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Abstract

We perform the firstsimultaneous Bayesian parameter inference and optimabnstruction of the gravitational
lensing of the cosmic microwave background (CMB), using 100bieglarization observations from the SPTpol
receiver on the South Pole Telescope. These data reach noise levels as low as 5.8 pK arcmin in polarization, which
are low enough that the typically used quadratic estimator (QE) technique for analyzing CMB lensing is
significantly suboptimal. Conversely, the Bayesian procedure extracts all lensing information from the data and is
optimal at any noise level. We infer the amplitude of the gravitational lensing potential to be

A =0.949 0 0.122 using the Bayesian pipeline, consistentwith our QE pipeline result, but with 17%
smallererror bars. The Bayesian analysis also provides a simple way to accoufdr systematic uncertainties,
performing a similar job as frequentistbias hardening” or linear bias correctionand reducing the systematic
uncertainty on Adue to polarization calibration from almost half of the statistical error to effectively zero. Finally,
we jointly constrain A; along with A, the amplitude of lensing-like effects on the CMB power specira,
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demonstrating thathe Bayesian method can be used to easily infgparameters both from an optimalensing
reconstruction and from the delensed CMB, while exactly accounting for the correlation between the two. These
results demonstrate the feasibility of the Bayesian approach on real data, and pave the way for future analysis of
deep CMB polarization measurements with SPT-36imons Observatoryand CMB-S4, where improvements

relative to the QE can reach 1.5 times tighter constrai
reconstruction noise.

ntson A; and seven times lower effective lensing

Unified Astronomy Thesaurus concepts: Cosmology (343); Cosmic microwave background radiation (322);

Gravitational lensing (670); Weak gravitational lensing

1. Introduction

Gravitationallensing of the cosmic microwave background
(CMB) occurs as CMB photons traveling to us from the last
scattering surface are deflected by the gravitational potentials
intervening matter.This effect has been detected with high
significance allowing inference of the line-of-sightprojected
gravitational field of the intervening matter and of the late-time
expansion history and geometry of the universe (Lewis &
Challinor 2006; Planck Collaboration et al. 2020a). Better
measurements of the lensing effect are one of the main goals
nearly all future CMB probes, and can help constrain dark
matter, neutrinos, modified gravity, and a wealth of other
cosmologicalphysics (Benson etal. 2014; Abazajian et al.
2016; The Simons Observatory Collaboration et20.19).

Traditionally, analysis of lensed CMB data has relied on the
so-called quadratic estimate (QE) of the gravitationahsing
potential, f (Zaldarriaga & Seljak 1999; Hu & Okamoto 2002).
The QE is a frequentist point estimate of f formed from
quadratic combinations of the datdt is conceptually simple
and near minimum-variance at noise levels up to and including
many present-day experimentslowever,it was realized by
Hirata & Seljak (2003a, 2003b) and Seljak & Hirata (2004) that
when instrumental noise levels drop below ~ 5 yK arcmin,
where lensing-induced B-modedbegin to be resolved with

(1797); Bayesian statistics (1900)

of the theory lensing spectrum. However, this is not generically
the case for MAP estimates, for which analytic calculations of
normalization and noise biases do notexist. In theory, one

gpuld try computing these entirely via Monte Carlobut this

can only be done at a single fiducial cosmological model, and it
is unknown to what extent these could be cosmology-
dependenbr how one might deal with this. If a frequentist
estimate is nevertheless desired,more promising approach
may be something akin to tH&" MLE proposed by Hirata &
eljak (2003b).However,this has notyet been demonstrated

Ojn realistic data.

An alternate approach is based on direct Bayesian inference
of cosmologicalquantitiesof interest, without the need for
explicit normalization and debiasing of any intermediate power
spectra. Recent progresswas presented in Anderes et al.
(2015), who developed a Monte Carlo sampler of the Bayesian
posterior of unlensed CMB temperature mapsand f maps
given fixed cosmological parameters. Millea et al. (2019) began
the process ofincorporating polarization into this procedure,
resulting in a joint MAP estimate of both the f map and the
CMB polarization fields. Finally, Millea et al. (2020,
hereafter MAW20) extended this to a full Monte Carlo sampler
and included cosmological parameters in the sampliiging
the key ingredients needed forthe work here. By virtue of
directly mapping out the Bayesian posterior for these

signal-to-noise greater than one, the QE ceases to be minimunyy antities, this method achieves the goalof fully extracting
variance, and better analysis can extract more information fro”bosmological information from lensed CMB data and is

the samedata. Hirata & Seljak (2003b) were the first to
constructa better estimator,using a method based on the
Bayesian posterior for CMB lensing. This included a maximum
a posteriori (MAP) estimate off, which has lower variance
than the QE° and a maximum-likelihood estimate (MLE) of
the power spectrum of gravitational lensing potential, C/ .
These results used a numbeof simplifying approximations,
including perfectly white noise and periodic flat-sky boundaries
with no masking in the pixeldomain.Extending this original
work, Carron & Lewis (2017) upgraded this MAP f procedure
to work without these approximationsendering itapplicable

to realistic instrumental conditions.

Although estimates of the f maps are useful here we are
interested in reconstructing nobnly f but its theory power
spectrum as wellA common misconception is thabnce one
has a better estimate of f (e.g.a MAP f estimate), one can
take its power spectrumsubtracta noise bias,and obtain the
desired estimate &/ . While this does work for the QE, it is
only because the QE can be analytically normalized and its

optimal at all noise levels.

Instrumental noise levels that are low enough at the relevant
scales to necessitateanything beyond the QE have only
recently been attained. The POLARBEAR collaboration
performed the first(and to-date only) beyond-QE analysis of
real data (Adachiet al. 2020). This used the Carron & Lewis
(2017) MAP f estimate to internally “delense” the data,
removing the lensing-induced B-modepolarization. Unlike
genericC/" estimation, B-mode delensing doesnot require
renormalizing the f estimate, and noise biases can be mitigated
via the “overlapping B-mode deprojection” technique.

In this work, we go a step further and perform an optimal
lensing reconstruction and fulparameter extraction from the
lensing potential and from internally delensed bandpowers.
Although similar in spirit, our methodology is quite different,
however,and it is based on the MAW20 Bayesian sampling
procedure ratherthan on any point estimates.We use the
deepest100 de@ of South Pole Telescope polarization data
obtained with the SPTpol receiver, restricting ourselves to just

power spectrum analytically noise debiased (up to some usualliis deepespatch since we are mainly interested in the low-

minor Monte Carlo corrections), yielding an unbiased estimate

40 The MAP f estimate from Hirata & Seljak (2003b) has sometimes been

called the “iterative quadratic estimate,” but because several methods exist tha

involve iterating something akin to a quadratic estimatese do not use this
term and instead more precisely refer to individual methods.

noise regime where the Bayesian procedure will outperform the
QE. We infer cosmological parametégsandA, , along with a

host of systematics parameters. Fheparameter is a standard
parameter scaling the theory lensing spectrum as
o

0 A/C[ .A; can be considered a proxy for any physical

(3
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Figure 1. To help orient the reader, a visualization of the various linear operators that enter the CMB lensing posterior in Equation (8) is presented. The operators
andl are the beams and transfer functiomsspectively]l andll together form the noise covariancelas =0 0 0 7, andl j andl ¢ are the pixel-space and
Fourier-space masks, respectively (see Section 3 for a full description). These operators corréégondNg, matrices, which act on th¥,,-dimensional vector

space of spin-2 (i.e., polarization) 2D maps or 2D Fourier transforms (Ng;e: 2 . 26(R). The quantities plotted above are the Q component of the diagonal of
these matrices when represented in the basis labeled in each plotlFgrandl , the Q and U components are taken to be identical, while for, andl , they

are allowed to be different (but qualitatively end up very similand hence only Q is shown).

parameter that is constrained by the lensing potensaich as These demonstrate important pieces of the type of fully optimal
the matter density or the sum of neutrino masses. We choose teeyond-QE analysis,which will be a requirement if next-
estimate”ls here for simplicity, but in the future, the method ~ generation experiments such as SPT-3G, Simons Observatory,
could easily be extended to estimate more physical parameter@nd CMB-S4 are to reach theirfull (and expectedpotential
instead.The A_ parameter scales the lensing-like contribution (Benson et al. 2014; Abazajian et al. 2016; The Simons
to the model CMB power spectrumand is defined such that ~ Observatory Collaboration et &2019).
A_ = 1if the underlying cosmological model is correct. Unlike _The organization of the paper is as follows. The reader who
frequentistestimatesthe Bayesian procedure requires a self-  Wishes to skip the details of the MCMC sampling procedure
consistentdata modelthat includes bothA; andA_, andwe  2nd Simply trustthat it yields samples from the exacCMB
develop one here. Finally, we include several systematics lensing posterior can jump to the main results in Section 6 and
o L . ) discussion in Section 7. The earlier sections give the technical
parametersnoting that it is particularly easy to incorporate

systematic errors into the Bayesian approathe final output details of the data modeling and samplingln Section 2, we
ibe th t imulati in thi k. Th t
of this procedure is a Markov Chain Monte Carlo (MCMC) describe the data and simulations used in this wor ese data

' have been previously vetted in Story et al. (2015) and Wu et al.
composed of samples of these parameters along with samples 20191, and we refer the reader to these works for various null

of the f maps and unlensed CMB polarization maps, for a total tests, here choosing instead to concentrateon the lensing
of 202,808 dimensions sampled. Ultimately, we demonstrate a analysis.Most of the focus of this work is on the Bayesian

17% improvement of the Bayesian constrainton A; as  pipeline in particular, and Section 3 lays out the forward model
compared to the QE. _ necessary to construct the posterior for CMB lensing given the
The results here are new in three regards: South Pole Telescope(SPT) data. Section 4 describesthe

Bayesian and QE lensing pipelinesand Section 5 provides
validation of the proceduresincluding on a suite of realistic
simulations of the actual data.

1. The first time a parameter (A;) is estimated from an
optimal lensing reconstruction.

2. The first joint inference of parameterscontrolling the
lensing potential (A7) and controlling the CMB band-
powers (A.), while fully and exactly accounting for 2. Data and Simulations
correlation between the reconstruction and the

delensed CMB. 2.1.Data
3. The first application of a fully Bayesian method to CMB In this work, we use data from the 150 GHz detectors from
lensing data. the SPTpol receiver on the SPT (Padin et 2008; Carlstrom
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Figure 2. Validation of the approximations underlying ourestimate of the
transfer function, I (see Section 3.6). The top plots showsthe Q and U
components of the difference between (1) a full tBOEEP TOD-level noise-

free pipeline simulation and (2) a simple projection of the same realization the
multiplication byl . The differences arise from mode coupling induced by the

TOD filtering and Monte Carlo error in the transfer function estimation
procedure.The bottom plot shows the powerspectrum of these difference
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Figure 3. Validation of the approximations underlying ourestimate ofthe

noise covariancel n (see Section 3.7)The top panel shows the mean power
spectra of 400 real noise realizations arfthi@del noise realizations that have
been masked by . The bottom is a fractional difference between the two (note
the change from linear to log scaling att072). The dark shaded band is the

<C€model noise > / < C[}'eal noise > -1

expected scatter due to having only 400 real noise realizations, and the lighter
"shaded band gives the total CMB + noise error bars in the bins plotted here.
The good agreement between the two indicates that our model noise covariance

is an accurate representation of the real noise.

maps, averaged over several realizations, as well as of the QQ signal and noise

for comparison Differences are one to fourorders of magnitude below the
noise power spectrum,hence negligible.We note that in both the top and
bottom plots,the full Fourier and pixelmask,l , has been appliedso as to
pick out the modes that are actually relevant in the analysis.

et al. 2011; Bleem et al. 2012). SPTpolhas employed three

strategy in order to increase sensitivity to larger scales on the

sky. In this case constant-elevation scans are made across the

entire range of R.A. of the field. We will refer to these data as
the 50-FULL observations.

Our final data setcomprises 6262 100 observations858
500D-LT observations, and 3370 8B6ULL observations. Each

different scan strategies for the observations that comprise ourobservation recordsthe time-ordered data(TODs) of each

final data set.
From 2012 March to 2013 April, SPTpolobserved a 100
ded patch of sky (100 * 100) centered atR.A. 23"30™ and

decl.- 581. All observations of this field were made using an

azimuthal “lead-trail” scan strategy, where the dé§ field is
split into two equal halves in R.A., a “lead” half-field and a
“trail” half-field. The lead half-field is observed first, followed

detector,and these TODs are filtered and calibrated before
being binned into maps We highlight that while the lensing
reconstruction used in this work is optimand gauranteed to
fully extract the lensing information from the CMB map#he
input maps themselves are naiptimal in the same senseln
theory, we could employ a maximum-likelihood mapmaking
procedure (foran example,see Aiola et al. 2020); however,

immediately by a trail half-field observation, such that the lead becauseof our fairly simple scan strategy and uniform

and trail observationsoccur in the same azimuth-elevation

coveragethis would likely lead to very small improvements

range. Each half-field is observed by scanning the telescope inin final constraints and is thus notused. The data reduction
azimuth right and left across the field and then stepping up in largely follows previous TE/EE power spectrum analyses,

elevation.This lead-trail strategy enables removaif ground
pickup. We will refer to these data as the 100bservations.

From 2013 April to 2014 May, SPTpol observed a S&e?
patch of sky, extending from 220 2" in R.A. and from -65°

to —50° in decl. Observations during this time were also made

namely Crites et al. (2015) for the 100D observationsand
Henning et al. (2018) for the 500D-LTand 500D-
FULL observationsHere we only highlight relevantaspects
for this analysis.

For the 100D observationswe use slightly different TOD

using the “lead-trail” scan strategy, and we will refer to them asfilters compared to previous analysis ofhese data in Crites

the 50@-LT observations.
From 2014 May to 2016 September,while observing the
same 50@eg field, SPTpolswitched to the “full-field” scan

et al. (2015). We subtracta fifth-order Legendre polynomial
from the TOD of each detectorand then apply a high-pass
filter at 0.05 Hz, in order to match the filter choices for
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Figure 4. A demonstration of the “noise-fill” procedure describedin H+  100d-deep QE

Section 3.8, which makes it much easierto exactly Wiener filter the data

even in the presence of pixel and Fourier-space masking and a noise covariance
model that is not diagonalin either space.The top-left panel shows 10®-
DEEPdata with the mask applied, including Fourier and pixel masks. The top- £
right panel additionally has the noise-fifl, added in; this panel is exactly the @)
data,d, which is used in the posterior in Equation (8L he bottom-leftpanel

shows just?, and the bottom-right panelfsmultiplied by the Fourier mask. In

this last panel,one can see thain the region interior to the mask and in the

range of Fourier modes that are not masked by the Fourier mask, no extra noise
is added. Here we have plotted just the Q-polarization component;U-
polarization behaves qualitatively the same.

-0.5

0 250 500 750 1000 1250 1500 1750 2000

500D observationsBased on the size ofour map pixels, we L

apply a low-pass filter at a TOD frequency corresponding to anFigure 5. Bandpowers and noise terms from the QE pipelinEhe top panel
effective (CJ=[15000 fanti-aliasing along the scan direction. ~ Shows the normalized but noise-biased QE power spectalong the typical
Electrical cross-talk between detectors could bias our measure-t  and’'i noise biases that are sublracted. The blue curve is the average
ment, and in Crites et al. (2015), we applied the cross-talk cross spectrum between inpéitmaps and ;' across a suite of simulations,

fi to th t tth d of th Ivsi and is used to compu@"c. The bottom panel shows the noise-bias-subtracted
correction to the power spectra atihe end o € analysis. QE and error bars (from simulations), as well as a cloud of blue lines denoting

However,in this analysis, we correct cross-talk atthe TOD the noise-debiased simulations used to compfate

level by measuring a detector-to-detector cross-talk mafrix,

the same way as described in Henning et@018). frequency is ¢,qC=01340Downgrading is performed by first
For the 50@-LT observationswe slightly modify the filters applying an anti-aliasing isotropic low-pass &f,, averaging

as compared to Henning edl. (2018) as well. We subtracta pixels togetherthen deconvolving the pixel-window function

third-order Legendre polynomialfrom each detector's TOD,  to match the original1’ map (the remaining 1’pixel-window

and then apply a high-pass filter at (L1=[1100 to further suppreggnction is accounted for in our forward modefor the data).
atmospheric noise. We also apply a low-pass filter at (L1=L1506e reason fornot making maps directly at3’ resolution is
for anti-aliasing.For the 50@-FULL observationswhile using because the anti-aliasing filteis most easily applied to the

the same high-pass and low-pass filtersye subtracta fifth- intermediate 1maps,rather than at the TOD level.
order Legendre polynomialinstead,due to each scan being Because we are interested in a low-noise data set where the
corrected as described in Henning et €2018). analysis on data within the 100D footprint, and only on

The TODs of each detectorare calibrated relative to one  pojarization dataThe final data productis a set of co-added
another using an internathermalsource and observations of  260[Jx[1260 pix@land U maps.The effective noise levebf
the Galactic Hil region RCW38. The polarization angles of  the 10(-DEEPdata set inside the mask used in the analysis is
each detector are calibrated by observing an external polarizeds o UK arcmin in polarization over the multipole range

thermal source,as described in Crites etal. (2015). We bin 10000<O¢C<30pPing to 5.8 PK arcmin in the deepest
detector TODs into maps with square 1’ pixels using the parts of the field.

oblique Lambertazimuthalequal-area projectioncentered at
the 100D field center. Because the Bayesian analysis is 3. Modelin
computationally intensive and scales with the number of : 9

pixels, it is advantageous to reduce the number of pixels in the To compute the Bayesian posteriofor CMB lensing, we

final data map as much as possible. Since our analysis does noéquire a forward data modeind a setof priors. The datad,

use modes above 45, 1=[13008¢ can, without loss, down- which is used as input to the Bayesian pipeline, is a masked and
grade the data maps to 3’ arcmin pixels, for which the Nyquist “noise-filled” version of the QU data produced by the

5
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wall-time [hours] 7.0 (¥po) is a global Q/U rotation by an angle ¥l
representing the absolute instrumental calibration,

8. [ opsis a fixed but spatially dependent Q/U rotation that
aligns the flat-sky Q/U basis vectors to the data
observation basis, the inverse of the operation sometimes
referred to as “polarization flattening,”

9. R, is the polarization calibration parameter,

10. lou are temperature-to-polarization monopole leakage
templates andou are their amplitude coefficients,

11. 0 , andl ¢ are pixel-space and Fourier-space masking
operationsrespectively.

100 — 2000
=
o

We use the notation thatlower-case regulatetters represent
maps, and double-struck upper-casdetters representlinear
operators on the Npix-dimensional abstract vector space
spanned by all possible mapkater in the paperwe also use
the notation thatDiagonal(x) refers to a diagonahatrix with
the vector x along the diagonal, and diag(eturns the vector
along the diagonal of the matrik .
We adopt Gaussian priors on the fieldsff, and n

f~10(0,0+A)) 2
f~100,70¢A) 3
n~1q (0,0 n), 4

wherell (A7), [ +(Ar), andl » denote the covariance operators
for unlensed CMB polarizationthe lensing potentialand the
experimentalnoise, respectively. The first two depend on
parameterghat control the amplitude of the overall power

spectra,
345000 Satd
™~ L = 9
> 340000{ ] 0rAr) =A% 5)
335000 i i o it
0 200 400 600 800 1000 0sA) =10 (f) + A - DO 97 (6)

step

Figure 6. The top eight plots show the trace of the sampled cosmological and \where [ (} and 1 )9 are evaluated at the best-fit Planck
systematics parameter8, at each step in the Monte Carlo chain.The very | The | . litud teh is th .
bottom plot shows the trace of the? of the current model point, along with a cosmology.lhe lensing amplitude parametery, IS the main

gray shaded band indicating the expectation based on the number of degrees 6osmological parameter of interest in this work, and scales the

freedom. Note that 202,800 other parameters are jointly sampled in this chain amplitude of the fiducial lensing potential within some
(not pictured), corresponding to every pixelor Fourier mode in the CMB

polarization and f maps. To aid convergence, the 6 are not updated for the first}’\/indo_w’_[| : The window allows us to .eStimate the amp”tUde

100 steps in the chain. These 32 independent chains ran across four Tesla V1§@st within a given multipole rangewhich here we take to be

GPUs in roughly 5 hr. ¢0J=01(100, 2000) to match previous SPT lensing analyses. This
parameter is sometimes denoted A8® 2000 byt throughout

mapmaking described in the previous section (we will describethis work, unless otherwise stated or included for clarityye
the masking and whatwe mean by noise-filled laterin this will drop the superscript and simply refer to

section). The model we assume for d (and later demonstrate is

sufficiently accurate) is A ° AJ00 2000 @
d=080p obs’ [Ral Wpo) D D (B)D(H)F+ Dol The unlensed CMB amplitude parametert, functions as a
+ Wb+ N N proxy for the Planck absolute calibrationand allows us to
marginalize over the uncertainty in this quantity. Incorporating
where the A_ parameter is slightly less straightforward than eitAger
1. f represents the unlensed CMB polarization fields, or A, and this discussion is delayed until Section 6.1. All other
2. fis the gravitational lensing potential, cosmological parameters not explicitly sampled are assumed to
3. nis the instrumental and/or atmospheric noise, be perfectly known and fixed to their true value given the
4.1 (f) is the lensing operation, fiducial model.
5. 0 (bi) is the beam smoothing operatiorpntrolled by a We assume uniform priors on the cosmological and
set of beam eigenmode amplitude, instrumental parameter8:, As, Ra, Ypol, o, andu, and unit
6. 0 are the transfer functions, normal priors on thebi (discussed in Section 3.4).
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AL0-200 = 0.950(8) +0.122(5)

P, = 1.0664(3) & 0.0086(2)

4 = 0.5596(8) + 0.0768(5)

Yol

100eq = 0.9533(6) + 0.0417(4)

2

100ey = 0.5523(7) + 0.0435(5)

5, = — 0.267(8)  0.996(6)

8, =0.003(7) £ 1.006(5)

8, =0.045(7) & 1.004(5)

1002000 P Ppol 100€q 100ey B

Figure 7. Constraints on sampled parameters, 6, from our baselibedt€0 chain. The 2D plots show 10, 20, and 30 posterior contours as black lines, with binned

2D histograms of the samples shown inside of the 3a boundary and individual samples shown beyond that. The first column is the main cosmological parameter o
interestA]9 2000 and the remaining columns are systematics parameters. The ability to easily and jointly constrain cosmological and systematics parameters in thi
manner,while implicitly performing optimal lensing reconstruction and delensiigga unique strength of the Bayesian procedurere, we find <5% correlation
betweenA/%” 2000 and any systematics, meanisg?/°” 20%) is increased by <2% upon marginalizing over systematic uncertainty. For the systematics parameters,
the blue lines denote an estimate from an external procedure, and the agreement in all cases is an important consistency check. The 1D histograms also include tt
posteriorfrom a separate independerthain as a dashed linejndicating the distributions are sufficiently wellconverged More quantitatively,the numbers in
parentheses in the titles give an estimate of the standard error on the last digit of the posterior mean and of the posterior standard deviation.
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Figure 8. Posterior mean maps, computed by averaging over the Monte Carlo samples in our chains. The quanities(f arfd /2 are the lensing potential and
convergence maps, afdandB are the lensed E- and B-mode polarization maps. The posterior of any quantity can be computed by post-processing the chain and
averaging; for example, the bottom-right panel shows the posterior m¢@an of), i.e., the lensing contribution to the E-mode map. These maps are in some sense
only a byproduct of théA; inference, but if a single point estimate of any of these quantities is required elsewhere, these are the best estimates to use. As expected
these maps qualitatively resemble Wiener filtered data, wherein low signal-to-noise modes are suppressed. The Monte Carlo error in these maps is more quantitat
explored in Figure 9.

]0-6 L 4

—— theory
101t —— chains 1-16
—— chains 17-32
1011} —— difference
102 10° 102 109 107 107

14 14 14

Figure 9. The blue and orange lines (nearly coincident) show the power spectra of (from left to right) posterior mean f, unlensed E, and lensed B maps, as determir
from one-half of the 32 independent TOOEEP MCMC chains vs. the other half. The power spectra of posterior mean maps is expected to be suppressed relative to
theory, similar to the suppression that arises when Wiener filtering. The green line shows the power spectra of the map differences between these two sets of chai
Across almost all scales, these differences are one to two orders of magnitude below the spectra of the mean maps, demonstrating the level of convergence of the
chains. The smallest scales in f are the only region where the difference is larger than the mean. An analysis that required better accuracy here could run more ch:
although we note these scales do not impact the determinatiofi/8f 2090,
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Figure 10. Validation of the Bayesian pipeline on simulationsThe colored
lines in each panel denote the posterior distributions from each of 100
simulated 100-DEEPdata sets (these include real noise realizations).The
shaded black curve is the product of all of these probability distributions. Note
that, for clarity, all distributions have been normalized to their maximum value.

The true value of the systematics parameters in these simulations comes from

the best-fit 100D-DEEPresults,and is denoted by the verticaldashed line in
each plot. The shaded black curve bounds possible systematic errors in the
Bayesian pipeline due to mismodeling ofhe instrumentalnoise or pipeline
errors,and we find no evidence for either to within the 10% of the statistical
error afforded by the 100 simulations.

This setof choices fully specifies the posterior distribution
over all variablesgiven in Equation (8):

D (f1 faAf:Af,Fzzal,ypola [by DU’ b’ |d)
{ [d- 080, oodRalll Wpon 0 0 ()0 (F)F+ lolo+ )2
exp;] -

20 n
exp{ - }

detl %
detl (A )2

}

u

f2
20 ¢(Ar)

f2
exp{- 2_(A)}
detl f(Af )%
where we use the shorthantf/1 ° X0 - X
here and throughout the paper.

0 (bi)

®

Following the terminology of MAW20, we refer to this as the
“joint posterior,” in contrast to the “marginal posterior,” which
would analytically marginalize out f.

Millea et al.
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Figure 11. (Top panel) Jointconstraints from the 100-DEEPdata seton the
amplitude of the lensing potential, A/°® 209 and the residuallensing-like
power, DA_. The correlation coefficientbetween the two is r = - 0.40(5),
demonstrating only about 9(3)% of A 200 constraint originates from the
power spectrum of the datgBottom panel) The same posterior as in the top
panelbut in terms of the A = A0 2000 4+ DA parameterwhich controls
the total lensing-like power in the data modelThese results demonstrate the
unique ability of the Bayesian lensing procedure to infer parameters from an
optimal lensing reconstruction and from delensed bandpowers while easily and
exactly accounting for correlations between the two.

3.1. Calibration

Performing a change-of-variablesrom f1 f/ [Ar in
Equation (8) makes itclear thatthe posterior constrains only
the productPca|\/7\?. Thus, without loss of generality,we fix
Ar = 1 in our sampling and only explicitly sample the R
parameterThe resulting constraints ofg, can be interpreted
as a constraint oﬂa|\/7\_f, or equivalently as a constraint on the
SPT polarization calibration when calibrating to a perfectly
known theory unlensed CMB spectrum given by the Planck
best fit.

An estimate off, can be obtained by comparing SPTpol E
maps with those made by Planckor the 50@ data,Henning
et al. (2018) measuredR, = 1.06 and for the 100D data,
Crites et al. (2015) measuredR, = 1.048 A weighted
combination of the two predicts Ry ~ 1.055 for the 100D-
DEEPdata.
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Figure 12. (Top panel) Posterior distributiongf” 209 as determined by the

Bayesian and QE procedures. The blue bars are a histogram of the samples in
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Figure 13. Constraintson A; given various changesto the analysis as
compared to the baseline resudts described in Section 6.4.

R..;, by sampling in the Bayesian case and by applying a best-fit
correction in the QE case.

3.2. Global Polarization Angle

Assuming negligible foregrounds and a non-parity-violating
cosmologicalmodel, we expectthe cross-spectra between TB
and EB to be consistentvith zero. A systematic error in the
global polarization angle calibration of the instrumgpd, can
also create a signal in these channels. A typical approach is to
determiney po by finding the value thatnulls the TB and EB
channels (Keating et al. 2012). This was the approach taken in
Wu et al. (2019b)for a subsetof the same data used here,
which foundy o = 00. 630  00. 04
We include the global polarization rotation in the forward

the chain from the Bayesian procedure, and the solid blue line is the Blackwelldata model in the form of the operatdy ., and jointly infer

Rao posterior. The orange curve removes information from the power spectru

of the data by marginalizing overA,, and the green curve is the Gaussian

estimate from fitting the QE bandpowers. The 17% improvement in error bar in

oo along with the other systematicsand cosmological

parametersBecause the prior on f assumesno correlation

the A -marginalized Bayesian case over the QE is a main result of this work. P€tween EB_ (|e=D f i_S _diagona| ir‘ EB Fourier space),the
(Bottom panel) Comparison of the Bayesian result with other measurements ofMCMC chain will implicitly try to find the y o that nulls the
Ay in the literature. The result here achieves the lowest-yet effective noise leveEB channel. As we will see in Section 6.4, the value we find is

onf, although other results achieve better A; constraintswith a larger
observation region.

This external estimate d,, however,is not directly used,
because we do not correct the raw data by a best-fit R,
Instead,we includeP, in the forward model for the data and

consistent with the determination from Wu et #2019b).

3.3. Temperature-to-polarization Leakage

Because the measured polarization signal effectively comes
from differencing the measured intensity along two different

sample its value in our MCMC chains. Note that this approach polarization axesany systematic mismatch affecting jushe

is unique for a lensing analysis,because it meansthat the
calibration is jointly estimated at the sametime as other
systematicsat the same time as cosmological parametens

of the axes can leak the CMB temperature signal into
polarization. Depending on the nature of the mismatch,
different functions of the temperature map can be leaked into

even at the same time as the reconstructed f maps themselvesQ and U. For example, a gain variation between detectors will

We will see in Section 6.3 that this has concrete benefits,
mainly that it reduces the impact of the uncertainty &, on

leak a copy of the T map directly, whereas pointing errors,
errors in the beamwidthor beam ellipticity will leak higher-

the final cosmological uncertainty. As a consistency check, we order gradients of the T map (Ade efal. 2015). Because the

will also show that the range of R, values allowed by the
MCMC chain is consistent with%, ~ 1.055

For the QE pipeline where there is no analogous approach,

we do correct the data; however,we correct by the best-fit
value from the Bayesian pipeline for easier comparison
between the two All of the systematics parameters described
in the following subsections are handled in the same way as

10

temperature map is measured with very high signal-to-noise,
the presence ofleakage can be detected by cross correlating
temperature and Q or U maps (this correlation should be zero
on average for the true CMB, given a Fourier mask with
appropriate symmetries)Additionally, if any correlation is
detected,it can simply be subtracted given an appropriate
amplitude.
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convenience,we also define the spin-2 polarization fields,

6000 16
to=(T,0) andfu ° (0, T), which allow writing the leakage
5500 15 contribution in the form seen in Equation (8). Finally, we note
' that the coefficientsare small enough that no T noise is
2000 5 introduced in the deprojection or marginalization over the
4500 b ] leakage templates, thus the T field can be taken as a fixed truth
~§ 13 55’ given by the measurement and does not need to be additionally
~ 4000 . sampled. As we will see in Section 6.4, the values preferred by
S the chain are in agreement with Equation (10).
> ( I‘his chjorlf 17) v
achievea=1.
3000 11 3.4.Beams
o For the 100D field, the beam window function and error
2500 B ] 10 covariance are measured using eight independent observations
1 2 3456 810 of Mars. The beamin the field observationsis further
polarization noise [pK-arcmin] broadened by pointing jitterwhich we estimate by making a
10 second beam measuremeusing bright point sources in the
100D field, and convolving it with the Mars-derived beam. Full
details can be found in Crites et al. (2015). For the B@ield,
8 the beamis measuredusing seven independentVenus
g observations,and pointing jitter is convolved in the same
A way as above. Full details can be found in Henning et al.
6 g (2018),where a cross-check is also performed by comparing
3 with Planck beams and maps. The 100D-DEEPbeam is
TS 5529 computed by averaging ovebeam-convolved simulations of
SPT-3G < the 100D and 500D fields, combined given the appropriate
1 B 3« weights.
This work The forward data model includes the beam uncertainty in the
1 form of a beam operator parameterizedby free beam
OSO_LAT 2 eigenmode amplitudes:
2 3 456 810 0(b)y=00+ bil1+ bollo+ ... &)

polarization noise [pK-arcmin]

Figure 14. Forecasted improvemenff Bayesian lensing reconstruction over ~ Wherel ¢ is the best-fit beam, the B; are beam eigenmode
the quadratic estimate, computed from a suite of map-level mask-free amplitudes,and the 0 are the perturbationsto the beam

simulations.The x-axis gives the noise levelin polarization, and the y-axis . . "
gives the largest ¢(Clused in the reconstruction.The top panel shows the operator determined from an elgeande decomposition of the

improvementin the error bar on A% 2000 The hottom panel shows the beam covariance matri¥An image of(l ¢ is shown in the top-
improvementin the effective noise in the lensing reconstruction, Nf | at left panel of Figure 1. We normalize thesuch that the;have
¢ = 200. This work achieves a slightly better improvementA°” 2°%° than unit normal priors, which are included in the sampling. We

predicted from these simulations due to minor sub-optimalities present in our keep three eigenmodesin the chain. As we will see in
(and typical) QE pipelines when masking and other analysis complexities exist. )

Forecasts forthe deep CMB-S4 survey, SPT-3G, and Simons Observatory Section 6.3, none are appreciably constrained beyond their
LATs are shown as diamonds. The latter lies almost directly on top of the star prior, indicating that the data is consistentwith the fiducial
denoting the current work, but is offset only for visual clarity. These beam determination

simulations coverroughly 100 deg, although the relative improvements are :
not expected to scale appreciably wifg(y.

3.5. Masking

For the 100D-DEEPdata, cross correlating with the appro- Our analysis applies a pixelmask,0 ,, which selects the
priate templates demonstrates that only gain-type leakage exist§)(p-pEEPfield and masks brightliscrete sourcesThe mask
at appreciable levels in the map#his type leads to a leakage  porder is built by thresholding the noise pixel variance at five
of the form, times its minimum value, straightening the resulting edge with
T a smoothing filter, and finally applying a 1 ded cosine
6\ 0 6\ + PQ \ (©) apodization windowThe source mask is composed of known
J Y ) galaxy clusters (Vanderlinde etl. 2010), and point sources
detectedin temperaturewith fluxes greater than 50 mJy

wherellp andly are coefficients that capture the total leakage to(Everettet al. 2020). In total, the effective sky fraction left

each channel.Minimizing the TQ and TU cross-correlation 1 1qkad is 9.9 dég This pixel mask is shown in the top-
yields best-fit values of right panel of Figure 1.

lo = 0.010 u = 0.006. (10) We note that neither Bayesian nor QE pipelines require that
the mask be apodizeddowever,while the Bayesian pipeline
As for the other systematicsthese values are only used as a  remains optimalfor any mask,hard mask edges can lead to
consistencycheck, and instead the leakage templatesare larger Monte Carlo corrections and slighsub-optimalities in
included in the forward model, arig andu are sampled. For  the QE pipeline. To facilitate a fairer comparisonwe have

11
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chosen to use apodization in the baseline case, but also preseabservations (in practice20), since many observations have

results with an unapodized mask in Section 6.4. identical scan strategies and would have effectively identical
In the Fourier domainwe apply a Fourier-space mask;, transfer functions. In parallel to these full pipeline simulations,

shown in the bottom-right panel of Figure 1. The center part of we also perform a simple projection of the beam-convolved

the mask is built by thresholding the 2D transfer function at 0.9CMB+foregrounds to the flat-sky, with no other filtering

to remove modes, mainly in the ¢, direction, which are applied.

significantly affected by the TOD filtering and for which the We can achieve sufficient accuracy onll with only 20

approximation thafl is diagonalin QU Fourier space breaks  simulations by using a new variance canceling technique. This

down. We additionally apply an ¢, 1=[13000 upper bound to method computes the transfer function as,

limit the possible contamination from polarized extragalactic

point sources. Although there is not much information beyond 0 o oineline)QU
Re [( ne ’ } 0sims (12

¢C0=013000 at these noise levels, we note that this choice is likely) = Diagonal
quite conservative and can probably be significantly relaxed in
the future.

The total masking operator is chosends =10 § o, i.e., where the f variables in the numerator and denominator are the
pixel masking happens first. To produce the data that is input tonock-observed and projected maps, respectively] gris the
the Bayesian pipeline, d, we apgly to the raw data map that  pixel mask. The presenceof the projected map in the
is output by the mapmaking procedure We then also self- denominator cancels sample variance in the estiméading

consistently includel in the data modelitself. Becausdl ¢ to much quicker Monte Carlo convergence.However, this

andl) , do not. commutg exactly, there is some small Iea_kage Ofcomes at the cost that Equation (12) is actually a biased
masked Fouriemodes into d. Our analysis features a fairly estimate of the true effective transfer function

conservativel ¢, and it is not a problem that the effective . . . .
. ; . . . With a simple testwe can verify (1) that this bias is small,
Fourier mask leaks slightly into the region that is formally (2) that our approximation thatl is diagonalin QU Fourier

masked byl , specifically by aroundD¢~ 10 (set by the . g ) -
) . : space is sufficient, (3) that there is negligible Monte Carlo error
width of the mask kernel window function). For future analysesdue to using only 20 pipeline simulations, and (4) that our

where a more precise cutmight be desired,one could fully ; . o :
. . . usage of only 20 observations per simulation is valid. For a set
remove any leakage by directly deprojecting the undesired of sgnulation)g separate than thgse used to estimatel using

modes from the data and including the deprojection operator N2 different set of 20 observations within each simulationye

the data model. A . . ;
compare the result of the full pipeline simulation versus simply
applyingll to the projected map for the same realization. In the
3.6. Transfer Functions top panel of Figure 2 we show these difference mapand in
the bottom panel, we show their power spectrum averaged over
a few realizations. In both top and bottom panels, we multiply
by the full mask/l , so as to pick out only modes relevant for
the analysis. We see that the difference is one to four orders of
magnitude below the noise spectrum;hence,l is a very
accurate representation of the true transfer function, particularly
at smaller scalesyhich drive the lensing constrainThe final
estimate ofl used in the analysis is shown in the bottom-left
panel of Figure 1.

We note that the variance canceling technique employed
here may be of wider use, but only if full pipeline simulations
are not required to quantify uncertainty; otherwise, a larger set
of simulations is needed anyway. Here we did not need such a

p fprojected) Qu/

The filters applied to the TOD during mapmaking imprint an
effective transfer function on the data maplgpendent on the
scanning strategy and filtering choices made for each type of
observation.We approximate these transfefunctions,l , as
diagonalin QU Fourier space,and estimate themas well as
validating the approximation, with a set of full pipeline
simulations.The full pipeline simulations are fairly computa-
tionally costly, and we take two steps to reduce the cost of this
step of the analysis: (1) we simplify each simulation by
reducing the number of individual observationsthat are
included, and (2) we reduce the totalnumberof simulations
needed from ~ 400 to only 20 using a variance canceling

te?hneiqfﬂﬁ. ipeline simulations start with a Gaussian realizationIarger set becausethe Bayesian pipeline does not use
of the CMpogiven the best-fit 2015 Planck plikHM_T- simulations to quantify uncertainty alll, and because for the

QE pipeline,we have used simulations from the forward data
model, as this modelis demonstrated sufficiently accurate for
our purposes.

T_lowTEB_lensing lensed power  spectra (Planck Colla-
boration et al. 2016). Asmall expected galactic and
extragalactic Gaussian foreground contribution is also added,
and then a smoothed version of the SPTpol beam window
function is convolved.Note thatbecause the TOD filtering is
linear by construction and approximately diagonal in QU The noise covariance is inferred from noise realizations that
Fourier space,it is not crucial that these simulations exactly = come directly from the real data using the “sign-flipping”
match the true sky power, nor that they contain the right level method also used by previous SPT and BICEP analyses (e.g.,
of lensing or foreground non-Gaussianity. BICEP2 Collaboration etal. 2014; Wu et al. 2019b). This

From thesewe generate mock TOD by virtually scanning  method works by multiplying a random half of the N = 10,490
the sky using the recorded pointing information from actual ~ observationsthat enter the final data co-add by —1 before
observations For each scan strategy (100, 500D-LT, and summing them. This cancels the signal but leaves the statistical
500D-FULL ), we mock-observe the simulated sky into TOD, properties of the noise unchanged, as long as no observation-to-
process TOD into mapsand then co-add these maps in the  observation correlationsexist (which is expected to be the
same way as the real dat3he first of the two improvements  case). This is repeated MLJ=[1400 timgselding M nearly
mentioned above is thatwe only use a subsetof the actual independentoise realizationsWe will refer to these as real

3.7.Noise Covariance

12
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noise realizations and to the distribution from which they are  where the standard deviation and variance are taken across the
drawn as the real noise. M noise realizations.

As we will describe in Section 4.2 the QE pipeline only We note that the noise realizations used in these averages are
requires the average 2D power spectrum of the noise as well athe raw sign-flipped combinations of the actudhta,with no
an approximate white-noise level. This is sufficient because thextra operators deconvolved or masks applied. Hence, the noise
noise only enters the QE pipeline for the purposes of Wiener term, n, is not multiplied by any extra factors in Equation (1).
filtering the data, where an approximate Wiener filter is Additionally, we smooth bothl andl with small Gaussian
computed, and the impact of this approximation is captured in &ernels,since the uniform scan strategy and large number of
Monte Carlo correction applied at the end of the pipeline. This observations employed should average away any significant
does notlead to any bias,only a small sub-optimality of the across neighboring pixels or across neighboring Fourier modes.

final result. The Bayesian pipeline does natpply any Monte We plotl  andl in the middle two panels of Figure 1. The
Carlo correctionsand thus needs to perform the Wiener filter  top panel shows the spatially varying pixel variance pattern in
(which also arises in the Bayesian case) more exadthis in 0 , and the bottom panel shows the non-white anisotropic

turn necessitates a futhodelfor a noise covariance operator,  Fourier noise patternTo verify that model noise realizations
0 n, which needs to be as accurate as possible. We will refer todrawn from 0 » are largely indistinguishable from reahoise
this as the modelnoise,and samples from this covariance as  realizationswe show in Figure 3 the mean Q, U, E, and B

model noise realizations. power spectra of the 400 real noise realizations along with the
The real SPT noise is non-white, as instrumental and mean power spectra of f0model noise realizationsWe find

atmospheric 1/f noise dominates at large scales. It is excellent agreement, the difference between the two completely

anisotropic,as spatial modesin the scan-parallel and scan- explained by the scatter expected due to having only 400 real

perpendiculadirections map onto differenttemporalmodes, noise realizations (dark shaded band). Additionally, any

and are affected differently by TOD filtering. Finally, it is systematic difference between them idess than 1% of the

inhomogeneousas some spatialegions are observed slightly  total Q sample variance error bars (lighter shaded bamdite
deeper than others; in particular, the lead-trail scanning strategihe switch from linear to log scaling at 1072). As a further
used in the 100D and 500D-LT observationscauses some check, in Section 5.2 we will use the model noise covariance to

regions near the center and right edgesof the final 100D- analyze simulated datavhich includes real noise realizations,
DEEPfield to have noise levels a few tens of percent lower thanfinding no evidence for biases toA; due to any difference
the rest of the field. between these two.

With only MO=[1400 reatoise realizations but the most
genericl n corresponding to an Npix ’ Npix matrix where
Nyx = 2 - 260%, some form of regularization is needed to 3.8. The Noise-fill Procedure
choose a uniqué n. The choice we make here is motivated by
retaining the flexibility to model the complexity of the real
noise just described while keepingl » fast to invert and to
square-root! as both are needed to sample Equation (8).
Specifically,we define the model noise covariande;, as

The fact thatll » is not diagonalin either Fourier or map
bases presents a challenge for exactly Wiener filtering the data
in the presence of a masking operation that is also not diagonal
in either space.Whetherexplicitly stated or not, computing
such Wiener filters usually involves approximating the noise as

0np° 000 * (13) diagonal in one of the two bases, with the impact of the
approximation difficult to quantify for a Bayesian analysis.
wherel is diagonalin QU pixel space and is diagonalin Here, we develop an alternate procedure,which involves
QU Fourier space. That is to say, we model the noise as havingrtificially adding noise to the data in a particular way so as to
an arbitrary non-white anisotropic power spectrum that is make the Wiener filter problem easierto solve, and then
spatially modulated in pixebpace With this choice,we have demonstrating thathe resulting degradation in constraints is
that negligible. To our knowledge,this has not been described
. before,and could be of general use.
Dp'=00t 10 (14) The challenge can be understood by considering the
\/ﬂ R 15) following toy problem. Suppose we observe some map that

is the sum of some signal s and noise n, both defined on the full

where both operators can be easily applied to vectors with onlyPixel/Fourier plane, then apply a mask, [ , which is a

a few fast Fourier transforms (FFTs). We solvé fandl by rectangularmatrix mapping thga full set of pixels/Fourier
requiring that the variance in each individual 2D Fourier mode mogeﬁ tc;ha Smia\‘/”er: zut&sit I;)f Jgit trr;e #E;nfessﬁgﬂsgg;ggf data
and the variance in each individual pixel be identical for noise odells thus given by @ =1 ( )-

lizati d froni d for th I noi lizat data and signal model i - [ S), and the covariance of this
realizations drawn from » and for the real noise realizations. quantity is] 0 0 T, wherel is the noise covariance. Defining

These are 2}y, constraints for the 2]\, combined degrees of e signal covariance &s the log-posterior for this problem is
freedom inl andl , yielding the following solution for the thus

diagonal entries of these matrices
— N -1 92 7
0 = Diagonalstd({"}) qux) (16) logl S|dypy - ——= - ITR (18
a

) o 2000 f
0 = Diagonalvar({0 0 Naul) a7
Evaluating the posterior or its gradientswith respect to s

4T We note that for our purposes,the matrix square-rootis any 0 for reguwes_lnve_rtlng 0 D_D : .MaX|m|Z|ng the pos_terlgr(l:e.,
whichl n =01 . Wiener filtering) requires this as wells the solution is given

13
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by

s=[-'+00@0 Ty ¥ ld. (19

However, sincé is not a square matrix, these inverses cannot
be simplified away or trivially computed. Sometimes,as a
simplifying assumption] andl are taken to be diagonah
the same basis (e.gl, is assumed to be white noise)n this
case the inverse can be computed explicitly (often in practice
by setting the noise to infinity or to a very large floating point
number). Since in our case we wish to not make this
simplification,we cannot take this approach.

The more general solution we use instead involves
artificially filling in the masked data with extra noisél, such
that the new data model is

deg=d+ A=0 (S+ N+ n, (20

where we are now considerifig as a square operator but with
some rows that are zero. Note that the extra noise does not sh
the mean of the data. However, the covariance of the data
residual becomes

000 f+0 (2))

wherell denotes the covariance fofl. Since we are free to
choosell , we can choose itsuch thatthe new data residual

covariance is easy to invert, in particular such that it is equal to

ai
when

for some constanta (explained below). This happens

0 =a20 - 0010 (22)

We can draw a realization offt from 0 (0, [ ) by computing
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much simpler

- 0 5?2 &

— 24
2a210 @9

logl (S| do p - .
gl (S| @y p 51
Note that, when generating simulated data, it is not necessary
to actually perform this procedurdnstead.,it is equivalentto
simply generate data fromamodeld =1 S+ an, ie., to
leave the noise unmasked and scale itby a. This is very

convenient for the simulation pipeline, and it is only on the real

data, where one does not have access to s and n separately, that

one needs to explicitly perform the noise-fill. An added benefit
of this approach is thatthe likelihood term in the posterior
becomes a full Nx—dimensionabz; thus, its expectation value
and scatter are easy to compute. We use this in the later
sections to ascertain goodness-of-fit. As a final sanity check, we
have verified thatusing differentrealizations of the noise-fill
yield no shift in the resulting constraints 8pn In Figure 4, we
plot example data and noise-fills for the 10®-DEEPdata set.
ifthe top-right panel shows the noise-filled dathe equivalent

to d¢from Equation (20), but for the actual DADEEPcase (we
drop the prime on d in the rest of this paper for brevityThe
bottom-rightpanelshowsh after applying the Fouriermask,
which gives intuition for why no degradation occurs due to the
noise-fill, since the added noise tends to zero in the unmasked
pixels and for the unmasked Fourier modéekhe toy problem
discussed in this section otherwise maps directly onto the real
case, with the straightforwardinclusion of the additional
lensing and systematics operators.

3.9. Negligible Effects

To conclude this sectionye mention a few effects that are
expected to be negligible for this data set and are thus not

0 2x where & is a unit random normal vector. This can in turn bemodeled. Both Bayesian and QE pipelines ignore sky

computed by evolving the following ordinary differential
equation (ODE) fromt=0tot=1,
dy

—-%mt+m-tm*a-iw® 23

dt
starting from y(0) = x (Allen et al. 2000). The quantity in
brackets in Equation (23) can be inverted with the conjugate
gradient method. The ordinary differential equation (ODE)
itself is requires a stiff solver (we use CVODE_BDF from the
Sundials.jl package; Hindmarsh et al.  2005; Rackauckas
& Nie 2017).

Ideally, a can be set to unity; however,noise correlations
between the masked and unmasked regions may force us to
chose some al0>[]1 to ensure the resfuliquation (22) is a
positive-definite operatoand thus a valid covariancelf this

curvature, instead working in the flat-sky approximation,
which is very accurate for the modestly sized 100 degatch
considered hereThe lensing operation is implemented with
LENSEFLOW (MAW20), which assumesthe Born approx-
imation. Post-Born effects are not detectable until much lower
noise levels and are thus ignored (Pratten & Lewis 2016; Beck
et al. 2018; Béhm et al. 2018; Fabbian et al. 2018). Finally, we
do not model galactic or extragalactic foregroundihe 10MD-
DEEPfield is in a region of sky particularly free of galactic
contamination,and we conservatively mask modesbelow
¢1~50hus, we expect negligible polarized galactic dust
foregrounds (Planck Collaboration et @&020b).Extragalactic
foregrounds are expected to be much smallar polarization
than in temperatureand here we only use polarizatiofiven

that we also conservatively mask modes above ¢[1=[19@900,
follow Wu et al. (2019b) in concluding extragalactic fore-

were the case, we would be adding noise to unmasked regionsgrounds can be ignored in this analysis.
of the data, ultimately degrading the final result. The necessary

value of a can be found by direct searclas the ODE will be
singular if a is not large enough. One would not use the noise-
fill method if a much higher than unity was required (or
perhaps one would promote ato some scale-dependent
quantity if only certain scales needed a larger valum)t here
we find ald=[11 is sufficient to keep Equation (22) numerically
positive-definite confirming thatwe have notintroduced any
appreciable degradation of our constraints.

Overall,the ODE solution and a search are not particularly
costly, and only need to be done once at the beginning of any
analysis. Once d’ is computed, the new posterior is given by th

14

4. Lensing Analysis
4.1. Bayesian Lensing

The Bayesian sampling pipeline very closely follows the
methodology described in MAW20and uses the same code,
CMBLENSING.JU IfaGithub.Conceptually it is extremely
straightforward: it is simply a Monte Carlo sampler of the full
posterior given in Equation (8)Beyond this,there are a few
practical details that we describe in this section.

First, we perform the standard change-of-variableBom
ef, f)0 (f¢, f¢ and sample the posterior in termg &, 7 ¢)
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instead. In this parameterization, the posterior is less degenerdttamiltonian Monte Carlo (Betancour2017), which involves
and better conditioned, yielding much better performance of theampling a random momentum, from a chosen mass matrix,
sampling algorithm. This was extensively discussed and then performing a symplectic integration to evolve the
in MAW20, and we apply the same re-parameterization as  Hamiltonian for the system.Poor choices of mass matrix or

described there almost without chan@pecifically,we take large symplectic integration errors yield a slower converging
fe° 0 (Apf (25) chain, but do not bias the result asymptotically. We find that 25
leap-frog symplectic integration steps with step size= 0.02
feo 0 (F)0 f. (26) per Gibbs pass yield nearly optimalconvergence efficiency.

We note thatto control symplectic integration errorwe also

The operatof is defined to be diagonal in EB Fourier space, .. 4t |east a 10-step fourth-order Runge—Kutta ODE

and (4) is diagonal in Fourier spacayith integration as part of the L ENSEFLOW solver (in MAW20,
+ 20 1 only seven steps were needed, likely due to simpler masking).
0 ° f f 27 Finally, the mass matrix should ideally approximate the
0r Hessian of the log-posterior; here we use,
LAy [+ 20, : 28 LA =0 Ay 207"+ 0 A . (32
! [ﬂ 0 +(Ar) } The final Gibbs passes sample the conditionals of each of the

) ) remaining scalar parameters in turfl;, R, Ypoi, lo, lu, and
wherel r should approximate the sum ofnstrumentalnoise the B;. Since these are 1D distributions, we sample by
and lensing-inducedexcess CMB power, and s should  evaluating the log-posterior along a grid of valuedsterpolat-
approximate noise in the f reconstruction. Here, we find a ing it, then using inverse-transform sampling to geh exact
sufficientchoice is to setll r to isotropic 12 pK arcmin white sample.Importantly,in all cases excepfy;, these parameters
noise, and / to the 2D QE NP bias. We note that the optimal ~ are “fast” parameters becadsé)’ remains constant along the
choice of these operators is notprecisely definedand poor ~ conditional slice and can be computed just once at the
choices do not affect results, instead only lead to slower beginning of the pass. Indeed, sampling these parameters
convergence. accounts for <5% of the total runtime of a chain, and one could

With the re-parameterized target posterior in hamd now imagine adding many other instrumental parameters like these

describe the sampler. For both convenience and efficiency, the?t almostno computationalcost. Sampling Ay is somewhat

sampling is broken up into separate Gibbs steps where we costlier .beca_use Equatiqn (25) C(_)upfbsand f, meaning that
sample different conditional slices of Equation (&§he Gibbs each grid point of}; requires lensing a new map (however, the

procedure ensures that after a sufficiently long tirtres chain ~ decorrelating effectof the re-parameterization faoutweighs
of conditional samplesasymptotesto draws from the joint this increased computational cost).
distribution. : :

The first Gibbs step samples the conditional distribution of f 4.2. Quadratic Estimate
given the other variables. The advantage of splitting this off as  The QE analysis closely follows those of the 100 d?egnd
its own Gibbs step is that this conditional is Gaussian and can 500 deg SPTpol analyses (Story et al. 2015; Wu et al. 2019a).
be sampled exactly by running one conjugate gradisotver. It uses the standard SPT QE pipelineand so is completely
This solver involves inverting the operatorshown below in independent from the Bayesian code. We give a brief review of
Equation (29), where we have left out instrumental parametersthe QE pipeline here and take note of aspects particular to this
and beam and transfer functions for clarffyWe use a nested  analysis, referring the reader to the previous works for a more

pre-conditionerwherein we precondition Equation (29)with comprehensive treatment.
Equation (30), which itself involves a conjugate gradient The QE uses correlations between Fourier modes in pairs of
solution using Equation (31) as a pre-conditioner. In CMB maps to estimate the lensing potentidigre we use the
Equation (31) we use a noise operator,l n, whichis an same modified form of the Hu & Okamoto (2002) estimator as
approximate EB Fourier-diagonalersion of [ n, making the in Wu et al. (2019a),
final pre-conditioner explicitly invertible. Cxy

1 P fL = bdzeXgYe- L*Vw’e- LXY, (33)

Df+D(f)TD[I,[IanHDp(f) (29
07+ 00) R0E 30) yvhere)f aan are inverse-variance filtered data maps afd w
is a weighting function withXY' 1 {EE, EB}.
¢+ 0§ A;71[| ‘. (31 The inverse-variance filtering used for the QE does not

employ the noise-fill procedure outlined in Section 3.8, opting
The advantage of this scheme is that it minimizes the number instead to leave the existing pipeline unmodified. Here, the
of times we need to compute the action of Equation (29), whicoise is approximated as the sum of two components. The first
involves two lensing operations and hence is much costlier thais a pixel-space diagonal component,ll np = [ Qﬂ[l ;,1,

the others. With the nested preconditioning,only a few wherel ; is the pixel mask andll is a homogeneous white
applications of Equation (29) are necessary per solution. noise covariance specified by the noise levels ahe end of

The second Gibbs step samples the conditiodsitribution ~ Section 2. The second is a Fourier-space diagonal component,
of fgiven the other variables. This sample is drawn via 0 nf, which includes the power spectrum of atmospheric

foregrounds and excess instrumental 1/f noise not captured in
%2 The exact operator to be inverted can be derived by taking the derivative d/the first component, and is determined empirically from the real
df of Equation (8),setting it equal to zeroand solving for f. noise realizations. Inverse-variancefiltering can then be
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performed by solving the following equation for X with
conjugate gradient:

"+ 00 pp00 X=01 70 (34)

wherel =0f+ 0nrandl =010.
We then correcteach estimatorf ,_XY, by (1) subtracting a

mean-field bias, ffY‘MF, computed from an average over
simulations, (2) normalizing by the analytic response,
RXY Analylic and (3) summing the debiased and normalized
estimatesWe accountfor the impactof the pixel mask, not
captured by the analytic responsewith an isotropic Monte

Carlo correction,RMC. This is computed by fitting a smooth

curve to the ratiGgf o "“5/ CJf theory averaged over simulations.
This gives a normalized unbiased estimate

. = XY - XYMF
. 1 axyfL - L (35
L= 2 XY Analyt
RLMC A xy RL JAnalytic

To obtain constraints ofy;, we take the auto-spectrumfof
to form biased lensing power spectr&gff . We then estimate

the typicalN{®RP andN{" biases using simulations, and apply

a final multiplicative Monte Carlo correctidpgas in Wu et al.
(2019a). No foreground correction is applied, so the final
expression for the debiased bandpowers is

Ceﬁ = fPs[Ceff - NORD_ N, (36)

We calculate the covariance between the bandpowexs, by

running a Monte Carlo over the entire procedure.Figure 5
Kk .

shows the bandpowers cﬂ( ° L@ﬂ /4, along with error

bars computed from the diagonal of %.

Since the bandpowererrors are assumed Gaussianthe
resultingAs constraints are also Gaussiamd are given by
AQE _ @ﬁ (S 1)f€¢clf£

=
& (S M Cl,
1

JC S L

(37

S(ATF) = (39)

where the summation over ¢Clis implied. For this calculation, w

truncate Z atthe third off-diagonal,beyond which we do not
resolve any nonzero covariance to within Monte Carlo error,
consistentwith the expectation thathe correlation should be

small for very distant bins. We note, however, that correlation

Millea et al.

a fortunate position where this is possible, largely because: (1)
it is computationally feasible to run many chains and to run
existing chains for longer if there is any doubt, and (2) we find
no evidence for complicated multimodal distributions, so
convergence is noaiboutfinding multiple maxima butrather
simply a matter of getting enough samples to smoothly map out
the (mildly) non-Gaussian posteriors of interest.

Checking for convergenceusually begins by visually
inspecting the samples from a chairfor the baseline 100-
DEEPchain,we show the sampled values of the cosmological
and systematicsparameterscomprising 6 in Figure 6. Our
default runs evolve 32 chains in parallel (batchesof eight
chains per Tesla V100 GPU) and hold 6 fixed for the first 100
steps to give the f and f maps a chance to find the bulk of the
posterior first, which reduces the needed burn-in time. Note that
the starting point for our chains is a sample from the prior, not
just for 6 but also for the f and f maps themselve® Despite
this, Figure 6 shows that all 6 converge to the same regions in
parameter space, and no “long wavelength” drift is seen in the
samples.

We also check convergence by splitting the 32 chains into
two sets of 16 and estimating parameter constraints from each
set. The 1D posteriors from two sets of the baseline 10@-
DEEPcase are shown in Figure 7Here we remove a burn-in
period of 200 samples from the beginning of each chaiile
find that all contours overlap closely, and no conclusions would
be reasonably changed by picking one half over the other.

To make the convergence diagnostics more quantitative, we
use the following procedure throughouthis paperwhenever
quoting any numberderived from a Monte Carlo chain.We
first compute the effective sample size (ESS) of the quantity of
interest given the observed chain auto-correlation (Goodman &
Weare 2010). We then use bootstrap resampling to estimate the
Monte Carlo error, wherein (1) we draw N random samples
with replacemenfrom the chain where N is the ESS(2) we
compute the quantity in question using these samples, then (3)
we repeat this thousands of times and measure the scatter. The
scatter gives a 10 Monte Carlo error, which we report using the
typical notation that M digits in parentheses indicate an error in
the lastM digits of the quantity,i.e., 1.23(4) is shorthand for
1.23 [J+[] 0.04. We use this not only for the posterior mean, but
glso standard deviationgporrelation coefficientsor any other
quantity estimated from the chain.

For example skipping ahead to the results presented in the
next section, the constraint @y from the 10®-DEEPchain is

Ar =0.9498 0 0.1225). (39)

between neighboring bins can be as large as 10% and has a Thjs is to say, the standard error on the mean is 0.008, which is

significant impact on the final uncertainties.

5. Validation
5.1. Chain Convergence

One of the main challenges ofthe Bayesian procedure is

ensuring the Monte Carlo chains are sufficiently converged an

are thus yielding stationary samples from the true posterior
distribution. A large body of work exists on verifying chain
convergence and many methods of varying sophistication
exist. Our experiencehas been that the most robust and
accurate check is actually the simplesthamely just running
multiple independenthains in parallelstarting from different
initial points,and ensuring thathe quantities of intereshave

an acceptable 6% of the 10 posterior uncertainty of 0.122(5),
and could be reduced furtheby running the chain longerif
desired.

If we are interestedonly in constraints on A;, then
Equation (39) gives us what we need to know about how
@ccurate ourposteriorinference on this quantity is. It is the

ase, however, that not all modes in the corresponding f

samples in the chain are necessarily converged to this same
level. This will not affect A; since not all modes are
informative for A;, and the errors in Equation (39) tell us
aboutthe convergence of the sum totalf all modes thatare

43 Note that due to the “curse of dimensionality,” these random starting points
are much fartherapartin the high-dimensionalparameterspace than might

identical statistics between the different chains. Here, we are irseem from looking at any 1D projection.
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informative. In other applications,however, we might care

Millea et al.

including whatever may be contained in the power spectrum,

about other modes, for example for delensing external data setss well as in all higher-ordermoments (bispectratrispectra,

or for cross correlating with other tracers of large-scale
structure We can check the convergence for atiodes atthe
field level by computing posterior mean maps and comparing
the power spectrum of the difference when estimated again
from two independent sets of 16 chains. Figure 8 shows

posterior mean maps and Figure 9 shows the power spectrum
differences from the two independent sets. Across a wide range

etc.). To facilitate a fairer comparison between the two, and as a
consistency check,it is useful to separate out the power
spectrum information in the Bayesian case.

A natural way to do so is by adding a correction to the noise
covariance operator such that,

of scales in f, E, and B, the power of the difference maps is one

to two orders of magnitude below the signal. The only
exception is very small scales in f; indeed, this is an example

of modes for which the standard error is larger than the mean,

but which are not informative fdf; . If one uses these samples
for a downstream analysis,one could use the bootstrap
resampling procedure with the maps themselves to estimate

0nl On+ DALDD jenlF, 41
whereDA,_ is a new free parametet, ° 000 , and
0 1en = DiagonalCpA [00! 2000 — 1)

the Monte Carlo error in whatever final quantity was computed Thjs is similar to the effect of marginalizing over an extra data

from these samples.

5.2. Simulations

Having verified in the previous section that Monte Carlo
errors in our chains are sufficiently smallye now verify the
pipeline itself,as well as our noise covariance approximation.

that, on average,we recover the input truth. Crucially, the
simulations we use include reahoise realizationswhile the

posterior itself uses the model noise covariance. If the statistic

of the real noise were differenin a way not captured by the
model noise covariancewe would expect to see some bias
against the input truth in these simulations.

componentthat is Gaussian and hasa lensing-like power
spectrum with amplitude controlled HY A, , but that does not
have the non-Gaussian imprint of real lensing. The similarly is
only partial, however, because the correction issometimes
negative (lensing reduces power thte top of peaks in the E-
mode power spectrumjyhile an extra componentould only

noise covariance remedies thamd can add or subtract power

s long as the sum of the noise and lensing-like contributions

still yields a positive-definite total covariance (which is the case
for the range ofDA,_ explored by the MCMC chains here).
With this modification, both nonzerdDA, and nonzeroA;

Figure 10 shows these posterior distributions. The simulatiorf@n generate lensing-like power in the data. The sum of the two

truth uses the same fiducial Planck cosmology used in the
baseline model (Section 3). Additionally, we include simulated
systematics at a level given by the best-fit values of theDt00

parameters thus gives the toténsing-like effecton the data
power spectrum, and most closely matches the typical
definition of the A_ or Aens parameterwhich in our case is a

DEEPanalysis itself, to confirm that we recover nonzero values “derived” parameter,

of the systematicsparameters.The colored lines are the
posteriors from each ofthe N = 100 simulations performed,

A|_ = A/ + DAL (43)

and the shaded black curve is the product of all N. Because the

simulated data are independent(ignoring the very small
correlations between ousign-flipped noise realizationsand
because the 8 shown in this figure have a uniform priothe
productcan also be interpreted as a single posterior given N
data,

0(qldp0 (q19y)...0 (gldv) =10 (q|dh, Ay, % ,Ov).  (40)

This indicates thatthe black shaded contoushould also,on
average,cover the input truth. If there were any systematic
biases affecting the inference of 6, either from noise
mismodeling or from errors in the pipelinewe would expect
to find a noticeable bias, which we do not. With NLJ=[1100
simulations,we have formally checked againsbiases atthe
level of 1/0 B 10% of the 1o error bar for any single
realization.

6. Results

6.1.Joint A; and A, Constraints

The A; constraint obtained from the QE explicitly does not
use information from the power spectrum of the data because
the weighté/\ﬁ?_ L in Equation (33) are zero whén= 0. The
Bayesian constraint, however, extracts all information,

17

If no residual lensing-like power beyond the actuallensing
generated by?; is needed to explain the datane expects to
find DA, = 0 andA_ = 1.

Because the power spectrum of the data could be just as well
explained byDA = 1 andA; = 0, the extentto which we
infer nonzeroA; whenDA_ is a free parameter confirms that
not just power spectrum information is contributing to the
constraintbut also quadratid- ' 0 modes and higher-order
moments. Correspondingly, marginalizing o2, is equiva-
lent to removing power spectrum information from the A,
constraint, giving us the tool needed to separateout this
information.

A consequence ofthe modification to the [ n operatorin
Equation (41) is thatfit is no longer easily factorizable in any
simple basis. This presents three new numerical challenges for
our MCMC chains: (1) applying the inverselof, (2) drawing
Gaussian samples with covariante, and (3) computing the
determinantof [ n. Inversion turns out to be fairly easily
performed with a negligible 0 (10) iterations conjugate
gradient.Sampling is performed by computing # x with the
same ODE-based solution used in Equation (23). The
determinant (as a function dA, ) is the most difficult piece,
but can be computed utilizing the method describedin
Fitzsimons et al. (2017). This involves swapping the log



The Astrophysical Journal, 922:259 (21pp)2021 December 1 Millea et al.

determinant for a trace It is useful to considerwhat it would take for frequentist
methods such as the ones used in these previous works to reach
logdet{l n + DA 0 [ jenl7] equivalence with the Bayesian approach in terms of quantifying
=3 fﬂ tr{[-D Al 0 1en070 0]} + C, (44) A¢-A_ correlations, or more generally, quantifying correlations

between the reconstructed lensing potential and the CMB. First,
where C is a constant that is independenbdf, and can thus  they would need to be extended beyond the QE, which would
be ignored.The trace is then evaluated stochastically using a introduce computational cost and conceptual complexity.
generalization of Hutchinson’s method (Hutchinson 1990) to  Seécondthey would need to be extended to compute natst
complex vectors (litaka & Ebisuzaki2004), which evaluates correlations of the lensing reconstruction with the raw (lensed)
the trace of some matrii as&Z'0 Ziwhere z are vectors of data, but also with delensed data as well. Although not

it litud d h | b here in the E immediately obvious, this is automatically handled in the
unit-amplitude random-phase compiex numbers, here in the ayesian approacthis is becausegespite that the Bayesian

Fourier domain. The summation in Equation (44)converges  nrocedure does not constrdin by way of explicitly forming a
since our matrix is positive-definite, and only 20 terms are delensed powerspectrum,it exactly accounts forthe actual
needed to give sufficient accuracy in tBey region explored  posterior distribution of the lensed data maps. For example, if f
by the chain. Note also that because the powerD8f factor were perfectly known such thatthere were no scatteiin the

out of the trace, the traces can be precomputed once dhe MCMC f samples, this would yield no excess lensing variance
beginning of the chainln terms of samplingDA, is a “fast” when estimating , simply an anisotropic but perfectly known
parameter and does not significantly impact chain runtime. ~ lensed CMB covariancegcorresponding to perfectielensing.
In the top panel of Figure 11we show joint constraints on ~ Whetherit is as easy to estimate such correlationsin the
DA, andA; from the 10®-DEEPdata.Here we find, frequentistapproach is unclearput we highlight the relative
simplicity with which it was attained here.It required no
DA =0.0249 0 0.17Q7) (45) additional costly simulations or complex analytic calculations,
1000 2000 only the introduction ofDA, into the posterior.
Al =0.95514 0 0.13510. (46) Although outside of the scope of this paperthis approach
o . can be used not just for DA_ but any other cosmological
The two parametersare visibly degenerate,with cross-  parameterthat controls the unlensed powerspectra.lt thus
correlation coefficientpld=[J[J-[1 0.4D(®)can calculate by  serves as a Bayesian analog to existing frequentist methods for
how muchs (Ay) is degraded due to marginalizing o2&t as parameter estimation from delensed power spectra (Haai.et

1/41- r?, which here gives a 9(3)% degradation.Thus, 2.021)’ immediat_el_y allowing inclusion of Ie_n_sing reconstruc-
rélatively little information on A; comes from the power tion data, and giving a path to the type of joint constraints from

spectrum of the datainstead,mostof the constraining power both that will be important for optimally inferring cosmological

originates from lensing non-Gaussianity. Because of this sma“parameters from future data (Green et2017).
impactand for simplicity, we fix DA_ = 0 for the remaining 6.2. Improvement over Quadratic Estimate
results in this paper. However, we note that the 9(3)%
contribution from the power spectrum is importatd keep in
mind when comparing to the QE result in the next section.
Correlations betweef; andA_ have been negligible in all
previous lensing results from data, but are of considerable
interest moving forward as it is likely that they will need to be
accurately quantified in the future. Previous work on this topic

One of the main goals of this work is to demonstrate an
improvementin the Bayesian pipeline when compared to the
QE result.This improvementarises because the QE ceases to
be approximately minimum-variancearound 5 yK arcmin,
close to the noise levels of the 100DEEPobservations.

The baseline 100-DEEPBayesian constraint is

includes Schmittfullet al. (2013),who computed the correla- Ar =0.9498 1 0.12X5) (Bayesian . 47
tion betweenA; estimated via the QE and\_ estimated via a o

traditional power spectrum analysisfinding at most a 10% For the exact same data séiie QE constraint yields
correlation for temperature maps aPlanck-like noise levels. A; =0.9950 0.154(QE). (48)

Peloton et al. (2017) extended similar calculations to polariza-

tion, finding correlations in the 5%-70% range for CMB-S4-  This represents an improvement in the 10 error bar of 26(5)%,
like polarization maps, depending on the exact multipole summarized in Figure 12.

ranges consideredf,a realization-dependent noise subtraction The shift in the central value between the two results is

is performed, and whether T, E, and/or B are used to estimate DA; = 0.046 8. Note that these results are “nested” because
A . The correlation is largest when using B, since B is entirely the QE uses only quadratic combinations of the data while the
sourced by lensing and thus contains much of the same Bayesian result implicitly uses all-order momenBecause of
information as f. For the 10(D-DEEPdata, there is twice the this, one can follow Gratton & Challinor (2020;
Fisher information forA_ in B as compared to E, which means hereafterGC20) to calculate the standard deviation of the

our observed correlation should be on the higher efithis is expected shift as sHa, = (séE - szBayesia,ﬁ = 0.1006). The
counteracted by the fact that our data is noisier than the CMB- observed shift therefore falls within the 10 expectation.

S4 noise levels assumed in Peloton et 2017),meaning we Of this improvement,we have ascertained in the previous
should see a lower correlatiorUltimately, although we have section that 9(3)% stems from the power spectrum of the data,
not repeated theircalculation for our exactnoise levels,our which is not used by the QE, but could be included if we
observed correlation has the same sign and reasonably agreesombined with traditionalpower spectrum constraints of .
amplitude with their prediction, despite the fairly different This leaves a 17(6)% improvemerds the fairestcomparison
analysis. between Bayesian and QE results. To ascertain whether this is
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in line with expectations, we have performed a suite of genericand can become significardven for modestalibration error.
mask-free 100 dégsimulations with varying noise levels and  Indeed, using the above procedure, Wu et al. 2019b found that
! .x cutoffs for the reconstruction. For each of these the systematic error of\; from polarization was nearly half of

simulations,we compute the QE or joint MAP f estimate, the statistical uncertainty.
compute the cross-correlation coefficient,, with the true f
map, then compute the effective Gaussian noisegiven by 6.4. Consistency Checks

NI = Cf' (1/r? - 1). From this noise, we compute Gaussian
constraints orf\; without including the power spectrum of the
data, such that these should be compared to the 17(6)% result
Improvements inA; and in N/, are shown in Figure 14.
Near the noise levels of the 1DMEEPfield, we find around a
10% expected improvement ofy;.

Having presentedour baseline results in the previous
subsectionswe now perform a number of consistency checks
to see if various analysis choices have any impact on the final
results. The corresponding constrainten A; for each case
discussed here are pictured in Figure 13.

Our baseline case constrafif®® 2% As a first check, we

- 01 3000 -
6.3. Joint Systematics and Cosmological Constraints extend this range to encompady - Here,we find

A unique feature of the Bayesian approach is the ability to APY 3090 = 0.9578) 1 0.114(5), (50)
jointly estimate cosmologicaland systematics parameters by
simply adding free parameters to the posteri@and sampling
them in the chain. Here, we have added parameters fothe
polarization calibration, R,, the global polarization angle
calibration,y po1, temperature-to-polarization monopole leakage
template coefficients[lo and [lu, and three beam eigenmode
amplitudes by, b,, and bs.

Figure 7 shows constraints on all of these parameters jointly
with the main cosmological parameter of intere8t, For R,

Yoo, Do and lu, the blue lines indicate the best-fit value
obtained from the externatstimation procedures described in
Sections3.1-3.3. The chain results agree with these in all
cases,which is an important consistency checkThe beam
amplitude parameters;, are sampled with unit Gaussian priors
centered at zero. If the data is not sensitive to them, we expec
the posterior is also a unitGaussian centered &ixactly zero,
which is indeed what we find.

If our main cosmologicalresult significantly dependson
knowledge of any of these systematicswe would find a
correlation between these parameters dndinstead we find
that no parameter is correlated at more than the 5% level. Usin
the measured covariance acrosall parametersSjj, we can
calculate the fractional amount by whigtf; ) decreases if the
systematics were fixed to their best fit in the TOEEPchain

which is an additional 7(7) % tighter than the baseline result,
and consistent with the shift expected from GC20.

We next check if mask apodization has significarmnpact.
Although the QE produces an unbiased answer regardless of
mask, hard mask edges lead to larger Monte Carlo corrections
and slightly larger sub-optimality of the final estimator.
Conversely the Bayesian pipeline, in theory, always produces
both an unbiased and optimal result. This can be an advantage
because, depending on the point-source flux cut, adding a large
number of apodized holes to the map can reduce the effective
sky area of the observations by a non-negligible amouhe
solution sometimes used in the QE case is to inpainpoint-
source holes rather than leave them masked, and then
tdemonstrate on simulations thategligible bias is introduced
due to the inpainting (Benoit-Lévy etal. 2013; Raghunathan
et al. 2019). The inpainting is often performed by sampling a
constrained Gaussianrealization of the CMB within the
masked region, given the data just outside of the masked
region. The Bayesian pipeline corresponds to simultaneously
inpainting all point-source holes with a different realization at

ach step in the MCMC chainwhile accounting for the non-
Gaussian statistics of the lensed CMB given the f map at that
chain step. In practice, one could imagine that the ringing

ad created by hard mask edges induces large degeneracies in the
posterior and leads to poor chain convergence. It is thus useful
S11/(S" N4y 0 0.01, (49) to verify that the Bayesian pipeline works with an unapodized
mask, meaning pointsources can simply be masked without
where/ = j= 1 is the entry corresponding toA;. Thus, the apodization,and the pipeline can be used as is withowxtra
systematic error contribution to the Bayesidp measurement ~ steps.
is less than 1% of the statistical error. To keep the apodized and unapodized cases nested, we take

Although in this paper we do not propagate any systematic the original mask and set it to zero everywherein the
errors through the QE pipeline, for some of the same data used@Podization taperThe resultis the green curve in Figure 13,
here, this has already been done by Story et al. (2015) and Wuwhich gives
et al. (2019b). The approach there is to modify the input data, AJ00 2000 — 0 937(15 1 0.1249) (51)
for example,multiply it by 1 + s(R) to mimic a 1o error in '
the R, parameterwhere s(R,) is determined from some consistentwith the GC20 expected shift.The slightly looser
externalcalibration procedureThe resulting change to4; is constraint is consistent with the unapodized case not using the
then taken as the 10 systematic errorprdue tofea, and the  data within the apodization taper, although longer chains would
errors from several systematics are added in quadrature (hencge needed to exactly confirm this. We do not observea
assuming that they are all Ga_ussmn and pncorrelat_edﬁ;f,or significantly worse auto-correlation length forthis chain as
because the quadratically estimated lensing potentiglower compared to the apodized case, demonstratingthat mask
spectrum dependson the fourth power of the data, the L . . .

apodization has little effect on the Bayesian analysis.

systematic erroon A; scales as4 * s(R,) to linear order, )
y f (Fear The point-source mask servego reduce foreground con-
72 - - L tamination. Here, we have used a mask built from point sources
We could also calculate this by running a separatechain with these .
explicitly fixed, which we have done as a consistency checkut using S detected in temperature, but have not attempted to cross-check
directly is easier and is less affected by Monte Carlo error. if these same pointsources are brightin polarization. As a
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simple check,we considerleaving point sources completely  compute ateach step in the MCMC chain.Pushing to larger
unmasked. In this case, we find the red curve in Figure 13. Thiscales, larger sky fractions, and more complex scanning
result and the baseline case are also nested. However, this timgirategies willrequire upgrading these approximationshile

the shift in central value is inconsistenat 2.8 given GC20. maintaining high computationaspeed.The toolbox for these
Visually inspecting the reconstructed k map (not pictured here)types of improvements includes things like machine-learning
reveals obvious residualsat the locations of a few of the models (e.g., Minchmeyer & Smith 2019, for a CMB

brightest previously masked sourc&siidently, some level of application),sparse operators such as the BICEP observation
point-source masking is necessaryto mitigate foreground matrix (Ade et al. 2015), or other physically motivated analytic
biases even in polarization. Our mask is based on a 50 mJy fluxpproximations.

cut in temperatureFor future analysest will be important to The second challenge of the Bayesian approach is computa-
determine the flux cut that is a good trade-off between reducingdional. For referencethe Monte Carlo simulations needed to
foreground biases but not excising too much data. compute the QE here take around 10 minutes across a few

hundred CPU coresConverselythe Bayesian MCMC chains
take about 5 hr on four GPUs, with interpretable results
returned within around an hour.** Ignoring the mild total

We conclude with a summary of the main results along with allocation cost of these calculations, the main difference is the
some remarks about the Bayesian procedure and future longer wall-time of the MCMC chain. Since the computation is
prospects for this type of analysisOne of the main goals of roughly dominated by FFTsa naive scaling to,e.g., the full
this work was to apply, for the first time, a full Bayesian SPT-3G 1500deg footprint along with an upgraded 2'pixel
reconstructionto very deep CMB polarization data, and resolution (to reach scalesfof 5000 gives around one week
observe an improvement over the QE. This work is the secondfor a chain. Because the MCMC chains do not appear to require
optimal lensing reconstruction ever applied to data, and the firsh long burn-in time, the total runtime can be reduced fairly
to actually infer cosmological parametersthat control the efficiently by running more chains in parallel on more GPUs, or

7. Conclusion

lensing potentialitself. Doing so is particularly naturain the potentially on TPUs. Along with some planned code
Bayesian framework, as extra parameters can always be addedptimizations,we expectit will be possible to obtain results
(sometimestrivially) and sampled over. We found a 26% for a full SPT-3G data set in under a day. Additionally, much of

improved error bar o in the Bayesian case as compared to the runtime will be dominated by Wiener filteringwhere our
the QE, and a 17% improvement after removing power currentalgorithm can likely be improved, making scaling to

spectrum information. even larger data sets possible. It may be noteworthy to

As instrumentalnoise levels continue to improve in the highlight that the computationaltools in play here, GPUs,
future, we expectthis relative improvementwill increaseln linear algebra,and automatic differentiationare the identical
Figure 14, we forecast the relative improvementin as well building blocks of machine learning,and are the subjectof
more generically the relative improvementin the effective rapid technological improvements.

noise levelof the f reconstruction at LL1=[1200 (the choice of  The overallexperience of Bayesian lensing in this work is

particular L here is arbitrary, and we note that the result is onlyencouragingsolving and side-stepping many difficulties that

moderately sensitive to scaleBy the time noise levels of the arise in other procedured§Vhile some developmeris needed

deep CMB-S4 survey are reachedhe relative improvement  to extend beyond the data setonsidered herethis approach

will be around 50% for A;. The full storyis even more appears to be a viable option for future CMB probes that will

optimistic, however,as A is not the bestparameter to reflect  depend on methods such as these fdhe next generation of

the lower-noise reconstruction possible in the Bayesian case. lensing analyses.

This is because once a mode becomes signal dominéieis,

no longer improved by further reducing the noise for that mode M.M. thanks Uros Seljak for useful discussioriEhe South

(only more sky can help).If we instead consider directly the  Pole Telescope (SPT)s supported by the National Science

effective noise level itself, which will be more indicative of the Foundation through grants PLR-1248097 and OPP-1852617.

types of improvements one can achieve on parameters that argrartial supportis also provided by the NSF Physics Frontier

determined from noise-dominated regions dhe spectrawe Center grantPHY-1125897 to the Kavli Institute of Cosmo-

see that improvements of up to factors of seven are possible. |ogical Physics at the University of Chicago, the Kavli
Looking toward the future the main challenges we foresee  Foundation,and the Gordon and Betty Moore Foundation

for the Bayesian approach are twofold. The first is related to a grant GBMF 947. This research used resources of the National

fundamentadifference between the Bayesian and QE (or any Energy Research Scientific Computing Cente\NERSC), a

frequentist) methods. In the frequentist case, one is free to useDOE Office of Science User Facility supported by the Office of

various approximationsin the processof computing an Science of the U.S. Department of Energy under Contract No.
estimator,or to null various data modesas long as the final DE-AC02-05CH11231.This research also used the Savio
resultis debiased (usually via Monte Carlo simulationsand computational cluster resource provided by the Berkeley

this bias can be demonstrated to be sufficiently cosmology- Research Computing program Hie University of California,
independent. The Bayesian approach does not have any notioBerkeley (supported by the UC Berkeley Chancellor, Vice
of debiasing; instead, a forward model for the full data must be Chancellor for Researctand Chief Information Officer) The
provided and guaranteed to be sufficiently accurate so as to  Melbourne group acknowledges support from the University of
ensure biases in the finabnswerare small. The solution we Melbourne and an Australian ResearchCouncil’'s Future

have employed here is to build the forward model with Fellowship (FT150100074).Argonne National Laboratory’s
approximations to things like the transfer functior, , or the

noise covariance, n, which are as accurate as more “% The same code can run on CPUs by switching a flag, although it is factors of
sophisticated fullpipeline simulations but not prohibitive to several slower and mainly useful for debugging.
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