Ly S., LM, H, LEE, V. W,, AHN, J. H., KaL1A, A., KAMINSKY, M., ANDERSEN, D. G.,
SEONGIL, O., LEE, S., AND DUBEY, P. Architecting to achieve a billion requests per
second throughput on a single key-value store server platform. In Proceedings of
the 42Nd Annual International Symposium on Computer Architecture (New York,
NY, USA, 2015), ISCA *15, ACM, pp. 476-488.

L1, T., CHANDRAMOULL B., FALEIRO, J., MADDEN, S., AND KossMANN, D. Asynchro-
nous Prefix Recoverability for Fast Distributed Stores. In Proceedings of the 2021
International Conference on Management of Data (2021), SIGMOD ’21.
MCKENNEY, P. E., AND SLINGWINE, J. D. Read-copy update: Using execution history
to solve concurrency problems. In Parallel and Distributed Computing and Systems
(1998), pp. 509-518.

MicHAEL, M. M. Safe Memory Reclamation for Dynamic Lock-free Objects Using
Atomic Reads and Writes. In Proceedings of the Twenty-first Annual Symposium on
Principles of Distributed Computing (New York, NY, USA, 2002), PODC '02, ACM,
pp- 21-30.

MiTcHELL, C., GENG, Y., AND L1, J. Using One-Sided RDMA Reads to Build a Fast,
CPU-Efficient Key-Value Store. In 2013 USENIX Annual Technical Conference, San
Jose, CA, USA, June 26-28, 2013 (2013), pp. 103-114.

Ni1sHTALA, R, FuGaL, H., GRIMM, S., KwiaTkowski, M., LEg, H., L1, H. C., McELROY,
R.,PALECZNY, M., PEEK, D., SAAB, P., STAFFORD, D., TUNG, T., AND VENKATARAMANI,
V. Scaling Memcache at Facebook. In Proceedings of the 10th USENIX Symposium
on Networked Systems Design and Implementation, NSDI 2013, Lombard, IL, USA,
April 2-5, 2013 (2013), N. Feamster and J. C. Mogul, Eds., USENIX Association,
Pp- 385-398.

Ok1, B. M., AND Liskov, B. H. Viewstamped replication: A new primary copy
method to support highly-available distributed systems. In Proceedings of the
Seventh Annual ACM Symposium on Principles of Distributed Computing (New
York, NY, USA, 1988), PODC 88, Association for Computing Machinery, p. 8-17.
ONGARO, D., AND OUSTERHOUT, J. K. In Search of an Understandable Consen-
sus Algorithm. In 2014 USENIX Annual Technical Conference, USENIX ATC ’14,
Philadelphia, PA, USA, June 19-20, 2014 (2014), USENIX Association, pp. 305-319.
ONGARO, D., RUMBLE, S. M., STUTSMAN, R., OUSTERHOUT, J., AND ROSENBLUM,
M. Fast Crash Recovery in RAMCloud. In Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles (2011), ACM, pp. 29-41.
OUSTERHOUT, J., GOPALAN, A., GUPTA, A., KEJRIWAL, A., LEE, C., MONTAZER]I, B.,
ONGARO, D., PARK, S.J., QIN, H., ROSENBLUM, M., AND ET AL. The ramcloud storage
system. ACM Trans. Comput. Syst. 33, 3 (Aug. 2015).

PHOTHILIMTHANA, P. M., L1u, M., KAUFMANN, A., PETER, S., BODIK, R., AND ANDER-
soN, T. Floem: A programming system for nic-accelerated network applications.
In Proceedings of the 12th USENIX Conference on Operating Systems Design and
Implementation (USA, 2018), OSDI'18, USENIX Association, p. 663-679.
PrAsAAD, G., CHANDRAMOULL B., AND KossMANN, D. Concurrent Prefix Recovery:
Performing CPR on a Database. In Proceedings of the 2019 International Conference
on Management of Data (New York, NY, USA, 2019), SIGMOD ’19, Association for
Computing Machinery, p. 687-704.

Riccr, R, EIDE, E., AND THE CLouDLAB TEAM. Introducing CloudLab: Scientific
infrastructure for advancing cloud architectures and applications. USENIX ;login:

39,6 (Dec. 2014). [56] WEL X., SHEN, S., CHEN, R., AND CHEN, H. Replication-driven live reconfiguration

[54] STONEBRAKER, M., AND WEISBERG, A. The voltdb main memory DBMS. IEEE Data for fast distributed transaction processing. In 2017 USENIX Annual Technical
Eng. Bull. 36, 2 (2013), 21-27. Conference, USENIX ATC 2017, Santa Clara, CA, USA, July 12-14, 2017. (2017),
[55] Tu,S., ZHENG, W., KOHLER, E., Liskov, B., AND MADDEN, S. Speedy transactions pp. 335-347.
in multicore in-memory databases. In Proceedings of the Twenty-Fourth ACM [57] Wu, C., FALEIRO,], LIN, Y., AND HELLERSTEIN, J. Anna: A kvs for any scale. In 2018
Symposium on Operating Systems Principles (New York, NY, USA, 2013), SOSP ’13, IEEE 34th International Conference on Data Engineering (ICDE) (2018), pp. 401-412.

Association for Computing Machinery, p. 18-32.

1440

