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Abstract
We perform the firstsimultaneous Bayesian parameter inference and optimalreconstruction of the gravitational
lensing of the cosmic microwave background (CMB), using 100 deg2 of polarization observations from the SPTpol
receiver on the South Pole Telescope. These data reach noise levels as low as 5.8 μK arcmin in polarization, which
are low enough that the typically used quadratic estimator (QE) technique for analyzing CMB lensing is
significantly suboptimal. Conversely, the Bayesian procedure extracts all lensing information from the data and is
optimal at any noise level. We infer the amplitude of the gravitational lensing potential to be

= fA 0.949 0.122 using the Bayesian pipeline, consistentwith our QE pipeline result, but with 17%
smallererror bars.The Bayesian analysis also provides a simple way to accountfor systematic uncertainties,
performing a similar job as frequentist“bias hardening” or linear bias correction,and reducing the systematic
uncertainty on Af due to polarization calibration from almost half of the statistical error to effectively zero. Finally,
we jointly constrain A f along with A L, the amplitude of lensing-like effects on the CMB power spectra,
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demonstrating thatthe Bayesian method can be used to easily inferparameters both from an optimallensing
reconstruction and from the delensed CMB, while exactly accounting for the correlation between the two. These
results demonstrate the feasibility of the Bayesian approach on real data, and pave the way for future analysis of
deep CMB polarization measurements with SPT-3G,Simons Observatory,and CMB-S4,where improvements
relative to the QE can reach 1.5 times tighter constraintson A f and seven times lower effective lensing
reconstruction noise.
Unified Astronomy Thesaurus concepts: Cosmology (343); Cosmic microwave background radiation (322);
Gravitational lensing (670); Weak gravitational lensing (1797); Bayesian statistics (1900)

1. Introduction
Gravitationallensing of the cosmic microwave background

(CMB) occurs as CMB photons traveling to us from the last
scattering surface are deflected by the gravitational potentials of
intervening matter.This effect has been detected with high
significance,allowing inference of the line-of-sightprojected
gravitational field of the intervening matter and of the late-time
expansion history and geometry of the universe (Lewis &
Challinor 2006; Planck Collaboration et al. 2020a). Better
measurements of the lensing effect are one of the main goals of
nearly all future CMB probes, and can help constrain dark
matter, neutrinos,modified gravity, and a wealth of other
cosmologicalphysics (Benson etal. 2014; Abazajian et al.
2016; The Simons Observatory Collaboration et al.2019).

Traditionally, analysis of lensed CMB data has relied on the
so-called quadratic estimate (QE) of the gravitationallensing
potential, f (Zaldarriaga & Seljak 1999; Hu & Okamoto 2002).
The QE is a frequentist point estimate of f formed from
quadratic combinations of the data.It is conceptually simple
and near minimum-variance at noise levels up to and including
many present-day experiments.However, it was realized by
Hirata & Seljak (2003a, 2003b) and Seljak & Hirata (2004) that
when instrumental noise levels drop below ∼ 5 μK arcmin,
where lensing-induced B-modesbegin to be resolved with
signal-to-noise greater than one, the QE ceases to be minimum-
variance, and better analysis can extract more information from
the same data. Hirata & Seljak (2003b) were the first to
constructa better estimator,using a method based on the
Bayesian posterior for CMB lensing. This included a maximum
a posteriori (MAP) estimate of f, which has lower variance
than the QE,40 and a maximum-likelihood estimate (MLE) of
the power spectrum of gravitational lensing potential, ffCℓ .
These results used a numberof simplifying approximations,
including perfectly white noise and periodic flat-sky boundaries
with no masking in the pixeldomain.Extending this original
work, Carron & Lewis (2017) upgraded this MAP f procedure
to work without these approximations,rendering itapplicable
to realistic instrumental conditions.

Although estimates of the f maps are useful,here we are
interested in reconstructing notonly f but its theory power
spectrum as well.A common misconception is thatonce one
has a better estimate of f (e.g.,a MAP f estimate), one can
take its power spectrum,subtracta noise bias,and obtain the
desired estimate of ffCℓ . While this does work for the QE, it is
only because the QE can be analytically normalized and its
power spectrum analytically noise debiased (up to some usually
minor Monte Carlo corrections), yielding an unbiased estimate

of the theory lensing spectrum. However, this is not generically
the case for MAP estimates, for which analytic calculations of
normalization and noise biases do notexist. In theory, one
could try computing these entirely via Monte Carlo,but this
can only be done at a single fiducial cosmological model, and it
is unknown to what extent these could be cosmology-
dependentor how one might deal with this. If a frequentist
estimate is nevertheless desired,a more promising approach
may be something akin to theffCℓ MLE proposed by Hirata &
Seljak (2003b).However,this has notyet been demonstrated
on realistic data.

An alternate approach is based on direct Bayesian inference
of cosmologicalquantitiesof interest,without the need for
explicit normalization and debiasing of any intermediate power
spectra.Recent progresswas presented in Anderes et al.
(2015), who developed a Monte Carlo sampler of the Bayesian
posterior of unlensed CMB temperature mapsand f maps
given fixed cosmological parameters. Millea et al. (2019) began
the process ofincorporating polarization into this procedure,
resulting in a joint MAP estimate of both the f map and the
CMB polarization fields. Finally, Millea et al. (2020,
hereafter MAW20) extended this to a full Monte Carlo sampler
and included cosmological parameters in the sampling,giving
the key ingredients needed forthe work here. By virtue of
directly mapping out the Bayesian posterior for these
quantities,this method achieves the goalof fully extracting
cosmological information from lensed CMB data and is
optimal at all noise levels.

Instrumental noise levels that are low enough at the relevant
scales to necessitateanything beyond the QE have only
recently been attained. The POLARBEAR collaboration
performed the first(and to-date only) beyond-QE analysis of
real data (Adachiet al. 2020).This used the Carron & Lewis
(2017) MAP f estimate to internally “delense” the data,
removing the lensing-induced B-modepolarization. Unlike
generic ffCℓ estimation,B-mode delensing doesnot require
renormalizing the f estimate, and noise biases can be mitigated
via the “overlapping B-mode deprojection” technique.

In this work, we go a step further and perform an optimal
lensing reconstruction and fullparameter extraction from the
lensing potential and from internally delensed bandpowers.
Although similar in spirit, our methodology is quite different,
however,and it is based on the MAW20 Bayesian sampling
procedure ratherthan on any point estimates.We use the
deepest100 deg2 of South Pole Telescope polarization data
obtained with the SPTpol receiver, restricting ourselves to just
this deepestpatch since we are mainly interested in the low-
noise regime where the Bayesian procedure will outperform the
QE. We infer cosmological parametersfA andAL , along with a
host of systematics parameters. ThefA parameter is a standard
parameter scaling the theory lensing spectrum as

ff
f

ffC A Cℓ ℓ . fA can be considered a proxy for any physical

40 The MAP f estimate from Hirata & Seljak (2003b) has sometimes been
called the “iterative quadratic estimate,” but because several methods exist that
involve iterating something akin to a quadratic estimate,we do not use this
term and instead more precisely refer to individual methods.
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parameter that is constrained by the lensing potential,such as
the matter density or the sum of neutrino masses. We choose to
estimate fA here for simplicity,but in the future, the method
could easily be extended to estimate more physical parameters
instead.The AL parameter scales the lensing-like contribution
to the model CMB power spectrum,and is defined such that

=A 1L if the underlying cosmological model is correct. Unlike
frequentistestimates,the Bayesian procedure requires a self-
consistentdata modelthat includes both fA and AL , and we
develop one here. Finally, we include several systematics
parameters,noting that it is particularly easy to incorporate
systematic errors into the Bayesian approach.The final output
of this procedure is a Markov Chain Monte Carlo (MCMC)
composed of samples of these parameters along with samples
of the f maps and unlensed CMB polarization maps, for a total
of 202,808 dimensions sampled. Ultimately, we demonstrate a
17% improvement of the Bayesian constraint on fA as
compared to the QE.

The results here are new in three regards:

1. The first time a parameter ( fA ) is estimated from an
optimal lensing reconstruction.

2. The first joint inference of parameterscontrolling the
lensing potential( fA ) and controlling the CMB band-
powers (AL), while fully and exactly accounting for
correlation between the reconstruction and the
delensed CMB.

3. The first application of a fully Bayesian method to CMB
lensing data.

These demonstrate important pieces of the type of fully optimal
beyond-QE analysis,which will be a requirement if next-
generation experiments such as SPT-3G, Simons Observatory,
and CMB-S4 are to reach theirfull (and expected)potential
(Benson et al. 2014; Abazajian et al. 2016; The Simons
Observatory Collaboration et al.2019).

The organization of the paper is as follows. The reader who
wishes to skip the details of the MCMC sampling procedure
and simply trust that it yields samples from the exactCMB
lensing posterior can jump to the main results in Section 6 and
discussion in Section 7. The earlier sections give the technical
details of the data modeling and sampling.In Section 2, we
describe the data and simulations used in this work. These data
have been previously vetted in Story et al. (2015) and Wu et al.
(2019b), and we refer the reader to these works for various null
tests, here choosing instead to concentrateon the lensing
analysis.Most of the focus of this work is on the Bayesian
pipeline in particular, and Section 3 lays out the forward model
necessary to construct the posterior for CMB lensing given the
South Pole Telescope(SPT) data. Section 4 describes the
Bayesian and QE lensing pipelines,and Section 5 provides
validation of the procedures,including on a suite of realistic
simulations of the actual data.

2. Data and Simulations
2.1. Data

In this work, we use data from the 150 GHz detectors from
the SPTpol receiver on the SPT (Padin et al.2008; Carlstrom

Figure 1. To help orient the reader, a visualization of the various linear operators that enter the CMB lensing posterior in Equation (8) is presented. The operators

and are the beams and transfer functions,respectively, and together form the noise covariance as =    †n , and p and f are the pixel-space and
Fourier-space masks, respectively (see Section 3 for a full description). These operators correspond to´N Npix pix matrices, which act on theNpix-dimensional vector
space of spin-2 (i.e., polarization) 2D maps or 2D Fourier transforms (here= ·N 2 260pix

2). The quantities plotted above are the Q component of the diagonal of
these matrices when represented in the basis labeled in each plot. For ,  p, and f , the Q and U components are taken to be identical, while for ,  , and , they
are allowed to be different (but qualitatively end up very similar,and hence only Q is shown).
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et al. 2011; Bleem et al. 2012). SPTpolhas employed three
different scan strategies for the observations that comprise our
final data set.

From 2012 March to 2013 April, SPTpol observed a 100
deg2 patch of sky (  ´ 10 10 ) centered atR.A. 23h30m and
decl.- 55 . All observations of this field were made using an
azimuthal “lead-trail” scan strategy, where the 100deg2 field is
split into two equal halves in R.A., a “lead” half-field and a
“trail” half-field. The lead half-field is observed first, followed
immediately by a trail half-field observation, such that the lead
and trail observationsoccur in the same azimuth-elevation
range. Each half-field is observed by scanning the telescope in
azimuth right and left across the field and then stepping up in
elevation.This lead-trail strategy enables removalof ground
pickup.We will refer to these data as the 100D observations.

From 2013 April to 2014 May, SPTpol observed a 500deg2

patch of sky, extending from 22h to 2h in R.A. and from −65°
to −50° in decl. Observations during this time were also made
using the “lead-trail” scan strategy, and we will refer to them as
the 500D-LT observations.

From 2014 May to 2016 September,while observing the
same 500deg2 field, SPTpolswitched to the “full-field” scan

strategy in order to increase sensitivity to larger scales on the
sky. In this case,constant-elevation scans are made across the
entire range of R.A. of the field. We will refer to these data as
the 500D-FULL observations.

Our final data setcomprises 6262 100D observations,858
500D-LT observations, and 3370 500D-FULL observations. Each
observation recordsthe time-ordered data(TODs) of each
detector,and these TODs are filtered and calibrated before
being binned into maps.We highlight that while the lensing
reconstruction used in this work is optimaland gauranteed to
fully extract the lensing information from the CMB maps,the
input maps themselves are notoptimal in the same sense.In
theory, we could employ a maximum-likelihood mapmaking
procedure (foran example,see Aiola et al. 2020); however,
becauseof our fairly simple scan strategy and uniform
coverage,this would likely lead to very small improvements
in final constraints and is thus notused.The data reduction
largely follows previous TE/EE power spectrum analyses,
namely Crites et al. (2015) for the 100D observations,and
Henning et al. (2018) for the 500D-LT and 500D-
FULL observations.Here we only highlight relevant aspects
for this analysis.

For the 100D observations,we use slightly different TOD
filters compared to previous analysis ofthese data in Crites
et al. (2015). We subtracta fifth-order Legendre polynomial
from the TOD of each detector,and then apply a high-pass
filter at 0.05 Hz, in order to match the filter choices for

Figure 2. Validation of the approximations underlying ourestimate of the
transfer function,  (see Section 3.6).The top plots shows the Q and U
components of the difference between (1) a full 100D-DEEPTOD-level noise-
free pipeline simulation and (2) a simple projection of the same realization then
multiplication by . The differences arise from mode coupling induced by the
TOD filtering and Monte Carlo error in the transfer function estimation
procedure.The bottom plot shows the powerspectrum of these difference
maps, averaged over several realizations, as well as of the QQ signal and noise
for comparison.Differences are one to fourorders of magnitude below the
noise powerspectrum,hence negligible.We note that in both the top and
bottom plots,the full Fourier and pixelmask, , has been applied,so as to
pick out the modes that are actually relevant in the analysis.

Figure 3. Validation of the approximations underlying ourestimate of the
noise covariance, n (see Section 3.7).The top panel shows the mean power
spectra of 400 real noise realizations and 104 model noise realizations that have
been masked by . The bottom is a fractional difference between the two (note
the change from linear to log scaling at10−2). The dark shaded band is the
expected scatter due to having only 400 real noise realizations, and the lighter
shaded band gives the total CMB + noise error bars in the bins plotted here.
The good agreement between the two indicates that our model noise covariance
is an accurate representation of the real noise.
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500D observations.Based on the size ofour map pixels, we
apply a low-pass filter at a TOD frequency corresponding to an
effective ℓ=5000 foranti-aliasing along the scan direction.
Electrical cross-talk between detectors could bias our measure-
ment, and in Crites et al. (2015), we applied the cross-talk
correction to the power spectra at the end of the analysis.
However, in this analysis, we correct cross-talk atthe TOD
level by measuring a detector-to-detector cross-talk matrix,in
the same way as described in Henning et al.(2018).

For the 500D-LT observations,we slightly modify the filters
as compared to Henning etal. (2018) as well.We subtracta
third-order Legendre polynomialfrom each detector’s TOD,
and then apply a high-pass filter at ℓ=100 to further suppress
atmospheric noise. We also apply a low-pass filter at ℓ=5000
for anti-aliasing.For the 500D-FULL observations,while using
the same high-pass and low-pass filters,we subtracta fifth-
order Legendre polynomialinstead,due to each scan being
twice as long in the scan direction. Electrical cross-talk is
corrected as described in Henning et al.(2018).

The TODs of each detectorare calibrated relative to one
another using an internalthermalsource and observations of
the Galactic HII region RCW38. The polarization angles of
each detector are calibrated by observing an external polarized
thermal source,as described in Crites etal. (2015). We bin
detector TODs into maps with square 1′ pixels using the
oblique Lambertazimuthalequal-area projection,centered at
the 100D field center. Because the Bayesian analysis is
computationally intensive and scales with the number of
pixels, it is advantageous to reduce the number of pixels in the
final data map as much as possible. Since our analysis does not
use modes above ℓmax=3000,we can, without loss, down-
grade the data maps to 3′ arcmin pixels, for which the Nyquist

frequency is ℓnyq=3400.Downgrading is performed by first
applying an anti-aliasing isotropic low-pass atℓnyq, averaging
pixels together,then deconvolving the pixel-window function
to match the original1′ map (the remaining 1′pixel-window
function is accounted for in our forward modelfor the data).
The reason fornot making maps directly at3′ resolution is
because the anti-aliasing filteris most easily applied to the
intermediate 1′maps,rather than at the TOD level.

Because we are interested in a low-noise data set where the
improvementover the QE is most evident,we only run the
analysis on data within the 100D footprint, and only on
polarization data.The final data productis a set of co-added
260×260 pixelQ and U maps.The effective noise levelof
the 100D-DEEPdata set inside the mask used in the analysis is
6.0 μK arcmin in polarization over the multipole range
1000<ℓ<3000,dipping to 5.8 μK arcmin in the deepest
parts of the field.

3. Modeling
To compute the Bayesian posteriorfor CMB lensing, we

require a forward data modeland a setof priors. The data,d,
which is used as input to the Bayesian pipeline, is a masked and
“noise-filled” version of the QU data produced by the

Figure 4. A demonstration of the “noise-fill” procedure described in
Section 3.8, which makes it much easierto exactly Wiener filter the data
even in the presence of pixel and Fourier-space masking and a noise covariance
model that is not diagonalin either space.The top-left panel shows 100D-
DEEPdata with the mask applied, including Fourier and pixel masks. The top-
right panel additionally has the noise-fill,n̄, added in; this panel is exactly the
data,d, which is used in the posterior in Equation (8).The bottom-leftpanel
shows just̄n, and the bottom-right panel isn̄ multiplied by the Fourier mask. In
this last panel,one can see thatin the region interior to the mask and in the
range of Fourier modes that are not masked by the Fourier mask, no extra noise
is added. Here we have plotted just the Q-polarization component;U-
polarization behaves qualitatively the same.

Figure 5. Bandpowers and noise terms from the QE pipeline.The top panel
shows the normalized but noise-biased QE power spectrum,along the typical

( )NL
0 ,RD and ( )NL

1 noise biases that are subtracted. The blue curve is the average
cross spectrum between inputf maps and f̄ L

XY across a suite of simulations,
and is used to computeRL

MC. The bottom panel shows the noise-bias-subtracted
QE and error bars (from simulations), as well as a cloud of blue lines denoting
the noise-debiased simulations used to computefPS.
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mapmaking described in the previous section (we will describe
the masking and whatwe mean by noise-filled later in this
section). The model we assume for d (and later demonstrate is
sufficiently accurate) is

y b f= ´ +

+ +

      [ ( ) ( ) ( )
] ( )





d P f t

t n 1
i Q Q

U U

f p obs cal pol

where

1. f represents the unlensed CMB polarization fields,
2. f is the gravitational lensing potential,
3. n is the instrumental and/or atmospheric noise,
4. f ( ) is the lensing operation,
5. b ( )i is the beam smoothing operation,controlled by a

set of beam eigenmode amplitudes,βi,
6.  are the transfer functions,

7. y ( )pol is a global Q/U rotation by an angle y pol,
representing the absolute instrumental calibration,

8.  obs is a fixed but spatially dependent Q/U rotation that
aligns the flat-sky Q/U basis vectors to the data
observation basis, the inverse of the operation sometimes
referred to as “polarization flattening,”

9. Pcal is the polarization calibration parameter,
10. tQ U are temperature-to-polarization monopole leakage

templates andQ U are their amplitude coefficients,
11.  p and  f are pixel-space and Fourier-space masking

operations,respectively.

We use the notation thatlower-case regularletters represent
maps, and double-struck upper-caseletters representlinear
operators on the Npix-dimensional abstract vector space
spanned by all possible maps.Later in the paper,we also use
the notation thatDiagonal(x) refers to a diagonalmatrix with
the vector x along the diagonal, and diag( ) returns the vector
along the diagonal of the matrix .

We adopt Gaussian priors on the fields f,f, and n

~ ( ( )) ( )f A0, 2f f

f ~ f f( ( )) ( ) A0, 3

~ ( ) ( )n 0, , 4n

where ( )Af f , f f ( )A , and n denote the covariance operators
for unlensed CMB polarization,the lensing potential,and the
experimentalnoise, respectively.The first two depend on
parametersthat control the amplitude of the overall power
spectra,

= ( ) ( )A A 5f f f f
0

= + -f f f f f   ( ) ( ) ( )A A 1 , 60 0

where  f
0 and f

0 are evaluated at the best-fit Planck
cosmology.The lensing amplitude parameter,fA , is the main
cosmological parameter of interest in this work, and scales the
amplitude of the fiducial lensing potential within some
window,  . The window allows us to estimate the amplitude
just within a given multipole range,which here we take to be
ℓ=(100, 2000) to match previous SPT lensing analyses. This
parameter is sometimes denoted asf A100 2000, but throughout
this work, unless otherwise stated or included for clarity,we
will drop the superscript and simply refer to

ºf f
 ( )A A . 7100 2000

The unlensed CMB amplitude parameter,Af , functions as a
proxy for the Planck absolute calibration,and allows us to
marginalize over the uncertainty in this quantity. Incorporating
the AL parameter is slightly less straightforward than eitherfA
or Af , and this discussion is delayed until Section 6.1. All other
cosmological parameters not explicitly sampled are assumed to
be perfectly known and fixed to their true value given the
fiducial model.

We assume uniform priors on the cosmological and
instrumental parameters:Af , fA , Pcal, y pol, Q, and U , and unit
normal priors on thebi (discussed in Section 3.4).

Figure 6. The top eight plots show the trace of the sampled cosmological and
systematics parameters,θ, at each step in the Monte Carlo chain.The very
bottom plot shows the trace of thec 2 of the current model point, along with a
gray shaded band indicating the expectation based on the number of degrees of
freedom. Note that 202,800 other parameters are jointly sampled in this chain
(not pictured), corresponding to every pixelor Fourier mode in the CMB
polarization and f maps. To aid convergence, the θ are not updated for the first
100 steps in the chain. These 32 independent chains ran across four Tesla V100
GPUs in roughly 5 hr.
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Figure 7. Constraints on sampled parameters, θ, from our baseline 100D-DEEPchain. The 2D plots show 1σ, 2σ, and 3σ posterior contours as black lines, with binned
2D histograms of the samples shown inside of the 3σ boundary and individual samples shown beyond that. The first column is the main cosmological parameter of
interest f

A100 2000, and the remaining columns are systematics parameters. The ability to easily and jointly constrain cosmological and systematics parameters in this
manner,while implicitly performing optimal lensing reconstruction and delensing,is a unique strength of the Bayesian procedure.Here,we find <5% correlation
between f

A100 2000 and any systematics, meanings f
( )A100 2000 is increased by <2% upon marginalizing over systematic uncertainty. For the systematics parameters,

the blue lines denote an estimate from an external procedure, and the agreement in all cases is an important consistency check. The 1D histograms also include the
posteriorfrom a separate independentchain as a dashed line,indicating the distributions are sufficiently wellconverged.More quantitatively,the numbers in
parentheses in the titles give an estimate of the standard error on the last digit of the posterior mean and of the posterior standard deviation.
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Figure 8. Posterior mean maps, computed by averaging over the Monte Carlo samples in our chains. The quantities f andk f -º 22 are the lensing potential and
convergence maps, and̃E andB̃ are the lensed E- and B-mode polarization maps. The posterior of any quantity can be computed by post-processing the chain and
averaging; for example, the bottom-right panel shows the posterior mean of-(Ẽ E), i.e., the lensing contribution to the E-mode map. These maps are in some sense
only a byproduct of the fA inference, but if a single point estimate of any of these quantities is required elsewhere, these are the best estimates to use. As expected,
these maps qualitatively resemble Wiener filtered data, wherein low signal-to-noise modes are suppressed. The Monte Carlo error in these maps is more quantitatively
explored in Figure 9.

Figure 9. The blue and orange lines (nearly coincident) show the power spectra of (from left to right) posterior mean f, unlensed E, and lensed B maps, as determined
from one-half of the 32 independent 100D-DEEPMCMC chains vs. the other half. The power spectra of posterior mean maps is expected to be suppressed relative to
theory, similar to the suppression that arises when Wiener filtering. The green line shows the power spectra of the map differences between these two sets of chains.
Across almost all scales, these differences are one to two orders of magnitude below the spectra of the mean maps, demonstrating the level of convergence of these
chains. The smallest scales in f are the only region where the difference is larger than the mean. An analysis that required better accuracy here could run more chains,
although we note these scales do not impact the determination off

A100 2000.
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This setof choices fully specifies the posterior distribution
over all variables,given in Equation (8):
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Following the terminology of MAW20, we refer to this as the
“joint posterior,” in contrast to the “marginal posterior,” which
would analytically marginalize out f.

3.1. Calibration
Performing a change-of-variablesfrom f f Af in

Equation (8) makes itclear thatthe posterior constrains only
the productP Afcal . Thus, without loss of generality,we fix

=A 1f in our sampling and only explicitly sample the Pcal
parameter.The resulting constraints onPcal can be interpreted
as a constraint onP Afcal , or equivalently as a constraint on the
SPT polarization calibration when calibrating to a perfectly
known theory unlensed CMB spectrum given by the Planck
best fit.

An estimate ofPcal can be obtained by comparing SPTpol E
maps with those made by Planck.For the 500D data,Henning
et al. (2018) measured =P 1.06cal , and for the 100D data,
Crites et al. (2015) measured =P 1.048cal . A weighted
combination of the two predicts ~P 1.055cal for the 100D-
DEEPdata.

Figure 10. Validation of the Bayesian pipeline on simulations.The colored
lines in each panel denote the posterior distributions from each of 100
simulated 100D-DEEPdata sets (these include real noise realizations).The
shaded black curve is the product of all of these probability distributions. Note
that, for clarity, all distributions have been normalized to their maximum value.
The true value of the systematics parameters in these simulations comes from
the best-fit 100D-DEEPresults,and is denoted by the verticaldashed line in
each plot. The shaded black curve bounds possible systematic errors in the
Bayesian pipeline due to mismodeling ofthe instrumentalnoise or pipeline
errors,and we find no evidence for either to within the 10% of the statistical
error afforded by the 100 simulations.

Figure 11. (Top panel) Jointconstraints from the 100D-DEEPdata seton the
amplitude of the lensing potential, f

A100 2000, and the residuallensing-like
power,DAL . The correlation coefficientbetween the two is r = - ( )0.40 5 ,
demonstrating only about 9(3)% of thef A100 2000 constraint originates from the
power spectrum of the data.(Bottom panel) The same posterior as in the top
panelbut in terms of the = + Df

A A AL
100 2000

L parameter,which controls
the total lensing-like power in the data model.These results demonstrate the
unique ability of the Bayesian lensing procedure to infer parameters from an
optimal lensing reconstruction and from delensed bandpowers while easily and
exactly accounting for correlations between the two.
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This external estimate ofPcal, however,is not directly used,
because we do not correct the raw data by a best-fit Pcal.
Instead,we includePcal in the forward model for the data and
sample its value in our MCMC chains. Note that this approach
is unique for a lensing analysis,because it meansthat the
calibration is jointly estimated at the same time as other
systematics,at the same time as cosmological parameters,and
even at the same time as the reconstructed f maps themselves.
We will see in Section 6.3 that this has concrete benefits,
mainly that it reduces the impact of the uncertainty onPcal on
the final cosmological uncertainty. As a consistency check, we
will also show that the range of Pcal values allowed by the
MCMC chain is consistent with ~P 1.055cal .

For the QE pipeline where there is no analogous approach,
we do correct the data; however,we correct by the best-fit
value from the Bayesian pipeline for easier comparison
between the two.All of the systematics parameters described
in the following subsections are handled in the same way as

Pcal, by sampling in the Bayesian case and by applying a best-fit
correction in the QE case.

3.2. Global Polarization Angle
Assuming negligible foregrounds and a non-parity-violating

cosmologicalmodel,we expectthe cross-spectra between TB
and EB to be consistentwith zero. A systematic error in the
global polarization angle calibration of the instrument,y pol, can
also create a signal in these channels. A typical approach is to
determiney pol by finding the value thatnulls the TB and EB
channels (Keating et al. 2012). This was the approach taken in
Wu et al. (2019b) for a subsetof the same data used here,
which foundy =   0 . 63 0 . 04pol .

We include the globalpolarization rotation in the forward
data model in the form of the operatory ( )pol , and jointly infer
y pol along with the other systematicsand cosmological
parameters.Because the prior on f assumesno correlation
between EB (i.e.,  f is diagonal in EB Fourier space),the
MCMC chain will implicitly try to find the y pol that nulls the
EB channel. As we will see in Section 6.4, the value we find is
consistent with the determination from Wu et al.(2019b).

3.3. Temperature-to-polarization Leakage
Because the measured polarization signal effectively comes

from differencing the measured intensity along two different
polarization axes,any systematic mismatch affecting justone
of the axes can leak the CMB temperature signal into
polarization. Depending on the nature of the mismatch,
different functions of the temperature map can be leaked into
Q and U. For example, a gain variation between detectors will
leak a copy of the T map directly, whereas pointing errors,
errors in the beamwidth,or beam ellipticity will leak higher-
order gradients of the T map (Ade etal. 2015). Because the
temperature map is measured with very high signal-to-noise,
the presence ofleakage can be detected by cross correlating
temperature and Q or U maps (this correlation should be zero
on average for the true CMB, given a Fourier mask with
appropriate symmetries).Additionally, if any correlation is
detected,it can simply be subtracted given an appropriate
amplitude.

Figure 12. (Top panel) Posterior distribution off A100 2000 as determined by the
Bayesian and QE procedures. The blue bars are a histogram of the samples in
the chain from the Bayesian procedure, and the solid blue line is the Blackwell–
Rao posterior. The orange curve removes information from the power spectrum
of the data by marginalizing overAL , and the green curve is the Gaussian
estimate from fitting the QE bandpowers. The 17% improvement in error bar in
the AL-marginalized Bayesian case over the QE is a main result of this work.
(Bottom panel) Comparison of the Bayesian result with other measurements of
fA in the literature. The result here achieves the lowest-yet effective noise level

on f, although other results achieve better fA constraintswith a larger
observation region.

Figure 13. Constraintson fA given various changesto the analysis as
compared to the baseline result,as described in Section 6.4.
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For the 100D-DEEPdata, cross correlating with the appro-
priate templates demonstrates that only gain-type leakage exists
at appreciable levels in the maps.This type leads to a leakage
of the form,

 + ⎜ ⎟⎛
⎝
⎞
⎠

⎛
⎝
⎞
⎠
⎛
⎝

⎞
⎠

( )



Q
U

Q
U

T

T 9Q

U

whereQ andU are coefficients that capture the total leakage to
each channel.Minimizing the TQ and TU cross-correlation
yields best-fit values of

= = ( ) 0.010 0.006. 10Q U

As for the other systematics,these values are only used as a
consistencycheck, and instead the leakage templatesare
included in the forward model, andQ and U are sampled. For

convenience,we also define the spin-2 polarization fields,
tQ ≡(T,0) and º ( )t T0,U , which allow writing the leakage
contribution in the form seen in Equation (8). Finally, we note
that the coefficients are small enough that no T noise is
introduced in the deprojection or marginalization over the
leakage templates, thus the T field can be taken as a fixed truth
given by the measurement and does not need to be additionally
sampled. As we will see in Section 6.4, the values preferred by
the chain are in agreement with Equation (10).

3.4. Beams
For the 100D field, the beam window function and error

covariance are measured using eight independent observations
of Mars. The beam in the field observationsis further
broadened by pointing jitter,which we estimate by making a
second beam measurementusing bright point sources in the
100D field, and convolving it with the Mars-derived beam. Full
details can be found in Crites et al. (2015). For the 500D field,
the beam is measured using seven independent Venus
observations,and pointing jitter is convolved in the same
way as above. Full details can be found in Henning et al.
(2018),where a cross-check is also performed by comparing
with Planck beams and maps. The 100D-DEEPbeam is
computed by averaging overbeam-convolved simulations of
the 100D and 500D fields, combined given the appropriate
weights.

The forward data model includes the beam uncertainty in the
form of a beam operator parameterizedby free beam
eigenmode amplitudes:

b b b= + + +   ( ) ( )... 11i 0 1 1 2 2

where  0 is the best-fit beam, the β i are beam eigenmode
amplitudes,and the  i are the perturbationsto the beam
operator determined from an eigenmode decomposition of the
beam covariance matrix.An image of  0 is shown in the top-
left panel of Figure 1. We normalize the i such that the βi have
unit normal priors, which are included in the sampling.We
keep three eigenmodesin the chain. As we will see in
Section 6.3, none are appreciably constrained beyond their
prior, indicating that the data is consistentwith the fiducial
beam determination.

3.5. Masking
Our analysis applies a pixelmask,  p, which selects the

100D-DEEPfield and masks brightdiscrete sources.The mask
border is built by thresholding the noise pixel variance at five
times its minimum value, straightening the resulting edge with
a smoothing filter, and finally applying a 1 deg2 cosine
apodization window.The source mask is composed of known
galaxy clusters (Vanderlinde etal. 2010), and point sources
detected in temperaturewith fluxes greater than 50 mJy
(Everettet al. 2020). In total, the effective sky fraction left
unmasked is 99.9 deg2. This pixel mask is shown in the top-
right panel of Figure 1.

We note that neither Bayesian nor QE pipelines require that
the mask be apodized.However,while the Bayesian pipeline
remains optimalfor any mask,hard mask edges can lead to
larger Monte Carlo corrections and slightsub-optimalities in
the QE pipeline. To facilitate a fairer comparison,we have

Figure 14. Forecasted improvementof Bayesian lensing reconstruction over
the quadratic estimate, computed from a suite of map-level mask-free
simulations.The x-axis gives the noise levelin polarization, and the y-axis
gives the largest ℓused in the reconstruction.The top panel shows the
improvementin the error bar on f

A100 2000. The bottom panel shows the
improvementin the effective noise in the lensing reconstruction, ffNℓ , at
=ℓ 200. This work achieves a slightly better improvement inf A100 2000 than

predicted from these simulations due to minor sub-optimalities present in our
(and typical) QE pipelines when masking and other analysis complexities exist.
Forecasts forthe deep CMB-S4 survey,SPT-3G,and Simons Observatory
LATs are shown as diamonds. The latter lies almost directly on top of the star
denoting the current work, but is offset only for visual clarity. These
simulations coverroughly 100 deg2, although the relative improvements are
not expected to scale appreciably withfsky.

11

The Astrophysical Journal, 922:259 (21pp),2021 December 1 Millea et al.



chosen to use apodization in the baseline case, but also present
results with an unapodized mask in Section 6.4.

In the Fourier domain,we apply a Fourier-space mask, f ,
shown in the bottom-right panel of Figure 1. The center part of
the mask is built by thresholding the 2D transfer function at 0.9
to remove modes, mainly in the ℓx direction, which are
significantly affected by the TOD filtering and for which the
approximation that is diagonalin QU Fourier space breaks
down. We additionally apply an ℓmax=3000 upper bound to
limit the possible contamination from polarized extragalactic
point sources. Although there is not much information beyond
ℓ=3000 at these noise levels, we note that this choice is likely
quite conservative and can probably be significantly relaxed in
the future.

The total masking operator is chosen as =  f p, i.e.,
pixel masking happens first. To produce the data that is input to
the Bayesian pipeline, d, we apply to the raw data map that
is output by the mapmaking procedure.We then also self-
consistently include in the data model itself. Because f
and p do not commute exactly, there is some small leakage of
masked Fouriermodes into d. Our analysis features a fairly
conservative f , and it is not a problem that the effective
Fourier mask leaks slightly into the region that is formally
masked by  f , specifically by around  ~D ℓ 10 (set by the
width of the mask kernel window function). For future analyses
where a more precise cutmight be desired,one could fully
remove any leakage by directly deprojecting the undesired
modes from the data and including the deprojection operator in
the data model.

3.6. Transfer Functions
The filters applied to the TOD during mapmaking imprint an

effective transfer function on the data maps,dependent on the
scanning strategy and filtering choices made for each type of
observation.We approximate these transferfunctions,  , as
diagonalin QU Fourier space,and estimate them,as well as
validating the approximation, with a set of full pipeline
simulations.The full pipeline simulations are fairly computa-
tionally costly, and we take two steps to reduce the cost of this
step of the analysis: (1) we simplify each simulation by
reducing the number of individual observationsthat are
included,and (2) we reduce the totalnumberof simulations
needed from ∼ 400 to only 20 using a variance canceling
technique.

The full pipeline simulations start with a Gaussian realization
of the CMB given the best-fit 2015 Planck plikHM_T-
T_lowTEB_lensing lensed power spectra (Planck Colla-
boration et al. 2016). A small expected galactic and
extragalactic Gaussian foreground contribution is also added,
and then a smoothed version of the SPTpol beam window
function is convolved.Note thatbecause the TOD filtering is
linear by construction and approximately diagonal in QU
Fourier space,it is not crucial that these simulations exactly
match the true sky power, nor that they contain the right level
of lensing or foreground non-Gaussianity.

From these,we generate mock TOD by virtually scanning
the sky using the recorded pointing information from actual
observations.For each scan strategy (100D , 500D-LT , and
500D-FULL ), we mock-observe the simulated sky into TOD,
process TOD into maps,and then co-add these maps in the
same way as the real data.The first of the two improvements
mentioned above is thatwe only use a subsetof the actual

observations (in practice,20), since many observations have
identical scan strategies and would have effectively identical
transfer functions. In parallel to these full pipeline simulations,
we also perform a simple projection of the beam-convolved
CMB+foregrounds to the flat-sky, with no other filtering
applied.

We can achieve sufficient accuracy on  with only 20
simulations by using a new variance canceling technique. This
method computes the transfer function as,

=
-
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
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where the f variables in the numerator and denominator are the
mock-observed and projected maps, respectively, and p is the
pixel mask. The presenceof the projected map in the
denominator cancels sample variance in the estimate,leading
to much quicker Monte Carlo convergence.However, this
comes at the cost that Equation (12) is actually a biased
estimate of the true effective transfer function.

With a simple test,we can verify (1) that this bias is small,
(2) that our approximation that is diagonal in QU Fourier
space is sufficient, (3) that there is negligible Monte Carlo error
due to using only 20 pipeline simulations, and (4) that our
usage of only 20 observations per simulation is valid. For a set
of simulations separate than those used to estimate and using
a different set of 20 observations within each simulation,we
compare the result of the full pipeline simulation versus simply
applying to the projected map for the same realization. In the
top panel of Figure 2,we show these difference maps,and in
the bottom panel, we show their power spectrum averaged over
a few realizations. In both top and bottom panels, we multiply
by the full mask, , so as to pick out only modes relevant for
the analysis. We see that the difference is one to four orders of
magnitude below the noise spectrum;hence,  is a very
accurate representation of the true transfer function, particularly
at smaller scales,which drive the lensing constraint.The final
estimate of used in the analysis is shown in the bottom-left
panel of Figure 1.

We note that the variance canceling technique employed
here may be of wider use, but only if full pipeline simulations
are not required to quantify uncertainty; otherwise, a larger set
of simulations is needed anyway. Here we did not need such a
larger set because the Bayesian pipeline does not use
simulations to quantify uncertainty atall, and because for the
QE pipeline,we have used simulations from the forward data
model,as this modelis demonstrated sufficiently accurate for
our purposes.

3.7. Noise Covariance
The noise covariance is inferred from noise realizations that

come directly from the real data using the “sign-flipping”
method also used by previous SPT and BICEP analyses (e.g.,
BICEP2 Collaboration et al. 2014; Wu et al. 2019b). This
method works by multiplying a random half of the N = 10,490
observationsthat enter the final data co-add by −1 before
summing them. This cancels the signal but leaves the statistical
properties of the noise unchanged, as long as no observation-to-
observation correlationsexist (which is expected to be the
case).This is repeated M=400 timesyielding M nearly
independentnoise realizations.We will refer to these as real

12

The Astrophysical Journal, 922:259 (21pp),2021 December 1 Millea et al.



noise realizations and to the distribution from which they are
drawn as the real noise.

As we will describe in Section 4.2,the QE pipeline only
requires the average 2D power spectrum of the noise as well as
an approximate white-noise level. This is sufficient because the
noise only enters the QE pipeline for the purposes of Wiener
filtering the data, where an approximateWiener filter is
computed, and the impact of this approximation is captured in a
Monte Carlo correction applied at the end of the pipeline. This
does notlead to any bias,only a small sub-optimality of the
final result.The Bayesian pipeline does notapply any Monte
Carlo corrections,and thus needs to perform the Wiener filter
(which also arises in the Bayesian case) more exactly.This in
turn necessitates a fullmodel for a noise covariance operator,
 n, which needs to be as accurate as possible. We will refer to
this as the modelnoise,and samples from this covariance as
model noise realizations.

The real SPT noise is non-white, as instrumental and
atmospheric 1/f noise dominates at large scales. It is
anisotropic,as spatial modes in the scan-parallel and scan-
perpendiculardirections map onto differenttemporalmodes,
and are affected differently by TOD filtering. Finally, it is
inhomogeneous,as some spatialregions are observed slightly
deeper than others; in particular, the lead-trail scanning strategy
used in the 100D and 500D-LT observationscauses some
regions near the center and right edgesof the final 100D-
DEEPfield to have noise levels a few tens of percent lower than
the rest of the field.

With only M=400 realnoise realizations,but the most
generic  n corresponding to an ´N Npix pix matrix where

= ·N 2 260pix
2, some form of regularization is needed to

choose a unique n. The choice we make here is motivated by
retaining the flexibility to model the complexity of the real
noise just described while keeping n fast to invert and to
square-root,41 as both are needed to sample Equation (8).
Specifically,we define the model noise covariance, n, as

º    ( )† 13n

where is diagonalin QU pixel space and is diagonalin
QU Fourier space. That is to say, we model the noise as having
an arbitrary non-white anisotropic power spectrum that is
spatially modulated in pixelspace.With this choice,we have
that

=- - - -    ( )† 14n
1 1 1

=   ( )†, 15n

where both operators can be easily applied to vectors with only
a few fast Fourier transforms (FFTs). We solve for and by
requiring that the variance in each individual 2D Fourier mode
and the variance in each individual pixel be identical for noise
realizations drawn from n and for the real noise realizations.
These are 2Npix constraints for the 2Npix combined degrees of
freedom in  and  , yielding the following solution for the
diagonal entries of these matrices

= ( ({ }) ) ( )nDiagonal std 16xQU,

= -  ( ({ }) ) ( )nDiagonal var 17l1
QU,

where the standard deviation and variance are taken across the
M noise realizations.

We note that the noise realizations used in these averages are
the raw sign-flipped combinations of the actualdata,with no
extra operators deconvolved or masks applied. Hence, the noise
term, n, is not multiplied by any extra factors in Equation (1).
Additionally, we smooth both and  with small Gaussian
kernels,since the uniform scan strategy and large number of
observations employed should average away any significant
across neighboring pixels or across neighboring Fourier modes.

We plot and in the middle two panels of Figure 1. The
top panel shows the spatially varying pixel variance pattern in
 , and the bottom panel shows the non-white anisotropic
Fourier noise pattern.To verify that model noise realizations
drawn from  n are largely indistinguishable from realnoise
realizations,we show in Figure 3 the mean Q, U, E, and B
power spectra of the 400 real noise realizations along with the
mean power spectra of 104 model noise realizations.We find
excellent agreement, the difference between the two completely
explained by the scatter expected due to having only 400 real
noise realizations (dark shaded band). Additionally, any
systematic difference between them isless than 1% of the
total Q sample variance error bars (lighter shaded band;note
the switch from linear to log scaling at 10−2). As a further
check, in Section 5.2 we will use the model noise covariance to
analyze simulated data,which includes real noise realizations,
finding no evidence for biases to fA due to any difference
between these two.

3.8. The Noise-fill Procedure
The fact that  n is not diagonal in either Fourier or map

bases presents a challenge for exactly Wiener filtering the data
in the presence of a masking operation that is also not diagonal
in either space.Whetherexplicitly stated or not, computing
such Wiener filters usually involves approximating the noise as
diagonal in one of the two bases, with the impact of the
approximation difficult to quantify for a Bayesian analysis.
Here, we develop an alternate procedure,which involves
artificially adding noise to the data in a particular way so as to
make the Wiener filter problem easier to solve, and then
demonstrating thatthe resulting degradation in constraints is
negligible. To our knowledge, this has not been described
before,and could be of general use.

The challenge can be understood by considering the
following toy problem. Suppose we observe some map that
is the sum of some signal s and noise n, both defined on the full
pixel/Fourier plane, then apply a mask,  , which is a
rectangularmatrix mapping the full set of pixels/Fourier
modes to a smaller subset of just the unmasked ones. The data
model is thus given by = + ( )d s n . The residualbetween
data and signal model is - ( )d s , and the covariance of this
quantity is   †, where is the noise covariance. Defining
the signal covariance as , the log-posterior for this problem is
thus

 -µ
-

-


   
( ∣ ) ( ) ( )† s d

d s s
log

2 2
. 18

2 2

Evaluating the posterior or its gradientswith respect to s
requires inverting    †. Maximizing the posterior (i.e.,
Wiener filtering) requires this as well,as the solution is given

41 We note that for our purposes,the matrix square-root is any  for
which =  †n .
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by

= +- - - -         ˆ [ ( ) ] ( ) ( )† † † †s d. 191 1 1 1

However, since is not a square matrix, these inverses cannot
be simplified away or trivially computed. Sometimes,as a
simplifying assumption, and  are taken to be diagonalin
the same basis (e.g., is assumed to be white noise).In this
case,the inverse can be computed explicitly (often in practice
by setting the noise to infinity or to a very large floating point
number). Since in our case we wish to not make this
simplification,we cannot take this approach.

The more general solution we use instead involves
artificially filling in the masked data with extra noise,̄n, such
that the new data model is

¢= + = + +¯ ( ) ¯ ( )d d n s n n, 20

where we are now considering as a square operator but with
some rows that are zero. Note that the extra noise does not shift
the mean of the data. However, the covariance of the data
residual becomes

+   ̄ ( )† , 21

where ̄ denotes the covariance for̄n. Since we are free to
choose̄ , we can choose itsuch that the new data residual
covariance is easy to invert, in particular such that it is equal to
a 2 for some constantα (explained below). This happens
when

a= -    ¯ ( )†. 222

We can draw a realization ofn̄ from ( ¯ ) 0, by computing
x̄

1
2 where ξ is a unit random normal vector. This can in turn be

computed by evolving the following ordinary differential
equation (ODE) from t = 0 to t = 1,

 = - + - -- [ ¯ ( ) ] ( ¯ ) ( ) ( )
dy

dt
t t y t1

2
1 231

starting from x=( )y 0 (Allen et al. 2000). The quantity in
brackets in Equation (23) can be inverted with the conjugate
gradient method. The ordinary differential equation (ODE)
itself is requires a stiff solver (we use CVODE_BDF from the
Sundials.jl package; Hindmarsh et al. 2005; Rackauckas
& Nie 2017).

Ideally, α can be set to unity; however,noise correlations
between the masked and unmasked regions may force us to
chose some α>1 to ensure the resultof Equation (22) is a
positive-definite operatorand thus a valid covariance.If this
were the case, we would be adding noise to unmasked regions
of the data, ultimately degrading the final result. The necessary
value of α can be found by direct search,as the ODE will be
singular if α is not large enough. One would not use the noise-
fill method if α much higher than unity was required (or
perhaps one would promote α to some scale-dependent
quantity if only certain scales needed a larger value),but here
we find α=1 is sufficient to keep Equation (22) numerically
positive-definite,confirming thatwe have not introduced any
appreciable degradation of our constraints.

Overall, the ODE solution and α search are not particularly
costly, and only need to be done once at the beginning of any
analysis. Once d′ is computed, the new posterior is given by the

much simpler

a
¢  -µ

¢-
-



 
( ∣ ) ( ) ( ) s d

d s s
log

2 2
. 24

2

2

2

Note that, when generating simulated data, it is not necessary
to actually perform this procedure.Instead,it is equivalentto
simply generate data from a model a= +d s n, i.e., to
leave the noise unmasked and scale it by α. This is very
convenient for the simulation pipeline, and it is only on the real
data, where one does not have access to s and n separately, that
one needs to explicitly perform the noise-fill. An added benefit
of this approach is that the likelihood term in the posterior
becomes a full Npix-dimensionalc 2; thus, its expectation value
and scatter are easy to compute. We use this in the later
sections to ascertain goodness-of-fit. As a final sanity check, we
have verified thatusing differentrealizations of the noise-fill
yield no shift in the resulting constraints onfA . In Figure 4, we
plot example data and noise-fills for the 100D-DEEPdata set.
The top-right panel shows the noise-filled data,the equivalent
to ¢d from Equation (20), but for the actual 100D-DEEPcase (we
drop the prime on d in the rest of this paper for brevity).The
bottom-rightpanelshowsn̄ after applying the Fouriermask,
which gives intuition for why no degradation occurs due to the
noise-fill, since the added noise tends to zero in the unmasked
pixels and for the unmasked Fourier modes.The toy problem
discussed in this section otherwise maps directly onto the real
case, with the straightforward inclusion of the additional
lensing and systematics operators.

3.9. Negligible Effects
To conclude this section,we mention a few effects that are

expected to be negligible for this data set and are thus not
modeled. Both Bayesian and QE pipelines ignore sky
curvature, instead working in the flat-sky approximation,
which is very accurate for the modestly sized 100 deg2 patch
considered here.The lensing operation is implemented with
LENSEFLOW (MAW20), which assumesthe Born approx-
imation. Post-Born effects are not detectable until much lower
noise levels and are thus ignored (Pratten & Lewis 2016; Beck
et al. 2018; Böhm et al. 2018; Fabbian et al. 2018). Finally, we
do not model galactic or extragalactic foregrounds.The 100D-
DEEPfield is in a region of sky particularly free of galactic
contamination,and we conservatively mask modesbelow
ℓ∼500;thus, we expect negligible polarized galactic dust
foregrounds (Planck Collaboration et al.2020b).Extragalactic
foregrounds are expected to be much smallerin polarization
than in temperature,and here we only use polarization.Given
that we also conservatively mask modes above ℓ=3000,we
follow Wu et al. (2019b) in concluding extragalactic fore-
grounds can be ignored in this analysis.

4. Lensing Analysis
4.1. Bayesian Lensing

The Bayesian sampling pipeline very closely follows the
methodology described in MAW20,and uses the same code,
CMBLENSING.JLfaGithub.Conceptually it is extremely
straightforward: it is simply a Monte Carlo sampler of the full
posterior given in Equation (8).Beyond this,there are a few
practical details that we describe in this section.

First, we perform the standard change-of-variablesfrom
f f ¢ ¢( ) ( )f f, , and sample the posterior in terms of f¢ ¢( )f ,
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instead. In this parameterization, the posterior is less degenerate
and better conditioned, yielding much better performance of the
sampling algorithm. This was extensively discussed
in MAW20, and we apply the same re-parameterization as
described there almost without change.Specifically,we take

f f¢ º f ( ) ( )A 25
f¢ º  ( ) ( )f f . 26

The operator is defined to be diagonal in EB Fourier space,
and f ( )A is diagonal in Fourier space,with

º
+


 


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f f
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where  f should approximate the sum ofinstrumentalnoise
and lensing-inducedexcess CMB power, and f should
approximate noise in the f reconstruction. Here, we find a
sufficientchoice is to set f to isotropic 12 μK arcmin white
noise, and f to the 2D QE N(0) bias. We note that the optimal
choice of these operators is notprecisely defined,and poor
choices do not affect results, instead only lead to slower
convergence.

With the re-parameterized target posterior in hand,we now
describe the sampler. For both convenience and efficiency, the
sampling is broken up into separate Gibbs steps where we
sample different conditional slices of Equation (8).The Gibbs
procedure ensures that after a sufficiently long time,the chain
of conditional samplesasymptotesto draws from the joint
distribution.

The first Gibbs step samples the conditional distribution of f
given the other variables. The advantage of splitting this off as
its own Gibbs step is that this conditional is Gaussian and can
be sampled exactly by running one conjugate gradientsolver.
This solver involves inverting the operatorshown below in
Equation (29), where we have left out instrumental parameters
and beam and transfer functions for clarity.42 We use a nested
pre-conditionerwherein we precondition Equation (29)with
Equation (30), which itself involves a conjugate gradient
solution using Equation (31) as a pre-conditioner. In
Equation (31) we use a noise operator, ̂ n, which is an
approximate EB Fourier-diagonalversion of  n, making the
final pre-conditioner explicitly invertible.

f f+- -       ( ) ( ) ( )† † † 29f n
1

p f
1

f p

+- -      ( )† † 30f n
1

p f
1

f p

+- -
   ˆ ( )† . 31f n

1
f

1
f

The advantage of this scheme is that it minimizes the number
of times we need to compute the action of Equation (29), which
involves two lensing operations and hence is much costlier than
the others. With the nested preconditioning, only a few
applications of Equation (29) are necessary per solution.

The second Gibbs step samples the conditionaldistribution
of f given the other variables.This sample is drawn via

Hamiltonian Monte Carlo (Betancourt2017), which involves
sampling a random momentum, pf , from a chosen mass matrix,
and then performing a symplectic integration to evolve the
Hamiltonian for the system.Poor choices of mass matrix or
large symplectic integration errors yield a slower converging
chain, but do not bias the result asymptotically. We find that 25
leap-frog symplectic integration steps with step size= 0.02
per Gibbs pass yield nearly optimalconvergence efficiency.
We note that to control symplectic integration error,we also
need at least a 10-step fourth-order Runge–Kutta ODE
integration as part of the L ENSEFLOW solver (in MAW20,
only seven steps were needed, likely due to simpler masking).
Finally, the mass matrix should ideally approximate the
Hessian of the log-posterior; here we use,

L = +f f f f f f
- - -  ( ) ( ) [ ( ) ] ( )A A A . 322 1 1

The final Gibbs passes sample the conditionals of each of the
remaining scalar parameters in turn:fA , Pcal, y pol, Q, U , and
the βi. Since these are 1D distributions, we sample by
evaluating the log-posterior along a grid of values,interpolat-
ing it, then using inverse-transform sampling to getan exact
sample.Importantly, in all cases except fA , these parameters
are “fast” parameters becausef ( )f remains constant along the
conditional slice and can be computed just once at the
beginning of the pass. Indeed, sampling these parameters
accounts for <5% of the total runtime of a chain, and one could
imagine adding many other instrumental parameters like these
at almost no computationalcost. Sampling fA is somewhat
costlier because Equation (25) couplesfA and f, meaning that
each grid point of fA requires lensing a new map (however, the
decorrelating effectof the re-parameterization faroutweighs
this increased computational cost).

4.2. Quadratic Estimate
The QE analysis closely follows those of the 100 deg2 and

500 deg2 SPTpol analyses (Story et al. 2015; Wu et al. 2019a).
It uses the standard SPT QE pipeline,and so is completely
independent from the Bayesian code. We give a brief review of
the QE pipeline here and take note of aspects particular to this
analysis, referring the reader to the previous works for a more
comprehensive treatment.

The QE uses correlations between Fourier modes in pairs of
CMB maps to estimate the lensing potential;here we use the
same modified form of the Hu & Okamoto (2002) estimator as
in Wu et al. (2019a),

òf = - -¯ ¯ ¯ ( )*ℓ L ℓ Ld X Y W , , 33L ℓ ℓ ℓ
XY XY2

whereX̄ andȲ are inverse-variance filtered data maps and WXY

is a weighting function with ÎXY {EE, EB}.
The inverse-variance filtering used for the QE does not

employ the noise-fill procedure outlined in Section 3.8, opting
instead to leave the existing pipeline unmodified.Here, the
noise is approximated as the sum of two components. The first
is a pixel-space diagonal component, = - -   n p, p

1
p

1,
where p is the pixel mask and is a homogeneous white
noise covariance specified by the noise levels atthe end of
Section 2. The second is a Fourier-space diagonal component,
 n f, , which includes the power spectrum of atmospheric
foregrounds and excess instrumental 1/f noise not captured in
the first component, and is determined empirically from the real
noise realizations. Inverse-variancefiltering can then be

42 The exact operator to be inverted can be derived by taking the derivative d/
df of Equation (8),setting it equal to zero,and solving for f.
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performed by solving the following equation for X̄ with
conjugate gradient:

+ =- - -      [ ] ¯ ( )† †X d , 34n p n p
1

,
1

,
1

QE

where = +  f n f, and =   .
We then correcteach estimator,f̄ L

XY, by (1) subtracting a
mean-field bias, f̄ L

XY,MF, computed from an average over
simulations, (2) normalizing by the analytic response,
RL

XY ,Analytic, and (3) summing the debiased and normalized
estimates.We accountfor the impactof the pixel mask,not
captured by the analytic response,with an isotropic Monte
Carlo correction,RL

MC. This is computed by fitting a smooth
curve to the ratio f f ff´¯C Cℓ ℓ

,theorytrue , averaged over simulations.
This gives a normalized unbiased estimate

f
f f

=
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To obtain constraints onfA , we take the auto-spectrum off̂ L
to form biased lensing power spectra,ffC̄ℓ . We then estimate
the typical ( )NL

0 ,RD and ( )NL
1 biases using simulations, and apply

a final multiplicative Monte Carlo correctionfPSas in Wu et al.
(2019a). No foreground correction is applied, so the final
expression for the debiased bandpowers is

= - -
ff ffˆ [ ¯ ] ( )( ) ( )C f C N N . 36ℓ ℓ L LPS

0 ,RD 1

We calculate the covariance between the bandpowers,Σ, by
running a Monte Carlo over the entire procedure.Figure 5
shows the bandpowers of º

kk ff C L C 4L L
4 , along with error

bars computed from the diagonal of Σ.
Since the bandpowererrors are assumed Gaussian,the

resulting fA constraints are also Gaussian,and are given by
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where the summation over ℓis implied. For this calculation, we
truncate Σ atthe third off-diagonal,beyond which we do not
resolve any nonzero covariance to within Monte Carlo error,
consistentwith the expectation thatthe correlation should be
small for very distant bins. We note, however, that correlation
between neighboring bins can be as large as 10% and has a
significant impact on the final uncertainties.

5. Validation
5.1. Chain Convergence

One of the main challenges ofthe Bayesian procedure is
ensuring the Monte Carlo chains are sufficiently converged and
are thus yielding stationary samples from the true posterior
distribution. A large body of work exists on verifying chain
convergence,and many methods of varying sophistication
exist. Our experiencehas been that the most robust and
accurate check is actually the simplest,namely just running
multiple independentchains in parallelstarting from different
initial points,and ensuring thatthe quantities of interesthave
identical statistics between the different chains. Here, we are in

a fortunate position where this is possible, largely because: (1)
it is computationally feasible to run many chains and to run
existing chains for longer if there is any doubt, and (2) we find
no evidence for complicated multimodal distributions, so
convergence is notaboutfinding multiple maxima butrather
simply a matter of getting enough samples to smoothly map out
the (mildly) non-Gaussian posteriors of interest.

Checking for convergenceusually begins by visually
inspecting the samples from a chain.For the baseline 100D-
DEEPchain,we show the sampled values of the cosmological
and systematicsparameterscomprising θ in Figure 6. Our
default runs evolve 32 chains in parallel (batchesof eight
chains per Tesla V100 GPU) and hold θ fixed for the first 100
steps to give the f and f maps a chance to find the bulk of the
posterior first, which reduces the needed burn-in time. Note that
the starting point for our chains is a sample from the prior, not
just for θ but also for the f and f maps themselves.43 Despite
this, Figure 6 shows that all θ converge to the same regions in
parameter space, and no “long wavelength” drift is seen in the
samples.

We also check convergence by splitting the 32 chains into
two sets of 16 and estimating parameter constraints from each
set. The 1D posteriors from two sets of the baseline 100D-
DEEPcase are shown in Figure 7.Here we remove a burn-in
period of 200 samples from the beginning of each chain.We
find that all contours overlap closely, and no conclusions would
be reasonably changed by picking one half over the other.

To make the convergence diagnostics more quantitative, we
use the following procedure throughoutthis paperwhenever
quoting any numberderived from a Monte Carlo chain.We
first compute the effective sample size (ESS) of the quantity of
interest given the observed chain auto-correlation (Goodman &
Weare 2010). We then use bootstrap resampling to estimate the
Monte Carlo error, wherein (1) we draw N random samples
with replacementfrom the chain where N is the ESS,(2) we
compute the quantity in question using these samples, then (3)
we repeat this thousands of times and measure the scatter. The
scatter gives a 1σ Monte Carlo error, which we report using the
typical notation that M digits in parentheses indicate an error in
the lastM digits of the quantity, i.e., 1.23(4) is shorthand for
1.23 ± 0.04. We use this not only for the posterior mean, but
also standard deviations,correlation coefficients,or any other
quantity estimated from the chain.

For example,skipping ahead to the results presented in the
next section, the constraint onfA from the 100D-DEEPchain is

= f ( ) ( ) ( )A 0.949 8 0.122 5 . 39

This is to say, the standard error on the mean is 0.008, which is
an acceptable 6% of the 1σ posterior uncertainty of 0.122(5),
and could be reduced furtherby running the chain longerif
desired.

If we are interested only in constraints on fA , then
Equation (39) gives us what we need to know about how
accurate ourposteriorinference on this quantity is.It is the
case,however, that not all modes in the corresponding f
samples in the chain are necessarily converged to this same
level. This will not affect fA since not all modes are
informative for fA , and the errors in Equation (39) tell us
about the convergence of the sum totalof all modes thatare

43 Note that due to the “curse of dimensionality,” these random starting points
are much fartherapart in the high-dimensionalparameterspace than might
seem from looking at any 1D projection.
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informative. In other applications,however, we might care
about other modes, for example for delensing external data sets
or for cross correlating with other tracers of large-scale
structure.We can check the convergence for allmodes atthe
field level by computing posterior mean maps and comparing
the power spectrum of the difference when estimated again
from two independent sets of 16 chains. Figure 8 shows
posterior mean maps and Figure 9 shows the power spectrum
differences from the two independent sets. Across a wide range
of scales in f, E, and B, the power of the difference maps is one
to two orders of magnitude below the signal. The only
exception is very small scales in f; indeed, this is an example
of modes for which the standard error is larger than the mean,
but which are not informative forfA . If one uses these samples
for a downstream analysis,one could use the bootstrap
resampling procedure with the maps themselves to estimate
the Monte Carlo error in whatever final quantity was computed
from these samples.

5.2. Simulations
Having verified in the previous section that Monte Carlo

errors in our chains are sufficiently small,we now verify the
pipeline itself,as well as our noise covariance approximation.
This is done by running chains on simulated data and checking
that, on average,we recover the input truth. Crucially, the
simulations we use include realnoise realizations,while the
posterior itself uses the model noise covariance. If the statistics
of the real noise were differentin a way not captured by the
model noise covariance,we would expect to see some bias
against the input truth in these simulations.

Figure 10 shows these posterior distributions. The simulation
truth uses the same fiducial Planck cosmology used in the
baseline model (Section 3). Additionally, we include simulated
systematics at a level given by the best-fit values of the 100D-
DEEPanalysis itself, to confirm that we recover nonzero values
of the systematicsparameters.The colored lines are the
posteriors from each of the N = 100 simulations performed,
and the shaded black curve is the product of all N. Because the
simulated data are independent(ignoring the very small
correlations between oursign-flipped noise realizations)and
because the θ shown in this figure have a uniform prior,the
productcan also be interpreted as a single posterior given N
data,

q q q q= ¼( ∣ ) ( ∣ ) ( ∣ ) ( ∣ ) ( )   d d d d d d... , , , . 40N N1 2 1 2

This indicates thatthe black shaded contourshould also,on
average,cover the input truth. If there were any systematic
biases affecting the inference of θ, either from noise
mismodeling or from errors in the pipeline,we would expect
to find a noticeable bias, which we do not. With N=100
simulations,we have formally checked againstbiases atthe
level of  =N1 10% of the 1σ error bar for any single
realization.

6. Results
6.1. Joint fA and AL Constraints

The fA constraint obtained from the QE explicitly does not
use information from the power spectrum of the data because
the weights -

WL Lℓ ℓ
XY

, in Equation (33) are zero when=L 0. The
Bayesian constraint, however, extracts all information,

including whatever may be contained in the power spectrum,
as well as in all higher-ordermoments (bispectra,trispectra,
etc.). To facilitate a fairer comparison between the two, and as a
consistency check,it is useful to separate out the power
spectrum information in the Bayesian case.

A natural way to do so is by adding a correction to the noise
covariance operator such that,

 + D     ( )†A , 41n n L len
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This is similar to the effect of marginalizing over an extra data
componentthat is Gaussian and hasa lensing-like power
spectrum with amplitude controlled byDAL , but that does not
have the non-Gaussian imprint of real lensing. The similarly is
only partial, however, because the correction issometimes
negative (lensing reduces power atthe top of peaks in the E-
mode power spectrum),while an extra componentcould only
have a positive power contribution. Directly modifying the
noise covariance remedies this,and can add or subtract power
as long as the sum of the noise and lensing-like contributions
still yields a positive-definite total covariance (which is the case
for the range ofDAL explored by the MCMC chains here).

With this modification,both nonzeroDAL and nonzero fA
can generate lensing-like power in the data. The sum of the two
parameters thus gives the totallensing-like effecton the data
power spectrum, and most closely matches the typical
definition of the AL or Alens parameter,which in our case is a
“derived” parameter,

= + Df ( )A A A . 43L L

If no residual lensing-like power beyond the actual lensing
generated by fA is needed to explain the data,one expects to
find D =A 0L and =A 1L .

Because the power spectrum of the data could be just as well
explained byD =A 1L and =fA 0, the extent to which we
infer nonzero fA whenDAL is a free parameter confirms that
not just power spectrum information is contributing to the
constraint,but also quadratic ¹L 0 modes and higher-order
moments. Correspondingly, marginalizing overDAL is equiva-
lent to removing power spectrum information from the fA
constraint, giving us the tool needed to separateout this
information.

A consequence ofthe modification to the  n operatorin
Equation (41) is thatit is no longer easily factorizable in any
simple basis. This presents three new numerical challenges for
our MCMC chains: (1) applying the inverse of n, (2) drawing
Gaussian samples with covariance n, and (3) computing the
determinantof  n. Inversion turns out to be fairly easily
performed with a negligible ( ) 10 iterations conjugate
gradient.Sampling is performed by computing x n

1
2 with the

same ODE-based solution used in Equation (23). The
determinant (as a function ofDAL) is the most difficult piece,
but can be computed utilizing the method described in
Fitzsimons et al. (2017). This involves swapping the log
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where C is a constant that is independent ofDAL and can thus
be ignored.The trace is then evaluated stochastically using a
generalization of Hutchinson’s method (Hutchinson 1990) to
complex vectors (Iitaka & Ebisuzaki2004), which evaluates
the trace of some matrix asá ñ†z z where z are vectors of
unit-amplitude random-phase complex numbers, here in the EB
Fourier domain. The summation in Equation (44)converges
since our matrix is positive-definite, and only 20 terms are
needed to give sufficient accuracy in theDAL region explored
by the chain. Note also that because the powers ofDAL factor
out of the trace, the traces can be precomputed once atthe
beginning of the chain.In terms of sampling,DAL is a “fast”
parameter and does not significantly impact chain runtime.

In the top panel of Figure 11,we show joint constraints on
DAL and fA from the 100D-DEEPdata.Here we find,

D = ( ) ( ) ( )A 0.024 9 0.170 7 45L

= f
 ( ) ( ) ( )A 0.955 14 0.135 10 . 46100 2000

The two parametersare visibly degenerate,with cross-
correlation coefficientρ=− 0.40(5).One can calculate by
how muchs f( )A is degraded due to marginalizing overDAL as

r-1 1 2 , which here gives a 9(3)% degradation.Thus,
relatively little information on fA comes from the power
spectrum of the data;instead,mostof the constraining power
originates from lensing non-Gaussianity. Because of this small
impactand for simplicity, we fix D =A 0L for the remaining
results in this paper. However, we note that the 9(3)%
contribution from the power spectrum is importantto keep in
mind when comparing to the QE result in the next section.

Correlations between fA and AL have been negligible in all
previous lensing results from data, but are of considerable
interest moving forward as it is likely that they will need to be
accurately quantified in the future. Previous work on this topic
includes Schmittfullet al. (2013),who computed the correla-
tion between fA estimated via the QE andAL estimated via a
traditional power spectrum analysis,finding at most a 10%
correlation for temperature maps atPlanck-like noise levels.
Peloton et al. (2017) extended similar calculations to polariza-
tion, finding correlations in the 5%–70% range for CMB-S4-
like polarization maps, depending on the exact multipole
ranges considered,if a realization-dependent noise subtraction
is performed, and whether T, E, and/or B are used to estimate
AL . The correlation is largest when using B, since B is entirely
sourced by lensing and thus contains much of the same
information as f. For the 100D-DEEPdata, there is twice the
Fisher information forAL in B as compared to E, which means
our observed correlation should be on the higher end.This is
counteracted by the fact that our data is noisier than the CMB-
S4 noise levels assumed in Peloton et al.(2017),meaning we
should see a lower correlation.Ultimately, although we have
not repeated theircalculation for our exactnoise levels,our
observed correlation has the same sign and reasonably agrees in
amplitude with their prediction, despite the fairly different
analysis.

It is useful to consider what it would take for frequentist
methods such as the ones used in these previous works to reach
equivalence with the Bayesian approach in terms of quantifying
fA -AL correlations, or more generally, quantifying correlations

between the reconstructed lensing potential and the CMB. First,
they would need to be extended beyond the QE, which would
introduce computational cost and conceptual complexity.
Second,they would need to be extended to compute notjust
correlations of the lensing reconstruction with the raw (lensed)
data, but also with delensed data as well. Although not
immediately obvious, this is automatically handled in the
Bayesian approach.This is because,despite that the Bayesian
procedure does not constrainAL by way of explicitly forming a
delensed powerspectrum,it exactly accounts forthe actual
posterior distribution of the lensed data maps. For example, if f
were perfectly known such thatthere were no scatterin the
MCMC f samples, this would yield no excess lensing variance
when estimatingAL , simply an anisotropic but perfectly known
lensed CMB covariance,corresponding to perfectdelensing.
Whether it is as easy to estimate such correlationsin the
frequentistapproach is unclear,but we highlight the relative
simplicity with which it was attained here. It required no
additional costly simulations or complex analytic calculations,
only the introduction ofDAL into the posterior.

Although outside of the scope of this paper,this approach
can be used not just for DAL but any other cosmological
parameterthat controls the unlensed powerspectra.It thus
serves as a Bayesian analog to existing frequentist methods for
parameter estimation from delensed power spectra (Han etal.
2021), immediately allowing inclusion of lensing reconstruc-
tion data, and giving a path to the type of joint constraints from
both that will be important for optimally inferring cosmological
parameters from future data (Green et al.2017).

6.2. Improvement over Quadratic Estimate
One of the main goals of this work is to demonstrate an

improvementin the Bayesian pipeline when compared to the
QE result.This improvementarises because the QE ceases to
be approximately minimum-variancearound 5 μK arcmin,
close to the noise levels of the 100D-DEEPobservations.

The baseline 100D-DEEPBayesian constraint is
= f ( ) ( ) ( ) ( )A 0.949 8 0.122 5 Bayesian . 47

For the exact same data set,the QE constraint yields
= f ( ) ( )A 0.995 0.154 QE . 48

This represents an improvement in the 1σ error bar of 26(5)%,
summarized in Figure 12.

The shift in the central value between the two results is
D =f ( )A 0.046 8 . Note that these results are “nested” because
the QE uses only quadratic combinations of the data while the
Bayesian result implicitly uses all-order moments.Because of
this, one can follow Gratton & Challinor (2020;
hereafterGC20) to calculate the standard deviation of the
expected shift as s s s= - =D f

( ) ( )0.10 6A QE
2

Bayesian
2 1

2 . The
observed shift therefore falls within the 1σ expectation.

Of this improvement,we have ascertained in the previous
section that 9(3)% stems from the power spectrum of the data,
which is not used by the QE, but could be included if we
combined with traditionalpower spectrum constraints onAL .
This leaves a 17(6)% improvementas the fairestcomparison
between Bayesian and QE results. To ascertain whether this is
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in line with expectations, we have performed a suite of generic
mask-free 100 deg2 simulations with varying noise levels and
ℓmax cutoffs for the reconstruction. For each of these
simulations,we compute the QE or joint MAP f estimate,
compute the cross-correlation coefficient,r L, with the true f
map, then compute the effective Gaussian noise,given by

r= -ff ff ( )N C 1 1L L L
2 . From this noise, we compute Gaussian

constraints on fA without including the power spectrum of the
data, such that these should be compared to the 17(6)% result.
Improvements in fA and in ff

=
NL 200 are shown in Figure 14.

Near the noise levels of the 100D-DEEPfield, we find around a
10% expected improvement onfA .

6.3. Joint Systematics and Cosmological Constraints
A unique feature of the Bayesian approach is the ability to

jointly estimate cosmologicaland systematics parameters by
simply adding free parameters to the posteriorand sampling
them in the chain. Here, we have added parameters forthe
polarization calibration, Pcal, the global polarization angle
calibration,y pol, temperature-to-polarization monopole leakage
template coefficients,Q and U , and three beam eigenmode
amplitudes,b1, b2, andb3.

Figure 7 shows constraints on all of these parameters jointly
with the main cosmological parameter of interest,fA . For Pcal,
y pol, Q and U , the blue lines indicate the best-fit value
obtained from the externalestimation procedures described in
Sections3.1–3.3. The chain results agree with these in all
cases,which is an important consistency check.The beam
amplitude parameters,bi , are sampled with unit Gaussian priors
centered at zero. If the data is not sensitive to them, we expect
the posterior is also a unitGaussian centered atexactly zero,
which is indeed what we find.

If our main cosmological result significantly dependson
knowledge of any of these systematics,we would find a
correlation between these parameters andfA . Instead,we find
that no parameter is correlated at more than the 5% level. Using
the measured covariance acrossall parameters,Sij , we can
calculate the fractional amount by whichs f( )A decreases if the
systematics were fixed to their best fit in the 100D-DEEPchain
as44

S S- ( ) ( )0.01, 4911
1

11

where = =i j 1 is the entry corresponding to fA . Thus, the
systematic error contribution to the BayesianfA measurement
is less than 1% of the statistical error.

Although in this paper we do not propagate any systematic
errors through the QE pipeline, for some of the same data used
here, this has already been done by Story et al. (2015) and Wu
et al. (2019b). The approach there is to modify the input data,
for example,multiply it by s+ ( )P1 cal to mimic a 1σ error in
the Pcal parameter,where s ( )Pcal is determined from some
externalcalibration procedure.The resulting change to fA is
then taken as the 1σ systematic error onfA due toPcal, and the
errors from several systematics are added in quadrature (hence
assuming that they are all Gaussian and uncorrelated). ForPcal,
because the quadratically estimated lensing potentialpower
spectrum dependson the fourth power of the data, the
systematic erroron fA scales as s´ ( )P4 cal to linear order,

and can become significanteven for modestcalibration error.
Indeed, using the above procedure, Wu et al. 2019b found that
the systematic error onfA from polarization was nearly half of
the statistical uncertainty.

6.4. Consistency Checks
Having presentedour baseline results in the previous

subsections,we now perform a number of consistency checks
to see if various analysis choices have any impact on the final
results.The corresponding constraintson fA for each case
discussed here are pictured in Figure 13.

Our baseline case constrainsf A100 2000. As a first check, we
extend this range to encompassf A50 3000. Here,we find

= f
 ( ) ( ) ( )A 0.957 8 0.114 5 , 5050 3000

which is an additional7(7)% tighter than the baseline result,
and consistent with the shift expected from GC20.

We next check if mask apodization has significantimpact.
Although the QE produces an unbiased answer regardless of
mask, hard mask edges lead to larger Monte Carlo corrections
and slightly larger sub-optimality of the final estimator.
Conversely,the Bayesian pipeline, in theory, always produces
both an unbiased and optimal result. This can be an advantage
because, depending on the point-source flux cut, adding a large
number of apodized holes to the map can reduce the effective
sky area of the observations by a non-negligible amount.One
solution sometimes used in the QE case is to inpaintpoint-
source holes rather than leave them masked, and then
demonstrate on simulations thatnegligible bias is introduced
due to the inpainting (Benoit-Lévy etal. 2013; Raghunathan
et al. 2019).The inpainting is often performed by sampling a
constrainedGaussianrealization of the CMB within the
masked region,given the data just outside of the masked
region. The Bayesian pipeline corresponds to simultaneously
inpainting all point-source holes with a different realization at
each step in the MCMC chain,while accounting for the non-
Gaussian statistics of the lensed CMB given the f map at that
chain step. In practice, one could imagine that the ringing
created by hard mask edges induces large degeneracies in the
posterior and leads to poor chain convergence. It is thus useful
to verify that the Bayesian pipeline works with an unapodized
mask,meaning pointsources can simply be masked without
apodization,and the pipeline can be used as is withoutextra
steps.

To keep the apodized and unapodized cases nested, we take
the original mask and set it to zero everywhere in the
apodization taper.The resultis the green curve in Figure 13,
which gives

= f
 ( ) ( ) ( )A 0.937 15 0.124 9 , 51100 2000

consistentwith the GC20 expected shift.The slightly looser
constraint is consistent with the unapodized case not using the
data within the apodization taper, although longer chains would
be needed to exactly confirm this. We do not observea
significantly worse auto-correlation length forthis chain as
compared to the apodized case, demonstratingthat mask
apodization has little effect on the Bayesian analysis.

The point-source mask servesto reduce foreground con-
tamination. Here, we have used a mask built from point sources
detected in temperature, but have not attempted to cross-check
if these same pointsources are brightin polarization. As a

44 We could also calculate this by running a separatechain with these
explicitly fixed, which we have done as a consistency check,but usingSij

directly is easier and is less affected by Monte Carlo error.
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simple check,we consider leaving point sources completely
unmasked. In this case, we find the red curve in Figure 13. This
result and the baseline case are also nested. However, this time
the shift in central value is inconsistentat 2.8σ given GC20.
Visually inspecting the reconstructed κ map (not pictured here)
revealsobvious residualsat the locations of a few of the
brightest previously masked sources.Evidently,some level of
point-sourcemasking is necessaryto mitigate foreground
biases even in polarization. Our mask is based on a 50 mJy flux
cut in temperature.For future analyses,it will be important to
determine the flux cut that is a good trade-off between reducing
foreground biases but not excising too much data.

7. Conclusion
We conclude with a summary of the main results along with

some remarks about the Bayesian procedure and future
prospects for this type of analysis.One of the main goals of
this work was to apply, for the first time, a full Bayesian
reconstructionto very deep CMB polarization data, and
observe an improvement over the QE. This work is the second
optimal lensing reconstruction ever applied to data, and the first
to actually infer cosmological parametersthat control the
lensing potentialitself. Doing so is particularly naturalin the
Bayesian framework, as extra parameters can always be added
(sometimestrivially) and sampled over. We found a 26%
improved error bar on fA in the Bayesian case as compared to
the QE, and a 17% improvement after removing power
spectrum information.

As instrumentalnoise levels continue to improve in the
future, we expectthis relative improvementwill increase.In
Figure 14, we forecast the relative improvement infA , as well
more generically the relative improvement in the effective
noise levelof the f reconstruction at L=200 (the choice of
particular L here is arbitrary, and we note that the result is only
moderately sensitive to scale).By the time noise levels of the
deep CMB-S4 survey are reached,the relative improvement
will be around 50% for fA . The full story is even more
optimistic, however,as fA is not the bestparameter to reflect
the lower-noise reconstruction possible in the Bayesian case.
This is because once a mode becomes signal dominated,fA is
no longer improved by further reducing the noise for that mode
(only more sky can help).If we instead consider directly the
effective noise level itself, which will be more indicative of the
types of improvements one can achieve on parameters that are
determined from noise-dominated regions ofthe spectra,we
see that improvements of up to factors of seven are possible.

Looking toward the future,the main challenges we foresee
for the Bayesian approach are twofold. The first is related to a
fundamentaldifference between the Bayesian and QE (or any
frequentist) methods. In the frequentist case, one is free to use
various approximations in the process of computing an
estimator,or to null various data modes,as long as the final
result is debiased (usually via Monte Carlo simulations),and
this bias can be demonstrated to be sufficiently cosmology-
independent. The Bayesian approach does not have any notion
of debiasing; instead, a forward model for the full data must be
provided and guaranteed to be sufficiently accurate so as to
ensure biases in the finalanswerare small.The solution we
have employed here is to build the forward model with
approximations to things like the transfer function, , or the
noise covariance,  n, which are as accurate as more
sophisticated fullpipeline simulations,but not prohibitive to

compute ateach step in the MCMC chain.Pushing to larger
scales, larger sky fractions, and more complex scanning
strategies will require upgrading these approximations,while
maintaining high computationalspeed.The toolbox for these
types of improvements includes things like machine-learning
models (e.g., Münchmeyer & Smith 2019, for a CMB
application),sparse operators such as the BICEP observation
matrix (Ade et al. 2015), or other physically motivated analytic
approximations.

The second challenge of the Bayesian approach is computa-
tional. For reference,the Monte Carlo simulations needed to
compute the QE here take around 10 minutes across a few
hundred CPU cores.Conversely,the Bayesian MCMC chains
take about 5 hr on four GPUs, with interpretable results
returned within around an hour.45 Ignoring the mild total
allocation cost of these calculations, the main difference is the
longer wall-time of the MCMC chain. Since the computation is
roughly dominated by FFTs,a naive scaling to,e.g., the full
SPT-3G 1500deg2 footprint along with an upgraded 2′pixel
resolution (to reach scales of~ℓ 5000) gives around one week
for a chain. Because the MCMC chains do not appear to require
a long burn-in time, the total runtime can be reduced fairly
efficiently by running more chains in parallel on more GPUs, or
potentially on TPUs. Along with some planned code
optimizations,we expectit will be possible to obtain results
for a full SPT-3G data set in under a day. Additionally, much of
the runtime will be dominated by Wiener filtering,where our
currentalgorithm can likely be improved,making scaling to
even larger data sets possible. It may be noteworthy to
highlight that the computationaltools in play here, GPUs,
linear algebra,and automatic differentiation,are the identical
building blocks of machine learning,and are the subjectof
rapid technological improvements.

The overallexperience of Bayesian lensing in this work is
encouraging,solving and side-stepping many difficulties that
arise in other procedures.While some developmentis needed
to extend beyond the data setconsidered here,this approach
appears to be a viable option for future CMB probes that will
depend on methods such as these forthe next generation of
lensing analyses.
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