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Abstract

Briefly considered extinct in the wild, the future of the Wyoming toad (Anaxyrus baxteri)
continues to rely on captive breeding to supplement the wild population. Given its small natural
geographic range and history of rapid population decline at least partly due to fungal disease,
investigation of the diversity of key receptor families involved in the host immune response
represents an important conservation need. Population decline may have reduced
immunogenetic diversity sufficiently to increase the vulnerability of the species to infectious
diseases. Here we use comparative transcriptomics to examine the diversity of toll-like
receptors and major histocompatibility complex (MHC) sequences across three individual
Wyoming toads. We find reduced diversity at MHC genes compared to bufonid species with a
similar history of bottleneck events. Our data provide a foundation for future studies that seek to
evaluate the genetic diversity of Wyoming toads, identify biomarkers for infectious disease
outcomes, and guide breeding strategies to increase genomic variability and wild release

Successes.

Keywords: Amphibian, Bufonidae, Immunogenetics, MHC, TLR, Transcriptomics
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Introduction

Over the next century, shifts in environmental conditions are predicted to alter the global
distribution of wildlife and their pathogens (Hof et al. 2011; Rohr et al. 2013; Palmer 2018; St
Leger 2021; Haver et al. 2022). When coupled with already dramatic declines in biodiversity
worldwide (Berger et al. 1998; Daszak et al. 2003; Lips et al. 2006; Pounds et al. 2006;
Allendorf et al. 2010; Conde et al. 2019), this forecast makes understanding the diversity of core
genetic loci involved in host-pathogen interactions an urgent research frontier vital to the
conservation of critically endangered species. Assessing the immunogenetic diversity in species
that are recovering from recent severe genetic bottlenecks represents an opportunity to assess
the degree to which diversity in these highly variable genomic regions is maintained. For many
taxonomic classes experiencing historically unprecedented population declines such as
Amphibia, immunogenetic assessments remain a relatively unexplored area of research. This
lack of immunogenetic studies represents a knowledge gap that is critical for determining how a
species is equipped to handle future pathogens and should be included in conservation genetic
assessments, especially for species at high risk for future disease.

The Wyoming toad (Anaxyrus baxteri, formerly Bufo baxteri), a species endemic only to
the Laramie Basin in Albany County, Wyoming, United States, represents an exemplary model
for such immunogenetic surveys. This species maintained a stable population up until the 1970s
when it experienced a rapid decline, was declared endangered in 1984, and thought to be
extinct by 1985 (Vincent et al. 2015). While the cause for the rapid decline of the species is not
definitively known, dramatic changes in land use practices and the amphibian chytrid fungus,
Batrachochytrium dendrobatidis (Bd) likely played a role (Dickerson et al. 2003; Dreitz 2006;
Burton et al. 2009; Hornyak 2012; Polasik et al. 2016). Two years following the presumed
extinction of the species, a small population was discovered at Mortenson Lake in Albany

County. In 1989 some surviving wild toads were brought into captivity to found breeding
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colonies and considerable advances have been made in both breeding management and
approaches to reintroduction into the wild (Jennings et al. 2001). Rearing toads for release,
rather than tadpoles, has reduced release mortality and shortened the time to reach breeding
size (Jennings and Anderson 1997) resulting in an ex situ population of around 500 individuals
(Vincent et al. 2015). Expansion to multiple, privately owned release sites under Safe Harbor
Agreements offers further hope for increasing the wild population (Hornyak 2012).

Diversity at immune loci is recognized as a critical axis of defense against infections
from pathogens (Sommer 2005), including limiting the immunosuppressive effects of Bd (Ellison
et al. 2014; Lips 2016). However, assessments of the genetic diversity of the immune system
have yet to be widely adopted in most breeding programs (Woodhams et al. 2011). Several
studies have indicated a link between the deeply conserved toll-like receptors (TLRs), a family
of innate immune receptors that bind well conserved pathogen associated molecular patterns
(PAMPs) from a wide array of pathogens, and immunity against important amphibian pathogens
(Richmond et al. 2009; Chen and Robert 2011; Varga et al. 2018). TLRs are one of the first
defenses in pathogen recognition and immune response that, upon recognition of a PAMP,
trigger signal cascades that initiate an immune response (Khan et al. 2019). TLRs bind PAMPs
via an extracellular or endosomal ectodomain, comprised of leucine-rich repeat domains
(LRRs), and transduce an activation signal via a cytoplasmic toll-IL-1 receptor (TIR) domain.
Most research on anuran TLRs has focused on Xenopus, with nearly 20 TLRs identified in both
X. laevis and X. tropicalis. As very little is known about anuran TLRs outside of Xenopus,
quantifying the TLRs present in Wyoming toads and identifying any genetic variation in them will
not only be of utility for immediate conservation and breeding efforts, but also improve the
understanding of Anuran innate immunity.

An additional set of genes essential for immunity are those of the major
histocompatibility complex (MHC). The primary role of cell surface-bound MHC class | and class

Il proteins is to present cytosolic (class I) and extracellular (class Il) pathogen associated
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antigens to immune cells which can then initiate an immune response. Although genetic
differences in MHC have been associated with chytrid susceptibility and resistance across
anurans (Richmond et al. 2009; Savage and Zamudio 2011; Bataille et al. 2015) the diversity of
the MHC within Wyoming toads is not known. These molecules are present on nucleated cells
throughout the vertebrate body (class I) or on professional antigen presenting cells (class II).
MHC class | complexes include a class | protein that heterodimerizes with $-2-microglobulin
(B2M). The role of B2M is primarily structural. Class | proteins possess three extracellular
domains (a1, a2 and a3). The a1 and a2 domains bind peptide antigens for displaying to
immune cells and these domains exhibit the most sequence diversity. The a3 domain promotes
interactions with B2M and tends to be more conserved. MHC class Il protein complexes consist
of heterodimers of an a chain and a 3 chain, each of which possess two extracellular domains
(a1 and a2 for the class lla chain and 1 and B2 for the class lIf chain). Similar to class I, the
a1 and 1 domains of class Il complexes bind and display peptide antigens and are typically the
most diverse in sequence. Correspondingly, the a2 and 2 domains promote dimerization and
tend to be more conserved. Given the critical role of MHC in the immune response and its
identified importance in vertebrate captive breeding programs (Fulton et al. 2017; Grogan et al.
2017; Schenekar and Weiss 2017; Russell et al. 2018; Smallbone et al. 2021), defining the
diversity of these receptors in Wyoming toads would provide an invaluable resource for the
optimization of strategies to mitigate the impact of disease in recovery plans.

Here we deploy RNA-seq based analyses to describe the diversity of TLR and MHC
transcripts in Wyoming toads. We first assembled de novo transcriptomes from three retired
breeders and curated transcripts encoding TLR and MHC proteins. We then assessed the
immunogenetic variability between the three individual toads. Finally, we compared our
Wyoming toad results to two Xenopus species and two closely related bufonid species; the cane
toad (Rhinella marina) that has undergone severe recent bottleneck events as a result of

introductions to Australia and the common toad (Bufo bufo) that has not (Lillie et al. 2014; Thorn
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139 etal. 2021). We also compare the Wyoming toad genome at a chromosomal level to other

140  anurans through karyotyping to identify potential chromosomal or genome duplications. Our
141  analyses of these components of the immune system provide the first insights into how

142  variability of immune receptors that are typically characterized as “conserved” or “highly

143  polymorphic” is reflected within species that have experienced population declines in the last
144 century.

145

146  Materials and Methods

147

148  Sampling protocol

149 All experiments involving live animals were performed in accordance with relevant

150 institutional and national guidelines and regulations and were approved by the North Carolina
151  State University Institutional Animal Care and Use Committee (protocol 12-127-0). Individual
152  Wyoming toads 6691, 7039 and 7092 were retired male breeders from US Fish and Wildlife
153  Service managed breeding facilities at the Saratoga National Fish Hatchery and Red Buttes
154  Biological Laboratory in Wyoming. Historically, toads were kept in separate subpopulations (A,
155 B & M) in an attempt to increase genetic diversity (Vincent et al. 2015). Group A toads were
156  descended directly from the wild individuals brought into captivity in the late 1980s while group
157 B toads are offspring collected from Mortenson Lake known to be derived from group A. Group
158 M toads are derived from A and B parents. The toads in our study are derived from two of the
159  groups from two breeding facilities. Toads 6691 and 7039 were group A toads from the

160  Saratoga National Fish Hatchery and Red Buttes Biological Laboratory, respectively. Toad 7092
161  was an M toad from the Saratoga National Fish Hatchery.

162 Toads were evaluated for chytridiomycosis by quantitative PCR (QPCR). Samples were
163  collected by rolling a dry polyester-tipped swab across the ventral surface of both hindlimbs ten

164  times each and then rolled along the plantar surface of each hindfoot and between the
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metatarsals five times. A second sample was collected by scraping a scalpel blade 3-4 times
across the ventral surface of both hindlimbs and collecting the surface epithelium onto a dry
swab. Tips of swabs were placed into cryovials, air dried and stored at -20 °C. Samples were
subjected to qPCR as described (Boyle et al. 2004). Toads were euthanized with buffered
tricaine methane sulfonate (10 g/L) and a suite of tissues including lungs, liver, kidney, and
small intestine were dissected and stored in TRIzol Reagent (Life Technologies) at -80 °C for

RNA extraction. Kidney and liver samples were also harvested for primary cell culture.

Chromosomal spreads

Kidney and/or liver tissues were finely chopped and added to a 15 mL centrifuge tube
containing 2 mL of Hanks Balanced Salt Solution supplemented with 2 mg/mL Collagenase-B, 3
mM CaCl,, and 0.1 mg/mL Primocin (Invivogen). The tube was rocked at 32 °C for 14 h and the
resulting cell suspension used to seed a T25 tissue culture flask (with 2 um filtered cap)
containing 10 mL of RPMI-1640 supplemented with 10% fetal bovine serum, 2 mM Glutamax
(Thermo Fisher), and 0.1 mg/mL Primocin. The primary culture was incubated at 32 °C, 5% CO-
and observed daily until 80% confluent, at which time dividing cells were arrested at metaphase
by exposure to Karyomax (50 ng/mL) for 4 h and then harvested using routine hypotonic
exposure and methanol/glacial acetic fixation. Fixed cells were dropped onto clean glass slides,
air-dried, dehydrated, and stained with 80 ng/mL DAPI. Chromosome images were acquired
using an Olympus BX61 microscope equipped with Smart Capture 3, (Digital Scientific,

Cambridge, UK) as described previously (Breen et al. 2004).

Transcriptome Sequencing, Assembly, & Annotation
RNA was extracted from Wyoming toad lungs, liver, kidney, and small intestine using
Qiagen RNeasy Kit. RNA quantity and integrity was assessed with an Agilent Bioanalyzer. For

each toad, 0.25 g of high quality RNA (RNA Integrity numbers >7) from each tissue were
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pooled for sequencing. RNA was prepared for multiplex sequencing with the TruSeq RNA kit
(INumina) and sequenced (2 x 100 bp PE reads) on two lanes of HiSeq2000 (lllumina). Raw
data was deposited into NCBI's Sequence Read Archive (SRA) under study number
SRP156163 and accession numbers SRX4501368 (toad 6691), SRX4501367 (toad 7039), and
SRX4501369 (toad 7092). Raw reads were trimmed to remove adaptors and poor quality
sequences using Trimmomatic (Bolger et al. 2014) and assembled into transcripts using Trinity
de novo assembler version 02-25-2013 (Grabherr et al. 2011). Transcripts containing bacterial,
viral, plasmid or adaptor sequences identified by NCBI's vector trim tool were removed. The
resulting assembled transcriptomes were deposited in NCBI's Transcriptome Shotgun Assembly

(TSA) database under accession numbers GGUS00000000 (toad 6691), GGUR0O0000000 (toad

7039), and GGUQO0000000 (toad 7092), and BUSCO v3.0.2 was used to identify

ultraconserved, single copy genes within the transcriptomes (Simao et al. 2015) employing the
tetrapoda ortholog database, odb9 (Zdobnov et al. 2017). Orthologs identified here are
expected to be found in all species belonging to a selected order. To assess transcriptome
quality, Bowtie2 v2.3.4.1 (Langmead and Salzberg 2012) was used to estimate the percent of
raw reads able to be mapped back onto each respective de novo transcriptome.

The identity of individual transcripts from de novo assembled transcriptomes were
predicted using the Trinnotate pipeline (Bryant et al. 2017). Transcriptomes were assigned
annotations with Kegg, Eggnog, Uniprot, and Uniref90. BlastX and BlastP were performed for
the Uniprot and Uniref90 portions of the pipeline to assign gene ontology (GO) terms. An e-
value threshold of 10 e-6 was used for each of the annotation stages. To assess the breakdown
of transcripts into their biological processes, GO terms and their relative proportions were
charted using Bioconductor package GSEABase (Morgan et al. 2018) and custom scripts.
Visualizations of GO terms and variants between each individual toad were generated using the
ggplot2 package in R studio (Wilkinson 2011). The annotated transcriptome files are available

via Dryad (https://doi.org/10.5061/dryad.n2z34tmz9).
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Manual Identification of Immune Genes

TLR and MHC sequences were identified from the three Wyoming toad de novo
assembled transcriptomes using an internal custom BLAST server (Priyam et al. 2019). For
both TLR and MHC, X. tropicalis protein sequences from Xenbase (Fortriede et al. 2020) and
NCBI were used as queries (see figures for accession numbers). For TLR genes, well-
conserved TIR domains were used as blast queries while full sequences were used as queries
for MHC genes. Putative TLR and MHC transcripts were imported into Geneious Prime 2021.2

(https://www.geneious.com) where they were translated into amino acid sequences. Protein

sequences were assigned as TLR (1-21) or MHC (class | or Il) using a combination of BLAST
(Altschul et al. 1990), SMART (Letunic et al. 2021), Pfam (Punta et al. 2012), and phylogenetic
analysis. X. laevis, X. tropicalis, common toad and cane toad sequences were acquired from
NCBI and Xenbase to use as comparison groups in both TLR and MHC analyses (see figures
for accession numbers). For common and cane toads, both predicted genes, as well as
sequences present in the reference genome that were identified via BLAST searches, were
used in our analyses.

Alignments were generated using the Clustal Omega (Sievers and Higgins 2014) plugin
in Geneious Prime with no adjustments. We generated alignments for both full length
sequences (MHC) and domain only sequences (TLR TIR domains; MHC a or 8 domains).
Domains were determined through a combination of SMART and Pfam analysis as well as
manual annotation based on previously published domain assignments (Lillie et al. 2014, 2016;
Dirscherl et al. 2014). The evolutionary relationships among genes were estimated using
maximum likelihood based phylogenetic analyses in IQ-TREE version 1.6.10 (Minh et al. 2020).
Support for inferred relationships was evaluated using 1000 bootstrap replicates. Xenbase

nomenclature for TLRs was used to assign names to the putative Wyoming toad TLR
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sequences. Predicted peptide binding regions for MHC alignments are based on those used by

Lillie et al. (2014, 2016).

Annotation of Major Histocompatibility Complex (MHC) sequences

As MHC class | and class Il have been described in the closely related cane toads (Lillie
et al. 2014, 2016), we used these sequences for identifying and cataloging Wyoming toad MHC
sequences. We employed the MHC nomenclature guidelines (Klein et al. 1990) for the initial
classification of Wyoming toad sequences. For example, class | sequences were named
Anabax-UX where the six letter abbreviation, Anabax, refers to the first three letters of the
genus and species, Anaxyrus baxteri. The letter “U” (hamed for “Uno”) corresponds to the
classical MHC class | lineage, and the variable second letter “X” designates the locus (named
alphabetically). Similarly, class Il sequences were named Anabax-DXA or Anabax-DXB, with
the first letter D (named for “duo”) corresponding to the classical class Il lineage, the variable
second letter “X” designates the locus (named alphabetically), and the third letter reflecting an a
chain (A) or B chain (B). Predicted alleles of the same sequence are indicated with a numeric

suffix (e.g. *01, *02).

Results

Chromosomal Spreads

We find that Wyoming toads possess eleven pairs of chromosomes (Fig. 1), as
determined by karyotype analyses using DAPI stained metaphase preparations. This is
consistent with at least 20 other diploid bufonid species with which Wyoming toads share recent
common ancestry including the American toad (Bufo americanus), common toad (Bufo bufo),
and green toad (Bufo viridis) (Gregory 2021). These results suggest Wyoming toads have a

similar genome size to most bufonids, demonstrating no evidence for cryptic polyploidy.

10
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Transcriptome assembly and annotation

The final de novo transcriptomes consisted of 331,616, 199,011 and 209,390 transcripts,
for toads 6691, 7039, and 7092, respectively. More than 90% of cleaned reads were accurately
mapped onto the respective transcriptome assembly, suggesting high quality transcriptome
assemblies. (Supplementary Table 1). More than 75% of tetrapod orthologs could be assigned
to Wyoming toad transcripts by BUSCO analysis (Supplementary Fig. S1) (Manni et al. 2021),
suggesting these transcriptomes from selected tissues represent a sufficient survey of the full
Wyoming toad transcriptome. Additionally, 15 genes were found to be duplicated in all three
toads (Supplementary Table 2), though further Gene Ontology enrichment analyses are not
possible on so few genes. Analysis of automated transcriptome annotation revealed little
variation between the three individuals in terms of sequences annotated. (Supplementary Fig.

S2).

Toll Like Receptor Sequences

Vertebrate TLRs can be classified into six major families: TLR1, TLR3, TLR4, TLRS5,
TLR7 and TLR11 with some families including multiple TLRs (e.g. TLR7, TLR8 and TLR9 are all
within the TLR7 family) (Roach et al. 2005; Ishii et al. 2007; Nie et al. 2018). Although TLR
sequence information is publicly available for Xenopus and other amphibian species, automated
gene annotations have not been verified for Anuran taxa outside of X. tropicalis. We find all
bufonids surveyed to express members of all six TLR families (Fig. 2 and Supplementary
Table S3). In the TLR1 family, Wyoming toad, common toad, and cane toad were found to have
TLR1, TLR2, and TLR14 sequences. Wyoming toad and cane toad expressed two TLR1
sequences: TLR1a and TLR1b. This parallels the multiple TLR1 sequences found in X.
tropicalis (Roach et al. 2005; Ishii et al. 2007; Nie et al. 2018). In our Wyoming toad

transcriptomes, full-length TLR1a and TLR1b were identified in all three individuals while

11
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complete TLR2 and TLR14 sequences were only detected in individuals 6691 and 7092.
Although truncated transcripts of TLR2 and TLR14 were identified from toad 7039 with identical
ectodomains to toads 6691 and 7092, these transcripts were missing a majority of their TIR
domain and thus were not included in the phylogeny (Fig. 2).

The single gene TLR3, TLR4 and TLR5 families are known from Xenopus species, and
were also found in all bufonid species surveyed, with no variation between the three individual
Wyoming toad sequences. Within the TLR7 family, Xenopus encodes TLR7, TLR8, and TL9
(Roach et al. 2005; Ishii et al. 2007; Nie et al. 2018). TLR7 was not identified in any bufonid
examined. In contrast, two TLR8 sequences (TLR8a and TLR8b) were found across all bufonids
examined. However, each of the Wyoming toads expressed only one of the TLR8 sequences.
TLR8a was found in toad 7039 and TLR8b was found in toad 6691 and toad 7092. It is currently
unclear if TLR8a and TLR8b represent different genes or, perhaps, reflect different haplotypes
of the same gene. The common toad also encodes TLR9, but orthologs were not identified in
the Wyoming toad or cane toad.

Within the TLR11 family, Xenopus encodes TLR12, TLR13, TLR21 and TLR22 (Roach
et al. 2005; Ishii et al. 2007; Nie et al. 2018). TLR12, TLR13 and TLR21 were identified in all
bufonids examined. All Wyoming toad sequences were identical at TIR domains across all
individual genes within the TLR11 family, with the exception of TLR12 where individual 6691
and 7039 were identical, but differed from 7092 at one amino acid residue. Although Xenopus
are known to encode a TLR22 sequence, this was not found in any bufonid species surveyed.
For all identified sequences in the TLR11 family, there is evidence of only one gene copy per

species (Fig. 2).

MHC class | sequences
Wyoming toads were found to express identical B2M sequences across all individual

toads (Supplemental Table S4) and four different groups of MHC class | sequences (Anabax-
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UA, Anabax-UB, Anabax-UC, Anabax-UD) that likely indicate the presence of at least two and
up to four MHC class | gene loci in this species. Two to three transcripts were identified from
each group that may reflect haplotypic variation and/or alternative mRNA splicing. Phylogenetic
analyses of the Wyoming toad MHC class | a1 - a3 domains with those from cane toad,
common toad, X. laevis and X. tropicalis demonstrate that the Wyoming toad Anabax-UA
sequences are the most similar to the cane toad MHC class | UA sequence, Rhimar-UA (Lillie et
al. 2014), whereas Anabax-UB, Anabax-UC, and Anabax-UD sequences are more similar to
common toad “F10-like” sequences (Fig. 3). Transcripts of Anabax-UA are the only ones
encoding a prototypical MHC class | structure with a transmembrane domain and we identified
two full-length Anabax-UA sequences: Anabax-UA*01 from toad 7039, and Anabax-UA*02 from
toads 6691 and 7092. These have identical signal peptide, a1, a3, and transmembrane domains
and cytoplasmic tails, and differ only by four residues in the a2 domain (Fig 4, Supplemental
Table S4, and Supplemental Fig S3).

In contrast to Anabax-UA, all other class | sequences either encode a stop codon after
the a2 (Anabax-UC) or are 3’ truncated (Anabax-UB and Anabax-UD). We identified two partial
Anabax-UB sequences: Anabax-UB*01 from toads 7039 and 7092, and Anabax-UB*02 from
toad 6691. Both sequences encode identical a2 and a3 domains but differ by three residues in
the a1 domain. Anabax-UB*01 encodes a signal peptide sequence, but is truncated on the 3’
lacking both a TM domain and a stop codon. Anabax-UB*02 is truncated at both the 5’ and 3’
ends and encodes only a1, a2 and a3 domains (Fig 4, Supplemental Table S4, and
Supplemental Fig S4). Regarding Anabax-UC, we identified two sequences: Anabax-UC*01
from toads 6691 and 7092, and Anabax-UC*02 from toads 7039 and 7092. These sequences
encode identical signal peptides, as well as a1 and a2 domains, but lack significant carboxyl-
terminal sequences. Anabax-UC*01 encodes a stop codon 16 residues after the a2 domain,
whereas Anabax-UC*02 lacks a stop codon and may be 3’ truncated. (Fig 4, Supplemental

Table S4, and Supplemental Fig S5). Finally, we identified three partial Anabax-UD
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sequences: Anabax-UD*01 from toads 6691 and 7039, Anabax-UD*02 from toad 7092 and
Anabax-UD*03 from toad 6691. These sequences encode identical signal peptides, as well as
a1 and a2 domains, but differ in the carboxyl-terminus. Anabax-UD*01 encodes a complete a3
domain, but no stop codon. The protein encoded by Anabax-UD*02 encodes nearly the identical
sequence to Anabax-UD*01 but only includes approximately half of the a3 domain. In contrast,
Anabax-UD*03 encodes what may reflect a partial sequence of an unusual a3 domain that
shares little resemblance to the a3 domain of Anabax-UD*01 (Fig 4, Supplemental Table S4,

and Supplemental Fig S6).

MHC class Il sequences

Compared to the MHC class | transcripts, Wyoming toad MHC class Il sequences
revealed much less diversity displaying only two distinct MHC class lla chains (Anabax-DAA
and Anabax-DBA) (Fig. 5) and two putative haplotypes of a single MHC IIB chain (Anabax-
DAB*01 and Anabax-DAB*02) (Fig. 6 and Supplemental Table S5). Two additional, but partial,
class lIB sequences were also identified, but not included in this analysis (Supplemental Table
S5).

We found all Anabax-DAA transcripts to encode identical full-length proteins between
individuals, a finding that was repeated across Anabax-DBA transcripts (Supplemental Table
S5). The Anabax-DAA and Anabax-DBA proteins possess signal peptide sequence, a1, a2 and
transmembrane domains (Supplementary Figure S7). A one-to-one comparison revealed that
the a1 domains from Anabax-DAA and Anabax-DBA are 52% identical and that the a2 domains
are more similar at 68% identity. In our analysis, Anabax-DAA is most similar to cane toad
Rhimar-DAA, whereas Anabax-DBA is most similar to Rhimar-DCA (Fig. 5). In contrast to the
homogeneity within Anabax-DAA or Anabax-DBA transcripts, Anabax-DAB transcripts encode
full-length proteins that represent two distinct groups: Anabax-DAB*01 and Anabax-DAB*02 that

are collectively most similar to cane toad Rhimar-DAB (Fig. 6). Both Anabax-DAB*01 and
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Anabax-DAB*02 encode identical signal peptide and 1 domains. However, the 2 domains
between groups differ at 7 residues (92% identity) and each group possesses distinct
transmembrane domains (Supplementary Fig. $8). We identified identical Anabax-DAB*01
coding sequences in all three individuals, while Anabax-DAB*02 sequences were only

recovered from toads 7039 and 7092 (Supplementary Table S5).

Discussion

Genetic management tools for the Wyoming toad are severely lacking, necessitating
breeding facilities to utilize studbooks and mean kinship analyses in hopes of maintaining
diversity within the captive populations (Vincent et al. 2015). While recent studies have shown
reduced diversity at microsatellite loci (Martin et al. 2019), no studies to date have assessed
variation at adaptive loci or genes responsible for immune function that may confer an adaptive
advantage to Bd. Our results indicate that Wyoming toads do not exhibit a high level of
variability between individuals at TLR or MHC loci. In particular, sequence diversity of TLR and
MHC class Il transcripts is nearly homogenous between individuals. This sequence similarity
highlights the need for future investigations that assess whether Wyoming toad, or even bufonid
species in general, have reduced sequence diversity in these core loci of the innate immune
system relative to other anurans. In contrast, MHC class | transcripts display enough sequence
variability to predict that at least two MHC class | genes are present in the Wyoming toad
genome and that each gene likely has two, or possibly three, haplotypes that may influence
immune function.

The conserved nature of toll-like receptor genes and their role in the innate immune
response within species necessitates higher levels of sequence conservation than those
exhibited by MHC loci. From our transcriptome analyses, we identified transcripts representing

twelve different TLRs (TLR1a, TLR1b, TLR2, TLR3, TLR4, TLRS, TLR8a, TLR8b, TLR12,
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TLR13, TLR14 and TLR21) (Fig. 2). These TLR receptors are also present in Xenopus species.
However, relative to Xenopus, the Wyoming toad is missing TLR7, TLRO and TLR22 and does
not appear to encode any additional TLRs. TLR7 is known to bind single stranded RNA and
TLR9 recognizes unmethylated CpG DNA sequences (Akira and Takeda 2004; Vidya et al.
2018). TLR22 has been described from amphibians and teleost fishes and studies with teleost
TLR22 suggest it recognizes microbial RNA (Samanta et al. 2014; Ji et al. 2019; Du et al. 2019).
Further studies of anuran TLR function are needed to better characterize the implications of
these gene losses for the Wyoming Toads.

Within Wyoming toads, we identified full-length transcripts encoding identical proteins
across all individuals for nearly all TLRs. The exceptions to sequence homogeneity comprised
TLR2 (7039 encodes a truncated sequence), TLR8a (7039 encodes a different TIR domain),
TLR12 (the 7092 TIR domain differs by a single residue, 6691 encodes a truncated ectodomain,
and all three individuals vary within the ectodomain at numerous residues) and TLR14 (7039
encodes a truncated sequence). Further, TLR8a and TLR8Db transcripts identified from Wyoming
toad encode identical ectodomains (Supplemental Table S6). This result stands in contrast to
expectations from common toad and cane toad where these genes are predicted to encode
distinctly different ectodomains that presumably bind different PAMPs. We classify Wyoming
toad TLR8a and TLR8b as different sequences as their TIR domains are only 89% identical
(Fig. 2 and Supplemental Table S7). Although this observation might suggest that the TLR8
paralogs in Wyoming toad have not diversified as observed in common toad and cane toad, we
cannot exclude the possibility that what we identify as TLR8a and TLR8b from the Wyoming
toad are different haplotypes of the same gene, and that Wyoming toad encodes a second TLR
gene that was not detected in our transcriptome analyses. Collectively, the loss of three TLRs
and lack of diversity between TLR8a and TLR8b ectodomains may impact the ability of the

Wyoming toad to mount a successful immune defense against viral pathogens. It is our hope
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that this classification of Wyoming toad TLRs, combined with sequences from the common toad
and cane toad may facilitate future studies on their role in early immune responses to infection.

Genes within the MHC are hotspots for polymorphisms and are some of the most
diverse regions within the vertebrate genome (Eizaguirre et al. 2012; Radwan et al. 2020).
Because of their high level of variability and their importance in adaptive immunity, peptide
binding regions of MHC molecules are often targets for selection with heterozygosity typically
conveying an advantage, as they are able to present a wider array of peptides (McClelland Erin
E. et al. 2003; Sommer 2005; Savage and Zamudio 2011). However, Wyoming toad transcripts
identified as MHC class | revealed four distinct groups that were nearly identical between
individuals. In general, these groups have different residues across the peptide binding regions
for each domain. In instances where their transcripts had both identical and non identical
domains (UA a2 domain and UB a1 domain), putative binding regions shared identical amino
acid residues except for the a2 domain in UA where the two transcripts had different amino
acids at the second peptide binding region (Fig. 4 and Supplementary Figures S3 and S4).
Compared to cane toads, Wyoming toads have a greater number of expressed MHC class |
transcripts, however we found only one full length sequence, Anabax-UA, that we feel
confidently acts as a true MHC class | molecule. Other MHC class | sequences were truncated,
which could indicate that these sequences are from genes encoding non-classical or secreted
MHCI molecules or indicate sequencing or assembly error. Increased sampling beyond the
scope of this project, including genomic analyses and inclusion of additional individuals, would
be needed to distinguish between these two alternatives.

The three Wyoming toads examined in this study also revealed a reduced MHC class Il
repertoire relative to their MHC class | sequences, as well as in comparison to other
bottlenecked bufonids, such as cane toads (Lillie et al. 2014; Selechnik et al. 2019). We found
two class lla transcripts, Anabax-DAA and Anabax-DBA, that were present across all individuals

with 100% sequence identity. Out of 18 putative peptide binding residues, eight are different
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between the two transcript classes. Similarly, two class lIf transcripts, both Anabax-DAB, were
identified which are likely haplotypes of the same gene. These sequences encode identical 31
domains and thus possess identical peptide binding regions. In several amphibian species,
specific changes within the peptide binding regions of MHC II (DAB) have been associated
with chytridiomycosis susceptibility or tolerance through either immune response regulation or
direct interaction with Bd peptides (Richmond et al. 2009; Savage and Zamudio 2011; Bataille et
al. 2015; Savage et al. 2020). This linkage between MHC class Il and Bd suggests the
possibility for strong selective pressures towards specific MHC class Il conformations in
anurans. Our finding of near homogeneity at MHC class Il highlights a significant genotypic
challenge facing this species in regard to overall disease pressures. Further studies across
larger numbers of individuals from the breeding program are critically needed to investigate
whether selective breeding for more diverse MHC class Il genotypes is possible within the
captive population.

A limitation of our study is the small number of individuals that could be used due to the
lethal nature of taking samples from immune tissues. In hopes of increasing diversity, toads are
now managed as one population rather than three smaller subpopulations (Vincent et al. 2015).
While no B strain toads were available for this study, having M (7092) and A (6691 & 7039)
toads (see Methods) should provide insights into the overall genetic diversity that formed the
basis of the breeding program. Future genomics research evaluating genomic markers that
confer an advantage for wild persistence in reintroduced individuals would be warranted.

Bottleneck events are not uncommon in amphibian species, and are forecast to increase
due to climate change, habitat fragmentation and loss, and the introduction of disease (Allentoft
and O’Brien 2010; Pabijan et al. 2020). While the Wyoming toads examined in this study display
a low level of variation at immune loci, the ability to recover from a bottleneck relies on more
than immunogenetic diversity. A number of highly invasive Anuran species have repeatedly

undergone multiple bottleneck events across the world (Beard and Pitt 2005; Ficetola et al.
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2008; Forti et al. 2017). For example, the Cane toad is one of the world’s most successful
invasive species of amphibians (Phillips et al. 2007; Brown et al. 2015) yet has a reduced
classical MHC Class | repertoire. Additionally, MHC diversity can vary naturally across
populations. In amphibian lineages that span Hochstetter’'s frogs (Leiopelma hochstetteri) to
crested newts (Triturus cristatus) MHC class Il diversity varies between populations from high to
very little. In these cases, the immunological consequences of such differences remain
unknown (Babik et al. 2009; Lillie et al. 2015). In other species, reduced diversity at MHC loci,
due to either natural variation or bottlenecking events, can correlate with increased infection and
differential survivorship (Belasen et al. 2019; Kosch et al. 2019). This is exemplified by common
toads in Sweden, where overall MHC class Il diversity increases from north to south, with
northern populations showing a higher susceptibility to, and mortality from, disease relative to
more diverse southern populations (Thorn et al. 2021). These examples highlight the complexity
in correlating diversity of immune loci to the role of disease in the recovery of populations from
bottlenecking events. Future studies of the selective pressures placed on the immunome of
Wyoming toads are critically needed.

As they continue to recover from near extinction, the outlook for Wyoming toads no
longer looks as grim as it once did. However, there are still numerous challenges facing the
species including the threat of Bd and other pathogens, as well as reduced genetic diversity. We
recommend the inclusion of immune associated genetic markers to evaluate genetic variation
within captive and wild Wyoming toad populations to improve management decisions. With the
devastating effects of infectious diseases like Bd, it has become vital for conservation
management practices to incorporate immunogenetics and broader “omics” techniques to better
understand the interplay between variation at immune loci and disease outcomes. The results of
this study highlight the need for more in depth research on the immunome of not only this

species, but also others that are threatened with extinction.
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Conclusion

Our analyses indicate that overall immunogenetic diversity within the Wyoming toad
species is minimal at best, reflecting overall expectations of genomic diversity in studies using
microsatellite markers (Martin et al. 2019). While overall genetic diversity may be low, our
results provide potential immune gene markers that could be combined with other markers to
create a genetic panel to better monitor species-wide diversity. The wide application of
immunogenetics in conservation (including studies on diversity, mate selection, and disease
tolerance), coupled with greater accessibility for next generation sequencing, underscores the
potential for incorporating such assays into the management of species of concern. With more
than 40% of amphibians experiencing decline due to disease or anthropogenic pressures
(Pabijan et al. 2020), understanding the relationship between core functional genomic regions
and species persistence is critical for the future of a diverse Amphibia. As population loss trends
continue across the planet, captive breeding programs have become increasingly common
(Farquharson et al. 2021) and “omics” techniques may be key tools for understanding host

pathogen interactions and guiding management decisions in species of concern.
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Data Availability. Transcriptome sequence data has been archived on NCBI as BioProject

PRJNA484136; SRA accession numbers SRX4501368 (toad 6691), SRX4501367 (toad 7039);

and SRX4501369 (toad 7092); and TSA accession numbers accession numbers

GGUS00000000 (toad 6691), GGUR0O0000000 (toad 7039), GGUQO0000000 (toad 7092).

Annotated transcriptome data are archived on Dryad (https://doi.org/10.5061/dryad.n2z34tmz9).
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Figure legends:

Fig. 1 Wyoming toad chromosomes. a Chromosomal spread and b karyotype of a metaphase
preparation of a Wyoming toad (Anaxyrus baxteri) 7039. Wyoming toads possess 11 pairs of

chromosomes with no evidence of cryptic polyploidy.

Fig. 2 Wyoming toad transcriptomes reveal 13 toll-like receptor genes. Phylogenetic tree
comparing TLR TIR domains of three Wyoming toads to those in five other ranid species,
including two additional bufonids. Sequences are from Wyoming toad (Anabax), common toad
(Bufbuf), cane toad (Rhimar), Xenopus laevis (Xenlae) and Xenopus tropicalis (Xentro).
Sequence identifiers for Wyoming toad TLRs are provided in Supplemental Table S3. If
available, GenBank or Xenbase identifiers are included in the figure with sequence names. As
TLR LRR ectodomains are typically variable between species, the more conserved TIR domains
were employed for phylogenetic analyses (Quiniou et al. 2013; Boudinot et al. 2014; Wcisel et
al. 2017). Wyoming toads express TLRs in all six of the major TLR families with identical or
nearly identical sequences across the three individuals. Circles at nodes indicate bootstrap
support values (BSS) with filled black circles indicating BSS=100, gray circles indicating BSS
values equal to or greater than 90 but less than 100, and white circles indicating BSS values

greater than 70 but less than 90. Scale bar indicates substitutions over time.

Fig. 3 Phylogenetic comparison of Wyoming toad MHC class | sequences to other
anurans. Phylogenetic trees comparing Wyoming toad (Anabax) MHC class | protein
sequences to those of common toad (Bufbuf), cane toad (Rhimar), Xenopus laevis (Xenlae) and
Xenopus tropicalis (Xentro). Trees were generated using alignments of (a) contiguous a1-a2-a3
domains or by using individual protein domains; (b) a1, (¢) a2, and (d) a3. Note that Bufbuf

“‘F10-like(b)” is likely a “Q9-like” sequence and inaccurately annotated. Circles at nodes indicate
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bootstrap support values (BSS) with filled black circles indicating BSS=100, gray circles
indicating BSS values equal to or greater than 90 but less than 100, and white circles indicating

BSS values greater than 70 but less than 90. Scale bar indicates substitutions over time.

Fig. 4 Wyoming toad transcriptomes reveal four distinct groups of MHC class |
sequences. Annotated alignments of individual MHC class | (a) a1, (b) a2, and (c) a3 domains
from Wyoming toad (Anabax) with common toad (Bufbuf), cane toad (Rhimar), Xenopus laevis
(Xenlae) and Xenopus tropicalis (Xentro). Asterisks indicate putative peptide binding sites as

described by Lillie et al (2014).

Fig. 5 Wyoming toad transcriptomes reveal two distinct groups of MHC class lla
sequences. Phylogenetic trees comparing Wyoming toad (Anabax) MHC class lla chain protein
sequences to common toad (Bufbuf), cane toad (Rhimar), Xenopus laevis (Xenlae) and
Xenopus tropicalis (Xentro). Trees were generated using alignments of (a) contiguous a1-a2
domains or by using individual protein domains; (b) a1, and (c) a2. Annotated alignments of
individual (d) a1, and (e) a2 domains from Wyoming toad with other anuran species. Asterisks
indicate putative binding sites as described by Lillie et al (2016). Circles at nodes indicate
bootstrap support values (BSS) with filled black circles indicating BSS=100, gray circles
indicating BSS values equal to or greater than 90 but less than 100, and white circles indicating

BSS values greater than 70 but less than 90. Scale bar indicates substitutions over time.

Fig. 6 Wyoming toad transcriptomes reveal a single group of MHC class IIf sequences.
Phylogenetic trees comparing Wyoming toad (Anabax) MHC class IIB chain protein sequences
to common toad (Bufbuf), cane toad (Rhimar), Xenopus laevis (Xenlae) and Xenopus tropicalis
(Xentro). Trees were generated using alignments of (a) contiguous B1-f2 domains or by using

individual protein domains; (b) B1, and (c) B2. Annotated alignments of individual (d) 81, and (e)
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B2 domains from Wyoming toad with other anuran species. Asterisks indicate putative binding
sites as described by Lillie et al (2016). Circles at nodes indicate bootstrap support values
(BSS) with filled black circles indicating BSS=100, gray circles indicating BSS values equal to or
greater than 90 but less than 100, and white circles indicating BSS values greater than 70 but

less than 90. Scale bar indicates substitutions over time.
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Supplementary Table S1. Summary of Wyoming toad transcriptome analysis

Toad 6691 Toad 7039 Toad 7092
Total Trinity Genes 245,790 134,581 143,205
Total Trinity Transcripts 332,088 199,248 209,600
Percent GC 45.07 45.31 45.41
Contig N50 (ALL) 1,709 2,041 2,038
Median Contig Length (ALL) 371 426 425
Avg Contig (ALL) 820.4 969.95 961.91
Total Assembled Bases (ALL) 272,445,109 193,259,855 201,616,519
Contig N50 (LONGEST) 709 1,096 1,044
Median Contig Length (LONGEST) 319 337 337
Avg Contig (LONGEST) 555.6 660.94 652.23
Total Assembled Bases (LONGEST) EEMK{EoR k¢ 88,949,732 93,402,820
Total Paired Reads 79,216,573 61,479,313 65,858,371
Overall Alignment Rate 91.63% 90.71% 91.31%

BUSCO Assessment Results

‘ Complete (C) and single-copy (S) . Complete (C) and duplicated (D)

Fragmented (F)

6691

7039

7092

. Missing (M)

o—]
[~]
(=]

% BUSCOS

Supplementary Fig. S1. BUSCO assessment results from Wyoming toad transcriptomes.
BUSCO tetrapod orthologs were cataloged as complete and single copy, complete and duplicated,
fragmented or missing in each of the three toads (6691, 7039 and 7092).



Wyoming toad transcriptomes — Supplementary File

Carlson et al, 2022

Supplementary Table S2. Duplicated sequences in all three Wyoming toads*

BUSCO ID OrthoDB Annotation Human Uniprot ID
EOG090701VI thyroid peroxidase P07202
EOG0907020N DEAH box polypeptide Q8I1X18
EOG090702QL | HBS1-like translational GTPase DI9YZVO0
EOG0907036F peroxisomal biogenesis factor 6 AOA024RDO09
EOG090703A7 transketolase P29401
EOG090704A2 | flavin containing monooxygenase 4 P31512
EOG090705SC | cholinergic receptor P02708
EOG090705ZM | tubby like protein 3 075386
EOG090706G4 | dopamine receptor P14416
EOG090706LB serine/threonine kinase 094768
EOG0907071S | Nucleobindin 2 VIOHW75
EOG090708E2 Nephrosis 2 QI9NP85
EOGO090708FT NIPA-like domain containing 4 QOD2KO0
EOG090709BR | potassium channel Q96T55
EOGO09070A0P | Coiled-coil domain containing 3 Q9BQl4

* BUSCO analysis, which identifies ultra-conserved, single copy genes, revealed fifteen duplicate genes in all three
Wyoming toads. These genes have been annotated via OrthoDB, however further enrichment analysis is impossible
with such a small set of genes.
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Supplementary Fig. S2. Summary of annotated transcriptomes based on GO terms

Gene ontology (GO) terms from Wyoming toad annotated transcriptomes and each group’s percent
contribution to total transcriptome. Biological process GO terms were chosen for this analysis as this category
includes the terms immune system processes and response to stimulus which include important immune
gene annotations. All three toads displayed comparable proportions of GO terms to one another..
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Supplementary Table S3. Representative Wyoming toad TLR transcripts and GenBank IDs

Sequence name Toad 6691 Toad 7039 Toad 7092
TLR1a GGUS01160622.1 GGUR01153850.1 GGUQ01094842.1
TLR1b GGUS01148135.1 GGUR01053790.1 GGUQ01193029.1
TLR2 GGUS01236735.1 Not identified GGUQ01144158.1
TLR3 GGUS01239741.1 GGUR01125592.1 GGUQ01122259.1
TLR4 GGUS01036104.1 GGUR01092862.1 GGUQO01142735.1
TLRS GGUS01267723.1 GGUR01011083.1 GGUQ01091435.1
TLR8a GGUS01251716.1 Not identified GGUQ01056653.1
TLR8b Not identified GGUR01052356.1 Not identified
TLR12 GGUS01208850.1 GGUR01100539.1 GGUQ01123333.1
TLR13 GGUS01005708.1 GGUR01162624.1 GGUQ01081784.1
TLR14 GGUS01235967.1 GGUR01048765.1 GGUQ01096496.1
TLR21 GGUS01313948.1 Not identified GGUQ01185422.1

Supplementary Table S4. Representative Wyoming toad MHC class | transcripts and GenBank IDs

Sequence name

Anabax-UA*01

Toad 6691

Not identified

Toad 7039
GGUR01113130.1

Toad 7092

Not identified

Anabax-UA*02

GGUS01278791.1

Not identified

GGUQ01004097.1

Anabax-UB*01

Not identified

GGURO01024835.1

GGUQ01038068.1

Anabax-UB*02

GGUS01018260.1

Not identified

Not identified

Anabax-UC*01

GGUS01183637.1

Not identified

GGUQ01038171.1

Anabax-UC*02

Not identified

GGURO01080688.1

GGUQ01038022.1

Anabax-UD*01

GGUS01214789.1

GGUR01025091.1

Not identified

Anabax-UD*02

Not identified

Not identified

GGUQ01038222.1

Anabax-UD*03

GGUS01191828.1

Not identified

Not identified

[-2-microgobulin

GGUS01148031.1

GGURO01189603.1

GGUQ01034849.1
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https://www.ncbi.nlm.nih.gov/nuccore/GGUQ01193029
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https://www.ncbi.nlm.nih.gov/nuccore/GGUR01100539
https://www.ncbi.nlm.nih.gov/nuccore/GGUQ01123333
https://www.ncbi.nlm.nih.gov/nuccore/GGUS01005708
https://www.ncbi.nlm.nih.gov/nuccore/GGUR01162624
https://www.ncbi.nlm.nih.gov/nuccore/GGUQ01081784
https://www.ncbi.nlm.nih.gov/nuccore/GGUS01235967
https://www.ncbi.nlm.nih.gov/nuccore/GGUR01048765
https://www.ncbi.nlm.nih.gov/nuccore/GGUQ01096496
https://www.ncbi.nlm.nih.gov/nuccore/GGUS01313948
https://www.ncbi.nlm.nih.gov/nuccore/GGUQ01185422
https://www.ncbi.nlm.nih.gov/nuccore/GGUR01113130.1
https://www.ncbi.nlm.nih.gov/nuccore/GGUS01278791.1
https://www.ncbi.nlm.nih.gov/nuccore/GGUQ01004097.1
https://www.ncbi.nlm.nih.gov/nuccore/GGUR01024835.1
https://www.ncbi.nlm.nih.gov/nuccore/GGUQ01038068.1
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SP
Anabax-UA*01 mmnsLRYYMTGVSAPGSGLPEYSEVGYVDDREIVNYNSESGRME

Anabax-UA*02 1 PN ARR ALY\ EDTHSLRYYMTGVSAPGSGLPEYSEVGYVDDREIVNYNSESGRME

[ary

Anabax-UA*01 61 PKVKWMEKVDPGYWERNTQIAKGNEAVNKHNVRTLMSRENQTGGFHIVQAMYGCERRDDG
Anabax-UA*02 61 PKVKWMEKVDPGYWERNTQIAKGNEAVNKHNVRTLMSRENQTGGFHIVQWMYGCERIDDG

Anabax-UA*01 121 GITVYDQHGYDGGEFMSLDTQTWT IPTMSQAQITAQRWNSPEEQWGQRYKNYLEIECKD
Anabax-UA*02 121 GITGYDQHGYDGGEFMSLDTQTWT IPTMSQAQITAQRWNSPEEQWGQRYKNYLEIECKD

Anabax-UA*01 181 WLQKYVENGREDLIANIVQOPQVKVSGQKKDDAMMLHCQVYGFHPRPVHVKWMKNKDDVHSY
Anabax-UA*02 181 WLQKYVENGREDLIAVOPQVKVSGQKKDDAMMLHCQVYGFHPRPVHVKWMKNKDDVHSY

Anabax-UA*01 241 ETTHTLPNPDGTYQIRVSAEVIPKEGESYSCY
Anabax-UA*02 241 ETTHTLPNPDGTYQIRVSAEVIPKEGESYSCY

DHSSLKEPLNIVWEPSNRTVWVTPVVI
DHSSLKEPLNIVWEPSNRTVWVTPVVI

PV TP Sl o) S N R VA VVVILLAVLGIGGFLLYRRKKPDYKATSTSDTSSSDASDNAA
PV ET P Sl o) S A A VVVILLAVLGIGGFLLYRRKKPDYKATSTSDTSSSDASDNAA

Supplementary Fig. S3. Wyoming toad MHC class | UA sequences.

The two major forms of Anabax-UA were aligned. a1, a2, and a3 domains are color-coded blue, red and
yellow, respectively. Signal peptide (SP) and transmembrane (TM) domains are indicated above the
alignment. Identical residues are shaded the same color, except for gray which reflects structurally similar
residues. An asterisk indicates the presence of a stop codon.

Anabax-UB*01 1 SHSLYYCYTGV APGSGLPEFSIVGYMDDQQTELYNSDIGK
Anabax-UB*02 1 - SHSLRYYYTGV APGSGLPEFSIVGYMDDQOQTELYNSDIGK

Anabax-UB*01 61 CIPVATWVRKERPEQWLKKTLTSKANEALFKHEVKIVMKRFNHTEGLHFAQVMHSCELKD
Anabax-UB*02 42 CIPVATWVRKERPEQWLKKTLTSKANEALFKHEVKIVMKRFNHTEGLHFAQVMHSCELKD

Anabax-UB*01 121 DGSIVSYEEFRYDGREYMYLDIKTGLFIPTMAEAQITTQRWNSPDVRAGQRIRNYLANEC
Anabax-UB*02 102 DGSIVSYEEFRYDGREYMYLDIKTGLFIPTMAEAQITTQRWNSPDVRAGQRIRNYLANEC

Anabax-UB*01 181 IDRLRRYVVYGREDLH}ANVQOPGVKVTGRESGEITKLHCLVYGFHPRAVDVKWMKNGIDEI
Anabax-UB*02 162 IDRLRRYVVYGREDL}IVOPGVKVTGRESGEITKLHCLVYGFHPRAVDVKWMKNGIDEI

Anabax-UB*01 241 PSYETTHVLPNPDGTYQIRVSVEVIPKEGESYSCY
Anabax-UB*02 222 PSYETTHVLPNPDGTYQIRVSVEVIPKEGESYS--

Supplementary Fig. S4. Wyoming toad MHC class | UB sequences.

The two major forms of Anabax-UB were aligned. a1, a2, and a3 domains are color-coded blue, red and
yellow, respectively. Signal peptide (SP) domains are indicated above the alignment. Identical residues are
shaded the same color, except for gray which reflects structurally similar residues. Neither of these transcripts
encode a stop codon and are likely 3’ truncated.

6
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SP
Anabax-UC*01 1 U GINNAAARI A N EIDSHSLRYYSIGVSAPGSGLPEFSIIGYVDDQQIELYSGDT
Anabax-UC*02 1 GG INNAAR) AN EIDSHSLRYYSTIGVSAPGSGLPEFSITIGYVDDQQIELYSGDT

Anabax-UC*01 61 GRSVPVAPWLSRNVGLEHWERRTRISKEYEALFKHEVKAAVKRFNHTGGFHFVQVMHNCE
Anabax-UC*02 61 GRSVPVAPWLSRNVGLEHWERRTRISKEYEALFKHEVKAAVKRFNHTGGFHFVQVMHNCE

Anabax-UC*01 121 MRDDGSTTGHQEYRYDGEEYMYLDIKSALFNPTMAEAQIITQRWNSPDIRKGEREKNYLE
Anabax-UC*02 121 MRDDGSTTGHQEYRYDGEEYMYLDIKSALFNPTMAEAQIITQRWNSPDIRKGEREKNYLE

Anabax-UC*01 181 SKCIERLKKYLEFGREDLIHIGDFe& ' SHVYNFATVPH*
Anabax-UC*02 181 SKCIERLKKYLEFGREDLIAVQOPE KVTG-—----—-—

Supplementary Fig. S5. Wyoming toad MHC class | UC sequences.

The two major forms of Anabax-UC were aligned. a1, and a2 domains are color-coded blue and red,
respectively. Signal peptide (SP) domains are indicated above the alignment. Identical residues are shaded
the same color, except for gray which reflects structurally similar residues. An asterisk indicates the presence
of a stop codon.

SP
Anabax-UD*01 1 GANeNRAI ARG NEIDSHSLYYCYTGVTAPGSGLPEFSVVGYMDGQOVELYTSDIGR
Anabax-UD*02 1 AN R ARG NEIDSHSLYYCYTGVTAPGSGLPEFSVVGYMDGQOVELYTSDIGR
Anabax-UD*03 1 NN ANGEONSIDSHSLYYCYTGVTAPGSGLPEFSVVGYMDGOOVELYTSDIGR

Anabax-UD*01 61 SVPVAHWLKEKEDSKFWDELTRIRQYSETFFRNELKIAVKRENHTKGFHYVQAMLGCELR
Anabax-UD*02 61 SVPVAHWLKEKEDSKFWDELTRIRQYSETFFRNELKIAVKRENHTKGFHYVQAMLGCELR
Anabax-UD*03 61 SVPVAHWLKEKEDSKFWDELTRIRQYSETFFRNELKIAVKRENHTKGFHYVQAMLGCELR

Anabax-UD*01 121 DDGSTIGFNQYANDGSEFLFLDLQTKTFIPTMAEAQIITQKWNSWESGIRERVKDNDIVC
Anabax-UD*02 121 DDGSTIGFNQYANDGSEFLFLDLQTKTFIPTMAEAQIITQKWNSWESGIRERVKDNDIVC
Anabax-UD*03 121 DDGSTIGFNQYANDGSEFLFLDLQTKTFIPTMAEAQIITQKWNSWESGIRERVKDNDIVC

Anabax-UD*02 181 INRLNRYLKHGRQHLIJN3VQP cVK ' TGRESGEVTKLHCH| )4GFHPRAVD NE----

Anabax-UD*01 181 INRLNRYLKHGROQHLI¥NIVQP VK ' TGRESGEVTKLHCH| )4GFHPRAVD EﬁiNGIDEI
Anabax-UD*03 181 INRLNRYLKHGROQHLIJIIGDT:HY ' 'YQVFLL------ VI MSR-ENKYL . - JRECKFSHL

Anabax-UD*01 241 PSYETTHVLPNPDGTYQIRVSVEVIPKEGESYS
Anabax-UD*02 = = —-—-—-—-—-—-mmmmm e
Anabax-UD*03 234 QRMEMSVIFI----------—------- IGR---

Supplementary Fig. S6. Wyoming toad MHC class | UD sequences.

The three major forms of Anabax-UC were aligned. a1, a2, and a3 domains are color-coded blue, red and
yellow, respectively. Signal peptide (SP) domains are indicated above the alignment. Identical residues are
shaded the same color, except for gray which reflects structurally similar residues. None of these transcripts
encode a stop codon and are likely 3’ truncated.
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Supplementary Table S5. Representative Wyoming toad MHC class Il transcripts and GenBank IDs

Sequence name

Anabax-DAA

Toad 6691

GGUS01080349.1

Toad 7039

GGURO01117947.1

Carlson et al, 2022

Toad 7092

GGUQ01148610.1

Anabax-DBA

GGUS01104323.1

GGURO01016231.1

GGUQ01047262.1

Anabax-DAB*01

GGUS01279675.1

GGURO01053143.1

GGUQ01049761.1

Anabax-DAB*02

Not identified

GGURO01053272.1

GGUQ01049863.1

domain

Truncated novel
class Il p1 GGUS01258414.1 GGUR01110179.1 GGUQ01029310.1
domain
Truncated novel
class Il p1 GGUS01090892.1 GGUR01054024 .1 GGUQ01039448.1



https://www.ncbi.nlm.nih.gov/nuccore/GGUS01080349.1
https://www.ncbi.nlm.nih.gov/nuccore/GGUR01117947.1
https://www.ncbi.nlm.nih.gov/nuccore/GGUQ01148610.1
https://www.ncbi.nlm.nih.gov/nuccore/GGUS01104323.1
https://www.ncbi.nlm.nih.gov/nuccore/GGUR01016231.1
https://www.ncbi.nlm.nih.gov/nuccore/GGUQ01047262.1
https://www.ncbi.nlm.nih.gov/nuccore/GGUS01279675
https://www.ncbi.nlm.nih.gov/nuccore/GGUR01053143
https://www.ncbi.nlm.nih.gov/nuccore/GGUQ01049761
https://www.ncbi.nlm.nih.gov/nuccore/GGUR01053272
https://www.ncbi.nlm.nih.gov/nuccore/GGUQ01049863
https://www.ncbi.nlm.nih.gov/nuccore/GGUS01258414
https://www.ncbi.nlm.nih.gov/nuccore/GGUR01110179
https://www.ncbi.nlm.nih.gov/nuccore/GGUQ01029310
https://www.ncbi.nlm.nih.gov/nuccore/GGUS01090892
https://www.ncbi.nlm.nih.gov/nuccore/GGUR01054024
https://www.ncbi.nlm.nih.gov/nuccore/GGUQ01039448
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SP

Anabax-DAA 1 i V---GNR 'IQSEFYQTQLP -  EFAFQFDDDE 'FNVD
Anabax-DBA 1 ISP FY| /HI§SQAVKVGNI  TOSNFYQTLEP ' c EFMFQLDGDE  FHVD
Anabax-DAA 58 FDNKVVRWRLQQFGE| A - F AVGALONR V. TQONL°VYIKRSNNTAA-KAVTPIIHVFTE
Anabax-DBA 61 LQOSKDTRWRLPEFGK 'S/ I»TAGALONIcV KFNL.NYEKRSNYTKAKSVARDDIQVFTE

Anabax-DAA 117 EP,/VLNEPNKLTCFVKEIFPPVIKMSWLKNNQP /TVGV::»TDYYFASDLS YKFLYLAT
Anabax-DBA 121 MP VLGEPATLVCLATQFFPPVIKMSWLKNNEP  TVGV'/:TVYYPAPDGS jSKFLYLAT

Anabax-DAA 177 PAEG:VYTCSVEHAGLP 'NPTNKFW /|3¥AIZSH
Anabax-DBA 181 PQKG:VYTCSVEHNGLS NPTNKFW 'I3¥LIZOP

Anabax-DAA 237 Figel *
Anabax-DBA 241 Q S *

Supplementary Fig. S7. Wyoming toad MHC class Il alpha chain sequences.

Wyoming toad DAA and DBA were aligned. Identical residues within the a1 and a2 domains are color-coded
blue and red, respectively. Signal peptide (SP) and transmembrane (TM) domains are indicated above the
alignment. Identical residues are shaded the same color, except for gray which reflects structurally similar
residues. An asterisk indicates the presence of a stop codon.

Anabax-DAB*01 IIMGMLYCISFIFFILLIRLDFCRLSAZ
Anabax-DAB*02 IIMGMLYCISFIFFILLIRLDFCRLSAZ

DYMTESKFECHYLNGTQRVRYLHRVFYNQEEIV
DYMTESKFECHYLNGTQRVRYLHRVFYNQEEIV

Anabax-DAB*01 61 YFDSNKGYYIPKTEFGKPDADYWNKDKDLIEDRKSSVETFCKHNYGVWKAGAIERKVEPE
Anabax-DAB*02 61 YFDSNKGYYIPKTEFGKPDADYWNKDKDLIEDRKSSVETFCKHNYGVWKAGAIERKVEPE

Anabax-DAB*01 121 IVVALMPNHEEPSTVHHILQCNVFGFYPSEVEVKWYRNGQEETELVTS:-AL QNGDW'' YR
Anabax-DAB*02 121 IVVALMPNHEEPSTVHHILQCNVFGFYPSEVEVKWYRNGQEETELVQS//EP,{HNGDW:YQ

Anabax-DAB*01 181 ILVMLETEIQKGDTFTCEVHHSSLKAPHRVDW:IZeME ISINTS
Anabax-DAB*02 181 ILVMLETEIQKGDTFTCEVHHSSLKAPHRVDWIi{eSE] s Al

Anabax-DAB*01 241 R TPERVP) PHT*
Anabax-DAB*02 241 RER SI3PGQ LPQ*

Supplementary Fig. S8. Wyoming toad MHC class Il beta chain sequences.

Wyoming toad DAB*01 and DAB*02 were aligned. Identical residues within the 1 and B2 domains are color-
coded blue and red, respectively. Signal peptide (SP) and transmembrane (TM) domains are indicated above
the alignment. Identical residues are shaded the same color, except for gray which reflects structurally similar
residues. An asterisk indicates the presence of a stop codon.
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Supplementary Table S6. Sequence identity between bufonid TLR ectodomains*

92.8 52.26 52.26 52.73 52.26
ReE 52.26 52.24
) 52.26 52.24
i 52.73 53.44
OB 52.26 52.34

* GenBank sequence identifiers for Wyoming toad (WYT) TLRs are in Supplemental Table S3 and sequence
identifiers for common toad (CMT) and cane toad (CNT) TLRs are included in Figure 2.

Supplementary Table S7. Sequence identity between bufonid TLR TIR domains*

TLR8a, WYT TLR8a, CMT TLR8a, CNT TLR8b, CNT TLR8b, WYT TLR8b, CMT

* GenBank sequence identifiers for Wyoming toad (WYT) TLRs are in Supplemental Table S3 and sequence
identifiers for common toad (CMT) and cane toad (CNT) TLRs are included in Figure 2.
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