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Magnetic reconnection plays an important role in the release of magnetic energy and consequent energization
of particles in collisionless plasmas. Energy transfer in collisionless magnetic reconnection is inherently a
two-step process: reversible, collisionless energization of particles by the electric field, followed by collisional
thermalization of that energy, leading to irreversible plasma heating. Gyrokinetic numerical simulations are
used to explore the first step of electron energization, and we generate the first examples of field-particle
correlation (FPC) signatures of electron energization in 2D strong-guide-field collisionless magnetic recon-
nection. We determine these velocity space signatures at the x-point and in the exhaust, the regions of the
reconnection geometry in which the electron energization primarily occurs. Modeling of these velocity-space
signatures shows that, in the strong-guide-field limit, the energization of electrons occurs through bulk accel-
eration of the out-of-plane electron flow by parallel electric field that drives the reconnection, a non-resonant
mechanism of energization. We explore the variation of these velocity-space signatures over the plasma beta
range 0.01 ≤ βi ≤ 1. Our analysis goes beyond the fluid picture of the plasma dynamics and exploits the
kinetic features of electron energization in the exhaust region to propose a single-point diagnostic which can
potentially identify a reconnection exhaust region using spacecraft observations.

I. INTRODUCTION

Vast amounts of energy can be stored in the magnetic
field of space and astrophysical plasmas. Upon recon-
figuration, this embedded field may undergo reconnec-
tion that releases substantial energy, energizing particles,
sometimes explosively. Magnetic reconnection occurs in
a host of plasma regimes, from fusion device disruptions
to the birth of the solar wind and solar flares. Addition-
ally, magnetic reconnection occurs often in the dynamic
solar wind, especially at interfaces with planetary mag-
netic fields. Identification and quantification of parti-
cle energization may help describe the physics needed to
answer such questions as the coronal heating problem.1

In diffuse plasmas that are nearly collisionless, as those
composing the solar wind and present throughout most
of the heliosphere, kinetic descriptions of energy trans-
fer are necessary to understand reconnection at particle
kinetic length scales.2,3

Significant work through theoretical, numerical and
observational studies have developed a more complete
picture of the various mechanisms potentially respon-
sible for particle energization during magnetic recon-
nection in collisionless plasmas.4–12 Fermi acceleration
and direct E‖ particle acceleration have been identi-
fied to account for electron energization in collision-
less reconnection.6,13,14 Dahlin, Drake, and Swisdak 15

demonstrated that there is a clear transition between
Fermi acceleration and direct electric field acceleration
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at a guide field of unity, Bg/BR = 1, where Bg is the
out-of-plane guide magnetic field and BR is the in-plane
reconnecting magnetic field magnitude. This first order
Fermi acceleration is nearly completely suppressed at val-
ues Bg/BR > 1. Pucci et al. 10 also found electron ener-
gization switches from perpendicular (j⊥E⊥) to parallel
(j‖E‖) energization at Bg/BR = 0.6 for driven recon-

nection. Guo et al. 16 identified evidence of perpendicu-
lar electric field energization of electrons in strong-guide-
field steady reconnection, Bg/BR = 3. Using 2D PIC
simulations, they found perpendicular energization is
due to polarization drifts, sustained by charge-separation
generated electrostatic fields near the x-point and along
the separatrices, and global curvature drifts. Addition-
ally, they proposed charge-separation is sustained long
enough to break the frozen-in condition in the presence
of a large guide field, allowing perpendicular energization
mechanisms due to additional sustained non-ideal effects
which are not present in anti-parallel reconnection.

Numerous studies on anti-parallel reconnection with no
guide-field have been carried out. However, large-guide-
field investigations have received less attention in the lit-
erature. This neglect is likely due to historically few ob-
servations of very large guide fields in the heliosphere, (i.e
Bg/BR > 5). Larger guide fields (Bg/BR > 1) are ex-
pected to be found within the corona, which may be con-
firmed observationally as Parker Solar Probe completes
its mission. In the last decade, larger guide fields have
been found to exist during reconnection at the magne-
tosheath and magnetosphere17–21, and magnetotail22,23.
Additionally, many previous studies have focused on cat-
egorizing and identifying reconnection events through
their fields and local macroscopic plasma parameters,
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both in numerical and spacecraft investigations.21,24–26

Some recent kinetic investigations have been enabled by
advances in particle detection on recent spacecraft mis-
sions, which have identified evidence of crescent distri-
butions that are likely common in asymmetric reconnec-
tion as found by the Magnetospheric Multiscale (MMS)
mission.27–29 Until recently, few investigations have fo-
cused directly on kinetic particle energization in the non-
relativistic large-guide-field limit using a formal kinetic
analysis framework.

Most in situ measurements in collisionless plasmas
are performed by single spacecraft. Even in cases with
multiple spacecraft, such as in the MMS mission, the
few points of spatial information are insufficient to de-
scribe the larger scale spatial distribution of particle en-
ergization. Thus, analysis techniques must be structured
to use localized (usually single-point) measurements to
make observations and determinations of plasma behav-
ior. Understanding the kinetic behavior of large-guide-
field reconnection with single-point measurement tech-
niques may help as a diagnostic tool for spacecraft iden-
tification of such events. We present an analysis of elec-
tron energization through the characterization of kinetic
velocity-space signatures at specific spatial locations in
a 2D gyrokinetic reconnection simulation. This work is
built from a geometry proposed by Porcelli et al. 30 imple-
mented in the Astrophysical Gyrokinetics Code AstroGK,
as previously used by Numata and Loureiro 31 . Using the
field-particle correlation (FPC) framework developed by
Klein and Howes 32 , we identify and analyze the velocity-
space signatures of particle energization that arise from
strong-guide-field collisionless reconnection.

II. KINETIC MECHANISMS OF ELECTRON
ENERGIZATION

In analyzing energy transfer in a weakly collisional
plasma, it is important to point out that the energy
transfer is inherently a two-step process33. First, col-
lisionless interactions between the electromagnetic fields
and the plasma particles serve to transfer energy between
the fields and the particles. Energy transferred from the
fields to the particles will generate fluctuations in the
particle velocity distribution function (VDF). The col-
lisionless energy transfer in this first step is inherently
reversible, so the energy associated with those fluctua-
tions is non-thermal. Subsequently, these fluctuations
in the VDF can undergo linear8,34 or nonlinear phase
mixing35 to sufficiently small scales in velocity space that
arbitrarily weak collisions can serve to smooth out those
fluctuations. This second collisional step is irreversible,
effectively thermalizing the energy that was transferred
to the particles, heating that plasma species and increas-
ing the entropy.

In this investigation, we will focus on the first step in
this process, whereby the electromagnetic fields do re-
versible work on the plasma particles. In magnetic re-

connection, this process effectively releases magnetic en-
ergy and converts it into other forms (bulk plasma flows
or non-thermal energization). Note that the collision-
less energization can be facilitated through a resonant
process, as in the case of Landau damping of kinetic
Alfvén waves, or through non-resonant processes, e.g.,
direct particle acceleration by electric fields. The second
collisional step of the particle energization in collisionless
magnetic reconnection was the focus of the analysis by
Numata and Loureiro 31 .

In the analysis of the particle energization in weakly
collisional plasma turbulence, the collisionless dynamics
leads to the continual transfer of energy back and forth
between the electromagnetic field fluctuations and the
particles. If the turbulent fluctuation is undamped, this
energy transfer is oscillatory and reversible, contribut-
ing no net particle energization. For example, an Alfvén
wave in the MHD limit kρi � 1 is undamped, and in-
volves an oscillatory transfer of energy between magnetic
field energy and plasma bulk flow kinetic energy. If the
energy transfer is not purely oscillatory, e.g., in the case
of a resonant damping process, a portion of the energy
transfer may contribute to a net particle energization,
which we will define as the secular, or net, energy trans-
fer. This secular energy transfer is manifested through
the net increase of microscopic kinetic energy of plasma
particles leading to perturbations of the VDF. In colli-
sionless magnetic reconnection, as is studied in this pa-
per, the dynamics are not typically oscillatory as the
magnetic field is reconfigured, but reversible kinetic en-
ergy transfer is still possible. Therefore, it is important
to investigate the net energization of the particles during
the evolution of a plasma undergoing magnetic reconnec-
tion.

In order to analyze the collisionless energy transfer in
the first step of particle energization, we begin with the
generalized Boltzmann equation,

∂fs
∂t

+v·∇fs+
qs
ms

[
E +

v ×B

c

]
· ∂fs
∂v

=

(
∂fs
∂t

)

coll

. (1)

This equation represents the evolution of the 3D-3V
velocity distribution function fs (r,v, t) for a plasma
species s. The species charge and mass are qs and ms

respectively, v is the velocity, E and B are the electric
and magnetic fields, and c is the speed of light, and the
right-hand side represents the collision operator. Com-
bining the Boltzmann equation for each plasma species
together with Maxwell’s equations forms the closed set of
Maxwell–Boltzmann equations that govern the nonlinear
evolution of turbulent fluctuations in a magnetized ki-
netic plasma.

On the timescale of the energy transfer occurring in
magnetic reconnection, the collisional term is negligible
under typical conditions in space and astrophysical plas-
mas, so we may neglect the collision operator, recovering
the Vlasov equation. The Vlasov equation describes the
full phase-space dynamics of a collisionless magnetized
plasma. The ballistic or advection term, second on the
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left-hand side of Eqn. 1, represents the advection of par-
ticles. The third term is the classical Lorentz force term,
which governs the self-consistent wave-particle interac-
tions in the kinetic plasma. Therefore, we focus on the
Lorentz term to characterize the energization of particles
in collisionless magnetic reconnection.

III. METHODS

A. Field-particle correlation Technique

Developed by Klein and Howes 32 , the field-particle
correlation (FPC) technique produces a velocity-space
representation of the phase-space energy density trans-
fer in a kinetic plasma applicable to a Vlasov-Maxwell
description for a collisionless plasma. The FPC tech-
nique was initially developed to separate oscillatory en-
ergy transfer during a physical process from any secu-
lar energy transfer, by taking an average over a a suf-
ficiently long correlation intervals that the oscillatory
transfer largely cancels out. This method has been
used to identify mostly resonant processes leading to net
positive particle energization occurring in: wave damp-
ing in heliospheric plasmas32,34,36, broadband kinetic
turbulence37–42, strong Alfvén wave collisions33, colli-
sionless shocks43, and laboratory evidence of the electron
energization responsible for the aurora44.

Using the Vlasov equation for the evolution of the par-
ticle distribution function, we can define a new formula-
tion that describes the phase-space energy density evolu-
tion for a given species s. Multiplying the Vlasov equa-
tion by kinetic energy msv

2/2, we cast into a form

∂ws

∂t
= −msv

2

2
v · ∇fs − qs

v2

2

[
E +

v ×B

c

]
· ∂fs
∂v

. (2)

which describes the rate of change of the phase-space
energy density we,s = msv

2fs/2. Using this description
for the rate of change of phase-space energy density, we
can then define a field-particle correlation that produces
the velocity-space signature of energization at a single
spatial location.

For the application of this technique to data from
our collisionless magnetic reconnection simulations us-
ing the Astrophysical Gyrokinetics Code AstroGK45,
we note that the gyrokinetic distribution function
hs(x, y, z, v⊥, v‖)

46 is related to the total distribution
function fs via

fs(r,v, t) = F0s(v)

(
1− qsφ(r, t)

T0s

)
+ hs(r, v‖, v⊥, t).

(3)
Here, F0s is the equilibrium Maxwellian distribution
function, φ is the scalar potential, and T0s is the refer-
ence species temperature. The parallel and perpendicular
directions are with respect to the local equilibrium mag-
netic field B0 up to O(ε2) in the gyrokinetic ordering.46

As a technical step, we transform from the gyrokinetic

distribution function hs to the complementary perturbed
distribution function

gs(r, v‖, v⊥) = hs(r, v‖, v⊥)− qsF0s

T0s

〈
φ− v⊥ ·A⊥

c

〉

Rs

,

(4)
where 〈...〉 denotes the ring average taken at fixed guiding
center Rs.

46 The complementary distribution function gs
describes perturbations to the background distribution
in the frame of reference moving with the transverse os-
cillations of an Alfvén wave. Field-particle correlations
calculated using hs or fs yield qualitatively and quanti-
tatively similar results to those computed with gs.

37

Below, we present the correlations between the comple-
mentary perturbed distribution function and the parallel
electric field E‖ at a single-point r0

CE‖,s(v‖, v⊥, t) = C

(
−qs

v2‖

2

∂gs(r0, v‖, v⊥, t)

∂v‖
, E‖(r0, t)

)
.

(5)
The unnormalized, centered correlation C(A,B) is essen-
tially a sliding time average, and is defined at time ti by

C (A,B) ≡ 1

N

i+N/2∑

j=i−N/2

AjBj , (6)

for quantities A and B, which together as a product rep-
resent a rate of change of energy density, which are mea-
sured at discrete times tj = j∆t, with their product av-
eraged over the correlation interval of τ ≡ N∆t37. By
averaging over a finite correlation interval τ , oscillatory
energy transfer between the electromagnetic fields and
the plasma particles is averaged out, leaving only the net
rate of energy transfer between the fields and the par-
ticles. In the 2D simulations of magnetic reconnection
presented here, the flow remains generally laminar dur-
ing the main phase of reconnection, so it is not necessary
to time-average over a finite correlation interval to cancel
out a large oscillatory component. Therefore, we chose
to simply evaluate the field-particle correlation instanta-
neously, taking the correlation interval τ = 0. To analyze
simulations of collisionless magnetic reconnection in 3D,
which are often found to become turbulent, it may be
necessary to employ a finite correlation interval τ > 0.

The parallel electric field correlation defined in Eqn. 5
describes the phase-space energy transfer rate to species
s by E‖ at a single point in space r0 and is a three di-
mensional function in gyrotropic phase space and time,
(v‖, v⊥, t). We present the correlation in several standard
ways to aid visualization of the particle energization in
velocity-space and time. A gyrotropic plot of the corre-
lation CE‖,s(v‖, v⊥) at a specific time t0 shows how the
rate of change of phase-space energy density varies in gy-
rotropic velocity space (v‖, v⊥), as in Figure 2(b). We
generally refer to the pattern of energization seen in the
gyrotropic plot as the velocity-space signature of the par-
ticle energization mechanism.
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Alternatively, we can integrate the correlation over the
perpendicular velocity,

CE‖,s(v‖, t) =

∫
v⊥dv⊥CE‖,s(v‖, v⊥, t), (7)

to obtain the reduced parallel correlation, CE‖,s(v‖, t). A
timestack plot presents this reduced parallel correlation
as a function of v‖ and time, which is particularly use-
ful to explore the rate energization of particles over the
course of the main phase of magnetic reconnection in our
simulations, as in the main panel of Figure 2(c).

Integrating the reduced parallel correlation over full
simulation duration T yields

∆ws(v‖) =

∫ T

0

dtCE‖,s(v‖, t), (8)

a simple one-dimensional representation of net energiza-
tion of particles as a function of v‖ over the course of
the simulation, as in the lower panel of Figure 2(c). This
visualization facilitates the identification of the bipolar
signatures that are indicative of collisionless resonant en-
ergization mechanisms, such as Landau damping38,41.

Alternatively, one can integrate the reduced parallel
correlation over v‖ to obtain the rate of particle ener-
gization at the single spatial point r0 as a function of
time, given by

(
∂Ws(t)

∂t

)

E‖

≡
∫
dv‖CE‖,s(v‖, t) = j‖,s(r0, t)E‖(r0, t),

(9)
as in the left-hand panel of Figure 2(c). Note that this

form shows that, when integrated over all velocity space,
the parallel electric field correlation simply yields the rate
of work done by the parallel electric field on the particle
species s at position r0 versus time.

B. Simulation

In this paper, we analyze 2D magnetic reconnection
simulations (d/dz = 0) with a strong out-of-plane guide
field. The domain consists of a doubly-periodic slab ge-
ometry with an in-plane reconnection field. To solve
the fully electromagnetic gyrokinetic equations for the
electrons and ions, AstroGK employs a pseudo-spectral
algorithm for the spatial coordinates (x, y), and Gaus-
sian quadrature for velocity space integrals. The ve-
locity grid is discretized into energy Es = msv

2/2 and
pitch angle λ = v2⊥/(Bz0v

2) values, where Bz0 is the
constant, background (guide) magnetic field. Deriva-
tives of velocity space in the collision operator are es-
timated using a first-order finite difference scheme on an
unequally spaced grid according to the quadrature rules
in Barnes et al. 47 . We perform the same simulations
as in Numata and Loureiro 31 with a fixed collisionality
νei = νee = νii = 1.0×10−4 for all simulations. The sim-
ulation is initialized with an unstable tearing mode for

the in-plane magnetic field configuration as in Numata
et al. 45,48 . The equilibrium total magnetic field is given
by

B = Bz0ẑ +Beq
y (x)ŷ, Beq

y /Bz0 ∼ ε� 1, (10)

where Beq
y is the in-plane, reconnecting component, with

a maximum value Bmax
y = 1, determined from the par-

allel vector potential by Beq
y (x) = −∂Aeq

‖ /∂x, ε is the

gyrokinetic epsilon — a small expansion parameter defin-
ing scale separation in gyrokinetics (see Howes et al. 46).
The background Maxwellian electron distribution is per-
turbed with a perturbation of the from δfe ∝ V‖fe0. To
support the modified distribution function, the vector po-
tential is defined as follows using a shape function Sh(x)
to enforce periodicity (see Numata et al. 45) such that

Aeq
‖ (x) = Aeq

‖0 cosh

(
x− Lx/2

a

)
Sh(x). (11)

Aeq
‖ arises from the parallel electron current that must

satisfy Ampère’s law. The dimensions of the simula-
tion determine the scale lengths, with equilibrium current
width a and Lx the scale of the box in the x-direction,
where Lx/a = 3.2π. For the y-direction, the width of
the box is Ly/a = 2.5π. The tearing mode is imposed by
a small sinusoidal perturbation to the equilibrium mag-
netic field, so that Ã‖ ∝ cos (kyy) with wave number
kya = 2πa/Ly = 0.8, which yields ∆′a ≈ 23.2 for the
tearing instability parameter. The plasma considered
is quasi-neutral, so that n0i = n0e = n0, with singly
charged ions qi = −qe = e.

The scale of the system is determined by the equilib-
rium magnetic field. Thus, we normalize time by the
Alfvén time τA ≡ a/VA, where VA ≡ Bmax

y /
√

4πn0mi is
the in-plane Alfvén velocity corresponding to the maxi-
mum initial Beq

y .
Additional fundamental parameters define the physical

scales within the simulation: The mass ratio, µ = me/mi,
the equilibrium plasma temperature ratio T0i/T0e ≡ 1,
the ion plasma beta, βi = βe, and the ratio of ion sound
Larmor radius to the equilibrium scale length a (i.e.
width of the current sheet), ρse/a ≡ cse/(Ωcia). The ion

sound speed for cold ions is cse =
√
T0e/mi, and the ion

cyclotron frequency is Ωci = eBz0/(mic). The following
parameters are fixed for all simulations throughout this
paper:

ρse/a = 0.25/
√

2 µ = 0.01. (12)

These scale parameters require ρi/a = 0.25, ρe/a =
0.025, and βi = βe.

As explained in TenBarge et al. 49 , the gyrokinetic ex-
pansion parameter ε is neither a fixed nor a user chosen
parameter: under the gyrokinetic ordering46 and using
the normalization employed in AstroGK45, all quantities
are scaled by ε to make the calculations of asymptotically
small values using numerical computations of order O(1).
To compare results to a particular system, it is necessary
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to specify a value of ε—e.g., choosing a specific ratio of
the in-plane to the guide magnetic field. The ion plasma
beta βi is defined using the out-of-plane guide magnetic
field, βi ≡ n0iT0i/(B2

z0/8π). To perform simulations with
different values of βi, one can take the ratio of the guide
magnetic field Bz0 to the in-plane magnetic field Beq

y

to be constant, where Beq
y /Bz0 = ε � 1, and vary the

ion temperature T0i relative to these fixed quantities to
change the plasma βi. Five simulations are performed
using varying values of βi = (0.01, 0.03, 0.1, 0.3, 1.0).

In these simulations, the electron current layer width
δCS,e decreases with increasing βe, such that the elec-

tron Larmor radius ρe = µ1/2ρse
√

2 approaches the elec-

tron skin depth de = β
−1/2
e µ1/2ρse

√
2. Numata and

Loureiro 31 demonstrate with linear simulations in the
collisionless regime, the frozen-flux condition is broken
by electron inertia for small βe. When βe is greater
than unity, ρe becomes larger than de, such that electron
FLR effects, rather than electron inertia, lead to field line
breaking. By varying the collisionality, they also find in
the linear regime small (νeτA . 1× 10−3), but finite col-
lisionality results in asymptotic growth rates and current
sheet width.

IV. RESULTS

A. Partitioning of Energization by Species

The energy budget for the simulations shown in Fig-
ure 11 of Appendix §A confirms the energy released from
the in-plane magnetic field flows primarily into the elec-
trons at βi � 1. As βi is increased, the ions gain an
increasing share of the released magnetic energy, ulti-
mately reaching approximate equipartition with the elec-
trons at βi = 1. This result is consistent with previous
investigations.6,13,31 In this paper, we focus strictly on
investigating the electron energization, leaving the ener-
gization of the ions to be explored in future work.

B. Locations of Electron Energization

The electron energization as a function of the posi-
tion in the (x, y) plane is given by the work done on the
electrons by the electric field, je ·E. Our gyrokinetic sim-
ulations of collisionless magnetic reconnection are valid
in the limits of strong guide field Bz0/B

eq
y ∼ ε−1 � 1

and of the gyrokinetic approximation46,49 with k⊥ � k‖,
where the parallel direction is along the guide field in
the out-of-plane, z direction. In all of our simulations,
the summed contributions to the electron energization
by the in-plane (perpendicular) components of the elec-
tric field are much smaller than that by the out-of-plane
component, jx,eEx + jy,eEy � j‖,eE‖, as expected in the
gyrokinetic limit. In the gyrokinetic approximation, the
quasi-neutrality condition46 dictates that ∇·j = 0, so the

limit k⊥ � k‖ implies that k⊥ · j⊥ = 0 to lowest order in
the gyrokinetic expansion parameter ε. Since the perpen-
dicular electric field in the same k⊥ � k‖ limit scales as
k⊥φ, where φ is the electrostatic potential, then the work
done by the perpendicular electric field j⊥,e ·E⊥ scales as
j⊥,e ·k⊥φ ' 0 to lowest order in ε. Therefore, in our anal-
ysis here we focus strictly on the parallel contribution to
the rate of electron energization, j‖,eE‖.

In Figure 1, for the βi = 0.01 simulation, we plot the
spatial distribution over the (x, y) plane of (a) the par-
allel electron current j‖,e, (b) the parallel electric field
E‖, and (c) the work done on the electrons due to the
reconnection electric field j‖,eE‖/Q0, where we normal-
ize by the characteristic heating rate per unit volume,
Q0 = (n0iT0ivti/L‖)(π/8)(L⊥/L‖)

2. We plot these quan-
tities at the time t/τA = 22.5 of the maximum spatially-
integrated electron energization rate

∫
dxdyj‖,eE‖/Q0,

plotted in Figure 1(d). The reconnection rate, esti-
mated using the magnitude of the reconnecting (par-
allel) electric field E‖ at the x-point in the simulation
cE‖/(vA,yB

max
y ), is plotted in Figure 1(e), and its peak

roughly coincides in time with the spatially-integrated
electron energization rate during the main phase of re-
connection, roughly spanning 10 . t/τA . 30. Note that,
for the initial Porcelli equilibrium30 employed in these
simulations, there is a limited amount of upstream mag-
netic flux, so the main phase of reconnection eventually
ceases once a majority of the initial flux has reconnected.

In Figure 1(a), the parallel electron current in the +z
direction peaks at the x-point and along the separatri-
ces. The parallel electric field which drives the reconnec-
tion flow is fairly uniform throughout the region spanning
17 < x/ρi < 23 and 7 < y/ρi < 25, as shown in Fig-
ure 1(b). The rate of change of electron energy density is
given by the product of these two quantities, and we find
that the positive electron energization occurs dominantly
over a relatively small region at the x-point and along the
separatrices within the ion diffusion region, as indicated
by the bright red regions in Figure 1(c). Since the field-
particle correlation technique is applied at specific spatial
locations to determine the nature of the mechanisms for
particle energization at those positions, we choose the
following positions to investigate the electron energiza-
tion in this study: (i) the x-point, denoted by point “X,”
and (ii) three positions marked by the horizontal (green
line) through the lower exhaust region, denoted by points
“A,” “B,” and “C.” Below, we perform a field-particle
correlation analysis at each of these points to identify
the velocity-space signatures of electron energization in
collisionless magnetic reconnection with a strong guide
field.

That the electron energization is dominated by j‖,eE‖
is consistent with expectations for the gyrokinetic limit
and agrees with previous investigations of magnetic
reconnection in the moderate to strong guide field
limit13,15,50. The energization of electrons in the out-of-
plane direction, parallel to the guide field to lowest order
in ε, is qualitatively different from magnetic reconnection
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FIG. 1. Plots for the βi = 0.01 simulation of the reconnecting plane displaying (a) electron current j‖,e, (b) E‖, and (c) j‖,eE‖
at the time of maximum reconnection rate t/τA = 22.5. (d) Spatially integrated j‖,eE‖ for the entire simulation interval with
horizontal black line at maximum reconnection rate. (e) Normalized reconnection rate for the entire simulation interval.

in the small to zero guide field limit, where the local par-
allel direction is mostly along the in-plane reconnecting
field. We see no first order Fermi acceleration13,51 due to
the gyrokinetic ordering, so an analysis of that source of
acceleration is neglected here.

C. Energization at x-point

To investigate the energization of the electrons at
the x-point of the reconnection geometry, located at
(x/ρi, y/ρi) = (20.1, 15.7), we focus initially on the per-
turbations to the electron velocity distribution function
and the parallel electric field at the time t/τA = 22.5
when the electron energization rate j‖,eE‖ peaks at the

x-point. In Figure 2(a), we plot the complementary per-
turbed electron distribution function ge(v‖, v⊥) over gy-
rotropic velocity space, along with the reduced parallel
perturbed distribution ge(v‖), obtained by integrating
over v⊥, in the lower panel. This perturbed velocity dis-
tribution leads to the parallel electron current j‖,e needed
to sustain the change in the By component of the mag-
netic field across the midplane, as seen in Figure 1.

To explore the electron energization at the x-point,
we use ge(v‖, v⊥) and the parallel electric field E‖ to
compute the field-particle correlation in gyrotropic ve-
locity space CE‖,e(v‖, v⊥), given by Eqn. 5 and plot-

ted in Figure 2(b). In this figure, we see a symmet-
ric (about v‖) increase in the phase-space energy den-
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sity we of the electrons, dominantly occurring over the
parallel velocity range 1 . |v‖|/vte . 2, as made clear
by the lower panel where the reduced parallel correla-
tion CE‖(v‖), computed by integrating over v⊥, is plot-
ted. The vertical dashed black lines indicate the Alfvén
velocity vA,z = Bz0/

√
4πn0mi in the parallel direction,

±vA,z/vte, for βi = 0.01 and mass ratio mi/me = 100,
where velocities are normalized by the electron thermal
velocity vte =

√
2Te/me, with temperature given in units

of energy. The gyrotropic correlation CE‖,e(v‖, v⊥) in

panel (b) is the velocity-space signature of the electron
energization at the x-point in this simulation of collision-
less magnetic reconnection in the strong-guide-field limit.

To probe how this electron energization as a function
of v‖ evolves over time at the x-point, we plot in Fig-
ure 2(c) a timestack plot of the reduced parallel corre-
lation CE‖(v‖, t) over time. The vertical panel on the
left presents the net electron energization rate due to
E‖, ∂We(t)/∂t =

∫
dv‖CE‖(v‖, t) as a function of time.

Note that the majority of the electron energization at
the x-point occurs over the interval 10 ≤ t/τA ≤ 30, with
the peak energization rate occurring around t/τA = 22.5.
The horizontal panel below presents the time-integrated
reduced parallel net energization over the full interval
shown in the lower panel, ∆we(v‖) =

∫
dtCE‖(v‖, t).

By comparing this time-integrated energization rate at
the x-point to the energization rate at the peak time
t/τA = 22.5, shown in the lower panel of (b), we see
that both the peak and time-integrated energization rates
have a nearly identical dependence on v‖.

A simple model can be constructed that explains
the qualitative and quantitative features of the reduced
velocity-space signature observed in the lower panel of
Figure 2(b). The complementary perturbed distribution
function ge(v‖) plotted in Figure 2(a) is well approxi-
mated by an analytic form

ge(v‖) = 2
U‖,e

vte

v‖

vte
F0,e(v‖), (13)

where the integration over this perturbation leads to zero
density perturbation and a parallel flow given by the pa-
rameter U‖,e. Neglecting the Boltzmann contribution
−qeφF0,e/Te (which is proportional to F0,e, and there-
fore yields zero net energization), the total electron ve-
locity distribution is given by fe(v‖) = F0,e(v‖) + ge(v‖),
where F0,e(v‖) is the equilibrium Maxwellian parallel ve-
locity distribution and ge(v‖) is an approximate analyti-
cal form for the self-consistently evolved perturbed elec-
tron distribution in the simulation. In Figure 3(a), we
plot the equilibrium electron parallel velocity distribu-
tion F0,e(v‖) (black) and the total parallel electron ve-
locity distribution fe(v‖) (red). Panel (b) shows the
perturbed electron velocity distribution function ge(v‖)
(blue) with parameter U‖,e/vte = −0.25, guided by the
first velocity moment of the distribution in the out-of-
plane direction. The factor of the reduced parallel corre-
lation CE‖,e(v‖) that depends on the distribution func-

tion, +ev2‖/2(∂ge/∂v‖), where we have substituted the
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FIG. 2. (a) A gyrotropic plot of the complementary per-
turbed electron distribution function ge(v‖, v⊥) at the time
of the peak energization rate t/τA = 22.5 at the x-point,
(x/ρi, y/ρi) = (20.1, 15.7). The reduced parallel perturbed
distribution ge(v‖), obtained by integrating over v⊥, is shown
in the lower panel. (b) The gyrotropic parallel electric field
correlation CE‖(v‖, v⊥) at the same time and position, along

with the reduced parallel correlation CE‖(v‖) in the lower
panel. The vertical dashed black lines indicate the Alfvén ve-
locity ±vA,z/vte in the parallel direction. (c) A timestack plot
of the reduced parallel correlation over time CE‖(v‖, t), with
the net electron energization rate vs. time in the left panel and
the time-integrated reduced parallel net energization ∆we(v‖)
over the full interval shown in the lower panel, demonstrating
that the energization at the peak time t/τA = 22.5 is con-
sistent with the time-integrated energization at the x-point.
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electron charge qe = −e, is plotted in Figure 3(c). This
form of the reduced parallel correlation shows excellent
agreement with the analysis of the simulations in the
lower panels of Figure 2(b) and (c), where there is a small

loss of phase-space energy density at |v‖|/vte ≤ 1/
√

2,
and the bulk of the increase in the phase-space energy
density occurs in the range 1 . |v‖|/vte . 2. This peak
location is due to the mathematical form of the correla-
tion, which is weighted by v2‖ and the derivative of the

perturbed complementary distribution function. Thus,
the velocity-space signature of the electron energization
at the x-point is simply due to the bulk acceleration of
the electrons in the −z direction by the parallel electric
field E‖, where the parallel electron flow U‖,e supports
the parallel current arising due to the odd (in v‖) pertur-
bation of ge(v‖), with a form well modeled by Eqn. 13.
Thus, this velocity-space signature represents the bulk
acceleration of the electrons in the out-of-plane direction
by E‖, with a net electron energization rate at the x-point

simply given by j‖,eE‖ =
∫
dv‖CE‖,e(v‖).

In summary, for collisionless magnetic reconnection in
the strong-guide-field limit, the electron energization at
the x-point is dominated by bulk acceleration of the elec-
trons by E‖. The particular form of the distribution
function arising in the simulation yields a positive rate
of electron energization with a signature that is symmet-
ric about v‖ = 0 and that peaks over the velocity range
1 . |v‖|/vte . 2. Note that this is not a resonant acceler-
ation of the electrons, as would be expected for collision-
less damping via the Landau resonance, but instead it is
a bulk acceleration of the electrons, in agreement with
the gyrokinetic ordering and previous analysis of elec-
tron energization by E‖ in the strong-guide-field limit of

collisionless magnetic reconnection6,13–15.

D. Energization in Exhaust

In the same manner as for the x-point, we now se-
lect three points located at r/ρi = (x/ρi, y/ρi), where
rA/ρi = (18.9, 11.8), rB/ρi = (20.1, 11.8), rC/ρi =
(21.4, 11.8) to investigate the particle energization within
the exhaust. As before, we begin with analyzing the per-
turbations to the electron velocity distribution function
and electric field at the time t/τA = 22.5. In Figure 4(a)
we show the total spatial electron energization rate j‖,eE‖
again for reference. The points rA and rC, on either side
of the midplane, are located just inside of the separatrix
boundary at time t/τA = 22.5. Each column in the lower
two rows of Figure 4 corresponds to labels A, B, and C in
the exhaust of panel (a) from left to right, respectively.

At point rB, directly downstream from the x-point,
along the midplane, we see a qualitatively similar
perturbed complementary electron velocity distribution
function to that at the x-point, shown in Figure 4(c),
with the reduced parallel perturbed distribution shown
in the lower panel. The odd perturbation in v‖ is more
confined in parallel velocity than at the x-point, where
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FIG. 3. (a) A model form of the total electron parallel veloc-
ity distribution (red) with the original Maxwellian equilibrium
electron parallel velocity distribution (black). (b) The model
complementary perturbed electron velocity distribution func-
tion ge as in Eqn. 13. (c) The corresponding reduced corre-
lation representing the phase-space density signature of the
perturbed electron velocity distribution function.

the bulk of the perturbed electron VDF is contained at
|v‖/vte| < 1. In contrast to this point B on the midplane
shown in Figure 4(c), we observe that, at the points A
and C near the separatrix on either side of the midplane,
there is an asymmetric signature of ge(v‖, v⊥), shown
in Figure 4(b) and (d). These two signatures are mir-
rored across the midplane in magnitude, but are oppo-
sitely signed such that ge,A(v‖, v⊥) = −ge,C(−v‖, v⊥).
This symmetry means that the first moment of the dis-
tribution yields an identical value of the parallel current
at both points. The corresponding reduced distribution
function ge(v‖) is shown as before in the lower panels of
Figure 4(b), (c), and (d).

To analyze the particle energization within the ex-
haust, we plot the reduced field-particle correlation
CE‖(v‖, t) timestack shown in the bottom row of Fig-
ure 4. In the left vertical panel for each point in the ex-
haust, we see the net energization rate ∂We(t)/∂t peaks
at a similar time of t/τA = 22.5 for either side of the
midplane (e) and (g). At the midplane in the exhaust
(f), the net energization rate peaks slightly earlier at
t/τA ≈ 20.0. In the lower horizontal panel for each point,
we again plot the time-integrated reduced parallel ener-
gization rate over the full interval. At the midplane in
the exhaust, we again find a symmetric (about v‖) in-
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crease in phase-space energy density we of the electrons.
The energization extends over a range that is slightly
narrower than at the x-point, 0.5 . |v‖|/vte . 2.0, and
is centered close to |v‖|/vte = 1. On either side of the
midplane, there is an asymmetric increase in phase-space
energy density over the velocity range 0.7 . |v‖|/vte . 3.
At point rA, the electrons travelling in the parallel direc-
tion v‖ > 0 are preferentially accelerated, gaining phase-
space energy density. At point rC, on the other hand, the
electrons travelling in the anti-parallel direction are pref-
erentially gaining phase-space energy density. On either
side of the midplane, there is a clear cutoff in the dom-
inant energization signature at |v‖|/vte = 1. Panels (e),
(f), and (g) in Figure 4 show the characteristic velocity-
space signatures of electron energization in the exhaust
region of strong-guide-field magnetic reconnection, a key
result of this investigation. The parallel velocity ranges
for the electron energization are apparent in the lower
panels of (e), (f) and (g), showing the time-integrated
reduced correlation

∫
dtCE‖(v‖, t).

The asymmetry in the perturbed distribution function
and reduced parallel energization rate on either side of
the midplane within the exhaust is at first surprising,
given the symmetric signature of j‖,eE‖ both in magni-
tude and sign. We hypothesize here that the asymmetric
velocity-space signatures in the exhaust region, shown in
Figure 4(e) and (g), can be explained by the combination
of a parallel electron flow with an electron density pertur-
bation. If we look at the density perturbation in the (x, y)
plane, shown in Figure 12(a) of Appendix B, we see in
the lower half of the simulation plane there is a decrease
in electron density to the left of the midplane and an in-
crease in density to the right of the midplane along each
lower separatrix arm. A similar quadrupolar density pat-
tern is well-known from previous Hall-MHD and two-fluid
simulations.52–54 The perturbed electron velocity distri-
butions shown in Figure 4(b) and (d) are consistent with
the density perturbations shown in Figure 12(a). Since
the velocity-space signature of energization depends on
the details of the electron velocity distribution, it is ex-
pected that this density perturbation will influence the
form of the observed velocity-space signature.

To demonstrate that a parallel electron flow combined
with a density perturbation can indeed generate the
asymmetric velocity-space signatures of electron ener-
gization seen in Figure 4(e) and (g), we present a simple
model with either (i) a shifted Maxwellian distribution
for a bulk parallel electron flow U‖,e, given by

fe(v‖) =
n0e

π1/2vte
e−(v‖−U‖,e)

2/v2
te , (14)

or (ii) an electron density perturbation δne

fe(v‖) =
(n0e + δne)

π1/2vte
e−v

2
‖/v

2
te , (15)

or (iii) a linear combination of the deviations from a
Maxwellian distribution for both a shifted Maxwellian

with flow U‖,e and an electron density perturbation δne.
Here our approximation of the complimentary perturbed
distribution can be computed by ge(v‖) = fe(v‖) −
F0,e(v‖). We emphasize that the precise quantitative
form in velocity space of the net parallel flow and den-
sity perturbation is not critical55: what is important is
the general concept that the sum of a parallel flow with
a density perturbation qualitatively leads to asymmetric
signatures as seen in Figure 4(g). For each simple model,
we plot a column in Figure 5 with the equilibrium paral-
lel electron velocity distribution (black) and total paral-
lel electron velocity distribution (red) in the top row, the
perturbed velocity distribution in the middle row, and
the form of the velocity dependence +ev2‖/2(∂ge/∂v‖) of

the field-particle correlation CE‖(v‖) in the bottom row.

Guided by the appropriate moments of the electron
velocity distribution, in the left column (a), we plot the
case for a shifted Maxwellian with bulk parallel elec-
tron flow U‖,e/vte = −0.25, showing that it results in
an electron energization signature that is asymmetric in
v‖, with a larger signature of energization in the same
direction as the bulk parallel flow. In the middle col-
umn (b), we plot the case for a density perturbation
with δne/n0e = +0.35, showing this density perturba-
tion alone leads to an energization signature that is odd
in v‖, meaning there is zero net energization of the elec-
trons by the parallel electric field due to a density pertur-
bation when integrated over velocity. In the right column
(c), we plot the case with a superposition of the shifted
Maxwellian with U‖,e/vte = −0.25 and the density per-
turbation with δne/n0e = +0.35. The combination of the
flow and density perturbations leads to an energization
signature as a function of v‖ that is qualitatively similar
to that seen at point rC in Figure 4(g).

Although the detailed perturbed electron velocity dis-
tributions arising through the evolution of the simulation
show modest quantitative differences from the forms used
in this simple model, this example demonstrates that the
combination of a parallel flow and a density perturbation
can indeed lead to the asymmetric signatures of electron
energization in the exhaust region of collisionless mag-
netic reconnection in the strong-guide-field limit seen in
Figure 4.

In summary, the electron energization in the ex-
haust region of collisionless magnetic reconnection in the
strong-guide-field limit is caused by a bulk acceleration
of the electrons by the parallel component of the electric
field E‖. Although, along the separatrices away from
the midplane in the exhaust, we find an asymmetric sig-
nature of electron energization, since a density pertur-
bation leads to zero net electron energization when in-
tegrated over v‖ (as seen in the lower middle panel of
Figure 5), the net electron energization is simply due to
this bulk acceleration of the out-of-plane electron flow
by the reconnection electric field. This asymmetric sig-
nature about v‖ = 0 is indicative of the spatial location
in the exhaust where the diagnostic is sampling velocity
space distributions. On each side of the midplane, we
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FIG. 4. (a): Lower half of βi = 0.01 simulation of net electromagnetic work with selected diagnostic probe positions given by
A, B, C located at r/ρi = (x/ρi, y/ρi) where rA/ρi = (18.9, 11.8), rB/ρi = (20.1, 11.8), rC/ρi = (21.4, 11.8) at the time of the
peak energization rate t/τA = 22.5. Middle Row: Complementary perturbed gyrokinetic distribution function ge(v‖, v⊥) at the
same time and at each diagnostic probe position in the exhaust point A: (b), point B: (c), point C: (d), with ge(v‖) shown in
the lower panel of each. Bottom Row: Timestack plots of the reduced parallel correlation over time CE‖,e(v‖, t), with the net

electron energization rate vs. time in the left panel and the time-integrated reduced parallel energization rate
∫
CE‖,e(v‖, t)dt

over the full interval shown in the lower panel, at rA (e), rB (f), rC (g). The vertical dashed black lines again indicate the
Alfvén velocity, ±vA,z/vte.

see equal magnitudes of electron energization (increase
in phase-space energy density). The asymmetry in the
signature of electron energization motivates the possibil-
ity to identify observationally, the physics of electron en-
ergization by collisionless magnetic reconnection, using
only single-point measurements of the electromagnetic
fields and electron velocity distributions. This simulation
demonstrates a characteristic velocity-space signature for
electron acceleration through bulk parallel acceleration,
by the reconnection electric field in the exhaust of col-
lisionless magnetic reconnection in the strong-guide-field
limit. Further evidence that this energization is not a res-

onant acceleration of electrons, is provided by investigat-
ing the variation of the electron energization signatures
with the plasma beta parameter.

E. Variation of Energization with Plasma βi

The general qualitative picture of the energization rate
for the remaining simulations is consistent as βi increases
from 0.03 ≤ βi ≤ 1.0. The energization of electrons for
all five simulations is largely dominated in the electron
diffusion region (EDR) around the x-point and into the
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FIG. 5. Simple model of (a) shifted Maxwellian U‖,e/vte = −0.25 (b) density perturbation δne/n0e = +0.35 (c) combined
shifted Maxwellian with a density perturbation. Top row: Comparison of the total distribution function (red) with equilibrium
Maxwellian distribution function (black). Middle row: Perturbed distribution function. Lower row: Corresponding phase-space
energy density signature of the perturbed distribution function. The signature here is similar qualitatively to that of the reduced
correlation for point rC.

exhaust along the separatrices as in Figure 1(c). The
overall reconnection geometry persists as βi varies from
0.01 to 1, with similar energization signatures. However,
there are some differences in the dynamic evolution of
the reconnecting field. In the βi = 1 case, there is a
clear development of a secondary island at the original x-
point. This secondary island is formed as a consequence
of the plasmoid instability.56 As noted by Numata and
Loureiro 31 , this secondary island eventually moves in the
-y direction due to numerical noise, and secondary recon-
nection commences, which allows renewed particle ener-
gization and plasma heating late in the simulation at a
lower magnitude.

As βi increases, we see a thinning of the current sheet
supporting the reconnection process, as shown in Fig-
ure 6(b) for βi = 1. In addition to these qualitative
changes to the reconnection geometry and associated cur-
rent sheets, the magnitude of both the current sheet and
self-consistent E‖ decrease in magnitude with increased
βi.

In Figure 7, we show the normalized reconnection rate
cE‖(rX)/VAB

max
y for all five βi cases. The time evo-

lution of the out-of-plane electric field at the x-point
(x/ρi, y/ρi) = (Lx/2, Ly/2) is used as the measure of the
reconnection rate. The peak reconnection rate decreases
in magnitude as βi increase and occurs later in time as the
tearing instability develops more slowly at higher βi

31,57.
Physically, the plasma thermal pressure resists the onset
of the reconnection flow driven by the tearing instability,
so as plasma beta increases, the growth rate decreases.
In the higher βi runs, there is a steep drop in the electric
field just after the reconnection rate peaks, and the field
eventually reverses sign at the x-point. This is a conse-

quence of the formation of the plasmoid instability56,58,
leading to the conversion from an x-point to an o-point
at the center of the reconnecting geometry.

At the x-point, the energization signatures stay quali-
tatively consistent in shape as βi increases, with the en-
ergization abruptly ceasing when the plasmoid instability
causes the x-point to convert to an o-point in the βi ≥ 0.1
simulations. The magnitude of energization for electrons
decreases with increasing βi, consistent with the lower
magnitudes of j‖,e and E‖ with increasing βi, and also
consistent with the decreasing conversion of energy as
shown in Figure 11.

In the exhaust, there is markedly more variation in the
electron energization signatures as βi increases. We show
the reduced correlation timestack plots in the exhaust
for point rC in Figure 8 for βi = (a) 0.03, (b) 0.1, (c)
0.3, and (d) 1. As βi increases, the asymmetric electron
energization rate signature develops a pronounced loss of
energy for v‖ > 0 at point rC.

We suggest that this development of a loss of phase
space energy density in the exhaust at rC for v‖ > 0,
with increasing βi, is due to an incomplete cancellation
of the contributions to the rate of electron energization
from the parallel electron flow and the electron density
perturbation. For the βi = 0.01 simulation, we show in
Fig 5 that (a) the positive energization at v‖ > 0 due to
the parallel flow U‖,e < 0 is almost exactly canceled out
by (b) the negative energization at v‖ > 0 due to the elec-
tron density perturbation δne > 0, leading to (c) little
net energization of electrons at v‖ > 0. If the magnitude
of the net parallel flow U‖,e decreases more rapidly with
increasing βi than the magnitude of the density pertur-
bation δne decreases with increasing βi, then the sum of
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FIG. 6. Snapshot of parallel current at maximum reconnection rate which occurs (a) at t/τA = 22.5 for βi = 0.01, and (b) at
t/τA = 82.10 for βi = 1, illustrating a thinning of the current sheet along the separatrices at higher βi.
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FIG. 7. Normalized reconnection rate for the five simulations
using the out-of-plane reconnecting electric field at the center
of the simulation with βi = 0.01 blue, βi = 0.03 green, βi =
0.1 yellow, βi = 0.3 red, βi = 1 purple. The reversal of the
electric field observed for βi ≥ 0.1 is evidence of a conversion
at the x-point to an O-point, where the current sheet becomes
unstable due to the formation of a plasmoid. At this point
in time, E‖ ceases to represent the reconnection rate for the
central x-point.

these two contributions will not cancel out, but rather
will lead to a net loss of phase-space energy density at
v‖ > 0. This idea that an incomplete cancellation of the
perturbations due to the parallel flow and density per-
turbation at v‖ > 0 leads to an increasing loss of electron
energy appears to be consistent with the results shown
for point rC in Figure 8, where the rate of energization
becomes increasingly negative at v‖ > 0 as βi increases.

It is important to emphasize that all of the asymmetric
velocity-space energization signatures at point rC shown
in Figure 8 are due to the bulk acceleration of the elec-
trons in the out-of-plane direction by the reconnection
electric field E‖. Although the lower |v‖| boundary of the
positive electron energization appears to decrease along
with vA/vte (vertical dashed lines) as βi increases, this
does not necessarily indicate a resonant process. The
shift in the positive electron energization to lower |v‖|
with increasing βi is governed by a narrowing of the
complementary perturbed distribution function ge(v‖) to
smaller values of |v‖| with increasing βi. In Figure 9, we
plot the reduced parallel complementary perturbed dis-
tribution function ge(v‖) at the peak of the electron en-
ergization at point rC for each βi simulation. This plot
shows clearly that the perturbations are increasingly con-
fined to a more narrow region around v‖ = 0 as βi in-
creases.

A resonant energization process, such as electron Lan-
dau damping, typically generates a velocity-space signa-
ture of energization that is more localized in v‖ around
the resonant parallel phase velocity vA/vte, as seen in pre-
vious studies32,36,37. The velocity-space signatures shown
in Figure 8 are significantly more broad in v‖ than ex-
pected for a resonant energization mechanism, and ap-
pear to indicate a bulk acceleration of the electrons, as
our modeling demonstrates in Figure 3 and Figure 5.

V. DISCUSSION

To understand the kinetic physics governing the ener-
gization of electrons in collisionless magnetic reconnec-
tion in the strong-guide-field limit, it is critical to rec-
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FIG. 8. Timestack plots of CE‖,e(v‖, t) for point rC (right of the mid-line) in the exhaust for (a) β = 0.03, (b) β = 0.1, (c)

β = 0.3, (d) β = 1. The higher βi simulations develop a loss of phase-space energy density to form a quadrupolar pattern in
v‖ of particle energization. The vertical black lines again indicate the Alfvén velocity, ±vA,z/vte.
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FIG. 9. At the peak of the electron energization at point
rC for each βi simulation, we plot the reduced parallel com-
plementary perturbed distribution function for the electrons
ge(v‖), showing that the perturbations are increasingly con-
fined to a more narrow region around v‖ = 0 as βi increases.

ognize that the conversion of the initial magnetic energy
into electron heat occurs through a two-step process33,36:
(i) first, collisionless interactions transfer energy from
electromagnetic fluctuations to microscopic kinetic en-
ergy of the electrons, a reversible process; and (ii) sub-
sequently, the energy transferred to the electrons, which
exists as free energy in the non-thermal fluctuations of
the electron velocity distribution function (VDF), un-
dergoes a linear8,34 or nonlinear35 phase mixing process
to sufficiently small scales in velocity space that arbi-
trarily weak collisions can thermalize those fluctuations,
irreversibly converting the energy to electron heat. Us-
ing nonlinear gyrokinetic simulations of collisionless mag-
netic reconnection, we focus in this investigation on the
first step of this process, and we show that work done on
the electrons by the (out-of-plane) reconnection electric
field dominates the electron energization through j‖,eE‖.

The electron current j‖,e, necessary to support the
change in the in-plane magnetic field across the mid-
plane of the simulation, peaks through the x-point and
along the separatrices in the reconnection magnetic field
geometry. The (out-of-plane) reconnection electric field,
the E‖ component in the strong-guide-field limit, is fairly
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uniform throughout the region approximately spanning
the range 17 < x/ρi < 23 and 7 < y/ρi < 25. When
these fields are combined to determine the work done
by E‖ on the electrons through j‖,eE‖, we find that the
electron energization during the main phase of magnetic
reconnection (from 10 . t/τA . 30 in the βi = 0.01
simulation) occurs dominantly at the x-point and along
the separatrices within the exhaust, as shown clearly in
Figure 1. Thus, we focus specifically on exploring the
energization of the electrons by E‖ at the x-point and in
the exhaust.

We use the field-particle correlation technique to
determine the characteristic velocity-space signature
CE‖,e(v⊥, v‖) of the electron energization at the x-point
and at three positions across the midplane in the ex-
haust. At the x-point, the velocity-space signature is
well modeled by energization of the bulk out-of-plane
electron flow U‖,e (which provides the current required
by Maxwell’s equations to support the change in the in-
plane magnetic field By across the mid-plane) by the par-
allel electric field E‖ which drives the reconnection flow
in the (x, y) plane. In the exhaust, the symmetric (about
the midplane) spatial pattern of positive electron ener-
gization j‖,eE‖ > 0 arises from a more complicated ki-
netic picture of the energization. The combination of the
bulk out-of-plane electron flow U‖,e with the well-known
quadrupolar electron density variation δne in guide-field
magnetic reconnection8,20,52,54,59,60 leads to a velocity-
space signature that is unexpectedly asymmetric across
the midplane: in regions of a negative density perturba-
tion (point A in Figure 4), electrons with v‖ > 0 experi-
ence a net gain in energy; in regions of positive density
perturbation (point C in Figure 4), electrons with v‖ < 0
experience a net gain in energy. Note that, since a den-
sity perturbation leads to zero net energization when in-
tegrated over v‖ (see the lower panel of Figure 5(b)), the
net electron energization at all positions through the ex-
haust is simply due to the bulk acceleration of the out-of-
plane electron flow by E‖ through the j‖,eE‖ > 0 work.

The velocity-space signatures of electron energization
at the x-point, shown in Figure 2(b), and within the ex-
haust, shown in Figure 4(e), (f), and (g), are key re-
sults of this study. In particular, the asymmetric elec-
tron velocity-space signature within the exhaust region
is potentially a valuable new way of identifying that one
is probing along a trajectory through the exhaust of col-
lisionless magnetic reconnection using only single-point
measurements. This technique can be applied to either
spacecraft observations from missions such as the Mag-
netospheric Multiscale (MMS) mission17 or laboratory
measurements61, and the possibility to probe the physics
of particle energization in magnetic reconnection using
single-point measurements is a key implication of this
work.

By using the complementary perturbed distribution
function (4) in AstroGK to compute the velocity-space
signatures presented here, we are implicitly assuming a
Maxwellian equilibrium distribution function. In a re-

alistic space plasma, the equilibrium velocity distribu-
tions are not necessarily Maxwellian, but may take on
more complex forms. In this case, the implementation
of the field-particle correlation technique requires deter-
mining an “equilibrium distribution” through a tempo-
ral and/or spatial average of measurements, similar to
what has been implemented in the exploration of ob-
served space plasma turbulence using the field-particle
correlation technique38,42. Alternatively, one can take
the numerical results here for the perturbed velocity dis-
tributions and add the equilibrium distribution (which
requires specifying a particular value of the gyrokinetic
expansion parameter ε ∼ Beq

y /Bz0 � 1) to predict the
total velocity distribution. For example, in Figure 10,
we plot the predicted total parallel electron velocity dis-
tribution fe(v‖) in the exhaust region at (a) point A,
(b) point B, and (c) point C using a gyrokinetic expan-
sion parameter ε = 0.15. This shows that the simula-
tions predict a measurable decrease below the equilib-
rium in fe(v‖) at v‖/vte ' +1 at point A on the low
density arm, and a measurable increase above the equi-
librium in fe(v‖) at v‖/vte ' −1 at point C on the
high density arm. Evidence for such a peak (on the
high density arm) in the predicted total electron veloc-
ity distribution has been recently measured in labora-
tory experiments of strong-guide-field magnetic recon-
nection in the PHAse Space MApping (PHASMA) de-
vice at West Virginia University62. Future comparisons
between PHASMA experiments and gyrokinetic simula-
tions of collisionless magnetic reconnection in the strong-
guide-field limit are a promising direction for improving
our understanding of the resulting electron energization.

A. Resonant vs. Non-resonant Energization

A major conclusion of our modeling of the velocity-
space signatures is that the electron energization is due
to bulk acceleration of the electron flow by the paral-
lel electric field, rather than some resonant acceleration
mechanism, in agreement with previous investigations of
electron energization by E‖ in the strong-guide-field limit

of collisionless magnetic reconnection6,13–15. This finding
differs from the interpretation of the electron energization
in strong-guide-field magnetic reconnection by Numata
and Loureiro31 (hereafter NL15), where it was suggested
that the location in v‖ of the fluctuations in the electron
velocity distribution function implied a Landau resonant
mechanism of energization. Below we discuss these con-
trasting interpretations in more detail.

First, it is crucial to emphasize that while our study di-
rectly analyzes the work done on the electrons by the elec-
tric field—the first step in the two-step process of parti-
cle energization in weakly collisional plasmas33,36,63—the
NL15 analysis focuses on the second step of the process,
the collisional thermalization of energy in the electron
velocity distribution. Note that the energy of the elec-
trons changes in the first step when the electric field does
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FIG. 10. Predictions of the total parallel electron velocity distribution fe(v‖) (black dashed line) in the exhaust region (a) at
point A showing a decrease at v‖/vte ' +1, (b) at point B showing a peak and dip at v‖/vte ' ±0.25 (c) at point C showing
an increase at v‖/vte ' −1 from Figure 4, using a gyrokinetic expansion parameter ε = 0.15 for the β = 0.01 simulation.

reversible work on the electrons collisionlessly, whereas
the second step is the irreversible conversion (through
collisions) of the energy gained in the first step, from
non-thermal free energy in the electron velocity distri-
bution to thermal energy of the electrons. These two
processes occur at different times and different spatial
locations during the process of magnetic reconnection.
Phase mixing is the bridge between these two steps, tak-
ing the energy transferred to the electrons in the first
step, which is represented by fluctuations in the electron
velocity distribution, and transporting these fluctuations
to sufficiently small scales in velocity-space that arbitrar-
ily weak collisions can smooth out those fluctuations, ir-
reversibly converting the electron energy into heat of the
plasma species. To be specific, below we use the term
“energization” to refer to the collisionless work done on
electrons that changes their energy, and “heating” to re-
fer to the collisional thermalization of that energy.

Nonetheless, they argue that the observed range of par-
allel velocities

NL15 report that little electron heating occurs during
the main phase of reconnection at the x-point and in the
reconnection exhaust. This is consistent with the weakly
collisional conditions of the plasma, whereby Ohmic heat-
ing, via resistivity acting on the out-of-plane current, is
small compared to the subsequent collisional thermaliza-
tion of phase-mixed fluctuations in the velocity distribu-
tion that contain the energy previously transferred to the
electrons by the parallel electric field. Although the NL15
analysis directly examines the electron velocity distribu-
tions at the later times and downstream positions where
the collisional thermalization peaks, they use these ob-
servations to deduce an earlier stage of Landau resonant
energization. NL15 suggest that a resonant transfer of
energy to the electrons occurs due to the projection of the
electron motion (along the total magnetic field, which is
dominantly out-of-plane) in the (x, y) plane of the simu-
lation, with a resonant condition on the parallel motion
given by v‖/vte ∼ (vA/vte)(Bz0/B⊥) ∼ 1 for βi = 0.01
and mass ratio mi/me = 100. The electron heating is
found to peak in the island after the dynamical recon-

nection phase has ended, and they suggest that the lo-
calization in v‖ of the linearly phase-mixed fluctuations
at v‖/vte ∼ 1 supports their interpretation of a resonant
electron energization. For βi = 1, the phase-mixed fluc-
tuations are confined to within v‖/vte < 1, qualitatively
consistent with the resonant parallel phase velocity de-
creasing relative to vte as βi increases, which they argue
is further evidence of a Landau resonant interaction with
the electrons.

Several lines of argument support our interpretation
that the electron energization instead is non-resonant in
nature, and is simply a bulk acceleration of the electrons
by E‖.

First, Landau resonant energization implies that par-
ticles within a particular range of parallel velocities stay
in phase with changes in the parallel component of the
electric field. By staying in phase with the accelerating
electric field, those resonant particles can experience a
large gain in energy. Non-resonant particles, with veloc-
ities outside of that particular range, quickly fall out of
phase with the accelerating electric field, and so those
particles experience little net energy gain. Thus, a reso-
nant energization mechanism leads to a significant par-
ticle energy gain that is localized to a limited region of
velocity space. This process generally implies an accel-
erating electric field that is propagating with a phase
velocity in the parallel direction, so that it can remain in
phase with particles moving at nearly the same parallel
velocity. A common example is the collisionless damp-
ing of plasma waves, such as kinetic Alfvén waves36,37 or
Langmuir waves32,34. In these reconnection simulations,
on the other hand, the parallel electric field remains rel-
atively constant in time during the main phase of recon-
nection, and is relatively uniform in space over the region
spanning 17 < x/ρi < 23 and 7 < y/ρi < 25, as shown in
Figure 1(b). Thus, it is not clear that an interpretation of
the particle energization as resonant applies in this case.

A second argument is an alternative explanation for
the parallel velocity range of the phase-mixed fluctua-
tions in the electron velocity distributions that are pre-
sented in NL15. The energization of electrons in the ex-
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haust peaks on the magnetic field lines just inside the sep-
aratrix, which are swept downstream and ultimately con-
stitute the closed field lines of the magnetic islands where
NL15 find that the electron heating peaks. Since the
energization is spatially non-uniform along these closed
field lines, occurring primarily in the near exhaust re-
gion spanning 17 < x/ρi < 23 and 7 < y/ρi < 25, the
fluctuations in the electron velocity distribution will sub-
sequently phase mix linearly due to the advective term
in the Vlasov equation. The resulting phase-mixed fluc-
tuations will have the largest amplitudes in the range of
parallel velocities where the perturbed electron distribu-
tion ge(v‖) is the largest. In Figure 9, we plot ge(v‖)
at the peak of the electron energization at point rC for
each βi simulation, showing that the perturbed distribu-
tion is more narrowly confined to an increasingly small
range of |v‖| about v‖ = 0 as βi increases. This smaller
range in v‖ is consistent with the lower normalized value
of U‖,e/vte needed to generate the current required by
Maxwell’s equations to support the in-plane magnetic
field change across the mid-plane as βi is increased. For
example, the parallel current required by the initial Por-
celli equilibrium scales as

U‖,e

vte
∝ ρi

a

(
Time

Temi

)1/2
1

βi

Beq
y

Bz0
, (16)

where a = 4ρi is the initial current sheet width. Thus,
the more narrow localization of the phase-mixed fluctua-
tions in v‖ with increased βi—cited by NL15 as evidence
for a resonant energization mechanism—may simply be
a consequence of the variation with βi of the perturbed
velocity distributions that feed the linear phase mixing
process.

A final argument is the fact that the velocity-space
signatures of electron energization produced by apply-
ing the field-particle correlation technique, presented in
Figure 2 and Figure 4, are well modeled by a simple
non-resonant bulk acceleration of the electrons by the
reconnection electric field E‖, as shown in Figure 3 and
Figure 5. Even for a bulk acceleration of all electrons,
it is the specific mathematical form of the electron ener-
gization by E‖ in (5) that leads to a localization of the
particle energization,

+e
v2‖

2
E‖

∂ge
∂v‖

. (17)

The electron energization as a function of v‖ is propor-

tional to the derivative ∂ge/∂v‖ and is weighted by v2‖,

and these factors lead to the natural confinement of the
energization over the observed range in v‖.

A very simple way to explain this localization in veloc-
ity space is to consider the work done by E‖ on a charged
particle with charge qs. The rate of work done on a sin-
gle particle is qsE‖v‖, and this must be multiplied by

the distribution of particles fs(v‖) ∝ exp(−v2‖/v2te). The

combined weightings of v‖ exp(−v2‖/v2te) lead to a local-

ization of energization simular to what we observe in our
FPC analysis.64

A future extension of this work is to explore the dy-
namics of the phase-mixing process that transports the
fluctuations in the electron velocity distribution to small
velocity scales in the specific context of the reconnec-
tion exhaust and downstream island regions. Such a
study would connect our analysis of the collisionless en-
ergization of electrons in magnetic reconnection to the
collisional dissipation leading to electron heating stud-
ied by NL15, and should definitively answer the question
of whether the electron energization is resonant or non-
resonant through both stages of particle energization.

VI. CONCLUSION

Here, we present an analysis of the electron energiza-
tion in collisionless magnetic reconnection in the limit
of strong guide field. Using 2D gyrokinetic simulations
of a tearing unstable current sheet, we apply the field-
particle correlation technique to investigate the kinetic
physics of the electron energization at the x-point and in
the exhaust along the separatrices, where the electrons
are dominantly energized during reconnection through
work done by the parallel (out-of-plane) component of
the electric field, j‖,eE‖. A key result of this study is
the identification of the velocity-space signatures of the
electron energization at the x-point in Figure 2(b) and at
three positions on a trajectory though the exhaust in Fig-
ure 4(e), (f), and (g). Modeling of these velocity-space
signatures suggests that the electron energization is dom-
inated by bulk acceleration of the parallel electron flow by
the reconnection (parallel) electric field, a non-resonant
mechanism. This interpretation differs from a previous
study31, which suggested a Landau resonant energization
of the electrons.

Although the energization of the electrons in the ex-
haust by j‖,eE‖ has a symmetric spatial pattern across
the mid-plane of the reconnection geometry, the underly-
ing kinetic physics shows an unexpected asymmetric sig-
nature. This surprising result raises the possibility that
this asymmetry in the velocity-space signatures could be
a unique test to identify that one is probing along a
trajectory through the exhaust of collisionless magnetic
reconnection in the strong-guide-field limit using only
single-point measurements. Although multi-spacecraft
missions, such as the Magnetospheric Multiscale (MMS)
mission65 have been used to identify the location and
probe the dynamics of collisionless magnetic reconnec-
tion in space17, single-point methods such as the field-
particle correlation technique have the potential to be
applied even on single spacecraft missions with appro-
priate plasma and field instrumentation, such as Parker
Solar Probe66 and Solar Orbiter67.
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Appendix A: Partition of Energization by Species

In AstroGK, there is a full accounting of the parti-
cle and field energy partition throughout the simula-
tion. The full energy partition for each simulation with
βi = 0.01, 0.03, 0.1, 0.3, 1 is shown graphically through
area plots vs. time in Figure 11. The energy budget is di-
vided into the different components of the magnetic field
energy, non-thermal particle energy given by TenBarge
et al. 49 ,

Ent
s ≡

∫
d3r

[∫
d3v

(
T0sδf

2
s

2F0s

)
− 1

2
n0sms|δus|2

]

(A1)
where δus is the bulk flow velocity (first moment) of
species s and collisionally thermalized particle energy,

Ecoll
s = −

∫
d3r

∫
d3v

T0s
F0s

〈
hs

(
∂hs
∂t

)

coll

〉

r

, (A2)

where hs is the non-Boltzmann portion of the perturbed
electron distribution function and F0e is the equilibrium
electron distribution function33,45,46. In the gyrokinetic
limit, the electric field energy is negligible compared
to the magnetic energy.46 The following primary parti-
tion of energies are: magnetic perpendicular energy EB⊥

(green), parallel electron kinetic energy Eu‖,e (cyan),

perpendicular ion kinetic energy Eu⊥,i (maroon), non-

thermal electron energy E
(nt)
e (blue), non-thermal ion

energy E
(nt)
i (red), collisional ion energy Ecoll,i (light

red), and collisional electron energy Ecoll,e (light blue).
The other components are: parallel magnetic field energy
EB‖ (dark green), perpendicular electron kinetic energy

Eu⊥,e (light purple), parallel ion kinetic energy and Eu‖,i

(medium purple). We show the fraction of the energy
content at the end of each simulation (values & 0.01) for
both species and the magnetic field for each simulation
in Table I. In Table I, ΣEi is the sum of the non-thermal
and collisional ion energies, and ΣEe is the sum of the
non-thermal and collisional electron energies.

The initial configuration energy consists of perpendic-
ular magnetic energy and parallel electron flow due to the
initial conditions of the Porcelli equilibrium. As demon-
strated by (16), the parallel electron flow providing the
current required by Maxwell’s equations to support the
initial magnetic configuration decreases with increasing
βi, so the share of the initial energy in Eu‖,e decreases
as βi increases. The reconnection dynamics then re-
leases some fraction of this initial magnetic energy, lead-
ing rapidly to non-thermal energization of the electrons
and ions, and some perpendicular bulk acceleration of the
ions. Once reconnection begins, the magnetic field energy
is quickly transferred to the particles (almost exponential
growth of energization), consistent with the fast ramp-up
and decline of phase-space energy density rate shown by
the field-particle correlation analysis e.g. the left panel
of Figure 2(c) and left panels of Figure 4(d), (f), and (g).
The parallel bulk kinetic energy of the electrons stays

fairly constant in time, even after the primary reconnec-
tion phase in each of the simulations.

It is not until well after the primary reconnection phase
commences that thermalization processes begin and the
collisionally thermalized energy of the particles (light
blue and light red, above the solid black line) begins
to increase. At this time, the reconnection has essen-
tially ceased, except for βe ≥ 0.1, where the formation of
a plasmoid at the x-point allows for secondary reconnec-
tion. However, the only partition affected during the sec-
ondary reconnection is the perpendicular ion bulk energy,
which decreases as the perpendicular magnetic energy in-
creases. Once all reconnection has ceased, there is little
energization due to the fields. At late times, thermal-
ization is ongoing, as evidenced by the black line, which
indicates the total amount of energy in the simulations
that has not been collisionally thermalized, retaining a
non-zero slope in each plot of Figure 11.

The thermalization of ion energy is significantly slower
than for electrons due to two factors. First, the linear
phase mixing that drives non-thermal energy in the par-
ticle velocity distributions functions is proportional to
the species thermal velocity, and is therefore a factor of
(me/mi)

1/2 slower for the ions than for the electrons.
Second, like-species collisions that dominate the thermal-
ization of each species scale as νii/νee ∝ (me/mi)

1/2.
Thus, at the end of each simulation, the ions have col-
lisionally thermalized a significantly smaller fraction of
their non-thermal energy than the electrons.

At low βi � 1, the electrons receive nearly all of the
released magnetic energy. As βi increases, the ions re-
ceive an increasing share of the released magnetic energy,
reaching nearly equipartition with the ions at βi = 1.

Appendix B: Energization Following a Fluid Element

If we follow a fluid element of the electrons along a
characteristic trajectory, shown in Figure 12(a), we can
identify the incremental cumulative sum of the energiza-
tion

∑
jzE‖∆t/Q0 in Figure 12(b). The fluid element

initially travels along the in-plane field until it traverses
through rC, where it experiences an increase in parallel
acceleration. Once the tearing instability growth rate be-
comes large, the energization grows with it exponentially
in time to its peak. The maximum acceleration occurs
at t/τA = 22.5, consistent with the overall maximum net
energization in j‖,eE‖. Once the magnetic field configu-
ration energy is exhausted after reconnection, the fluid
element energization plateaus as the current and parallel
electric field drop.
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FIG. 11. Area plots of the energy flow for 2D collisionless magnetic reconnection simulations for (a) βi = 0.01, (b) βi = 0.03,
(c) βi = 0.1, (d) βi = 0.3, and (e) βi = 1. The color coding for the primary contributions to the energy is EB⊥ (green), Eu‖,e

(cyan), Eu⊥,i (maroon), E
(nt)
e (blue), E

(nt)
i (red), Ecoll,i (light red), and Ecoll,e (light blue). The other components are EB‖

(dark green), Eu⊥,e (light purple), and Eu‖,i (medium purple). The total perturbed energy in the plasma that has not been

collisionally thermalized is δW (thick solid black line).
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βi E
(nt)
i Ecoll,i

∑
Ei E

(nt)
e Ecoll,e

∑
Ee EB⊥ Eu‖,e Eu⊥,i

0.01 – – – 0.27 0.10 0.37 0.56 0.06 –

0.03 0.01 – 0.01 0.16 0.18 0.34 0.62 0.02 –

0.1 0.01 0.02 0.03 0.03 0.30 0.33 0.64 0.01 –

0.3 0.04 0.01 0.05 0.05 0.16 0.21 0.72 – –

1.0 0.05 0.02 0.07 0.02 0.07 0.09 0.80 – 0.02

TABLE I. Final energy partition for each βi simulation normalized by total energy. Note values do not add up to 1 as only the
largest values are included (i.e. the value is & 0.01).
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