
JSONSki: Streaming Semi-structured Data with Bit-Parallel
Fast-Forwarding

Lin Jiang
ljian006@ucr.edu

University of California, Riverside
USA

Zhijia Zhao
zhijia@cs.ucr.edu

University of California, Riverside
USA

ABSTRACT
Semi-structured data, such as JSON, are fundamental to the Web
and document data stores. Streaming analytics on semi-structured
data combines parsing and query evaluation into one pass to avoid
generating parse trees. Though promising, its conventional design
requires to parse the data stream in detail character by character,
which limits the efficiency of streaming analytics.

This work reveals a wide range of opportunities to fast-forward
the streaming over certain data substructures irrelevant to the query
evaluation. However, identifying these substructures itself may
need detailed parsing. To resolve this dilemma, this work designs
a highly bit-parallel solution that intensively utilizes bitwise and
SIMD operations to identify the irrelevant substructures during the
streaming. It includes a new streaming model—recursive-descent
streaming, for an easy adoption of fast-forward optimizations, a
concept—structural intervals, for partitioning the data stream, and a
group of bit-parallel algorithms implementing various fast-forward
cases. The solution is implemented as a JSON streaming framework,
called JSONSki. It offers a set of APIs that can be invoked during
the streaming to dynamically fast-forward over different cases of
irrelevant substructures. Evaluation using real-world datasets and
standard path queries shows that JSONSki can achieve significant
speedups over the state-of-the-art JSON processing tools while
taking a minimum memory footprint.

CCS CONCEPTS
• Computing methodologies → Parallel algorithms; • Soft-
ware and its engineering → Parsers; • Information systems
→ Semi-structured data.

KEYWORDS
JSON, Parser, Semi-structured Data, SIMD, Bit-Parallel Algorithm

ACM Reference Format:
Lin Jiang and Zhijia Zhao. 2022. JSONSki: Streaming Semi-structured Data
with Bit-Parallel Fast-Forwarding. In Proceedings of the 27th ACM Interna-
tional Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’22), February 28 – March 4, 2022, Lausanne,
Switzerland. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3503222.3507719

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9205-1/22/02.
https://doi.org/10.1145/3503222.3507719

{ "coordinates” : [
40.74118764, -73.9998279

],
”user” : {
"id” : 6253282

},
”place” : {
“name” : “Manhattan”,
“bounding_box” : {

“type” : ”Ploygon”,
“pos” : [
[-74.026675, 40.683935], …

] } } }

Figure 1: Geo-referenced Tweet in JSON [51]

1 INTRODUCTION
Recent years have seen a surge in adopting semi-structured data,
like JSON (JavaScript Object Notation) and some of its variants, in
the computing infrastructures, ranging from data transfer among
loosely-coupled cloud services [12, 21, 25, 52] to the underlying
data representation of popular document-based data stores, like
MongoDB [44] and Firebase [29], to public data release through
openAPIs (e.g., data.gov [4]). Thus, the efficiency of semi-structured
data processing is getting more critical to many modern software
applications that require low data processing latency and strict
memory budget. For example, a recent study [41] shows that parsing
raw JSON data (using the default Jackson Parser [8] in Spark) can
easily dominate the query evaluation time (>80%).

Figure 1 shows some attributes in a JSON Tweet object 1, which
include coordinates, user, and place [51]. Note that the attributes
themselves could be objects or arrays. In general, there are two
processing schemes for semi-structured data:

• Preprocessing scheme first parses the data stream into some
in-memory data structure (typically a tree), then evaluates
queries by traversing the data structure. Examples of this
scheme include common JSON tools, such as RapidJSON [11],
FastJSON [2], Gson [6], and simdjson [40]. Though intuitive,
this scheme suffers from a significant upfront delay due to
the pre-parsing. Moreover, the parse tree may occupy a large
chunk of memory for long data streams.

• Streaming scheme can naturally avoid the above issues by
immediately consuming the semi-structured data stream,
locating and extracting the data of interests on the fly. For
example, JsonSurfer [13] and JPStream [35] evaluate path
queries dynamically as they traverse the data streamwithout
generating any in-memory trees. Thus, they only need to
scan the data in one pass with a small memory footprint.

1The object is simplified and slightly modified for illustration purpose.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

200

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Lin Jiang and Zhijia Zhao

Despite its promises, the streaming scheme needs to parse the
entire data stream character by character to recognize each token
and each syntactical structure (e.g., an object) for query evaluation.
This detailed parsing seriously limits the efficiency of streaming.
In this work, we ask a key question: is it possible and practical to
“fast-forward” through the data stream to accelerate the processing?

Opportunities. Interestingly, we find that, by leveraging the query
and the syntax of semi-structured data, certain data segments could
be “irrelevant” to the query evaluation, thus can be fast-forwarded—
their tokens and syntactical structures need not to be fully examined
and the query matching state updates could be bypassed. Consider
the JSON object in Figure 1 in a data stream. Assume the query
is to find the name of object place (i.e., $.place.name), then the
following fast-forward opportunities present:

• First, the streaming may fast-forward over the first attribute,
including its name “coordinates” and value, as it is an array,
while the query looks for an object (placemust be an object
as it has an attribute name).

• When it comes to the second attribute, though it is an object,
its name (“user”) fails to match the “place” in the query,
thus the streaming can fast-forward over its value—an object.

• After “name” is matched, the streaming may fast-forward
over the remaining attributes of object place, in this case
the attribute bounding_box, as attributes in a JSON object
cannot share names (no more matches are possible).

The above cases are for objects in queries. Similar opportunities
also exist for arrays. In this work, we systematically explore these
opportunities and categorize them into basic groups.

However, without a priori knowledge about the input, a naïve
way of implementing the above fast-forward ideas still needs to
traverse the entire data stream in detail to find out the opportunities
and to mark the boundaries of data segments (e.g., an object) for
fast-forwarding. This essentially becomes a “chicken-egg” issue.

Practicality. To resolve the issue, we need an alternative yet much
faster solution to implementing the fast-forward. For that purpose,
we propose a bit-parallel solution that leverages bitwise and SIMD
operations to perform the fast-forward actions. It includes i) a new
streaming model for integrating the fast-forward optimizations—
recursive-descent streaming, ii) an abstraction for partitioning the
data stream into basic units—structural intervals, and iii) a set of
bit-parallel algorithms implementing various fast-forward cases.

With bit-parallel fast-forward, the streaming no longer needs to
scan the characters one by one, instead, it processes a word-size of
characters all at once. In fact, some recent works, like simdjson [40],
Mison [41], and Pison [34], also leverage the bit-parallelism in
JSON data processing, but their uses are limited to locating the
metacharacters and they all fall into the preprocessing scheme.

Based on the above techniques, a streaming framework for JSON
data, called JSONSki, is implemented. It offers a set of bit-parallel
fast-forward functions that can be naturally integrated into the
streaming analytics. To demonstrate its efficiency, we compared
JSONSki with several existing JSON tools using real-world datasets
and standard path queries. The results have shown that JSONSki
outperforms JPStream [35], a state-of-the-art streaming library, and
simdjson [40], a popular SIMD-based parser substantially, in both
the large and small record processing scenarios.

object ::= { } | { attributes }
attributes ::= attribute | attribute, attributes
attribute ::= attribute-name : value

array ::= [] | [elements]
elements ::= element | element, elements
element ::= value
value ::= object | array | primitive

Figure 2: JSON Grammar

In summary, this work makes a three-fold contribution:

• First, it systematically reveals the fast-forward opportunities
in the semi-structured data streaming (Section 3).

• Second, it presents a bit-parallel solution for implementing
fast-forward optimizations with high-efficiency (Section 4).

• Finally, this work compares the proposed solution with some
state-of-the-art JSON data processing tools and confirms its
performance superiority (Section 5).

Next, we provide more background of this work.

2 BACKGROUND
We first introduce the basics of semi-structured data, then present
the details of the two basic processing schemes.

Semi-Structured Data. Unlike relational data (stored in tables),
semi-structured data do not have to follow a strict schema. In fact,
the data is self-contained with its type information, structures,
and values, thus exposing more flexibility. There are two major
styles of semi-structured data: i) tag-based data, like XML, and ii)
programming language-based data, like JSON. The former carries
data in a hierarchy of pair tags, such as <id>6536</id>. XML was
popular in the early days of web development. However, recent
trends [15, 52] show that it is getting replaced by JSON.

JSON, originated from JavaScript, has a compact format. As
Figure 2 shows, it has two basic structures: an object—a list of
attributes enclosed by a pair of parentheses, such as {"id":653,
"name":"John"}, where a colon separates an attribute name and its
value, and an array—an ordered list of elements enclosed by a pair
of brackets, like [653, "John"]. Moreover, an attribute value or an
array element itself can be an object or array. Thus, they can form
a complex multi-level structure, like the Tweet object in Figure 1.
More details of JSON syntax are given by its standard [5]. We refer
to the root-level object or array as a JSON record. Depending on the
application, a JSON data stream may consist a single large JSON
record or a sequence of small records.

Queries. Semi-structured data can be queried with path expressions,
which specify the paths from the root of a record to one or multiple
object attributes. Since the root (an object or an array) is anonymous,
a path query uses a $ sign to refer to it. For array-type attributes, the
query may carry index constraints. For example, $.places[0:2]
refers to the first two elements in the places array. To select all
array elements, the wildcard ∗ could be used, like $.places[∗].
More details about path queries are available in [32].

As mentioned earlier, to evaluate JSON path queries, there are
preprocessing and streaming schemes.

Preprocessing scheme first builds an in-memory data structure for
each record, before evaluating queries. For example, most existing

201

JSONSki: Streaming Semi-structured Data with Bit-Parallel Fast-Forwarding ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

obj(anonymous)

“coordinates”

40.7…

“user”

“id”

“place”

“name”

“Manhattan”

“box”

“type”

“Ploygon”

“pos”

…

(a) parse tree

-73.9… 625…

[0] [1]

$.place.name

{“coo…”:[4…, -7…], ”user”:{”id”:6…}, ”place”:{“name”:”M…

(b) leveled bitmaps

0000…00100…0000…00000000010000000…000000000010000000000…

0000…00000…0000…00000000000000010…000000000000000000100…

Figure 3: Preprocessing-based Query Evaluation

2

301

pl
ac
e name state: 3

{
{

1
2

syntax
stack

query
stackstate machine

{“coo…”:[4…, -7…], ”user”:{”id”:6…}, ”place”:{“name”:”M…

START

MATCHED

ACCEPT
UNMATCHED

Figure 4: Streaming Query Evaluation

JSON tools, such as JSON-C [7], RapidJSON [11], FastJSON [2],
Gson [6], and simdjson [40], first build a parse tree, then traverse it
top down to evaluate path queries, as illustrated in Figure 3-(a).

Instead of creating a parse tree, Mison [41] and Pison [34] build
bitmaps for colons and commas at each level of a JSON record,
called leveled bitmaps. The colon bitmap helps locate the object
attributes, while the comma bitmap helps find the array elements.
Figure 3-(b) shows the colon bitmaps for the top-two levels of a
JSON record. With them, the evaluation can quickly traverse the
object attributes or array elements to match the query.

Regardless which data structure is constructed, preprocessing
scheme introduces a significant delay upfront. Moreover, the built
data structure itself may consume memory substantially, especially
for data streams with large records.

Streaming scheme avoids the above issues by combining parsing
and the query evaluation into a single pass [13, 35]. It immediately
consumes the data as it is being traversed and its structures are
being parsed. The key idea is to employ two stacks: a query stack for
tracking the matching progress at different levels of a record and a
syntax stack for recognizing the syntactical structures [35]. Figure 4
illustrates the basic idea. The state machine captures the query’s
matching logic. The syntax stack shows the current syntactical level
in the record. The query stack shows that it has reached state 2 at
the current level. After the token “name” is consumed, the current
state would become 3 (an accept state), indicating a match.

Without the in-memory data structure construction, streaming
evaluation’s efficiency tends to be higher than the preprocessing
scheme. However, its existing designs [13, 35] need to scan the

[Key] ∆(q, c , K , ∗) → (δ (q, K), c , q : ∗)

[Val] ∆(q, c ,V , q′ : ∗) → (q′, c , ∗)

[Ary-S] ∆(q, c , [, ∗) → (δ (q, [), 0, qc : ∗)

[Ary-E] ∆(q, c ,], q′c′ : ∗) → (q′, c′, ∗)

[Com] ∆(q, c , ,, ∗) → (q, c + 1, ∗)

Figure 5: Transition Rules of Query Automaton

input in detail to recognize every token and syntactical structure
in the data stream, which fundamentally limits its efficiency. In the
following, we will demonstrate that it is possible to fast-forward
through the data stream without comprehensive parsing.

3 STREAMINGWITH FAST-FORWARDING
This section first introduces a new basic streaming model, then
presents the fast-forward ideas under this model.

3.1 Streaming Model—Recursive Descent
The existing design [35] for streaming evaluation of path query is
a dual-stack automaton based on 13 transition rules. This formal
design makes it less intuitive to integrate various fast-forward ideas
which are diverse and ad-hoc by nature. Though it might be possible
to do so in theory, the resulted design would be complex and hard
to maintain. For these reasons, we propose a new streaming model
which is more amenable to the fast-forward optimizations.

The key to the new model is to employ a recursive-descent parser
to drive the query matching automaton. It simplifies the transition
rules as the syntax stack becomes a call stack which is automatically
managed by the runtime system. Also, fast-forward logic can be
easily added into the recursive functions. Next, we describe two
major parts: query automaton and recursive-descent streaming.
Query Automaton. A path expression, like $.place.name, can be
treated as a regular expression, so that the matching progress can
be captured by a finite state machine [30, 35, 46]. Figure 4 shows a
four-state machine, where 1⃝ is the start state, 3⃝ is the accept
state, and 0⃝ is the unmatched state. Unlike regular expressions,
a path expression needs to be matched according to their levels
in the data record, so a stack is needed for holding the current
state at each level. Together, they form a pushdown automaton. For
queries with array index constraints (like pos[2:4]), a counter will
be associated with the state at the corresponding level to match
the specified range. More details regarding this conversion can be
found in our prior work [35].

The query automaton consumes five types of tokens: K , V , [,],
and ,, where K is an attribute name, like “place”, V represents all
possible values of an attribute, and the others are metacharacters in
JSON. Note that the comma tokens are only those used to separate
array elements; the others are filtered out during the streaming.

Figure 5 lists the transition rules of the query automaton, one
for each type of tokens, and each rule is in the format:

∆(state, counter, token, stack) → (state, counter, stack)

Rule [Key] says, when an attribute name K is consumed, the
automaton pushes the current state q onto the stack (stack elements
are separated by colons), then updates the current state based on
the state transition δ (q,K). Rule [Val] pops the stack top q′ and

202

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Lin Jiang and Zhijia Zhao

Algorithm 1 Recursive-Descent Streaming

1: function object()
2: consume(“{”, qa.isAccept) /* qa: query automaton */
3: if notEmpty() then
4: while true do
5: attribute = consumeAttrName(qa.isAccept)
6: consume(“:”, qa.isAccept)
7: qa.transition(attribute) /* update query automaton */
8: type = getAttributeType()
9: switch type do
10: case “object”: object() break

11: case “array”: array() break

12: case “primitive”: primitive()

13: qa.transition(V) /* V denotes all values */
14: if hasMoreAttributes() then
15: consume(“,”, qa.isAccept)
16: else break
17: consume(“}”, qa.isAccept)

18:
19: function array()
20: consume(“[”, qa.isAccept)
21: qa.transition(“[”)
22: if notEmpty() then
23: while true do
24: type = getElementType()
25: switch type do
26: case “object”: object() break

27: case “array”: array() break

28: case “primitive”: primitive()

29: if hasMoreElements() then
30: qa.transition(“,”)
31: consume(“,”, qa.isAccept)
32: else break
33: consume(“]”, qa.isAccept)
34: qa.transition(“]”, qa.isAccept)

uses it for the current state, upon receiving a value token V . Rules
[Ary-S] and [Ary-E] work in a similar way, when brackets are
consumed, except for two differences: First, when “[” is consumed,
[Ary-S] pushes the current counter along with the current state
onto the stack, then it resets the counter to zero, indicating the start
of a new array. Correspondingly, when “]” is consumed, the stack
top is popped out, and both the state and counter are reassigned
with those values from the stack top. Finally, upon consuming a “,”
(in an array), rule [Com] simply increments the counter.

Next, we explain how the query automaton can be driven by a
recursive-descent parser.
Recursive-Descent Streaming. Recursive-descent parsing utilizes
recursive functions to simplify the parser design [43]. It defines a
function for each non-terminal in the grammar to recognize the
corresponding structure(s). For non-terminals that are recursively
defined, their functions naturally become recursive functions.

JSON has are two major non-terminals: object and array, after
inlining other non-terminals (see Figure 2). Algorithm 1 presents
their functions. Both recursively call to themselves and to each other.
Thanks to the recursive design, the two functions are easy to follow—
they recognize the structures of objects and arrays following their
grammar rules. To achieve streaming query evaluation, we embed
the query automaton transitions into the recursive descent parsing
(highlighted in blue). Line 7 and 13 correspond to the [Key] and
[Val] transitions in Figure 5, respectively. Similarly, Line 21 and

34 are about the [Ary-S] and [Ary-E] transitions. Finally, Line 30
corresponds to the [Com] transition. In addition, to output matches,
the parser also checks the query automaton for the matching status
(qa.isAccept). If it is in the accept state, the corresponding token
would be outputted when it is consumed (e.g., at Line 2 and 5).

We name the above algorithm recursive-descent streaming. Next,
we present the fast-forward ideas under this model.

3.2 Opportunities for Fast-Forward
By default, our streaming model processes the input token by token,
so every token needs to be recognized and consumed. Moreover,
these tokens are fed into the query automaton to make transitions.
This actually may not be always necessary. Next, we show a series
of cases where the streaming can fast-forward over certain data
segments—their details need not to be fully examined, including
the tokenization and syntactical analysis, not to mention query
automaton updates. We next explain the intuitions behind this idea.

One intuition is about the data type, which can be inferred from
the query, but has not yet been leveraged by the prior streaming
model. For example, from $.place.name, we can infer that place
is an object, as it has an attribute name. By contrast, expression
$.places[2:4].name implies that places is an array. In this way,
we can obtain the type of each attribute name in the path expression,
except that at the last level (the inner-most level), which could be
of any type. Based on such type information, the streaming may
fast-forward over data segments with unmatched types. Besides
that, the streaming may also leverage other query information, such
as attribute names (e.g., place) and index constraints (e.g., [2:4])
to fast-forward over irrelevant syntactical structures.

Next, we categorize the fast-forward opportunities into five
groups based on their intuitions.

G1: Fast-Forward to a Type-Specific Attribute or Element. An
object consists of a list of attributes (see Figure 2), and the value of
each attribute could be an object, an array, or a primitive. Based on
the attribute type inferred from the query, we may fast-forward to
the attribute of the matched type, except for the primitive. Because
a primitive always appears at the last level of the path expression,
thus the inference cannot find out if it is primitive or of other types.
As Figure 6-(a) shows, based on the type of interest (an object), the
streaming directly fast-forwards to the second attribute.

Similar scenarios also occur when the streaming traverses an
array with elements of heterogeneous types. In this case, it may
fast-forward to the element of matched type. Note that for queries
with index constraints, we need to make sure that fast-forward
does not exceed the specified index range.

G2: Fast-Forward over an Unmatched Attribute Value. For an
attribute with matched type, the streaming extracts its name and
feeds it to the query automaton to update the matching status.
If the automaton fails to make matching progress—reaching the
unmatched state (state 0 in Figure 4), it would be unnecessary
to further examine the attribute value. Depending on its type, the
streaming may fast-forward over an object, an array, or a primitive.
Figure 6-(b) shows an example where the streaming fast-forwards
over the value of user, which fails to match “place”.

G3: Fast-Forward over a Value and Output It. Once the query
automaton reaches an accept state, the streaming would yield

203

JSONSki: Streaming Semi-structured Data with Bit-Parallel Fast-Forwarding ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

{“coo…”:[4…, -7…], ”user”:{”id”:6…}, ”place”:{“name”:”M …”, “b…”:{“t…”:”P…”, “p…”:[…]} } …

go to the end of the current object
(d)

[{“id”:4…, ”user”:”J…”}, {”id”:3…, ”user”:”L…”}, {”id”:1…

go over two array elements
(e)

$.place.name

$[2:4].user

go to an object attribute
(a)

go over an object
(b) (c)

go over a primitive and output it

Figure 6: Examples of Basic Fast-Forward Cases

Table 1: Five Groups of Fast-Forward Functions∗

Function Description (pos : current streaming position)

G1

goToObjAttr() move pos to the start of next object attribute
goToAryAttr() move pos to the start of next array attribute
goToObjElem() move pos to the start of next object element
goToAryElem() move pos to the start of next array element

goToObjElem(K) move pos · · · object elem. within K elements
goToAryElem(K) move pos · · · array elem. within K elements

G2
goOverObj() move pos to the end of next object
goOverAry() move pos to the end of next array

goOverPriAttr() move pos to the end of next primitive attribute
goOverPriElem() move pos to the end of next primitive element

G3
goOverObj(out) output an object and move pos to its end
goOverAry(out) output an array and move pos to its end

goOverPriAttr(out) output a prim. attr. and move pos to its end
goOverPriElem(out) output a prim. elem. and move pos to its end

G4 goToObjEnd() move pos to the end of the current object

G5
goOverElem(K) move pos to the end of next K elements
goToAryEnd() move pos to the end of the current array

∗This is not a full list of functions; more functions are in Section 4.2.

an output (an attribute value or array element). In this case, the
streaming may fast-forward the outputted part; the output details
need not to be examined. Figure 6-(c) shows such a case where the
query has been fully matched, so the streaming fast-forwards over
the matched value and outputs it.

G4: Fast-Forward to the End of Current Object. In an object,
once an attribute name is matched, the streaming may fast-forward
over all following attributes of this object, as a JSON object cannot
own duplicated attribute names, meaning no matches could be
found in the remaining attributes. Figure 6-(d) shows a case where
the streaming fast-forwards to the end of the object place after a
prior attribute name has been matched.

G5: Fast-Forward over Out-of-Range Elements. Finally, some
queries may carry array index constraints, like a range [2:4]. They
expose opportunities to fast-forward over array elements out of the
specified range. Figure 6-(e) shows that the streaming fast-forwards
over the first two array elements as the query requests the third
and the forth array elements (i.e., [2:4]). Similarly, fast-forward is
also possible after the end of the specified range is reached.

Table 1 lists the above fast-forward cases as functions in five
groups. Assume a global variable, pos, is kept during the streaming
to mark the current position in the input, then fast-forward can be
achieved by advancing pos to the corresponding target position.
Before showing how these functions can be implemented, we first
illustrate how they can be naturally integrated into the streaming.

3.3 Integration of Fast-Forward Functions
Due to space limits, in the following, we use the object() function
in the recursive-descent streaming to illustrate the integration of
fast-forward functions (see Algorithm 2).

First, the query automaton infers the attribute type of interest
(Line 3), based onwhich, the streaming fast-forwards to the attribute
of matched type (Line 6-9). If no more type-matched attributes exist,
fast-forward reaches the end of the current object, leading to an
early return of object() (Line 12). After the query automaton
consumes the attribute name (Line 15), if it reaches the unmatched
state, it fast-forwards over the attribute value based on its type (Line
17-21). Otherwise, if the query automaton reaches the accept state,
then the outputting-related functions would be called to output
the value without examining its details (Line 22-26). Finally, either
in the case of accept or matched (made matching progress), the
streaming would fast-forward to the end of the current object (Line
32-33), because only one attribute could be matched at each level.

Similarly, the fast-forward functions can also be integrated into
the array() function in the recursive-descent streaming.

Note that some of the existing JSON parsers provide syntactical
validation on the input. The use of fast-forward actions may affect
this feature in the sense that the fast-forwarded data segments
might not be fully validated due to the nature of fast-forwarding.
As shown later, our implementations of fast-forward cases still offer
certain validations like the parentheses/brackets pairing.

So far, we have presented the basic ideas of fast-forward, without
showing their implementation details. In fact, the key challenge
lies in implementing the fast-forward functions efficiently, which
we will address in the next section.

4 BIT-PARALLEL FAST-FORWARDING
The basic question in implementing the fast-forward functions (e.g.,
going over an object) is the following:

how can the target position of fast-forward be identified?

Conventionally, this is a parsing problem. For example, to go over
an object, the object needs to be recognized first, which requires
tokenization and syntactical analysis. If the fast-forward functions
are implemented in this way, the only benefit they bring would be
skipping some query automaton updates. The main streaming cost,
detailed parsing, would remain. To resolve this dilemma, we show a
much faster way to implementing fast-forward functions—a highly
bit-parallel solution, which bypasses the conventional parsing. The
keys to this solution include an abstraction for partitioning the
semi-structured data stream into basic units, structural intervals,
and a counting-based pairing strategy for identifying the nesting
levels and boundaries of objects and arrays.

204

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Lin Jiang and Zhijia Zhao

Algorithm 2 Streaming with Fast-Forwarding (Partial)

1: function object()
2: consume(“{”, qa.isAccept) /* qa: query automaton */
3: type_expected = qa.typeExpected() /* infer the type */
4: if notEmpty() then
5: while true do
6: switch type_expected do /* fast-forward */
7: case “object”: goToObjAttr() break

8: case “array”: goToAryAttr() break

9: case “unknown”:
10: if hasMoreAttributes() == false then /* if object ends */
11: consume(“}”, qa.isAccept)
12: return
13: attribute = consumeAttrName(qa.isAccept)
14: consume(“:”, qa.isAccept)
15: qa.transition(attribute) /* update query automaton */
16: type = getAttributeType()
17: if qa.status == unmatched then
18: switch type do
19: case “object”: goOverObj() break

20: case “array”: goOverAry() break

21: case “primitive”: goOverPriAttr()

22: else if qa.status == accept then
23: switch type do
24: case “object”: goOverObj(out) break

25: case “array”: goOverAry(out) break

26: case “primitive”: goOverPriAttr(out)

27: else if qa.status == matched then
28: switch type do
29: case “object”: object() break

30: case “array”: array() break

31: case “primitive”: primitive()

32: if qa.status != unmatched then
33: goToObjEnd()

34: qa.transition(V) /* V denotes all values */
35: if hasMoreAttributes() then
36: consume(“,”, qa.isAccept)
37: else break
38: consume(“}”, qa.isAccept)

4.1 Structural Intervals
Designing bit-parallel algorithms is notoriously challenging due
to the low-level bit-manipulations. This is compounded by the
recursive and nested structures of the data stream. To reduce the
design complexity, we propose to partition the data stream into
some basic data segments.

Definition 4.1. Given the current streaming position pos and a
metacharacter of interest α , the structural interval for α is the
sequence of consecutive characters between pos (inclusive) and the
following closest α (exclusive).

Depending on the metacharacter of interest, there are different
kinds of structural intervals, as demonstrated in Figure 7. Note that
pseudo-metacharacters inside strings should be excluded.

A critical property of structural intervals is that they can be
constructed and accessed efficiently with bit-parallelism.

Bit-Parallel Construction. Given the current streaming position
pos, and a metacharacter α , the constructor builds an interval
bitmap for characters in the data stream, such that only those bits
within the interval are set to 1s, as illustrated by the “[” interval
bitmap in Figure 8. The size of an interval bitmap is a word, denoted

{ "coordinates” : [40.7…, -73.9…], ”user” : {"id” : 6253282}, …

pos

“:” interval
“[” interval

“,” interval
“{” interval

Figure 7: Examples of Structural Intervals

{ "coordinates” : [40.7…, -73.9…], ”user” : {"id” : 6253282}, …
pos

0111111111111111110000…0
“[” interval bitmap (64-bit)

0111111111111111111111…1
“{” interval bitmap (64-bit)
1111111111111111111000…0

destroyed (64-bit)

Figure 8: Example of Interval Bitmap

asW . For example, on a 64-bit machine, the bitmap consists of 64
bits, representing 64 consecutive characters in the data stream.

If a structural interval spans multiple words, such as the “{”
interval in Figure 7, the constructor builds interval bitmaps word
by word, as shown in Figure 8. Note that an interval bitmap should
be constructed after the prior one has been used and destroyed, to
comply with the streaming design.

Function builtInterval(pos, char) in Algorithm 3 describes
the construction process. First, it builds a bitmap for the given
metacharacter (Line 3). The basic idea [34, 40, 41] is shown by
function builtMetacharBitmap(char). Here, we need to remove
all the pseudo-metacharacters. To achieve this, a string bitmap
is created (Line 17), then a logic AND is taken between the string
bitmap and the raw metacharacter bitmap (Line 20). After this, the
constructor marks the start position (Line 4), resets bits up to the
start position to 0s (Line 5-6), marks the end position (Line 7), and
generates the interval bitmap with a bitmap subtraction (Line 8).

In addition, Algorithm 3 also presents an alternative constructor,
nextInterval(char), for quickly building a series of structural
intervals, and function intervalEnd(interval) for obtaining the
end position of an interval. The latter uses leading-zero counting
instruction to locate the mirrored end position 2, then converts it
to the actual end. All the above designs expose bit-parallelism.

Next, we will show how the structural intervals can be leveraged
for implementing the fast-forward functions.

4.2 Fast-Forward Algorithms
We start with the main design, then present the algorithm in detail
for each group of fast-forward functions.

Main Design. Conceptually, the data stream is processed interval
by interval to find the target position of fast-forward. However, as
an interval may span multiple words, the data stream is actually
processed word by word (see Section 4.1). First, everyW characters
(word size) in the data stream are converted into relevant interval
bitmaps. Then, based on these bitmaps, fast-forward employs a

2In fact, a metacharacter bitmap is always created in mirrored way [34, 40, 41].

205

JSONSki: Streaming Semi-structured Data with Bit-Parallel Fast-Forwarding ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

Algorithm 3 Structural Interval Construction and Access

1: /* Build an interval bitmap for a metacharacter */
2: function buildInterval(pos, char)
3: bitmap = buildMetacharBitmap(char)
4: b_start = 1 << pos /* mask start position */
5: mask_start = b_startˆ(b_start – 1) /* mask bits up to start */
6: bitmap = bitmap & ∼mask_start /* reset bits up to start to 0s */
7: b_end = bitmap & –bitmap /* mask end position */
8: b_interval = b_end – b_start /* create the interval bitmap */
9: return b_interval
10:
11: /* Construct the bitmap for a given metacharacter */
12: function buildMetacharBitmap(char)
13: if bitmap_char != null then /* to avoid rebuilding */
14: return bitmap_char

15: /* construct a bitmap to mask all the characters inside strings */
16: if bitmap_string == null then
17: bitmap_string = buildStringBitmap() /* from [34, 40] */

18: bitmap_char = buildRawCharBitmap(char)
19: /* remove metacharacters in strings */
20: bitmap_char = bitmap_char & bitmap_string
21: return bitmap_char

22:
23: /* Build an interval bitmap between first two 1s in a bitmap */
24: function nextInterval(char)
25: bitmap = buildMetacharBitmap(char)
26: b_start = bitmap & –bitmap /* get rightmost 1 */
27: bitmap = bitmap & (bitmap – 1) /* remove rightmost 1 */
28: b_end = bitmap & –bitmap /* get rightmost 1 again */
29: b_interval = (b_end – b_start) /* create the interval bitmask */
30: return b_interval
31:
32: /* Get the position of the end of an interval (i.e., rightmost 1) */
33: function intervalEnd(interval)
34: pos = lzcnt(interval) /* position of leftmost 1 */
35: pos = wordSize() – pos /* mirror the position */
36: return pos

{ … [… { … { … } … { … } … } …] … }
1 “}”3 unpaired “{”s

… { … { … [… { … { … } … { … } … } …] … } … } … { …

(a)

(b)

object ends

object starts

two closest “{”s

3 unpaired “{”s 4 “}”s

two closest “{”s

Figure 9: Pairing Properties within and across Objects

counting-based pairing strategy to locate the end of an object or
array. The strategy is backed up by the following property of JSON:

Lemma 4.2. In a nested JSON object, assume α and β are two
closest “{”s, and the number of “}”s between them is nclose . Also
assume the number of unpaired “{”s before α , including α , is nopen .
Then, based on the pairing between “{” and “}”, it is obvious that
nclose < nopen . A similar conclusion can be drawn for a nested JSON
array regarding “[” and “]”.

Figure 9-(a) shows an example: between the two closest “{”s
marked on the bottom, nclose = 1, while nopen = 3.

Based on Lemma 4.2, we can infer the following pairing property
for a data stream with multiple JSON objects.

Algorithm 4 G2 Fast-Forward Functions

1: function goOverObj()
2: consume(“{”)
3: num_{ = 1 /* number of unpaired "{" */
4: while true do
5: if interval == null then
6: interval = buildInterval(pos,“{”)
7: else
8: interval = nextInterval(“{”)
9: bitmap_} = getMetacharBitmap(“}”)
10: bitmap_} = bitmap_} & interval /* get "}"s within interval */
11: num_} = __popcnt(bitmap_}) /* count “}”s in this interval */
12: if num_} < num_{ then
13: num_{ = num_{ – num_} + 1
14: else /* enough or more “}”s found */
15: pos = getPosition(bitmap_}, num_{) /* object end */
16: break
17:
18: function goOverPriAttr()
19: interval = buildInterval(pos, “,”)
20: bitmap_} = getMetacharBitmap(“}”)
21: bitmap_} = bitmap_} & interval
22: if bitmap_} == 0 then /* current object does not end */
23: pos = intervalEnd(interval)
24: else
25: pos = getPosition(bitmap_}, 1) – 1

Theorem 4.3. Consider an object in a JSON stream, assume α is
a “{” within the object, and β is its closest next “{”. Also assume the
number of “}”s between them is nclose , and the number of unpaired
“{”s in this object before α , including α , is nopen . Then, if nclose ≥
nopen , the object ends between α and β . A similar conclusion can be
drawn for a JSON stream with multiple arrays regarding “[” and “]”.

Figure 9-(b) shows an example: between the two closest “{”s
marked on the bottom, nclose = 4, while nopen = 3. As a result, the
object of interest, which is from Figure 9-(a), ends between the two
referred “{”s. In fact, based on the value of nopen , we can locate
where the object ends—the third “}” between the two referred “{”s.

Based on the above insights, we first discuss the algorithm for
fast-forward functions in G2 group, then move to the discussions
of algorithms for other function groups.

Algorithms of G2 Functions. Algorithm 4 shows the algorithms
of two representative functions. Take function goOverObj() as an
example. The algorithm first consumes the beginning “{” and sets
the number of unpaired “{”s to 1 (Line 2-3). Then, it builds the “{”
interval (Line 5-8), and counts the number of “}”s in this interval
(Line 9-11). If that is less than the number of unpaired “{”s so far,
the latter would be updated by subtracting the number of “}”s, plus
the new one at the beginning of this interval (Line 13). If there are
more “}”s, the object must end within this interval, and its ending
“}” should be the num_{-th one (Line 15).

The algorithm for goOverPriAttr() builds a comma interval
first (Line 21), then collects the “}”s within this interval (Line 22-23).
If no “}” exists in this interval, it sets the streaming position pos

with the interval end; otherwise, it moves the pos to the position
before the object ends (Line 24-27). The algorithm for goOverAry()
and goOverPriElem() can be designed similarly, except that all
the occurrences of parentheses are replaced with brackets.

Algorithms of G1 Functions. Algorithm 5 shows the algorithm
of a representative function goToObjAttr(). To fast-forward to an

206

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Lin Jiang and Zhijia Zhao

Algorithm 5 G1 Fast-Forward Functions

1: function goToObjAttr() /* Go to the next attribute */
2: while hasMoreAttributes() do
3: interval = buildInterval(pos, “:”)
4: pos = intervalEnd(interval) + 1
5: type = getAttributeType()
6: switch type do
7: case “primitive”: goOverPriAttrs() break

8: case “object”: break while-loop

9: case “array”: goOverAry()

10:
11: function goOverPriAttrs() /* Go over primitive attributes */
12: interval = buildInterval(pos, “{”, “[”)
13: bitmap_} = getMetacharBitmap(“}”)
14: bitmap_} = bitmap_} & interval
15: if bitmap_} == 0 then /* object has not ended */
16: pos = intervalEnd(interval)
17: else
18: pos = getPosition(bitmap_}, 1)

attribute of object-type, the algorithm builds a colon interval to
quickly reach the next attribute (Line 3-4). This allows it to check
the type of its value without extracting the attribute name (Line
5). If the value is not an object, the algorithm calls a fast-forward
function to go over the value. The algorithm stops when it reaches
the object-type attribute or the end of the object.

The algorithms for other G1 functions are similar, except that for
going to a type-specific array element, there is no need to construct
the colon intervals, and for queries with index constraints, the
fast-forward should track a counter to stay within the range.

In addition, Algorithm 5 also shows an enhanced fast-forward
function goOverPriAttrs() to go over some primitive attributes
together. The idea is to move as far as possible till it reaches the
next “{” or “[” (Line 12). If the current object has not ended (Line
15), then it has successfully went through these primitive attributes.
Otherwise, it goes to the end of the object (Line 18). A function
goOverPriElems() can be implemented similarly to fast-forward
over a sequence of primitive elements in an array.

Algorithms ofG3 Functions.Their algorithms are similar to those
for G2 functions, except that they also output the characters that
have been fast-forwarded. We can simply embed the outputting
statements into the G2 functions at the interval level.

Algorithm of G4 Function. Function goToObjEnd(), in fact, can
be implemented like goOverObj(), because both of them want to
reach the end of an object. The only difference is that goToObjEnd()
occurs inside an object (between two attributes), while goOverObj()
occurs right before an object. By removing the consume("{") at
Line 2 in Algorithm 4, we can get the algorithm for goToObjEnd().

Algorithms of G5 Functions. Function goOverElems(K) can be
implemented by traversing the comma intervals with an index
counter. For each element, a fast-forward function is called based
on its type. Function goToAryEnd() can be implemented similarly
like goToObjEnd() except that the parenthesis bitmaps are replaced
with the bracket bitmaps.

So far, we have presented the algorithms for all the five groups
of fast-forward functions listed in Table 1.

Table 2: Methods in Evaluation

JPStream A state-of-the-art JSON streaming library [35]
RapidJSON A popular conventional JSON parser from Tencent [11]
simdjson A popular SIMD-based JSON parser [40]

Pison A structural index-based JSON preprocessor [34]
JSONSki JSON streaming with bit-parallel fast-forward

5 EVALUATION
This section evaluates the proposed streaming with bit-parallel
fast-forwarding and compares it with the existing methods.

5.1 Methodology
We implemented the fast-forward functions discussed above and the
recursive descent streaming in C++. Together, they are referred to
as JSONSki. JSONSki supports basic JSONPath notations, including
root (“$”), child operator (“.” or “[]”), array index (“[n]”), index
range (“[m:n]”), and wildcard (“*”). One missing operator in the
current version is descendant elements (“..”), which may limit
fast-forward capabilities, as the types of the descendant elements
cannot be inferred. We plan to add support for this operator in the
future. All the bitwise and SIMD instructions that JSONSki utilizes
are commonly available on modern CPUs.

Though JSONSki invokes fast-forward functions based on the
path queries, developers may exploit these fast-forward functions
for more opportunities in their own JSON analytics.
Processing Scenarios.We cover two common scenarios of JSON
data processing: (i) a single large record; and (ii) a sequence of
small records. The second scenario exposes task-level parallelism,
while the first scenario does not. All inputs are preloaded into the
memory before the processing. Each input with small records is
stored in an array, along with an offset array for starting positions.

Table 3: Feature Comparison among Methods

Processing Speculative Bitwise
Method Strategy Parallelism Parallelism Fast-forward

JPStream Streaming ! – –
RapidJSON Preprocessing – – –
simdjson Preprocessing – ! –

Pison Preprocessing ! ! –
JSONSki Streaming – ! !

Methods.We compare JSONSki with several representative JSON
tools: JPStream [35], simdjson [40], RapidJSON [11], and Pison [34].
Tables 2 and 3 list these methods and their relevant features. Note
that, though simdjson and Pison use bitwise and SIMD parallelism,
their uses are limited to the identification of metacharacters. On
the other hand, JPStream and Pison support speculative execution,
allowing them to process a single (large) record in parallel. The
current design of JSONSki lacks speculation, though we are not
aware of any parts of its design prevent it from adopting speculation
optimization. In our evaluation, we enable speculation for JPStream
and Pison in the single large record processing scenario; many small
records can already be processed in parallel—speculation only hurts
the performance for its extra costs.

207

JSONSki: Streaming Semi-structured Data with Bit-Parallel Fast-Forwarding ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

Table 4: Dataset Statistics

Data #objects #arrays #attr #prim. #sub depth

TT 2.39M 2.29M 26.5M 24.3M 150K 11
BB 1.91M 4.88M 40.7M 35.8M 230K 7

GMD 10.3M 43K 29.0M 21.0M 4.44K 9
NSPL 613 3.50M 1.66K 84.2M 1.74M 9
WM 333K 34K 8.19M 9.92K 275K 4
WP 17.3M 6.53M 53.2M 35.0M 137K 12

Datasets. The datasets are collected from real-world applications,
including tweets stream from Twitter (TT) developer API [14],
product dataset from Best Buy (BB) [1], National Statistics Postcode
Lookup (NSPL) dataset from United Kingdom [9], Google Maps
Directions (GMD) dataset [3], Walmart (WM) product dataset [10],
and Wikipedia (WP) entity dataset [16]. Table 4 lists the structural
statistics. For easier comparison, we made each dataset roughly
the same size—1GB. Most datasets are in two formats: one single
large record or a series of small records. The column #sub lists the
number of small records in each dataset.

Table 5: JSONPath Queries

ID Query structure #matches

TT1 $[*].en.urls[*].url 88,881
TT2 $[*].text 150,135
BB1 $.pd[*].cp[1:3].id 459,332
BB2 $.pd[*].vc[*].cha 8,857
GMD1 $[*].rt[*].lg[*].st[*].dt.tx 1,716,752
GMD2 $[*].atm 270
NSPL1 $.mt.vw.co[*].nm 44
NSPL2 $.dt[*][*][2:4] 3,509,764
WM1 $.it[*].bmpr.pr 15,892
WM2 $.it[*].nm 272,499
WP1 $[*].cl.P150[*].ms.pty 15,603
WP2 $[10:21].cl.P150[*].ms.pty 35

Path Queries. Table 5 lists all the JSONPath queries used in the
evaluation. For each dataset, we constructed two queries. The last
column lists the number of matches. Together, they provide a good
coverage of the common path query structures, as well as different
levels of complexity and selectivity. Similar query structures have
been used for evaluation by the prior work [34, 35, 41].

All experiments ran on a server with two Intel 2.1GHz Xeon
E5-2620 v4 CPUs and 128GB RAM. The CPUs support 64-bit ALU
instructions and 256-bit SIMD instruction set. This server runs on
CentOS 7 and is installed with G++ 7.4.0. All C++ programs were
compiled with “-O3” flag.

5.2 Overall Performance
We first compare the performance of different methods under the
two basic processing scenarios.

Performance on Single Large Records. First, we evaluated all the
methods on the single large record of each dataset (1GB per record).
Figure 10 reports the total execution time. For preprocessing-based
methods, it includes preprocessing and querying time. For JPStream
and Pison, Figure 10 also reports their parallel execution time using
16 speculative threads (the same as the #cores).

First, the results clearly show that JPStream and RapidJSON run
significantly slower than the other methods. This is mainly due
to the character-by-character processing and the lack of bitwise
and SIMD parallelism. By contrast, simdjson, Pison, and JSONSki
simultaneously process a batch of characters. In specific, JSONSki
runs 12.3× faster than JPStream, confirming the importance of
adopting bit-parallelism in semi-structured data streaming.

Among the methods with bit-parallelism, JSONSki achieves 4.8×
speedup over simdjson and 3.1× over Pison, on average. These
benefits mainly come from three aspects: First, JSONSki not only
utilizes bit-parallelism for identifying metacharacters, but also uses
it for locating the boundaries of objects and arrays (see Section 4).
Second, JSONSki can fast-forward over a large ratio of the data
stream, without examining its details (see Section 3.2). Third, with
streaming design, JSONSki consumes the data within the caches.
By contrast, both simdjson and Pison need to first construct some
data structure (a parse tree or indexing bitmaps) before evaluating
the queries. Note that Pison can also skip parsing some parts of the
data stream in detail, however, to achieve that, it still needs to build
the structural indices for the entire data stream beforehand.

Note that for a single record, JSONSki has to traverse it in serial
due to the dependences involved. In comparison, both JPStream and
Pison support speculative execution to break dependences. When
the speculation is enabled, the results show that the single-threaded
JSONSki still beats JPStream with 16 threads by about 28%, but runs
slower than Pison with 16 threads by 48%. We expect the slowdown
would be addressed after speculation is added to JSONSki.

In addition, we noticed that JSONSki takes significantly less time
(around 0.01s) in two cases: NSPL1 and WP2. It turns out that the
queries find all matches in the early part of the data stream, so
JSONSki fast-forwards a high ratio of data stream, which will be
discussed in detail in Section 5.3.

Performance on Small Records. Figure 11 reports the execution
time in processing a sequence of small records using a single thread.
Overall, the performance results are similar to those on the large
ones, except that most methods become slightly faster, thanks to the
better cache locality—small records may fit into the caches. Note
that JSONSki runs a bit longer on average (from 0.40s to 0.41s),
due to the exclusion of two cases (NSPL1 and WP2) which are not
applicable to the small-record scenario.

Figure 12 reports the time of parallel execution using 16 threads,
where each thread is assigned to process one small record each time.
The results indicate that JSONSki achieves 9.5× and 3.0× speedups
over JPStream and Pison, respectively. Also, comparing with the
serial performance (Figure 11), we find that JPStream, Pison, and
JSONSki, scale reasonably well on the 16-core machine, realizing
speedups of 11.9×, 11.8×, and 10.3×, respectively.

Memory Overhead. Thememory cost is also critical to applications
of semi-structured data. Figure 13 presents thememory footprints of
different methods in processing a large record. For their streaming
design, JPStream and JSONSki only take around 1GB (their memory
consumption is actually configurable by adjusting the input buffer
size). While the other methods need a substantial amount of extra
memory for holding the preprocessing results, like a parse tree
(simdjson and RapidJSON) or structural indices (Pison). On average,
their memory costs are around 2-3GB.

208

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Lin Jiang and Zhijia Zhao

5.07

4.90
1.92

1.24
0.40
0.51
0.27

0

2

4

6

8

TT1 TT2 BB1 BB2 GMD1 GMD2 NSPL1 NSPL2 WM1 WM2 WP1 WP2 Mean

Ti
m

e
(s

)
RapidJSON JPStream simdjson Pison JSONSki JPStream(16) Pison(16)

Figure 10: Performance on a Single Large Record (JPStream(16) and Pison(16) use 16 speculative threads)

4.19
4.54

1.70
1.410.08 0.21 0.1 0.41

0

2

4

6

8

TT1 TT2 BB1 BB2 GMD1 GMD2 NSPL2 WM1 WM2 WP1 Mean

Ti
m

e
(s

)

RapidJSON JPStream simdjson Pison JSONSki

Figure 11: Sequential Performance on a Series of Small Records (All methods use a single thread)

0.38

0.12

0.04

0

0.2

0.4

0.6

0.8

TT1 TT2 BB1 BB2 GMD1GMD2 NSPL2 WM1 WM2 WP1 Mean

Ti
m

e
(s

)

JPStream(16) Pison(16) JSONSki(16)

Figure 12: Parallel Performance on a Series of Small Records

0

1000

2000

3000

4000

5000

TT1 BB1 GMD1 NSPL1 WM1 WP1 Mean

M
em

m
or

y
(M

B)

RapidJSON simdjson Pison JPStream JSONSki

Figure 13: Memory Footprint Comparison

5.3 Benefits Breakdown
To examine the benefits of JSONSki, we define fast-forward ratio—
the ratio between the characters fast-forwarded and the total data
stream length, to estimate the effectiveness of fast-forward. Table 6
reports these ratios under different fast-forward function groups in
the scenario of single large record processing.

First, as the last column of Table 6 shows, the overall fast-forward
ratios for all five groups of functions are very high across all the
evaluated queries—all above 95%. This confirms the effectiveness
of fast-forward in practice. For less than 5% characters that are
not fast-forwarded, they are mostly the attribute names and some
metacharacters that have to be extracted for the matching purpose.

Second, the results reveals the uneven contributions of different
fast-forward functions to the overall fast-forward ratio. Non-trivial

Table 6: Fast-Forward Ratios by Function Groups

Query G1 G2 G3 G4 G5∗ Overall

TT1 12.80% 78.22% 0.22% 8.20% – 99.44%
TT2 0.00% 1.17% 2.28% 95.62% – 99.07%
BB1 14.34% 0.72% 0.49% 82.19% 0.75% 98.49%
BB2 89.24% 8.73% 0.02% < 0.01% – 97.99%
GMD1 13.18% 0.04% 1.06% 83.13% – 97.41%
GMD2 0.02% 99.97% < 0.01% 0.00% – 99.99%
NSPL1 < 0.01% < 0.01% < 0.01% 99.99% – 99.99%
NSPL2 83.45% 0.00% 1.55% < 0.01% 10.94% 95.94%
WM1 97.97% 0.13% 0.01% 1.66% – 99.77%
WM2 < 0.01% 0.33% 1.90% 96.56% – 98.79%
WP1 1.47% 83.08% 0.01% 14.77% – 99.33%
WP2 < 0.01% 0.02% < 0.01% 0.01% 99.96% 99.99%
∗G5 functions are only for queries with index constraints

0.1

1

10

100

1000

250MB 500MB 1GB 2GB 4GB 8GB 16GB 32GB 72GB

Ex
ec

. T
im

e
(s

)

Data Stream Size

RapidJSON JPStream
simdjson Pison
JSONSki

oom

Figure 14: Scalability Comparison (BB1)
(Both axes are in log scale; simdjson supports up to 4GB.)

contributions (> 5%) are bolded in Table 6. For example, under TT1,
G2 functions achieve a ratio of 78.22%, while G3 functions only
fast-forward over 0.22% of the data. In general, the contributions
of functions highly depend on the matching process. Except for
G3 functions, all other four groups of fast-forward functions made
non-trivial contributions in at least one query. For G3 functions,
their effectiveness highly depends on the querying selectivity, as
they are designed for outputting. For queries with relatively lower
selectivity, their contributions tend to be higher.

209

JSONSki: Streaming Semi-structured Data with Bit-Parallel Fast-Forwarding ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

5.4 Scalability
Finally, we briefly demonstrate the scalability of JSONSki in terms
of input size of a single large record. We constructed a data stream
of the BB dataset with its size ranging from 250MB to 72GB (the
tested machine has 128GBmemory). Figure 14 reports the execution
time of different methods under query BB1. The results show that,
as the data stream size increases, the execution time of JSONSki
tends to grow linearly just like the other methods. In addition, we
find that the two processing-based methods (RapidJSON and Pison)
failed to scale up to an input of 72GB; both of them suffered from the
out-of-memory error. The other processing-based method simdjson
only supports JSON records up to 4GB.

6 RELATEDWORK
This section discusses existing work on semi-structured data under
three topics: i) character-by-character processing, ii) bit-parallel
processing, and iii) fast-forwarding and filtering.

Character-by-Character Processing. Most existing works on raw
semi-structured data processing follows a character-by-character
processing style. For XML querying, existing methods are either
based on automata [22, 28, 30, 46, 53], arrays [37], or stacks [26, 38].
Similarly, most existing JSON query evaluators [2, 7, 8, 11] convert
each JSON record into in-memory tree structure before getting the
substructure of interests.

However, as discussed earlier, preprocessing may introduce an
upfront delay and requires extra memory. To address such issues,
streaming scheme has been proposed, first for XML data [30, 36, 46]
then for JSON data, such as JSONSurfer [13] and JPStream [35].
More details about the streaming design have been provided as
background in Section 2.

Bit-Parallel Processing. Recently, some works utilize SIMD and
bitwise parallelism to accelerate semi-structured data processing.
Mison [41] leverages bit-parallelism to create structural indices
for a single JSON record. To improve the scalability, Pison [34]
proposes customized parallelization techniques (e.g., speculation)
to build indices in parallel for a single JSON record. Some of these
ideas are inspired by NoDB [18, 19, 33, 39], which builds structural
index on raw CSV files. Unlike the above methods, simdjson [40]
adopts bitwise processing to speed up the parsing tree generation.
All the above methods use bit-parallelism to build in-memory data
structures during the preprocessing. By contrast, JSONSki leverages
bit-parallelism to accelerate the fast-forward during the streaming.

Besides JSON, bitwise parallelism has also been applied for other
data processing, like regular expression matching [24], finite-state
machine [49], bit-stream processing [48], substring searching [24,
47], XML parsing [42], delimiter-separated data parsing [50], and
data processing in some database systems [17, 23, 27, 45].

Fast-Forwarding and Filtering. To boost the performance of
JSON data processing, Sparser [47] filters out certain JSON records
before parsing and querying, based on the substrings appeared
in the query. If a JSON record contains no specified substrings, it
would be filtered out. Clearly, its effectiveness depends on the query
selectivity. If a query can find matches in most records, the filtering
only brings limited benefits (or even slows it down). Note that this
filtering is orthogonal to the fast-forward in this work. The former

is inter-record and is unaware of the record structure, while the
latter is intra-record and is based on the record structure.

As introduced earlier, Mison [41] and Pison [34] also try to skip
some detailed parsing. They achieve this by building structural
indices for the entire record beforehand (see Section 2).

For XML data, some earlier work mentioned fast-forward, but
the contexts and the high-level ideas are different from this work.
First, XHints [31] proposes to insert artificial “hints” into the XML
data stream to indicate the portions to be fast-forwarded. However,
this solution sacrifices the generality, as the “hints” carry special
semantics beyond the XML syntax. Alternatively, Amagasa and
others [20] propose to fast-forward XML elements that fail to match
the path queries, similar to our G2 functions. To do so, they designed
a streamlined parser to fast-forward XML attributes.

Though the above works explored ideas similar to fast-forward,
there are several special challenges this work needs to address in the
streaming context. First, unlike prior works where bitmaps (indices)
are constructed for the entire record step by step, streaming scheme
lacks a “global view” —it is only aware of the characters that it has
already processed. This requires creating bitmaps in the absence of
well-defined start and end positions of objects, arrays, and etc. To
deal with the “missing contexts”, we introduced structural intervals,
which are essentially partial bitmaps with varying lengths.

Second, in the preprocessing scheme, the bitmaps (indices) are
complete, which makes the fast-forward straightforward: jump to
a colon (in an object) to match a field or count the commas in an
array to match the elements. By contrast, due to the unavailability
of the "global bitmaps", the fast-forward algorithms in the streaming
scheme needs to be customized under different "partial contexts"—
as shown by the diversity of fast-forward functions in this work.

At last, it is non-trivial to integrate the fast-forward ideas into
the existing streaming processor (JPStream) due to its formal design.
To fill this gap, this work designed a new streaming model based
on recursive-descent parsing to easily adopt fast-forward ideas.

7 CONCLUSION
Streaming query evaluation is a promising scheme for processing
semi-structured data. However, its conventional design requires
to parse the entire data stream in detail. In this work, we reveal a
series of opportunities of fast-forward over substructures of the
data stream that are irrelevant to the query evaluation. To tap into
its full potential, we propose a set of bit-parallel algorithms for
realizing different fast-forward cases. Based on these, we developed
JSONSki, a new JSON streaming framework. Our evaluation shows
that JSONSki is able to fast-forward over 95% of the data stream for
common query structures, bringing significant speedups over the
existing streaming and non-streaming methods.

ACKNOWLEDGMENTS
We thank all anonymous reviewers for their constructive comments
and our shepherd Dr. Linhai Song for his time and efforts in helping
with the paper revision. This material is based upon work supported
by the National Science Foundation under Grant No. 1751392. Any
opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

210

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Lin Jiang and Zhijia Zhao

REFERENCES
[1] [n. d.]. Best Buy Developer API. https://bestbuyapis.github.io/api-

documentation/. Retrieved: 2019-05-01.
[2] [n. d.]. A fast JSON parser/generator for Java. https://github.com/alibaba/fastjson/.

Retrieved: 2020-05-01.
[3] [n. d.]. Google Map Directions API. https://developers.google.com/maps/

documentation/directions/start/. Retrieved: 2019-07-01.
[4] [n. d.]. The home of the U.S. Government’s open data. https://www.data.gov/.

Retrieved: 2019-07-01.
[5] [n. d.]. Introducing JSON. https://www.json.org/. Retrieved: 2019-07-01.
[6] [n. d.]. A Java serialization/deserialization library to convert Java Objects into

JSON and back. https://github.com/google/gson. Retrieved: 2020-05-10.
[7] [n. d.]. JSON-C - A JSON implementation in C. https://github.com/json-c/json-c/.

Retrieved: 2020-05-01.
[8] [n. d.]. Main Portal page for the Jackson project. https://github.com/FasterXML/

jackson/. Retrieved: 2020-05-01.
[9] [n. d.]. National Statistics Postcode Lookup UK. https://data.gov.uk/dataset/

national-statistics-postcode-lookup-uk/. Retrieved: 2019-07-01.
[10] [n. d.]. Product Lookup API. https://developer.walmartlabs.com/docs. Retrieved:

2019-05-10.
[11] [n. d.]. RapidJSON. http://rapidjson.org/. Retrieved: 2020-05-01.
[12] [n. d.]. Run JavaScript Everywhere. https://nodejs.dev/. Retrieved: 2019-07-01.
[13] [n. d.]. A streaming JsonPath processor in Java. https://github.com/jsurfer/

JsonSurfer/. Retrieved: 2020-05-01.
[14] [n. d.]. Twitter Developer API. https://developer.twitter.com/en/docs/. Retrieved:

2019-07-01.
[15] [n. d.]. Why JSON will continue to push XML out of the pic-

ture. https://www.ctl.io/developers/blog/post/why-json-will-continue-to-push-
xml-out-of-the-picture. Retrieved: 2019-07-01.

[16] [n. d.]. Wikimedia Miscellaneous Files. https://archive.org/details/wikidata-json-
20150202. Retrieved: 2020-05-20.

[17] Azza Abouzied, Daniel J Abadi, and Avi Silberschatz. 2013. Invisible loading:
access-driven data transfer from raw files into database systems. In Proceedings
of the 16th International Conference on Extending Database Technology. 1–10.

[18] Ioannis Alagiannis, Renata Borovica, Miguel Branco, Stratos Idreos, and Anastasia
Ailamaki. 2012. NoDB: efficient query execution on raw data files. In Proceedings
of the 2012 ACM SIGMOD International Conference on Management of Data. 241–
252.

[19] Ioannis Alagiannis, Renata Borovica-Gajic, Miguel Branco, Stratos Idreos, and
Anastasia Ailamaki. 2015. NoDB: efficient query execution on raw data files.
Commun. ACM 58, 12 (2015), 112–121.

[20] Toshiyuki Amagasa, Mana Seino, and Hiroyuki Kitagawa. 2013. Energy-efficient
XML stream processing through element-skipping parsing. In 2013 24th Interna-
tional Workshop on Database and Expert Systems Applications. IEEE, 254–258.

[21] Amazon. 2021. Extracting Data from JSON. https://docs.aws.amazon.com/athena/
latest/ug/extracting-data-from-JSON.html. Retrieved: 2021-07-01.

[22] Iliana Avila-Campillo, Todd J Green, Ashish Gupta, Makoto Onizuka, Demian
Raven, and Dan Suciu. 2002. XMLTK: An XML toolkit for scalable XML stream
processing. Database Research Group (CIS) (2002), 2.

[23] Spyros Blanas, Kesheng Wu, Surendra Byna, Bin Dong, and Arie Shoshani. 2014.
Parallel data analysis directly on scientific file formats. In Proceedings of the 2014
ACM SIGMOD international conference on Management of data. 385–396.

[24] Robert D Cameron, Thomas C Shermer, Arrvindh Shriraman, Kenneth S Herdy,
Dan Lin, Benjamin R Hull, and Meng Lin. 2014. Bitwise data parallelism in
regular expression matching. In 2014 23rd International Conference on Parallel
Architecture and Compilation Techniques (PACT). IEEE, 139–150.

[25] Arijit Chakraborty. [n. d.]. An Introduction to REST and JSON. https://blogs.
oracle.com/cloud-platform/an-introduction-to-rest-and-json. Retrieved: 2019-
07-01.

[26] Songting Chen, Hua-Gang Li, Junichi Tatemura, Wang-Pin Hsiung, Divyakant
Agrawal, and K Selçuk Candan. 2006. Twig2Stack: bottom-up processing of
generalized-tree-pattern queries over XML documents. In Proceedings of the 32nd
international conference on Very large data bases. 283–294.

[27] Yu Cheng and Florin Rusu. 2014. Parallel in-situ data processing with speculative
loading. In Proceedings of the 2014 ACM SIGMOD international conference on
Management of data. 1287–1298.

[28] Yanlei Diao, Peter Fischer, Michael J Franklin, and Raymond To. 2002. Yfilter:
Efficient and scalable filtering of XML documents. In Data Engineering, 2002.
Proceedings. 18th International Conference on. IEEE, 341–342.

[29] Chris Esplin. [n. d.]. Firebase Data Modeling. https://howtofirebase.com/firebase-
data-modeling-939585ade7f4. Retrieved: 2019-07-01.

[30] Todd J Green, Gerome Miklau, Makoto Onizuka, and Dan Suciu. 2003. Process-
ing XML streams with deterministic automata. In International Conference on
Database Theory. Springer, 173–189.

[31] Akhil Gupta and Sudarshan S Chawathe. 2004. Skipping Streams with XHints.
Technical Report.

[32] Stefan Gössner. [n. d.]. JSONPath - XPath for JSON. http://goessner.net/articles/
JsonPath/. Retrieved: 2018-07-01.

[33] Stratos Idreos, Ioannis Alagiannis, Ryan Johnson, and Anastasia Ailamaki. 2011.
Here are my data files. here are my queries. where are my results?. In Proceedings
of 5th Biennial Conference on Innovative Data Systems Research.

[34] Lin Jiang, Junqiao Qiu, and Zhijia Zhao. 2020. Scalable structural index con-
struction for JSON analytics. Proceedings of the VLDB Endowment 14, 4 (2020),
694–707.

[35] Lin Jiang, Xiaofan Sun, Umar Farooq, and Zhijia Zhao. 2019. Scalable Processing
of Contemporary Semi-Structured Data on Commodity Parallel Processors - A
Compilation-based Approach. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems (Providence, RI, USA) (ASPLOS ’19). ACM, New York, NY, USA, 79–92.
https://doi.org/10.1145/3297858.3304008

[36] Lin Jiang and Zhijia Zhao. 2017. Grammar-aware Parallelization for Scalable
XPath Querying. In Proceedings of the 22nd ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming. 371–383.

[37] Vanja Josifovski, Marcus Fontoura, and Attila Barta. 2005. Querying XML streams.
The VLDB Journal 14, 2 (2005), 197–210.

[38] Arseny Kapoulkine. [n. d.]. pugixml: a Light-weight, simple and fast XML parser
for C++ with XPath support. http://pugixml.org/. Retrieved: 2019-07-01.

[39] Manos Karpathiotakis, Miguel Branco, Ioannis Alagiannis, and Anastasia Aila-
maki. 2014. Adaptive query processing on RAW data. Proceedings of the VLDB
Endowment 7, 12 (2014), 1119–1130.

[40] Geoff Langdale and Daniel Lemire. 2019. Parsing gigabytes of JSON per second.
The VLDB Journal 28, 6 (2019), 941–960.

[41] Yinan Li, Nikos R. Katsipoulakis, Badrish Chandramouli, Jonathan Goldstein, and
Donald Kossmann. 2017. Mison: A Fast JSON Parser for Data Analytics. PVLDB
10, 10 (2017), 1118–1129. https://doi.org/10.14778/3115404.3115416

[42] Dan Lin, Nigel Medforth, Kenneth S. Herdy, Arrvindh Shriraman, and Robert D.
Cameron. 2012. Parabix: Boosting the efficiency of text processing on commodity
processors. In 18th IEEE International Symposium on High Performance Computer
Architecture, HPCA 2012, New Orleans, LA, USA, 25-29 February, 2012. 373–384.
https://doi.org/10.1109/HPCA.2012.6169041

[43] C Louden Kenneth. 1997. Compiler Construction: Principles and Practice. Course
Technology (1997).

[44] MongoDB. [n. d.]. MongoDB Extended JSON. https://docs.mongodb.com/manual/
reference/mongodb-extended-json/. Retrieved: 2019-07-01.

[45] Tobias Mühlbauer, Wolf Rödiger, Robert Seilbeck, Angelika Reiser, Alfons Kem-
per, and Thomas Neumann. 2013. Instant loading for main memory databases.
Proceedings of the VLDB Endowment 6, 14 (2013), 1702–1713.

[46] Peter Ogden, David Thomas, and Peter Pietzuch. 2013. Scalable XML query pro-
cessing using parallel pushdown transducers. Proceedings of the VLDB Endowment
6, 14 (2013), 1738–1749.

[47] Shoumik Palkar, Firas Abuzaid, Peter Bailis, and Matei Zaharia. 2018. Filter Before
You Parse: Faster Analytics on Raw Data with Sparser. Proceedings of the VLDB
Endowment 11, 11 (2018), 1576–1589.

[48] Junqiao Qiu, Lin Jiang, and Zhijia Zhao. 2020. Challenging Sequential Bitstream
Processing via Principled Bitwise Speculation. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages and
Operating Systems. 607–621.

[49] Junqiao Qiu, Zhijia Zhao, and Bin Ren. 2016. Microspec: Speculation-centric
fine-grained parallelization for FSM computations. In Proceedings of the 2016
International Conference on Parallel Architectures and Compilation. 221–233.

[50] Elias Stehle and Hans-Arno Jacobsen. 2020. ParPaRaw: Massively Parallel Parsing
of Delimiter-Separated Raw Data. Proc. VLDB Endow. 13, 5 (Jan. 2020), 616–628.
https://doi.org/10.14778/3377369.3377372

[51] Twitter. 2021. Data dictionary: Standard v1.1. https://developer.twitter.com/en/
docs/twitter-api/v1/data-dictionary/object-model/geo. Retrieved: 2021-07-01.

[52] TwoBitHistory. [n. d.]. The Rise and Rise of JSON. https://twobithistory.org/
2017/09/21/the-rise-and-rise-of-json.html. Retrieved: 2019-07-01.

[53] Ying Zhang, Yinfei Pan, and Kenneth Chiu. 2010. A parallel xpath engine based on
concurrent NFA execution. In 2010 IEEE 16th International Conference on Parallel
and Distributed Systems. IEEE, 314–321.

211

