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Abstract

Vehicle to Everything (V2X) allows vehicles, pedestrians, and infrastructure to share information
for the purpose of enhancing road safety, improving traffic conditions, and lowering transporation
costs. Although V2X messages are authenticated, their content is not validated. Sensor errors or
adversarial attacks can cause messages to be perturbed increasing the likelihood of traffic jams,
compromising the decision process of other vehicles, and provoking fatal crashes. In this article,
we introduce V2X Core Anomaly Detection System (VCADS), a system based on the theory presented
in [1] and built for the fields provided in the periodic messages shared across vehicles (i.e., Basic
Safety Messages, BSMs). VCADS uses physics-based models to constrain the values in each field
and detect anomalies by finding the numerical difference between a field and and its derivation
using orthogonal values. VCADS evaluation is performed with four real V2X field testing datasets
and a suite of attack simulations. The results show that VCADS can constrain a variety of real-world
network environments and is able to detect ~85% to ~95% of attacks coming from an adversary
capable of perturbing one or more data fields.
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. Introduction

ehicle to Everything (V2X) [2] is a wireless technology

that allows vehicles, pedestrians, and infrastructure

to share information. Specifically, V2X operates on
messages that encompass the current state of the vehicle trans-
mitter (e.g., location, motion, and trajectory). V2X informa-
tion increases transportation awareness, coordination, effi-
ciency, and safety and improves the decision process of the
algorithms in autonomous vehicles. V2X is critical for the
overall development of self-driving cars and smart cities.

In the current Institute of Electrical and Electronics
Engineers (IEEE) 1609.2 standard, the security for V2X
messages is primarily focused on ensuring the authenticity
and pseudonymity of vehicles in the network. Although V2X
security assumes the network data is correct, there are several
other vehicles in the network. For instance, sensors can
be fooled to measure false values, internal vehicular networks
can be subverted to change data measurements, and the
onboard V2X system can be compromised to transmit
erroneous data.

Basic Safety Messages (BSMs) allow vehicles to periodi-
cally share their location and status. Vehicles with V2X capa-
bilities have safety applications that allow them to process
BSMs through a variety of algorithms that alert the driver of
possible dangers on the road. As a result of sensor errors or
malicious data perturbations, false warnings can be triggered
by the receiving safety applications. This outcome can
be observed in the following scenarios:

A vehicle falsely reports its location to create traffic jams,
limit road resources, or reroute other vehicles.

* A vehicle falsely reports a collision or hazard ahead
prompting other vehicles to change lanes, slow down, or
come to a full stop.

* A vehicle falsely reports its location, speed, and/or
acceleration values to trigger side or forward collision
warnings causing other vehicles to slow down, hard
brake, or potentially collide with each other.

Similar scenarios are explored in [1] for Cooperative
Awareness Messages (CAMs), the European equivalent to
BSMs. [1] suggested thresholds for location, speed, and accel-
eration and implemented a Kalman Filter to find inconsisten-
cies in consecutive messages. In this article we use the theory
in [1] and propose a configurable approach to constrain
speed, acceleration, location, and five other fields (i.e.,
location accuracy, yaw rate, steering wheel angle, and vehic-
ular dimensions; see Section II-C). Our contributions
are threefold:

* Design and implement a misbehavior detection system
named V2X Core Anomaly Detection System (VCADS).
VCADS leverages physics-based models of mechanics
and kinematics that relate and limit several vehicular
attributes, e.g., structure, turn ratios, displacement,

velocity, and acceleration, in order to detect anomalies
and adversarial attacks.

e Develop a suite of attacks that encompass the common
V2X Safety Application scenarios and evaluate VCADS
under adversaries with different capabilities.

e Evaluate VCADS with four V2X datasets taken from real
field testing data (22.5 million BSMs) and simulate our
developed suite of attacks. The results show that VCADS
can detect anomalies, as well as attacks, that naturally
occur in V2X communications with a success rate
between 85% and 95%.

The remainder of the article is organized as follows:
Section II provides background, security, and applications of
V2X as a system. Section IIT describes the attacker model, the
suite of attacks used in this article, and how VCADS is used
to detect the anomalies that span from these attacks. Section
IV explains the evaluation process and shows the results and
effectiveness of VCADS. Section V highlights related work in
V2X anomaly detection, and Section VI conveys the key take-
aways of this research.

Il. Background

A. V2X Infrastructure
Overview

Sensors and electronic control units (ECUs) were developed
to improve the overall efficiency, safety, and driving experi-
ence of vehicles. These technologies became increasingly
sophisticated, resulting in the development of internal
networks to connect them. The innovation process of these
systems and the demand for information that understands
the surrounding interactions and behavior of vehicles inspired
the first external network specifications (i.e., car to car [9]).
Ultimately, standardized V2X protocols emerged [2].

Figure 1 shows the components of the IEEE 1609
network stack. The main focus of this article is the safety
applications and BSMs [10]. BSMs are the decoded payload
of a WSM (WAVE Short Message, where WAVE stands for
Wireless Access in Vehicular Environments) and are detailed
in Section II-C.

B. V2X Security Overview and
Limitations

V2X security provides data transport confidentiality, integrity,
and availability through public-key cryptography [11], which
prevents unauthorized communication and allows V2X
messages to be encrypted or signed. V2X communications
use long-term and short-lived certificates. Long-term certifi-
cates allow vehicles to communicate with PKI authorities,
while short-lived certificates are used primarily for V2V
communication [11, 12].
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m IEEE 1609 network stack. The link layer shows
the difference between Dedicated Short Range
Communications (DSRC) and Cellular V2X (C-V2X). This article
focuses on a detection system for the application layer.
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While the source that transmits the signals carrying
BSMs can be validated, the accuracy of the field values within
the BSMs cannot [13] as sensors may fail or become subject
to adversarial attacks [5, 14]. An adversary may also subvert
anode (e.g., vehicle or infrastructure) by attacking its internal
network or V2X transceiver module and perturbing the data
that will be sent to other nodes.

The attacks considered in this article compute malicious
message perturbations to trigger misleading warnings in
receiving vehicles. Traffic jams, collisions, and subverted road
resources are the adversarial goal of these attacks. Vehicles
that are found to be compromised due to consistent misbe-
havior are reported and their certificates revoked.

C. Safety Applications, Core
Data Fields, and BSMs
Overview

V2X allows vehicles to broadcast information and coordinate
actions using WSMs [10]. The payload of these messages can
be, but is not limited to, a BSM in the United States of America
(USA) [15] or CAM in Europe [16]. BSMs and CAMs contain
data field values that represent the state of a vehicle, measure-
ments of its trajectory and motion (e.g., speed and accelera-
tion), and location (latitude, longitude, elevation). The
minimum required fields to transmit a BSM are referred to
as Core Data Fields.

The SAE J2945/1 standard requires vehicles to transmit 10
BSMs per second [12]. Every vehicle is equipped with a set of

algorithms known as Safety Applications. These algorithms
process BSMs in order to assess possible risks and collisions that
may occur with other vehicles. Safety Applications trigger
warnings to the driver or self-driving algorithm to prevent such
scenarios. Vehicles that transmit BSMs are referred to as Remote
Vehicles (RV), whereas the receiver of BSMs is known as the
Host Vehicle (HV). All HVs also transmit BSMs and act as RVs
for other vehicles. The HV and the RVs have their own Safety
Applications that run locally to enhance road safety by using all
incoming messages. [12]. From the Safety Application descrip-
tions outlined in [12] and [16], this article focuses on the following:

¢ Emergency Electronic Brake Lights (EEBL): Alert
caused by a hard brake from an RV located in front and

in the same lane or adjacent lanes with respect to
the HV.

* Forward Collision Warning (FCW): Warning that is
calculated when the HV is likely to have a collision and
rear-end an RV.

¢ Blind Spot Warning (BSW) and Lane Change Warning
(LCW): Warning triggered due to an HV trying to
change lanes when an RV is in the path or heading
towards the lane change path of the HV.

e Intersection Movement Assist (IMA) and Intersection
Collision Warning (ICW): Warning caused when an
HYV may collide with other RVs as it enters
an intersection.

e Left Turn Assist (LTA): Alert created when the HV
approaches an intersection and seeks to turn left,
invading the path of an incoming RV.

In order to trigger warnings, the safety applications must
process the Core Data Fields found in the BSMs. Table 1
describes each Core Data Field. There are a total of fourteen
required fields to create a BSM [15]. Some of these fields are
complex and are split into sub-field values. While BSMs may
also load additional optional information, our research
focuses on the Core Data Fields.

I1l. Approach

This section describes the threat and trust models considered
in this article and introduces the attacks for the following
scenarios: FCW, EEBL, LTA, and ICW. These attacks show
how one or more adversaries are capable of perturbing certain
data fields and trigger false warnings in a given HV. The end
of this section outlines the Field Validation and Cross-
validation components in VCADS, which are created to
constrain and prevent false alerts from happening.

A. Trust and Threat Model

The trust model assumes that the security in the physical and
transport layers of the vehicles in the V2X network have been
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TABLE 1 BSM core data fields description and representation per the protocol given in [15].

Field Description

Message Count
Temporary ID
DSecond

Latitude

Longitude
Elevation

Positional Accuracy

Semi-major axis accuracy
Semi-minor axis accuracy
Semi-major axis orientation

Transmission State
Speed

Heading

Steering Wheel Angle
AccelerationSet4Way
Break System Status
Wheel Brakes
Traction

ABS

SCS

Brake Boost
Auxiliary Brakes
Vehicle Size

Message index between O and 127

Pseudo anonymous vehicle ID

Message creation time from minute interval

Angular distance with respect to Earth’s south and north poles
Angular distance with respect to the Greenwich meridian
Distance with respect to Earth’s sea level

Semi-minor/Semi-major and orientation of the Global Positioning System (GPS) positioning
ellipsoid

Expected accuracy of semi-major ellipsoid

Expected accuracy of semi-minor ellipsoid
Semi-major orientation with respect to the true north
Neutral/Park/Forward/Reverse

Positional change of over a given period in time
Trajectory direction with respect to the true north
The turn angle of the wheels with respect to the vehicle’s front face
Longitudinal/Lateral/Vertical/Yaw rate
Brakes/Traction/ABS/SCS/Brake boost/Aux. brakes
Brake application in each tire

Traction control system status

Anti-lock system status

Stability control status

Brake boost system status

Auxiliary brakes system status

Vehicle’s length and width

properly implemented. The messages from the RVs to the HV
are signed to preserve integrity and authentication. Replay
attacks, Man-in-the-Middle attacks, and data alterations are
prevented by the standardized security protocols. We also
assume there is full accountability for message transmissions
through certificates (non-repudiation). In short, the commu-
nication between vehicles, as well as the network stack in the
HYV, is secure. This means that the HV’s sensors are working
properly and its Safety Applications have precise internal
measurements and processing capabilities that yield the
expected alerts or warnings. In terms of the incoming BSMs
from the RVs, our trust model is straightforward: Trust, but
verify. We trust the data that RVs transmit to the HV, as long
as it is consistent.

1. Adversarial Goal: The adversary’s goal is to subvert
the Safety Application system of a given HV and
trigger false warnings. The adversary exploits known
vulnerabilities to compromise an RV and transmit
perturbed messages in order to mislead one or more
HVs. This, in turn, leads to shifted traffic flows, traffic
jams, misuse of road and highway resources,
unexpected defensive behavior from drivers or self-
driving vehicles, and collisions.

2. Adversarial Capabilities: We assume that the
adversary is able to alter one or more data field
measurements in a compromised RV. The adversary is

able to achieve this goal by subverting the RV’s
sensors to yield the desired measurements [5, 17],
attack the internal network of a vehicle [18], or
subvert a V2X transceiver module with valid
certificates [19].

B. V2X Attack Scenarios

We introduce a subset of four common scenarios by updating
the safety application figures in [12]: EEBL, FCW, ICW, and
LTA. Other scenarios are not explored, but they are similar.
The difference between them lies on which fields are perturbed
and what false warnings are triggered in the HV.

In Figure 2, an RV seeks to trigger a false FCW or EEBL in
an HV. The attacker causes FCW alerts by a given factor that

IGTEEEY A vehicle in front of the HV alters motion data
(e.g., Speed or Acceleration) triggering an FCW and causing
the HV to slow down or hard brake.

© SAE International

© SAE International
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IEEEEER The HV's line of sight is diminished by RV-2. RV-1
misreports motion information and triggers an LTA alert in the
HV. This prevents the HV from turning, and traffic builds up in
the intersection.

© SAE International

reduces the motion fields in the RV. The RV will appear closer
from the HV than it actually is, and when the Time to Collision
(TTC) is reduced, the false FCW is triggered. In contrast, the
EEBL alert is triggered only when negative accelerations of
-3.92 m/s? or less are received in the HV. In both scenarios, after
the false warning is achieved, the HV will then slow down or hard
brake to prevent a collision. As a result of this misled decision
taken by the HV, traffic builds up and collisions can occur.

In Figure 3, the HV seeks to turn left in a given intersec-
tion. RV-2 prevents the HV from detecting incoming parallel

TABLE 2 Safety applications attacker model.

traffic and RV-1 perturbs its fields to trigger a false LTA alert
in the HV. The false LTA alert will be enough to prevent the
HYV from turning left causing traffic build-ups behind the HV.
Similar to LTA, in the ICW attack, the adversary manipulates
different fields to prevent an HV from crossing the intersec-
tion. In this case, the HV is perpendicular to RV-1 and there
isno RV-2.

Table 2 summarizes our security model and gives a
general overview of our attack scenarios, including other
each attack scenario is based on how the adversaries leverage
their capabilities to trigger false warnings in an HV. The detec-
tion method column relates the attacks to the mechanisms
presented in VCADS.

C. VCADS Overview

VCADS detection mechanisms are divided into two compo-
nents: Field Validation and Cross-Validation. Field Validation
detects single-field anomalies by creating configurable
constraints based on physics models derived from kinematics
relations and limitations from vehicular mechanics. Field Cross-
Validation analyzes the consistency and accuracy of a given
field by relating it to other fields as different messages arrive
over time. Five kinematics equations, one explored in [1], are

Attack Threat
Forward Collision 1. Sensor fooling
Warning (FCW) 2. Internal network

3. V2X transceiver

Capabilities

1. Speed

2. Location

3. Acceleration
4. Brake status
5. Transmission

Emergency
Electronic Brake

Definition

Attacker reduces capability field(s) in an
RV located in front of the HV. An FCW
triggers in the HV and causes it to slow
down or hard brake.

Attacker decelerates to show a hard brake
in an RV located in front of the HV. An
EEBL warning gets triggered in the HV
and causes it to hard brake.

Attacker perturbs capability field(s) to
position an RV in the intersection that the
HV is approaching. This causes the HV to

Detection method

Cross-Validation of capability
field(s) against field(s) that the
attacker does not control.
Available field(s) derive the
same field measurement(s) as
the capability field(s). The
difference between these
measurements are flagged by
VCADS once they surpass a
sensitivity threshold.

hard brake and stop.

Attacker modifies capability field(s) to
position an RV in the intersection that the

HV seeks to turn left. This prevents the HV
from turning left.

Lights (EEBL) status

Intersection

Collision Warning

(ICW)

Left Turn Assist

(LTA)

Lane Change

Warning (LCW),

Blind Spot

Warning (BSW)

Event 1. Location 1. Internal network
2. Event (e.g., 2. V2X transceiver
traction control
loss, airbag

deployment) reroute.

Attacker modifies capability field(s) to
position an RV in the HV’s blind spot or
lane change trajectory. This triggers a
BSW or LCW in the HV and prevents it
from changing lanes.

Attackev modifies capability field(s) to
transmit an event from an RV (e.g., airbag
deployment, traction control loss). This
causes receiving vehicles to slow down or

Cross-Validation of location and
motion fields. Available field(s)
derive the same field
measurement(s) as the
capability field(s). The difference
between these measurements
are flagged by VCADS once they
surpass a sensitivity threshold.

Not explored in this article (see
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used to combine independent fields and derive a measurement
from a field that is also reported in the message. The derived
and reported fields are compared and the numerical difference
between them is used to detect anomalies. A configurable
threshold, known as sensitivity, is used to show the allowed
variation between these fields; any difference above this sensi-
tivity is considered anomalous. In this article, the sensitivity is
varied in order to show the overall detection range of the system;
however, a commercial implementation of VCADS could
optimize this value to achieve better detection results using a
variety of techniques, such as machine learning.

VCADS islocated in the Application layer, and it is the first
component to receive a BSM: the decoded payload of a WSM.
The Field Validation and Cross-Validation components detect
anomalies in all incoming BSMs’ Core Data Fields and protect
the Safety Applications from receiving erroneous or malicious
information. Specifically, messages are validated before they are
stored in the Safety Applications’ database, formally known as
LDM. Asaresult, VCADS seeks to prevent false warnings from
triggering in an HV. Figure 4 shows VCADS location and inter-
actions with other components in the V2X stack.

In order to show how fields relate and are used in VCADS,
we separate the fourteen Core Data Fields into classes
according to the information they represent:

* Metadata: ID, Timestamp (DSecond), Msg Count
(Message Count), and Vehicle Size

m Data flow in an HV. Several RVs send secure data
to the HV, the data is decoded into BSMs, and Core Data Fields
are taken as the input of the Application layer. VCADS flags
any anomalous fields and sends validated messages into

the LDM.

HV
Safety applications
( rew | [ Bsw | [ rra | [ EEBL | <v.e.
Database ]
e.g., Local dynamic map (LDM)

[
f f f

VCADS
[ Field cross-validation ]
[ Field validation ]

© SAE International

m V2X Core Data Fields divided into three classes
based on the type of data that they hold. Metadata gives
context to the data, location values give a sense of the position
of the vehicle, and motion values allow us to understand the
kinematics and dynamics of the vehicle.

Metadata

Temporary ID

Timestamp

Message count

Vehicle size

/\

Location Motion §
Longitude Longitude Speed §
Elevation Heading Acceleration 3
f=

Wheel angle Brake system m
Positional accuracy Transmission system b

©

¢ Location: Latitude, Longitude, Elevation, Positional
Accuracy, Heading, and Steering Wheel Angle

* Motion: Speed, Acceleration Set, Heading, Transmission
State, and Brake State

Figure 5 shows the classes and how they interact. The
metadata fields give context to the motion and location fields.
The Temporary ID shows which RV sent the BSM, DSecond
when the field measurements were taken, and Message Count
the sequence in which BSMs were created.

The location class represents GPS-related measurements.
These fields allow us to approximate the exact positioning of
a vehicle and its trajectory. When these values are combined
with the metadata values (e.g., DSecond, Temporary ID), they
derive motion fields.

Motion fields represent all the measurements from
internal sensors that relate to the vehicle’s kinematics. The
combination of motion, metadata, and the previous location
yields the following location measurement of a vehicle. Thus
previous BSMs can relate their fields with the incoming BSMs.
We use this principle as the theory behind the Field Cross-
Validation component. For the remainder of this article,
we assume HVs are augmented with a VCADS implementa-
tion to detect anomalies of several incoming messages from
different RVs.

D. Field Validation

Field Validation finds constraints by applying vehicular, struc-
tural, and mechanical limitations, as well as physics equations
and models. These constraints derive lower and upper bounds
that narrow the allowable measurements of a data field. Field
values that surpass these bounds are flagged as anomalous. It
is up to the Safety Applications to filter the flagged fields or
decide to discard the entire BSM.

BSMs with anomalous fields may trigger false warnings
or unexpected behavior in the HV. Thus it is important to take
certain actions in order to prevent error propagation into the
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databases, Safety Applications, or other Application layer
components. Fields that are within the limits of these
constraints are assumed to be properly measured and safe to
process by the Field Cross-Validation component.

Latitude Constraint: Latitude measurements range from
—90° to 90°. We narrow this by geofencing (virtual perimeter
of a geographic area) inside the USA, a given communication
radius, or a specific perimeter of interest. Geofencing can
be further narrowed to target RVs that have high probability
of interacting with the HV. This includes the division of
different transportation locations and motion patterns (e.g.,
finding perimeters that divide streets and highways). Any
latitude that does not conform to the geofence perimeter is
flagged. The resulting constraint becomes

Latitude,, € S,,, Eq. (1)

where Latituder, is the latitude reported by the RV, € is the
logic symbol exists and Sy, is the set of all possible latitude
values inside a determined geofence.

When a circular geofence is used, this constraint can
be simplified by using a radius as the maximum allowed
distance between the HV and surrounding RVs:

|Latitude,, .| <R Eq. (2)
where Latitudepy,y. v is the difference (in meters) between the
HYV and the RV latitude, and R is a geofence radius. VCADS
defaults this radius to 300 m (as per protocol [12]). However,
this parameter can be adjusted depending on the desired
detection sensitivity.

Longitude Constraint: Longitude measurements range
from —180° to 180° and they follow the same geofence
constraints as the latitude field. Longitude values are constraint
by the following equation:

Longitude, €S, Eq. (3)

where Sy, is the set of all the possible longitude values inside
a determined geofence. Similarly, when a geofence is defined
by a radius, the resulting equation becomes

|Longitude,,_,,,|<R Eq. (4)
where Longitudegy. v is the difference (in meters) between the
RV and HV longitude values, and R is the geofence radius.

Elevation Constraint: Although most roads are above
sea level, V2X protocol elevations can range from —409.5 m
to 6143.9 m [15]. Just like latitude and longitude, we constrain
elevation values according to the geofence created around the
HV and translate it to the elevation axis:

Elevation,, € Sy, Eq. (5)

where Elevationyy is the elevation reported by the RV and Sg;,
is the set of all the possible elevation values that an RV can
report inside a geofence. When the geofence is determined by
a radial distance from the HV, we use a reference angle « to
translate the radius into the elevation axis. Our reference angle
a is 25° based in [26, 27]. Nonetheless, this angle can

be modified to fit exclusive geographic areas, where a can
be less than 25°.

R =sina xR Eq. (6)

Elevation

where Ry, a0, 1S the projection of R in the elevation axis. For
example, when using R as 300 m and « as 25°, the lower and
upper bounds for Elevation become

R =sin25°%300 m~127 m

Elevation

|Elevation,y, .| < R Eq. (7)

Elevation

where Elevationyy.y is the elevation difference between the
RV and HV.

Location Constraint: When all coordinates (latitude,
longitude, and elevation) are combined, we can derive the
overall location distance that an RV can take with respect to
an HV:

\/Lathva + Longs, v +Ele, ,, <R Eq.(8)
where latitude, longitude, and elevation have been simplified
to Lat, Long, and Ele, and R is the geofence radius. R can
be changed based on the desired geofencing model and is
defined as the maximum distance thatan RV can report with
respect to the HV. In our case, the total magnitude of all
vectors combined has to be less than or equal to a given radius.

Speed Constraint: Speed is not a field that can
be constrained by any physics equation in such a way that can
be used for anomaly detection in vehicles. Since the highest
speed limit in the USA varies by state, we have chosen to
constrain the maximum value of speed with the highest allow-
able speed limit nationwide: 85 mph (38 m/s) [28]. Although
speed is not validated using physics equations, it is largely
validated by the Field Cross-Validation component (described
in Section III-E). The following equation shows a generic way
for constraining speed, and we suggest possible approaches
to find the upper and lower bounds for speed:

Upin SOy SO Eq. (9)

min

where v,;, is the lower bound and v, is the upper bound for
speed. In our Field Validation component, we chose v,,;, as 0
(since speed is a magnitude and cannot be negative) and v,,,,
as 42 m/s (4 m/s more than the highest posted speed for
the USA).

From the BSMs analyzed in the IV dataset, we suggest
that a more aggressive and realistic constraining model can
be used to calculate Ming),.; and Maxgy,.;. This model can
be based on the HV’s measured speed or an offset of said
speed, given that vehicles in similar roads will follow
similar patterns.

Accuracy Constraint: In our model, the positional
accuracy constraint is based on the standard structure of
vehicles, specifically the vehicles’ width (2.6 m [29]).
Inaccuracies that yield an uncertainty higher than 2.6 m are
flagged due to the increasing error, nondeterministic behavior,
and possible false warnings that can be triggered in the Safety
Applications. RVs with these inaccuracies cannot be pinned
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to a specific lane in order to calculate possible collisions with
the HV. Therefore, we derive the overall accuracy needed for
these fields in the following equations:

SemiMinor < L Eq. (10)
SemiMajor < L Eq. (11)
\/SemiMinor2 + SemiMajor® < L Eq. (12)

where SemiMinor and SemiMajor are BSM data fields. L is the
maximum allowable uncertainty and the overall magnitude.
When combining SemiMinor and SemiMajor fields, their
magnitude must be less than the L parameter. L defaults to
2.6 m in our model.

Steering Wheel Angle Constraint: Ackermann’s steering
geometry predicts the maximum steering angle of vehicles
based on their turn structure [30, 31]:

<65° Eq. (13)

aSteering

where a,.,i,, is the RV’s steering wheel angle in degrees.

Longitudinal Acceleration Constraint: The longitudinal
acceleration spans from the vehicle’s center of mass and goes
through its plane of symmetry [32]. It represents the accelera-
tion of the vehicle’s heading and is driven by the friction coef-
ficient u of the vehicle tires with respect to the surface, and
the acceleration due to gravity g:

Longitudinal, = ux g

p can be configured to find the maximum and minimum
longitudinal accelerations of the vehicle:

MinLong, . < Longitudinal, < MaxLong,, Eq. (14)

where MinLong,,, is the lower bound and MaxLong,,, is the
upper bound of the longitudinal acceleration values that can
be reported by an RV.

A suggested value for y is 1.0; however, the bounds chosen
for this field used a data-driven approach to find the best
possible bounds for the current consumer vehicles. The model
takes the acceleration developments of passenger vehicles over
time. Every decade, the maximum average acceleration of
vehicles decrease by 2 s while reaching speeds from 0 km/h
t096.6 km/h (26.83 m/s) [33]. Currently, passenger vehicles
can achieve a speed of 26.83 m/s in 6 s; this translates to an
acceleration of 4.47 m/s% In addition, the fastest passenger
vehicles’ times are between 2.3 s to 2.8 s. For example, the
Tesla Model S [34] can reach 26.83 m/s in 3.1 s, and when
ideal conditions are met, it can reach this speed in 2.3 s.
We can use the previous information to find the upper and
lower bounds for the acceleration fields:

_ Speed;,,  26.83 m/s
2.65 s

Max =10.12 m/s’

Eq. (15)

Acc T e
Tl m eElapsed

where Speedy,, is the speed reference and Timeg;,pq.q is the time
that a vehicle takes to reach that speed. If g is considered as
9.8 m/s?, the friction coeflicient y is calculated as 1.03.

For negative longitudinal accelerations (i.e., braking), the
model has been also simplified to use Max,_, as the limiting
value. Both positive and negative accelerations depend on the
road friction coeflicient and weather conditions. Increasingly
complex models can be built to take these factors into account
and vary u as the vehicle enters different environments.

Lateral Acceleration Constraint: Lateral acceleration of
avehicle is driven by the same dynamics of longitudinal accel-
eration. Both longitudinal and lateral accelerations are parallel
to the surface and they only differ in the direction from the
center of mass. For this reason, the bounds for lateral accelera-
tion have been simplified to reflect the same bounds as
longitudinal acceleration.

MinLat, < Longitudinal, < MaxLat,  Eq. (16)
where MinLat . is the lower bound and MaxLat . is the upper
bound of the lateral acceleration values that can be reported
by an RV, and they are based on the data-driven value Max,,,.

Vertical Acceleration Constraint: For vertical accelera-
tions, we use a road slope and translate Max,. to the vertical
axis. Due to gravity, the negative vertical accelerations differ
from the positive ones. We define Up,. as the positive upward
acceleration and Down,_, as the negative downward accelera-
tion. These two bounds are combined to yield the resulting
vertical acceleration (Vert,.) constraint.

Down,, < Vert, <Up,. Eq. (17)
The effects of gravity on the vehicle motion depend on
the slope of the road that is mathematically defined as a.
We calculate all the vector forces acting on a vehicle, which
yield the total acceleration vector; this vector is then projected
to the vertical axis. Since the vehicle’s weight is multiplied in
all accelerations, this parameter is simplified. The following
equation shows how to calculate the total acceleration:

a=Max,, —sinox g—cosox uxg Eq. (18)
where a is the resulting vector acceleration, g is gravity, and
p is the friction coefficient. Similar to other fields, «, and p
can be varied depending on the geographic area and the
desired sensitivity of the model. Note that as « increases, so
does the effect of the gravitational force in the vehicle.
Similarly, the acceleration due to the friction force is always
opposing the Max, . acceleration. The resulting acceleration
a is then translated to the vertical axis. For example, when «
is 25°, Max,,.is 10.12 m/s? and y is 0; the resulting Up,, . and

Down,,, are

Up,.. =sina x(10.12—sina x9.80) =2.52 m/s*
Down,,, =sina x(—10.12—sina x9.80) =—6.03 m/s’

Given that gravity is always acting on the vehicle, the RV
will always report the vertical acceleration with g If we take
g as —9.8 m/s?, both constraints will be updated as
Upsee = —7.28 m/s*and Down,,. = —15.83 m/s*,
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It is important to note that these constraints do not
consider uneven surfaces, which can trigger high spikes in
vertical acceleration beyond these bounds. This can happen
when a vehicle cruises through a pothole or a speed bump.
The instantaneous speed at which the vehicle encounters the
uneven surface will become a factor in the magnitude of the
acceleration spike.

Yaw Rate Constraint: Similar to the steering wheel angle,
the bounds for Yaw Rate can be calculated using [31]. Another
important parameter is the maximum velocity that a vehicle
can experience while turning. This is calculated by relating
the centripetal force experienced by a vehicle while turning
in addition to the friction force between the tires and the road.

mxv’

R
v=JuUxgxR

where v is the maximum allowed turning speed given a
friction coefficient y, gravity acceleration g, vehicle’s mass m,
and radius R.

For example, if the friction coeflicient y is 0.72 and R is
7.62 m:

=UXgXm

L=+0.72%9.80x7.62 =7.37 m/s

The yaw rate sign is based on the turning direction of a
given vehicle; therefore, the lower and upper bounds are
equivalent in magnitude. Using v as shown above and
Turng,g,, the equation for yaw rate becomes

- v Eq. (19)

’Mmytzw T
urnRadius

= |MaxYaw

where Miny,,, is the lower yaw rate bound, Maxy,,, the upper
yaw rate bound, and Turng,,;,,) is the steering wheel angle of
the vehicle. For example, assuming a vehicle’s length is 5.18
m, 0is 44.33° and v is 7.37m/s; the maximum yaw rate is

Vehicle,,,, .,

Turng, ... = =7.24 m

cosf

7.37
:—3:1.01 rad /s =>57.86 deg/s
7.24

Yaw

Note that the turning speed calculated with the above
equation is for nearly level surfaces present in our datasets.
In [35], the above equation is extended by using the supereleva-
tion of the road to scale the value of the turning speed. In
order to achieve higher precision in the speed calculation,
other factors can be analyzed, as well as understanding in
what situations is convenient to use spin analysis.

Vehicle Size Constraint: The Federal-Aid Highway Act
of 1976, and subsequent amends, require vehicles to be at most
2.6 m wide, excluding mirrors. The maximum allowable
length of a vehicle varies upon several factors that depend on
the state, load, and its configuration [29]. Vehicles follow this

structural constraints in order to drive across all US roads
and around the world:

Vehicle,,,, < Ly Eq. (20)

Vehicle,,, ., < L Eq. 21)

‘Length

where Ly, is the configurable parameter for maximum
allowable width and L, for length. The default configura-
tion of our model sets Lyy;;, to 2.6 m and Ly, to 16.15 m.
Lyyiam is based on the most common trailer load. Note that
these constraints should be applied to the BSMs before other
constraints. The rationale for this order is that other field
constraints such as yaw rate and positional accuracy use these
fields as parameters to find the lower and upper bounds.

In conclusion, each constraint has certain parameters
that can be updated to relax or tighten the bounds for allow-
able values (e.g., 3.10 s instead of 2.65 s in order to calculate
maximum acceleration will result in 8.65 m/s? instead of
10.12 m/s?).

E. Field Cross-Validation

The Cross-Validation component relates field values by taking
a given reported value from a BSM and using other indepen-
dent fields to derive the same measurement. Subsequently,
we can assess the accuracy of a given field measurement, the
consistency between fields, and show the numerical difference
of a given measurement with respect to its derivations. If an
adversary manages to perturb one or more data field values,
this behavior will be evident in the Cross-Validation component.

If a BSM is cross-validated and no anomalies are detected,
VCADS does not flag the message. From VCADS point of
view, the RV that sent the BSM is not misbehaving or having
sensor failures, and it can be propagated up the stack. If the
variations on the BSMs field measurements and their deriva-
tions are beyond certain configurable sensitivity, the BSM is
flagged as anomalous. The sensitivity can be modified
according to the desired error variations.

Just like in Field Validation, the anomalies detected in
this component do not determine intent. Field measurements
might be perturbed due to sensor error or malicious behavior,
and they are also dependent on the sensitivity to be deemed
as anomalous. In our evaluation, it is evident that sensor errors
portray smaller deviations between the derived and the
reported measurements than the deviations from
attack perturbations.

In order to relate field measurements with its derivations,
the Field Cross-Validation component uses several equations
that will be introduced in the following subsection.

1. Kinematics Equations

SFinal = Slnitial + = 2 - X At Eq (22)
2
B A Ay X At Ea. (23
Skinal = Stuitial T Opitiat X AL +——— q. ( )
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a_,. XAf measurement and its derivations are calculated with the
SFinal = Slnitial + UFinal X At - % Eq (24) fOHOWing equatiOHS:

|Actual - Derived|

————x100% Eq. (28)
UFinul = Ulnitial + aAvg X At Eq (25) ctua

When calibrating the Field Cross-Validation component,
P 5 A Eq. (06 the allowed sensitivity can be chosen instead of the error
Ukinal = Unniial + X Qg X AS q- (26) percentage between the reported and derived measurements.

In the above equations, s is displacement, v velocity, a
acceleration, t time, A variation, and avg average [36].

2. Haversine Formula The Haversine Formula is a
mathematical model that approximates the distance between
two coordinates [37]. The approximation error using this
model for the distances that correspond to V2X is virtually
zero and negligible. For more precision and coordinates that
are further apart from V2X transmission radius, the approxi-
mation error of haversine becomes ~1% and increases as the
coordinates are further apart. Such distances can be better ap-
proximated with models that have higher fidelity with respect
to Earth’s ellipsoid [38]. The following equation shows how to
calculate the distance between two coordinates:

. - a2 A
a=\/sm2%+cos¢l><cos¢2><sm2 22/11

distance =2 x r x arcsina Eq. (27)

In this equation, r is the Earth’s radius, ¢ is latitude, and
A longitude.

We can relate the different data fields using Equations 25
and 26. These relationships are two way, meaning one combi-
nation of fields can validate the other and vice versa.
We employ metadata fields (DSecond, Temporary ID, and
Message Count) to relate location (i.e., latitude, longitude,
elevation, and heading) with motion fields (speed, accelera-
tion, yaw rate, brake system, and transmission system).

Within the motion fields, we cross-validate acceleration,
speed, and bra and transmission systems. Acceleration is
further validated with the steering wheel angle and heading.
Yaw rate is also cross-validated with location coordinates, the
vehicle size, and heading. Finally, two different location coor-
dinates are cross-validated with the heading and steering
wheel angle.

For instance, two consecutive BSMs from the same RV
must match the RV’s speed, acceleration, and heading.
Likewise, speed is related to acceleration, and acceleration
relates to the vehicle’s brake and transmission systems. We can
cross-validate these data fields and find anomalies from
misbehavior and erroneous or malicious RV:s.

Similar to the reported measurements, the derived
measurements can also be Field Validated (III-D). These
measurements can then be flagged based on single-field lower
and upper bounds. Not only do we cross-validate a given field
measurement and its derivations but also validate the field
derivations themselves. The variations between a reported

Any inconsistency above the sensitivity value is flagged as
anomalous. Note that high sensitivity values allow more varia-
tion between the actual and derived fields, and the likelihood
to flag anomalous BSMs is reduced In contrast, low sensitivity
values result in a higher detection rate with the downside that
correct values could be flagged as anomalous. Using several
data points allows us to choose the best sensitivity that will
not flag expected error variations but will flag
anomalous behavior.

3. Cross-Validation Constraint:

’Actual - Derived| < Sensitivity Eq. (29)
where Sensitivity is the threshold allowed between the differ-
ence of the field measurement and the derived measurement
from other fields. Table 3 summarizes all the constraints used
in VCADS.

V. Evaluation

This evaluation answers two fundamental questions:

1. Is VCADS able to model and constrain a wide variety
of real-life driving environments?

2. Is VCADS an effective mechanism for detecting
anomalies and data field perturbation attacks?

The above questions were answered using four real V2X
USDOT field testing datasets and attack simulations for EEBL,
FCW, LTA, and ICW. Figure 6 shows how the evaluation setup
and the attack simulator interacts with the datasets and
VCADS. The simulations were developed using a baseline with
no attacks and, afterwards, we applied several kinds of pertur-
bations to BSMs to trigger alerts in the HV. The diverse char-
acteristics portrayed in the field testing datasets allow the
evaluation of VCADS’ ability to model and constrain different
environments. In addition, the data accounts for the natural
errors that occur when using hardware in V2X testing. The
attack simulations help understand the detection effectiveness
of VCADS on a wide range of attacks.

Through this evaluation, the Field Validation and Cross-
Validation components were able to model the behavior of
vehicles in different environments and driving patterns. On
the other hand, these components also detected anomalies
from sensor errors and data perturbation attacks. The lack of
errors found in the speed and acceleration fields when subject
to the Field Validation component suggests that these
constraining bounds should be tightened. However, when
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TABLE 3 VCADS constraints summarized by the Core Data Field.

Field Constraint

Latitude |Latitudegy - ) < R

Constraints the RV’s latitude at a radial distance R from the HV
Longitude |Longitudeg, -yl < R

Constraints the RV’s longitude at a radial distance R from the HV
Elevation |Elevationg, - ] <R * sina

Constraints the RV’s elevation at a radial distance R from the HV
Location \/LatéV—HV +Longhy uy +Eledy w <R

Constraints the overall magnitude of the location fields to a radial distance R from the HV

Speed Vinin < Upv < Upmax

Generic constraint bounds; field limits are not based on physics models
Accuracy SemiMinor < 2.6 m; SemiMajor < 2.6 m; \/Sem/'M/'nor2 + SemiMajor® <2.6m

Constraints the location ellipsoid accuracy based on the width of vehicles
Steering Wheel Angle Qsteering < 65°

Constraints the steering wheel angle based on the structure and turning mechanics of a vehicle
Longitudinal Acceleration MinLongy,. < Longitudinal ;.. < MaxLong s,

Constraints the acceleration based on friction coefficients and top acceleration of vehicles
Lateral Acceleration MinLaty.. < Lateral,.. < MaxLat,..

Constraints the acceleration based on friction coefficients and top acceleration of vehicles
Vertical Acceleration Down,. < Vert . < Uppee

Constraints the acceleration based on friction coefficients and top acceleration of vehicles
Yaw Rate ‘ MinYaw‘ _ ‘ MaXYaW\ _ Tuml;dius

Constraints the yaw rate based on turning mechanics and top acceleration of vehicles
Vehicle Width Vehicle g, < 2.6 m

Constraint based on US regulations for vehicular width design
Vehicle Length Vehicle;engey < 16.15 m

Constraint based on US regulations for vehicular length design
Cross-Validation |Measurement — Measurement e,i.eql < Sensitivity

Constraint based on a field measurement and the same derived measurement from other fields

m Simulation data flowchart: interaction between USDOT datasets, attack simulator, and VCADS.
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RV 2 BSM | Safety applications
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subject to cross-validation, these fields were largely flagged.
The cross-validation variations from the field and the derived
measurements from V2X hardware errors were lower than
the variations that occur from attacks. As a result, the Field
Cross-Validation component was able to detect attack anoma-
lies with high precision in the motion data fields, including
speed and acceleration.

Moreover, both components detect ~85% to ~95% of
attacks with no more than ~20% false positive rate in EEBL,
~2% in ICW and LTA, and ~10% in FCW. Although different
attack scenarios and adversaries with different capabilities
were considered, VCADS was able to consistently perform
with these high detection rates and low false
positive compromises.

For research replication purposes, the preprocessing,
validation of the datasets, and attack simulations were devel-
oped using an 8 core, 2.3 GHz processor, 16 GB of memory,
and 100 GB of storage.

A. Dataset

The four datasets from the V2X pilot field testing are shown
in Figure 7. The BSMs in these datasets are the input of the

Field Validation and Cross-Validation components. We named
the datasets after the locations where the V2X pilot tests were
performed: Wyoming, Ann Arbor, Tampa, and Arlington.

The Wyoming dataset is recorded on an interstate with
almost straight motion patterns, which implies low field value
variations. In comparison, Arlington was recorded in an inter-
state environment and has higher motion variations than
Wyoming. Ann Arbor is a city bounded dataset that covers
different driving patterns in streets. Tampa is similar to the
Ann Arbor environment, although it accounts for narrower
streets and more concentrated areas surrounding downtown.

Additionally, the size and amount of BSMs in each dataset
varies. The total amount of BSMs per dataset is as follows: 13,
085,109 in Ann Arbor; 5, 612, 741 in Arlington; 3, 800, 001 in
Wyoming; and 34, 750 in Tampa. For these datasets, the Core
Data Fields in a BSM were not reported in their entirety.
Arlington has the most fields, followed by Tampa, Wyoming,
and Ann Arbor (see Figure 10). However, none of the funda-
mental location, motion, and metadata fields used in VCADS
validation were missing. Therefore, all datasets were used to
perform VCADS Field Validation and Cross-Validation.

For the attacks simulations, we took a subset of 545 BSMs
from the Ann Arbor dataset (as shown in Figure 8) and
perturbed different values, following our threat model. Ann

m BSM location of the different USDOT CVPD datasets used for the VCADS evaluation. Upper left: Wyoming state.
Upper right: Ann Arbor, MI. Lower left: Tampa, FL. Lower right: Arlington, VA.
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m Subset of Ann Arbor dataset used to test our attacks.
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Arbor was chosen for the simulations because it (1) had the
least errors after the Field Validation and (2) has intersections
needed to simulate the LTA and ICW attack. The BSMs in
Wyoming did not have a Timestamp; thus, they could not
be sequenced. Additionally, the interstate highway environ-
ment in Wyoming lacks the intersections needed to simulate
the ICW and LTA attacks. Similarly, Arlington is a state
highway and does not have the intersections needed to
simulate the attacks. On the other hand, Tampa’s environment
can simulate all attacks, though the dataset had several
missing fields and anomalies after the Field Validation. Filling
those fields with the right values would have removed the real
aspect of the V2X dataset field testing. Overall, Ann Arbor
was a reliable dataset and had enough data fields to simulate
the attacks in a subset of 545 BSMs across an avenue with
intersections. For the ICW and LTA attacks, we select the
intersection of East Huron Street and South State Street as a
pivot point. We use this pivot point to modify BSMs and make
the RV appear to reach this intersection earlier than it actually
is. For the FCW and EEBL attacks, we modified the BSMs to
make the RV hard brake or appear closer to an HV than it
actually is.

B. Simulation Setup

All BSMs were decoded and mapped to the International
System of Units (IS). The IS mapping varied depending on the
dataset and the field units encoding scheme. We found the
following encoding: [15] encoding, nonstandard encoding
with metadata files that described the units, and imperial
system units. Once all the BSMs were mapped to the IS, each

Rackham Graduate
School - University of.

Iiigalls Mall

Aexcander G Ruthve
EdwadHeny Musecms Buiding
Keaus Suilding

University Witard Henry
A Do | abaratery .

BSM was taken as input to the Field Validation. Subsequently,
the dataset with Timestamps and Temporary IDs were used
in the Field Cross-Validation.

The Timestamp and Temporary ID allow the Field Cross-
Validation component to understand and relate consecutive
BSMs. In a real-time detection environment, the Timestamp
can be derived by combining the DSecond and Message Count
fields. The Temporary ID is used to link BSMs to a specific
vehicle. All datasets had BSMs with Temporary IDs. However,
only Ann Arbor, Arlington, and Tampa had a Timestamp in
the BSMs required for the Field Cross-Validation component.

For the attack simulations, Figure 9 shows the initial state
of the simulation and how it changes once an adversary intro-
duces perturbations in certain field values. The initial state
shows an average difference between the field value and its
derivations of less than 0.1 m/s. In the other hand, the attacks
show an average difference of 2.4 m/s in the time derivation
(kinematics Equation 25) and 1.1 m/s in the location deriva-
tion (kinematics Equation 26). Although the perturbations
vary according to the attack scenario, the difference between
slight inconsistencies in the datasets when no attacks are
present versus when they are is evident.

In the EEBL attack, the adversary manipulates the overall
acceleration by perturbing the individual vector fields at different
ranges. These ranges are negative accelerations that are meant
to trick an HV into thinking that an RV (in front) made a hard
brake (deceleration with a magnitude of 3.92 m/s? or more [12]).
In our attack simulation, this overall acceleration parameter
varies from -4 m/s? to -13 m/s? and we use VCADS to detect
this anomalous behavior.

Similar to the EEBL attack, the FCW attack modifies
acceleration fields to reduce the distance between the RV and
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m The speed and derivations of an RV in the Ann Arbor dataset. The left graph displays the initial state of an RV in a
one-minute interval. The right graph shows the same RV when 11 EEBL attacks are introduced by an adversary. We have circled the
derivations that start to diverge from the reported speed when the attacks are present.
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the HV. However, no hard brakes are needed and other motion
fields can be modified. The motion field values are reduced to
the point that Safety Applications sense a possible collision
between the RV and HV, and a false FCW is triggered.

In our FCW attack simulation, we use a reduction factor
parameter that ranges between 0.0 and 1.0. A complete reduc-
tion in all motion fields is represented by 0.0. This is equivalent
to an RV making a full stop. Contrarily, 1.0 represents no
reduction performed. In this attack, the adversary is able to
reduce Speed and/or Acceleration motion field(s) that report
false locations closer to the HV.

For the LTA attack, the attacker perturbs the Speed and/
or Acceleration field(s) to make an RV appear as if it is
approaching an intersection faster than it actually is. This will
trigger an LTA alert in the HV, which seeks to turn left while
parallel and in opposing direction with respect to the RV. In
our simulation, we use a distance parameter from the intersec-
tion point and a given BSM. The subsequent BSM field values
are perturbed according to this distance parameter and the
RV will appear as if it is reaching the intersection. Evidently,
if an RV is closer to the intersection, the perturbations of the
BSM location fields are going to be less than if it were further
from the intersection.

Similar to LTA, the ICW attack uses a distance parameter
from an intersection location in order to calculate how the
motion fields are perturbed. However, in this scenario the HV
approaches the intersection perpendicular to the RV heading.

C. Results

1. Field Validation The default values calculated in
Section III-D were used as the boundaries of this detection
component. Tighter bounds can be achieved by modifying
the configurable variables of the equations in order to create
higher sensitivity and flag more values of a field. Figure 10
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shows the results of the Field Validation detection component
in the 22, 532, 601 BSMs from all datasets.

From the 28 Core Data Field values the validation was as
follows: 25 Core Data Fields, including the 3 added fields
explained above, where Ann Arbor had 12, Arlington 20,
Tampa 20, and Wyoming 16. The results show that all datasets
are incomplete. However, by analyzing all datasets we can
have a full coverage of all field values in a BSM, except for
Brake Boost Applied Status and Auxiliary Brake Status. Both
of the latter fields measure systems are not common in most
passenger vehicles at this time. The remainder of this section
will expand on the specific results of each dataset.

Firstly, the Ann Arbor anomalies were negligible in
comparison with the overall amount of BSMs. The heading
only had one anomalous value of 360.01°. This is 0.01° higher
than any possible measurement of heading from protocol
limits. Speed and acceleration had 48 and 2, 121 anomalies
respectively, where speed values exceeded 94.33 mph, and the
accelerations recorded were beyond 11.2 m/s* in the longitude
axis (higher than the fastest Tesla in all axes). Yaw rate showed
anomalous values ranging from 97.4 deg/sto 326.59 deg/s,
this is well beyond the bounds of any vehicle and turning
motions, according to its structure.

Secondly, Arlington had the most fields available of all
datasets. The resulting anomalous behavior was as follows:
1.62% of anomalies were found in the Steering Wheel Angle.
The anomalies range from 65.89° (right above protocol
threshold) to 188.96° (well beyond Ackermann’s geometry).
The Transmission Status showed the gear in neutral while in
motion 0.05% of the time, and the Stability Control field had
unavailable values in 31.32% of the BSMs.

Thirdly, the Tampa dataset had a wide range of anomalies.
Although Tampa is close to sea level, negative elevations were
reported in 99.78% of the BSMs. This figure suggests a poor
calibration of the altimeter sensor. Similarly, both vertical and
latitude accelerations were unavailable 99.77% of the time,
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m Field Validation results in V2X pilot field testing datasets from four different cities.

Ann Arbor Arlington Tampa Salt Lake City
Field Anomaly % Anomaly % Anomaly % Anomaly %
Temporary ID 0 0.00 0 0.00 0 0.00 0 0.00
Message Count - - - - 0 0.00 0 0.00
DSecond - - - - 0 0.00 0 0.00
Latitude 0 0.00 0 0.00 0 0.00 0 0.00
Longitude 0 0.00 0 0.00 0 0.00 0 0.00
Elevation 93 0.00 0 0.00 34,673 99.78 12 0.00
Semi Major Accuracy - - - - 88 0.25 | 1,112,808 |29.28
Semi Minor Accuracy - - - - 88 0.25 | 1,318,680 |34.70
Orientation Accuracy - - - - 0 0.00 0 0.00
Steering Wheel Angle - - 90,763 1.62 - - -
Heading 1 0.00 0 0.00 0 0.00 17 0.00
Speed 48 0.00 0 0.00 0 0.00 0 0.00
Transmission System Status - - 2,723 0.05 - - - -
Lateral Acceleration - - 0 0.00 34,671 99.77 - -
Longitudinal Acceleration 2121 0.02 0 0.00 0 0.00 - -
Vertical Acceleration - - 0 0.00 34,671 99.77 - -
Yaw Rate 87,844 0.67 0 0.00 6 0.02 163 0.00
Brake Applied Status 0 0.00 0 0.00 - - - -
Traction Control Status - - 0 0.00 - - - -
Anti Lock Control Status - - 0 0.00 - - - -
Stability Control Status - - 1,757,988 |31.32 - - - -
Brake Boost Applied Status - - - - -
Auxiliary Brake Status - - - - - - - -
Vehicle Length 0 0.00 0 0.00 0 0.00 0 0.00
Vehicle Width 0 0.00 0 0.00 13,213 | 38.02 0 0.00
Accuracy - - - - 88 0.25 | 1,458,697 |38.39
E] Acceleration Set - - 0 0.00 34,671 99.77 - -
’% Geo-Fence 0 0.00 0 0.00 0 0.00 0 0.00
[
E BSM Count 13,085,109 l 5,612,741 34,750 3,800,001
b Total BSMs 22,532,601

which caused the overall acceleration set to be flagged in the
same way. Furthermore, the vehicle width presented anoma-
lies in 38.02% of the BSMs. The width reported for some
vehicles was 3.1 m instead of the manufacturing limit of 2.6.

Finally, Wyoming had several anomalies in the semi
major and minor accuracy fields. A total of 29.28% of the
semi-major and 34.70% of the semi-minor fields had anoma-
lies between 2.7 m and 12.65 m. The average inaccuracy was
equivalent to 7.82 m in the semi-major field and 7.92 m in the
semi-minor fields. The overall BSM accuracy showed anoma-
lies 38.39% of the time, suggesting a low GPS precision that
is not fit for V2X Safety Applications processing. Other field
anomalies were negligible compared to the overall BSMs in
the dataset. These anomalies were elevation with 12 BSMs of
unavailable data, heading with 17 BSMs of values beyond
protocol measurements (28, 800 rad), and yaw rate with 163
values between 84.8 deg /s and 326.59 deg /s, resulting in
an average of 262.41 deg /s.

2. Field Cross-Validation The results in this compo-
nent were achieved by dividing BSMs using the Temporary
ID. The BSMs from each RV were sorted in chronological
order. In real-time mechanisms DSecond and Message Count
are used to derive the BSM Timestamp. However, in these

datasets, DSecond values wrap around the 60,000 millisec-
onds and Message Count around 127, making it impossible
to know the exact order of the BSMs. Fortunately, the datas-
ets come with a Timestamp metadata field for each BSM. The
Timestamp is created when all the Core Data Fields have
been measured, right before sending the BSMs. This meta-
data allows us to sort the BSMs and use them as inputs for the
Field Cross-Validation.

As explained in Section III, we derive a given field
measurement using other independent data fields found in
the same and consecutive BSMs. With regard to acceleration,
Figure 11 shows three derived measurements: time, location,
and speed. The fourth measurement represents the actual field
value referred to as baseline. The time measurement for accel-
eration is based on Equation 23 or 24, speed uses Equation 25
and location Equation 26. All the variables in these equations
are filled with fields in the previous and current BSMs.
Additionally, acceleration is cross-validated with the trans-
mission and brake system. These values are not plotted due
to the fact that they are binary validations on the acceleration
sign and magnitude.

For Figure 12, we show two measurements: location and
time, as the derived measurements of the reported baseline.
Time uses Equation 25 and location Equation 26.



Downloaded from SAE International by Amy HASAN, Friday, April 29, 2022

m A total of 60 BSMs’ acceleration and its derivations are plotted over an ~10-second period from an RV in the
Arlington dataset. This figure shows an overall inconsistency with the acceleration reported and its derivations.
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3. Attack Simulations For the attack simulations we iso-
lated an RV that cruises around Ann Arbor. Its reported BSMs
are perturbed according to the explored attacks in this article
(i.e., FCW, ICW, LTA, EEBL). We used 545 BSMs shown in
Figure 8. The Cross-Validation mechanism was used to de-
fend against the data perturbations of these attack scenarios
by detecting the anomalies that they caused.

The attack scenarios were implemented according to our
attack model in terms of adversarial capabilities and specifications.
The results of each attack scenario are plotted as ROC curves.

For EEBL, Figure 13 shows the ROC curves resulting from
an attack at different acceleration ranges. The EEBL warning
in [39] defines a hard brake (deceleration) of —3.92 m/s? or
higher magnitude. We show the results for hard brakes
ranging from -4 m/s? to —13 m/s?. These values translate
from a vehicle suddenly braking from an unexpected situation
to a vehicle braking with its highest possible deceleration and
ideal friction conditions.

The EEBL attack scenario shows that as the deceleration
magnitude of the attack increases, it becomes easier to detect.
An adversary that wants to be as stealthy as possible will try
to trigger an alert with the smallest deceleration value
(-=3.92 m/s?). The overall True Positive Rate ranged from 80%
(-4 m/s? perturbations) to 97 % (-13 m/s? perturbations),
which indicates a very high detection ratio.

Given the nature of the Acceleration Set fields in the
BSMs, VCADS jumps above the random line (50/50 True

Positive and False Positive rate) at 21%. As a result, some BSMs
were incorrectly detected as anomalous. The overall compro-
mise between True Positive and False Positive rates is justifi-
able and shows that VCADS is able to detect EEBL attacks
with high precision and with few compromises.

The FCW attack results (in Figure 14) depict higher detec-
tion ratios and less False Positive rate compromises. The
reductions done in the RV by the adversary were easier to
detect when the factor approaches to 0.0, rather than staying
close to 1.0. Overall, there was a 80% True Positive detection
rate with False Positive rates compromises between 7% and
11%. After 11%, all reduction factors seem to converge and
increase the detection ratio as the sensitivity decreases without
any regard for the reduction factor.

For the LTA attack, more than one field was perturbed by the
adversary. Figure 3 shows that there were high efficiency detection
ratios (between 85% and ~100%) with almost no compromises
(0% to 3% False Positive rate). With an adversary that can only
manipulate the Acceleration Set fields, the detection of our mecha-
nism was the highest. This was followed by an adversary that can
only manipulate Speed, and finally, an adversary that is able to
manipulate both the Acceleration Set and Speed fields. As the True
Positive and False Positive rate increase, the benefits of an adver-
sary that can manipulate more data fields becomes evident.

The results of the ICW attack (in Figure 15) are similar
to the LTA attack. This is a consistent result with the fact that
both LTA and ICW attacks are crafted based on the

m ROC curve of the Cross-Validation mechanism detecting anomalies from an EEBL attack scenario at different

acceleration values (ranging from -4 m/s? to =13 m/s?).
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m ROC curve of the Cross-Validation mechanism detecting anomalies from an FCW attack scenario. The adversary
controls the speed capability and reduces it to show the RV in imminent collision with the HV.
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m ROC curve of the Cross-Validation mechanism detecting anomalies from an LTA attack scenario. The adversary
controls different capabilities: Speed and/or Acceleration.
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intersection location. Although the True Positive rate of the
ICW attack was not as high as the LTA attack, which varies
from 85% to 90%), it had very similar compromises in the
False Positive rate, and the difference in capability fields of an
adversary was evident.

Furthermore, Section ITI-B shows that an adversary may
manipulate one or more field values to attack an HV and
trigger false warnings. If an adversary is able to manipulate
all fields in consecutive BSMs and synchronize them to
be consistent with each other (using the Field Cross-Validation
equations or other approximation mechanisms), the variation
between fields and derivations will not be detected as we can
see in these results. For this reason, if the adversaries are aware
of the Cross-Validation mechanism, they will not be able to
bypass this mechanism as long as they cannot manipulate all
the vehicular fields.

V. Related Works

location, speed, acceleration, and message periodicity;
however, supervised learning requires previously defined
training data, and the variability of vehicular environments
is high enough that the training data in one environment
cannot be trivially generalized to other environments.

Attacks on stationary features of a BSM (e.g., vehicle
dimensions) were analyzed in [6]. Machine learning algo-
rithms such as MLP, AdaBoost, and Random Forest were used
to detect attacks with a high success rate.

Finally, [1] developed a detection mechanism similar to
ours. It uses Kalman filter to predict the future behavior of
vehicles by relating position, speed, and acceleration. This is
the same theory used in VCADS’ Field Cross-Validation
component. However, redundant data is not explored in depth
and models to constrain single fields were not shown.

VI. Conclusion

In this section, we present related works on data-centric trust
and misbehavior detection in V2X.

So etal. [7] proposed an RSSI-based misbehavior detector
and tested it on the VeReMi dataset. However, signal strength
is not an stable indicator as it can be faked by increasing or
decreasing the transmit power. Similar detection mechanisms
that allow vehicles to share the detected signal strength
through tables. One of the caveats in these tables is the vector
attacks that span from trusting other vehicles (e.g., Sybil and
Byzantine attacks). A detection system to verify transmission
signals’ energy was developed in [40]. The system extracts
features of pre-established anomalous signals and uses it to
validate future signals.

Golle et al. [41] validated V2X data traffic by finding
explanations as to why data has certain values. It uses internal
physical sensors, such as radar. This approach limits the
amount of vehicles that can be validated, as it is dependent
on the presence of specific sensors in vehicles.

Unsupervised learning model (i.e., K-means clustering
for vehicular distances) was used in [42]. It uses speed and
acceleration values in order to detect vehicles outside the
clusters. K-means clustering optimizes the hyper-parameter
K before it can be used, but here it is arbitrarily chosen by
clustering vehicles into groups of 30. This rather creates an
unstable model that does not necessarily fit the population of
vehicles. Moreover, vehicle count is often inaccurate as vehicles
are constantly changing their temporal IDs and certificates.
Thus, using unsupervised approaches is challenging in highly
dynamic environments, such as modeling traffic patterns.

Similarly to [42, 43] used K-means clustering for fuzzy
time series to detect Sybil attacks. Unlike [42, 43] optimized
the K hyper-parameter. The whole article assumed Sybil
attacks are co-located but did not specify distance ranges and
the ability of receivers to monitor vehicles as their IDs
constantly change. Contrary to [42, 43, 44] applied supervised
machine learning to extract vehicular features regarding

V2X is an important technology capable of synchronizing
vehicles and making the transportation system safer and more
efficient. Security efforts have been focused on providing
reliable message transmissions and detecting signal transmis-
sion anomalies. However, detecting anomalous content from
incoming BSMs is still under research and development.

An anomaly detection system at the Safety Applications
layer of an I'TS stack ensures that data inaccuracies and incon-
sistencies, coming from an adversary or erroneous sensors,
can be detected and filtered out. This security system is para-
mount to create reliable Safety Applications that can warn
drivers or self-driving algorithms of real possible collisions.
In this article, we proposed physics-based misbehavior detec-
tors for BSMs. Our solution, called VCADS, was implemented
and tested on real datasets provided by the USDOT Connected
Vehicle Pilot Deployment and other State DOTs. We simulated
a series of attacks, and demonstrated that sensor error and
attack perturbations can be detected with field validation and
cross-validation constraints.

The attacks on LTA and ICW were proven to be inefficient
and easily detectable by VCADS. On the other hand, the EEBL
and FCW false attacks were more effective and yielded higher
false positive rates. In the case of the EEBL attack, higher false
positive rates than expected were attributed to the noise levels
in the acceleration parameter of the datasets. Real-life datasets
in V2X are expected to have noise levels from the environment
and hardware sensor measurements. Nevertheless, the results
in Figures 13, 14, 15, and 16 show that, even with such noise
levels, VCADS can be implemented and has proven to
be useful at detecting anomalies that come from malicious
attacks and misbehaved vehicles. We hope that standardiza-
tion bodies in V2X use our constraint models to specify
minimum requirements of misbehavior detection for commer-
cial V2X platforms.

As future work, VCADS will be tested against a wider
range of attacks. Indeed, such tests will allow us to formally
learn what classes of misbehavior can be detected via our



Downloaded from SAE International by Amy HASAN, Friday, April 29, 2022

20 Andrade Salazar et al. / SAE Int. J. of CAV / Volume 5, Issue 3, 2022

m ROC curve of the Cross-Validation mechanism detecting anomalies from an ICW attack scenario with an adversary
controlling different capabilities: Speed, Speed and Acceleration, or Speed, Acceleration, and location altogether.
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physics-based detectors. Moreover, VCADS will be added to
the open-source simulation framework F2MD [45] to ensure
fair comparison against other detection systems.
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Acronym Table

BSM - Basic Safety Message

BSW - Blind Spot Warning

C-V2X - Cellular V2X

CAM - Cooperative Awareness Message
DSRC - Dedicated Short Range Communications
ECU - Electronic Control Unit

EEBL - Emergency Electronic Brake Lights
FCW - Forward Collision Warning

HYV - Host Vehicle

ICW - Intersection Collision Warning
IMA - Intersection Movement Assist

LCW - Lane Change Warning

LDM - Local Dynamic Map
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LLC - Logical Link Control

LTA - Left Turn Assist

PDCP - Packet Data Convergence Protocol

RLC - Radio Link Control

RV - Remote Vehicle

TTC - Time to Collision

USDOT - United States Department of Transportation
V2X - Vehicle to Everything

VCADS - V2X Core Anomaly Detection System
WAVE - Wireless Access in Vehicular Environments
WSM - WAVE Short Message

WSMP - WSM Protocol
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