Practical and Scalable ML-Driven Cloud
Performance Debugging with Sage

Yu Gan Mingyu Liang Sundar Dev David Lo Christina Delimitrou
Cornell University Cornell University Google Google Cornell University
yg397@cornell.edu ml2585@cornell.edu sundarjdev@google.com davidlo@google.com delimitrou@cornell.edu

Abstract—Cloud applications are increasingly shifting from
large monolithic services to complex graphs of loosely-coupled
microservices. Despite their benefits, microservices are prone to
cascading performance issues, and can lead to prolonged periods
of degraded performance.

We present Sage, a machine learning-driven root cause analysis
system for interactive cloud microservices that is both accurate
and practical. We show that Sage correctly identifies the root
causes of performance issues across a diverse set of microservices
and takes action to address them, leading to more predictable,
performant, and efficient cloud systems.

I. INTRODUCTION

Cloud computing now hosts applications from practically
every domain of human activity, by enabling resource flexibil-
ity, cost efficiency, and fast deployment [1l], [4], [3]. To meet
these goals, cloud services today are increasingly adopting
fine-grained, modular, and event-driven programming models.

In place of large monolithic services that implement the
entire functionality in a single binary, cloud applications
now consist of hundreds or thousands of single-purpose and
loosely-coupled microservices [8], [12]. There are several rea-
sons making microservices appealing, including the fact that
they accelerate and facilitate development, allow more agile
elasticity, and enable software heterogeneity, only requiring a
common API for inter-microservice communication.

At the same time, microservices introduce new system
challenges. They especially complicate resource management,
as dependencies between tiers introduce backpressure, causing
poor performance to propagate through the system [8], [9],
[12], [LO]. Diagnosing such performance issues empirically
is both cumbersome and error-prone, especially as typical
deployments include hundreds or thousands of unique mi-
croservices.

Machine learning-based approaches have been effectively
applied to cluster management for batch or single-tier in-
teractive applications in prior work [3], [4)], [6], [S]. On
the performance debugging front, there has been increased
attention on trace-based methods to analyze, diagnose, and
even anticipate [9] performance issues in cloud services. The
most closely-related previous work, Seer, leverages supervised
learning to anticipate Quality-of-Service (QoS) violations, and
to adjust the resource allocations to avoid them. Despite its
high accuracy, Seer requires offline and online trace labeling,
as well as considerable kernel-level instrumentation and fine-
grained tracing to track where queues build up across the

system stack. In a production environment this is non-trivial,
as it involves injecting resource contention in live applications,
impacting performance.

In our article published at ASPLOS’21 [7], we presented
Sage, a root cause analysis system which enables practical
ML-driven performance debugging entirely based on unsuper-
vised learning, making it applicable to production environ-
ments, which cannot afford fine-grained instrumentation and
invasive training. Sage uses two techniques, Causal Bayesian
Networks (CBN) and Graphical Variational Autoencoders
(GVAE). The CBN captures the dependencies between the
microservices in an end-to-end topology, and the GVAE
generates counterfactuals—hypothetical scenarios created by
adjusting the state of one or more microservices—to examine
the impact of microservices on end-to-end performance.

Sage does not rely on trace labeling, hence it is entirely
transparent to both cloud users and application developers,
scales well with the number of microservices and servers,
and only relies on lightweight tracing with no application
changes or kernel instrumentation. Sage targets performance
issues caused by deployment, configuration, and resource
provisioning reasons, as opposed to design bugs.

We have evaluated Sage both on dedicated local clusters
and large cluster settings on Google Compute Platform (GCP)
with several end-to-end microservices [8], and showed that it
correctly identifies the microservice(s) and system resources
initiating a QoS violation in over 93% of cases, and improves
performance predictability without sacrificing resource effi-
ciency.

II. SYSTEM DESIGN AND IMPLEMENTATION

Prior work has highlighted the potential of using machine
learning (ML) in cloud performance debugging. However,
such techniques rely exclusively on supervised models, which
require injecting resource contention on active services to
correctly label the training dataset with the root causes of QoS
violations [9]. This is problematic in practice, as it disrupts
live applications. Additionally, prior work requires high tracing
frequency and heavy instrumentation to collect metrics like the
queue depth across the system stack, which is not practical in
a production environment.

Sage adheres to the following design principles, which allow
it to be practical, without sacrificing root cause detection
accuracy:

| = — —PMonitoring —®Data processing and inference

Sage Data N Causal Analysis Actuation | |
Master Streamer Pipeline Controller
(1
Worker Nodes
() > MetricsDB
I_T”‘“"DB [Cservice |
: I Jaeger Collector -E H Jaeger Agent |-|>’mm —I
. |
| - . Node Exporter e !
. . ! .
: ! Blackbox Exporter —|— ISDB |«
' - |
Q] ActationAgent [¢r-oooooeennnnssse
J

.

Fig. 1: Overview of Sage’s system design. Sage includes a
data streamer to collect and pre-process traces, a Graphical
Variational Auto-Encoder (GVAE) to explore possible root
causes, and an actuation controller to take the required actions
to restore performance.

« Unsupervised learning: Sage does not require labeling
training data, using instead entirely unsupervised learning
techniques, trained on low-frequency traces collected during
live traffic with monitoring systems readily available in most
cloud providers.

« Robustness: Sage does not require tracking individual re-
quests to detect temporal patterns, making it robust to
tracing frequency. This is important, as production tracing
systems like Dapper use aggressive sampling to reduce
overheads.

« User-level tracing: Sage only uses user-level metrics, easily
obtained through cloud monitoring APIs and service-level
traces from distributed tracing frameworks, such as Jaeger.
It does not require any kernel-level information, which is
expensive, or even inaccessible in cloud platforms.

« Low-overhead retraining: A major premise of microser-
vices is enabling frequent updates. Retraining the entire
system every time for each small change is prohibitively
expensive. Instead Sage implements partial and incremental
retraining, whereby only the microservice that changed and
its immediate neighbors are retrained.

« Fast resolution: Empirically examining sources of poor
performance is costly in time and resources, especially given
the ingest delay cloud systems have in consuming monitor-
ing data, causing a change to take time before propagating
on recorded traces. Sage models different probable root
causes concurrently, restoring QoS faster.

Fig. [T] shows an overview of Sage. The system uses both
distributed, RPC-level tracing for end-to-end latency moni-
toring, and per-node monitoring frameworks to collect hard-
ware/OS metrics, container-level performance metrics, and
network latencies. Upon detecting a QoS violation, Sage uses
a generative model (GVAE) to explore the likely root causes,
identify the most likely to have caused the performance issue,

----- >Actuation| and take action to restore performance.

A. Tracing System

Sage includes RPC-level latency tracing and container/node-
level usage monitoring. The RPC tracing system is based
on Jaeger, an open-source framework, similar to Dapper and
Zipkin, and augmented with the Opentracing client library, to
add microservice spans and inject span context to each RPC.
It measures each RPC’s client- and server-side latency, and
the network latency of each request and response. To avoid
instrumenting the kernel to measure network latency, we use
a set of probing requests to measure the heartbeat latency, and
infer the request/response network delay.

We deploy one Jaeger agent per node to retrieve spans for
resident microservices. We additionally enable sampling to
reduce tracing overheads, and verify that with 1% sampling
frequency, the tracing overhead is approximately 2.6% on the
99th percentile latency and 0.66% on the max throughput
under QoS. We also ensure that sampling does not lower
Sage’s accuracy. To account for fluctuations in load, Sage
adjusts the sampling and inference frequency to keep its
detection accuracy above a configurable threshold, without
introducing high overheads.

The per-node performance and usage metrics are collected
using Prometheus, a widely-used open-source monitoring plat-
form. More specifically, we deploy node, Blackbox, and
cAdvisor exporters per node to measure the hardware and
system metrics, network latency, and container resource usage
respectively. Each metric’s timeseries is stored in a centralized
Prometheus TSDB. The overhead of Prometheus is negligible
for all studied applications when collecting metrics every 10
seconds.

B. ML Pipeline for Root Cause Analysis

Fig. 2] shows an overview of Sage’s ML pipeline. Sage
relies on two techniques; first, it automatically captures the
dependencies between microservices using a Causal Bayesian
Network (CBN) trained on RPC-level distributed traces. The
CBN also captures the latency propagation from the backend
to the frontend. Second, Sage uses a generative model—
a graphical variational auto-encoder (GVAE)—to generate
counterfactuals, hypothetical scenarios which tweak the per-
formance and/or usage of individual microservices, and infers
whether the change restores QoS. Using these two techniques,
Sage determines which set of microservices initiated a QoS
violation, and adjusts their deployment or resource allocation.

Sage first uses the RPC-level traces collected with Jaeger
to infer the microservice topology without requiring the user
or cloud operator to specify it. The insight for this is that
topologies change frequently, and users may not have that
information or may provide it incorrectly. Sage uses these
traces to build a Causal Bayesian Network (CBN) that captures
how latency propagates from the back-end to front-end tiers.
The CBN includes three types of nodes; the X metrics
nodes, which correspond to observed resource usage metrics
for each microservice and network channel, the Y latency

Counterfactual
Latency

RN and CUATE)
CBN and GVAE

Client

Frontend

Root cause
services &
resources

Logic
Tiers

PRIDDDRPINA |

Fig. 2: Sage’s ML pipeline. (1): Build Causal Bayesian Net-
work (CBN) and Graphical Variational Auto-Encoder (GVAE).
): Process per-tier latency and usage. (3): Generate coun-
terfactuals with GVAE. (@): Identify root cause services &
resources.

nodes, which correspond to the latency of each microservice
and RPC request, and the Z latent nodes, which capture the
unobservable factors responsible for latency stochasticity.

Once the CBN is created, Sage uses it to evaluate the causal
relationships within and across microservices when there is a
QoS violation. In a typical cloud environment, site reliability
engineers (SREs) verify if a suspected root cause is correct by
reverting a microservice’s version or configuration to a state
known to be safe, while keeping all other factors unchanged,
and verifying whether QoS is restored. The disadvantage of
this process is that interventions take time, and incorrect root
cause assumptions hurt performance and resource efficiency.
This is especially cumbersome when scaling microservices,
spawning new instances, or migrating existing ones. Sage uses
counterfactuals to diagnose the root cause of a QoS violation,
where each counterfactual is a “suspected root cause”, created
using a generative model instead of actually intervening to
the system. These counterfactuals help determine causality
by asking what the outcome would be if the state of a
microservice had been different.

Sage leverages historical tracing data to generate realistic
counterfactuals. There are two challenges in this. First, the
exact situation that is causing the QoS violation now may not
have occurred in the past. Second, the model needs to account
for the latent variables which also contribute to the variability
of latency. We use a generative model to learn the latent
variable and latency distributions, and use them to generate
counterfactuals. We then use these counterfactuals to conduct
“but-for” tests for each service and resource, and discover their
causal relationship with the QoS violation. If, after intervening
in the counterfactual world, the probability of meeting QoS is
high, the intervened metrics have likely caused the violation.

Sage implements a two-level approach to locate a root
cause, to remain lightweight and practical at scale. It first
identifies the microservice(s) that caused a QoS violation, and

then the specific resource(s) within a given microservice.

C. Actuation

Once Sage determines the root cause of a QoS violation,
it takes action. Sage has an actuation controller in the master
and one actuation agent per node. The actuation controller
locates the nodes with the problematic microservices using
service discovery in the container manager, and notifies their
respective actuation agents to intervene. Sage focuses on
deployment, configuration, and resource provisioning related
performance issues, as opposed to design bugs. Therefore,
once it identifies a problematic microservice, it also tries to
identify the resource that caused the QoS violation. Depending
on the type of resource, the actuation agent dynamically
adjusts the CPU frequency, scale up/out the microservice, limit
the number of co-scheduled tasks, partition the last level cache
(LLC) with Intel Cache Allocation Technology (CAT), or
partition the network bandwidth with the Linux traffic control’s
queueing discipline. The actuation agent first tries to resolve
the issue by only adjusting resources on the offending node,
and only when that is insufficient it scales out the problematic
microservice on new nodes.

D. Handling Microservice Updates

A major advantage of microservices is that developers
can easily update existing services or add new ones without
impacting the entire service architecture. Sage’s root cause
detection accuracy can be impacted by changes to application
design and deployment. Training the complete model from
scratch for clusters with hundreds of nodes takes tens of
minutes to hours, and is impractical at runtime. To adapt to
frequent microservice changes, Sage implements selective par-
tial retraining and incremental retraining with a dynamically
reshapable GVAE, which piggybacks on the VAE’s ability to
be decomposed per microservice, using the CBN.

On the one hand, with selective partial retraining, we
only retrain neurons corresponding to the updated nodes and
their descendents in the CBN, because the causal relation-
ships guarantee that all other nodes are not affected. On
the other hand, with incremental retraining, we initialize the
network parameters to those of the previous model, while
adding/removing/reshaping the corresponding networks if mi-
croservices are added/dropped/updated.

If the update does not change the RPC graph or the
performance and usage metrics, Sage does not retrain the
model. If the update does not change the RPC graph, but the
latency and usage change, Sage retrains the CVAEs of the up-
dated microservice and its upstream microservices. The CBN
remains unchanged. If the update changes the RPC graph, Sage
updates the CBN. It then updates the corresponding neurons
in the GVAE. Since the downstream services are not affected
by the update, Sage only incrementally and partially retrains
the updated microservice and its upstream microservices. For
example, if a new microservice B is added between existing
services A (upstream) and C' (downstream), neurons would be

#2598 Autoscaling Strict NN Autoscaling Relax

=
o
o

mem Offline Oracle

XX Causelnfer HEEE MicroScope ¥ Seer °eE Sage

- 100

o

R

3 80 o 801,
=z i}] Y| > %
> | N
2 60 § ': K Jg 60
5 40 % :4 [& 40 B
; g b : |
< 20 b " | 5 20

> — i

9 % o

Hotel Chain

Reserve

i3 4 ° ‘l
Social Media
Network Service

Chain Fanout Fanout

Social
Network Service

~ 100
80
60
40
20

False Positives (%

Hotel
Reserve

Social Media
Network Service

Fanout

Hotel Chain

Reserve

Media

Fig. 3: Detection accuracy, false negatives, and false positives with Sage, and a number of related performance debugging and
root cause analysis systems, across the two synthetic workloads, and the three end-to-end applications.

introduced for B in the corresponding networks, and only A’s
parameters would be retrained.

The combination of these two transfer learning approaches
allows the model to re-converge faster, reducing the retraining
time by more than 10x, especially when there is large fanout
in the RPC graph.

III. EVALUATION
A. Methodology

We evaluate Sage with five microservice topologies. We
generate two synthetic microservice graphs representing com-
mon topologies; Chain, which includes ten serially-chained
tiers, and Fanout, which consists of an aggregator listening
to ten, fanned-out leaf microservices. In addition, we choose
three end-to-end applications from DeathStarBench [8]]; Social
Network, Media Service and Hotel Reservation.

We use wrk2, an open-loop HTTP workload generator, to
send requests to the web server in all five applications. To ver-
ify the ground truth for Sage’s validation, we use stress—-ng
and tc-netem to inject CPU-, memory-, disk-, and network-
intensive microbenchmarks to different, randomly-chosen mi-
croservices, to introduce unpredictable performance. Apart
from resource interference, we also introduce software bugs,
including concurrency bugs and insufficient threads and con-
nections in the thread/connection pools.

We compare Sage with autoscaling techniques, which are
widely used in industry, as well as recent work on performance
debugging (Causelnfer [2], Microscope [L1], and Seer [9]),
targeting both monolithic and microservice applications.

B. Sage Validation

1) Counterfactual Generation Accuracy: We first validate
the GVAE’s accuracy in generating counterfactuals from the
recorded latencies in the local cluster. Appropriate counter-
factuals should follow the latency distribution in the training
set, but also capture events that are possible, but have not
necessarily happened in the past to ensure a high coverage of
the performance space. There is no overlap between training
and testing sets.

We examine the coefficient of determination (R?) of the
GVAE in reconstructing latencies in the test dataset. R? mea-
sures a model’s goodness-of-fit. The closer to 1 R? is the more
accurate the predictions. Across all five applications, R? values
are above 0.91, denoting that the GVAE accurately reproduces

the distribution and magnitude of observed latencies in its
counterfactuals.

2) Root Cause Diagnosis: Fig.[3] shows Sage’s accuracy in
detecting root causes, compared to two autoscaling techniques,
an Oracle that sets upper thresholds for each tier and metric
offline, Causelnfer [2]], Microscope [L1]], and Seer [9]. Au-
toscale Strict upscales allocations when a tier’s CPU utilization
exceeds 50%, and Autoscale Relax when it exceeds 70% (on
par with AWS’s autoscaling policy). Root causes include both
resource-related issues—by injecting contentious kernels in
a randomly-selected subset of microservices—and software
bugs. Since none of the methods do code-level bug inspection,
a software bug is counted as correctly-identified if the system
identifies the problematic microservice correctly.

Sage significantly outperforms the two autoscalers and the
offline Oracle, by learning the impact of microservice depen-
dencies, instead of memorizing per-tier/metric thresholds for
a particular system state. Similarly, Sage’s false negatives and
false positives are marginal. False negatives hurt performance,
by misidentifying a root cause, while false positives hurt
resource efficiency, by giving more resources to the wrong
microservice. The 3-4% of false negatives in Sage always cor-
respond to cases where the performance of multiple microser-
vices was concurrently impacted by independent events, e.g.,
a network-intensive co-scheduled job impacted one microser-
vice, while a CPU-intensive task impacted another. While Sage
can locate multiple root causes, it takes longer, and is prone to
higher errors than when a single tier is the culprit. The 3-5%
of false positives are caused by spurious correlations between
tiers that were not critical enough to violate QoS. In general,
accuracy varies little between the five services, showing the
generality of Sage across service topologies.

In comparison, the two autoscaling systems misidentify
the majority of root causes; this is primarily because high
utilization does not necessarily imply that a tier is the culprit
of unpredictable performance. Especially when using blocking
connections, e.g., with HTTP1.1, bottlenecks in one tier can
backpressure its upstream services, increasing their utilization.
Autoscaling misidentifies such highly-used tiers as the culprit,
even though the bottleneck is elsewhere. Additionally, using a
global CPU utilization threshold for autoscaling does not work
well for microservices, as their resource needs vary consider-
ably, and even lightly-utilized services can cause performance

Non- Social Media Hotel
instrumented Network Service Reservation

tiers Sage | Seer || Sage | Seer || Sage | Seer

5% 94% | 90% 89% | 91% 90% | 89%
S 10% ||| 94% | 74% || 89% | 88% || 90% | 83%
C20% ||| 94% | 66% || 89% | 74% || 90% | 58%
50% ||| 94% | 34% || 89% | 47% || 90% | 42%

Fig. 4: Accuracy with incomplete instrumentation for Sage
and Seer. Incomplete instrumentation refers to the number of
outstanding requests, which Seer uses to infer root causes,
missing for a subset of randomly-selected microservices.
When a large fraction of microservices cannot be instru-
mented, Seer’s accuracy drops. Both Seer and Sage still collect
per-tier latencies, and end-to-end throughput and latency.

issues. Similarly, the offline Oracle has lower accuracy than
Sage, since it only memorizes per-tier thresholds for a given
cluster state, and cannot adapt to changing circumstances.
It also does not account for tier dependencies, or diversify
between backpressure and true resource saturation.

Causelnfer and Microscope have similar accuracy since
they both rely on the PC-algorithm to construct a completed,
partially directed, acyclic graph (CPDAG) for causal inference.
Due to statistical errors and data discretization in comput-
ing the conditional cross-entropy needed for the conditional
independence test, the CPDAG’s structure has inaccuracies,
resulting in incorrect paths when traversing the graph to
identify root causes. In contrast, Sage’s CBN is directly built
from the RPC graph, and considers the usage metrics of
different tiers jointly, instead of in isolation, leading to much
higher accuracy.

Finally, Sage and Seer have comparable accuracy and false
negatives/positives; the difference lies in Sage’s practicality.
Unlike Seer, which requires expensive and invasive instru-
mentation to track the queue lengths across the system stack,
and additionally relies on trace labeling to learn the QoS
violation root causes, Sage only relies on sparse and non-
invasive tracing, already available in most cloud providers.
Sage does not require any changes in the existing application
or system stack, and only relies on live data to learn root
causes. This makes Sage more practical for datacenter-scale
deployments, especially when the application includes libraries
or tiers that cannot be instrumented. We have verified that Sage
is not sensitive to the tracing frequency.

To highlight this, in Table ff] we show how Seer and Sage’s
accuracy is impacted from incomplete instrumentation. For So-
cial Network, we assume that a progressively larger fraction of
randomly-selected microservices cannot be instrumented. Both
Sage and Seer can still track the latency, resource usage—and
for Seer, the number of outstanding requests—at the “borders”
(entry and exit points) of such microservices, but cannot inject
any additional instrumentation points, e.g., to track the queue
lengths in the OS, libraries, or application layer. Even for
a small number of non-instrumented microservices, Seer’s
accuracy drops rapidly, as queues are misrepresented, and

root causes cannot be accurately detected. In contract, Sage’s
accuracy is not impacted, since the system does not require
any instrumentation of a tier’s internal mechanics.

C. Actuation

Fig. [5h shows the tail latency for Social Network managed
by Sage, the offline Oracle, Autoscale Strict (the best of
the two autoscaling schemes), Causelnfer, and Microscope.
We run the Social Network for 100 minutes, and inject
different contentious kernels to multiple randomly-selected
microservices.

Sage identifies all root causes and resources correctly. Upon
detection, it notifies the actuation manager to scale up/out
the corresponding resources of problematic microservices.
Inference takes a few tens of milliseconds, and actuation takes
tens of milliseconds to several seconds, depending on whether
the adjustment is local, or requires spinning up new containers.
In both cases, the process is much faster than the 30-second
data sampling interval. After corrective action is applied the
built-up queues start draining; latency always recovers at most
after two sampling intervals from the QoS violation.

On the other hand, the offline Oracle fails to discover the
problematic microservices, or takes several intervals to locate
the root cause, overprovisioning resources of non-bottlenecked
services in the meantime. Recovery here takes much longer,
with tail latency significantly exceeding QoS. Even when the
root cause is correctly identified, Oracle often overprovisions
microservices directly adjacent to the culprit, as they likely
exceed their thresholds due to backpressure, leading to ineffi-
ciency. The autoscaler only relies on resource utilization, and
hence fails to identify the culprits in most cases. Causelnfer
and Microscope similarly do not detect several root causes
correctly, due to misidentifying dependencies between tiers,
and lead to prolonged QoS violations. Seer is omitted as it
behaves similarly to Sage.

D. Sage Retraining

We now examine Sage’s real-time detection accuracy for
Social Network, when microservices are updated. We roll out
six updates, which include adding, updating, and removing
microservices.

Each update is indicated by red dash lines labeled with
A-F in Figure 5pb. In A, we add a new child service
to compose-post, close to the front-end, which pro-
cesses and ranks hashtags. In B, we increase the compu-
tation complexity of hashtag-service by 5z. In C,
we remove the hashtag-service. In D, we add a new
url-preprocessing microservice closer to the backend,
between url-shorten and url-shorten-mongodb.
The further downstream a new service is, the more CVAEs
will have to be updated. In E, we re-incorporate the
hashtag-service, slow down url-preprocessing,
and remove user—-timeline to capture Sage’s behav-
ior under multiple concurrent changes. In F, we re-
vert url-preprocessing and hashtag-service to

ge X Offline Oracle ——Microscope & Injected faults
Autoscaling Strict —— Causelnfer QoS target

250

(ms)
g

[
o
o

End-to-end 99th-tile
latency
o
w
o

WUl
oo
Ly

0 10 20 30 40 50 60 70 8 90 100
Time (minutes)

Incremental

l From scratch

— Partial+Incrementa I]
T

Detection Accuracy (%)

0 20 40 60 80 100 120 140 160 180 200
Time (minutes)

Fig. 5: (a) End-to-end tail latency for Social Network when we inject several sources of unpredictable performance to cause
QoS violations. We compare Sage to Causelnfer, MicroScope, an Offline Oracle, and a conservative Autoscaling policy. (b)
Detection accuracy for Sage, without and with partial & incremental retraining. Dash lines show when application updates are

rolled out for the Social Network.

their previous configurations, add user-timeline, re-
move home-timeline and home-timeline-redis,
and increase the CPU and memory requirements of
compose—post.

We intentionally create significant changes in the microser-
vice graph, and compare the accuracy of three retraining poli-
cies. Retraining from scratch creates a new model every time
there is a change, with all network parameters re-initialized.
Incremental retraining reuses the network parameters from the
previous model, if possible, and retrains the entire network.
Partial+incremental retraining reuses the existing network
parameters and only retrains the neurons that are impacted
by the updates. All approaches are trained in parallel; a new
data batch arrives every 30s.

1) Retraining Time: Retraining for partial+incremental re-
training takes a few seconds and up to a few minutes for the
largest data batches. This is 3 — 30x faster than the other
two policies, because it only retrains neurons directly affected
by the update, a much smaller set compared to the entire
network. The more microservices are updated, and the deeper
the updated microservices are located in the RPC dependency
graph (updates D, E, F), the higher the retraining time.

2) Root Cause Detection Accuracy: Fig.[5b shows that par-
tial+incremental retraining and incremental retraining have
the lowest accuracy drop immediately after an update. On
the contrary, retraining from scratch loses its inference ability
right after an update, since the network parameters are com-
pletely re-initialized, and the model forgets its prior knowl-
edge. Note that the previous model cannot be used after the
update, because introducing a new microservice changes the
GVAE and network dimensions. Partial+incremental retrain-
ing converges much faster than the other two models, because
of its shorter retraining time, which prevents neurons irrelevant
to the service update from overfitting to the small training set
and forgetting the previously learned information.

E. Sage Scalability

Finally, we deploy the Social Network on 188 containers on
GCE using Docker Swarm. We replicate all stateless tiers on
2-10 instances each, depending on their resource needs, and
shard the caches and databases.

We use two Intel Xeon 6152 processors with 44 cores
for training and inference. Sage takes 124 min to train from
scratch on the local cluster and 148 min on GCE. Root
cause inference takes 49ms on the local cluster and 62ms
on GCE. The root cause detection accuracy is unchanged.
Although we deploy 6.7x more containers on GCE, the
training and inference times only increase by 19.4% and
26.5% respectively. Sage’s good scalability is primarily due
to the system collecting a percentile tensor of latency and
usage metrics across all per-tier replicas, and avoiding high-
frequency, detailed tracing for root cause detection.

IV. DISCUSSION

Sage leverages causal models and unsupervised learning to
identify the culprits of unpredictable performance in complex
microservice topologies, making it practical for large-scale
production systems. Sage addresses the challenges this prob-
lem presents through three main contributions.

Enabling practical, ML-driven performance debugging:
Sage highlights the need for ML-driven performance debug-
ging in emerging cloud programming frameworks, like mi-
croservices. Unlike traditional cloud applications where man-
ual performance debugging was an option, the complexity and
dependencies of microservice deployments make automated
solutions a necessity. Given this, it is critical to identify the ML
techniques that can be applied in a production environment,
offer high resolution accuracy, and act transparently to users.

Sage specifically shows that unsupervised learning, an
approach usually shied away from for cloud performance
debugging, can be effectively applied in realistic scenarios, im-
proving the system’s performance predictability and resource
efficiency with much less tracing information than required
by previous systems. Not only does this make ML-driven
performance debugging practical for private large-scale de-
ployments, but it can also be effective in public cloud systems
where the provider does not always have access to a third
party application’s source code. This opens up a new research
direction for ML-driven performance debugging, which is not
only applicable to microservices, but other complex environ-
ments as well, such as HPC and edge swarms. Similarly, Sage

enables ML-driven debugging that goes beyond provisioning-
related issues and also applies to deployment configuration,
correctness, and even security concerns.

Finally, Sage is specifically designed with frequent applica-
tion updates in mind; a major premise of microservices. Unlike
previous systems which need to be retrained from scratch to
recover their high root cause detection accuracy, Sage embeds
the RPC dependency graph in its inference process, only
requiring the model components impacted by the change to
be retrained, without a loss in accuracy.

The more complex modern systems become, the more
critical it will be for practical ML-driven systems, like Sage,
to help their design and management.

Evaluation using realistic end-to-end microservices: All
experiments in Sage are using realistic, end-to-end applications
built with microservices, including social networks and media
services from the DeathStarBench suite [8]. These applications
are built using APIs and services often found in produc-
tion systems, including the Thrift RPC framework, NGINX,
Memcached, MongoDB, and Redis, improving the evalua-
tion’s representativeness. Additionally, the applications used
in Sage’s evaluation are open-source, enabling researchers in
both academia and industry to reproduce our results, and build
upon our system.

Promoting explainability in ML for systems: A recurring
issue with applying ML to systems is that ML is often treated
as a black box, offering little insight into how its output can
be used to improve the system’s design or management. In
Sage we have specifically applied techniques whose output can
be interpreted into actionable decisions. For example, Sage
has helped us identify tiers with excessive resource utiliza-
tion, prompting a redesign with alternate API libraries, tiers
with high communication between microservices, prompting a
merge into a single tier, and tiers whose logging infrastructure
was significantly contributing to QoS violations, resulting
in a redesign of their tracing systems. As ML is further
integrated in complex systems, it is imperative to design
techniques that not only are accurate but can offer useful
design and management insights to both platform architects
and application developers.

ACKNOWLEDGEMENTS

We sincerely thank the anonymous reviewers for their
feedback on earlier versions of this manuscript. This work
was in part supported by NSF CAREER Award CCF-1846046,
NSF grant NeTS CSR-1704742, two Google Faculty Research
Awards, a Sloan Foundation Research Scholarship, a Microsoft
Research Fellowship, an Intel Faculty Rising Star Award, a
Facebook Research Award, and a John and Norma Balen
Sesquicentennial Faculty Fellowship.

Yu Gan is a Ph.D. candidate in the School of Electrical
and Computer Engineering at Cornell University. He works
on cloud computing, computer architecture, and root cause
analysis for cloud microservices. He is a student member of
IEEE and ACM. Contact him at yg397 @cornell.edu.

Mingyu Liang is a Ph.D. candidate in the School of Electrical
and Computer Engineering at Cornell University. He works
on computer architecture, cloud computing, and new cloud
programming models. He is a student member of IEEE and
ACM. Contact him at ml2585@cornell.edu.

Sundar Dev is a Performance Engineer at Google where he
works on improving performance, efficiency, and reliability
of the large-scale distributed computing infrastructure that is
used by all of Google’s user facing services. Contact him at
sundarjdev@google.com.

David Lo is a Performance Engineer at Google, where he
leads a team that works on optimizing the performance and
efficiency of Google’s planet-scale computing infrastructure.
Lo received a Ph.D. degree in electrical engineering from
Stanford University. He is a member of IEEE and ACM.
Contact him at davidlo@google.com

Christina Delimitrou is an Assistant Professor with the
School of Electrical and Computer Engineering, Cornell Uni-
versity, where she works on computer architecture and dis-
tributed systems. Delimitrou received a Ph.D. degree in elec-
trical engineering from Stanford University. She is a member
of IEEE and ACM. Contact her at delimitrou@cornell.edu.

REFERENCES

[1] L. Barroso and U. Hoelzle, The Datacenter as a Computer: An Intro-
duction to the Design of Warehouse-Scale Machines. MC Publishers,
2009.

[2] P. Chen, Y. Qi, P. Zheng, and D. Hou, “Causeinfer: Automatic and
distributed performance diagnosis with hierarchical causality graph in
large distributed systems,” in IEEE INFOCOM 2014 - IEEE Conference
on Computer Communications, 2014, pp. 1887-1895.

[3] C. Delimitrou and C. Kozyrakis, “Paragon: QoS-Aware Scheduling for
Heterogeneous Datacenters,” in Proceedings of the Eighteenth Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS). Houston, TX, USA, 2013.

[4] C. Delimitrou and C. Kozyrakis, “Quasar: Resource-Efficient and QoS-
Aware Cluster Management,” in Proceedings of the Nineteenth Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS). Salt Lake City, UT, USA, 2014.

[5] C. Delimitrou and C. Kozyrakis, “Bolt: I Know What You Did Last
Summer... In The Cloud,” in Proc. of the Twenty Second International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2017.

[6] C. Delimitrou, D. Sanchez, and C. Kozyrakis, “Tarcil: Reconciling
Scheduling Speed and Quality in Large Shared Clusters,” in Proceedings
of the Sixth ACM Symposium on Cloud Computing (SOCC), August
2015.

[71 Y. Gan, M. Liang, S. Dev, D. Lo, and C. Delimitrou, “Sage: Practical
and scalable ml-driven performance debugging in microservices,”
in Proceedings of the 26th ACM International Conference on
Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS 2021. New York, NY, USA: Association for
Computing Machinery, April 2021, p. 135-151. [Online]. Available:
https://doi.org/10.1145/3445814.3446700

[8]1 Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno,
J. Hu, B. Ritchken, B. Jackson, K. Hu, M. Pancholi, Y. He, B. Clancy,
C. Colen, F. Wen, C. Leung, S. Wang, L. Zaruvinsky, M. Espinosa,
R. Lin, Z. Liu, J. Padilla, and C. Delimitrou, “An Open-Source Bench-
mark Suite for Microservices and Their Hardware-Software Implications
for Cloud and Edge Systems,” in Proceedings of the Twenty Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), April 2019.

[91 Y. Gan, Y. Zhang, K. Hu, Y. He, M. Pancholi, D. Cheng, and C. De-
limitrou, “Seer: Leveraging Big Data to Navigate the Complexity of
Performance Debugging in Cloud Microservices,” in Proceedings of the
Twenty Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), April 2019.

https://doi.org/10.1145/3445814.3446700

[10]

(1]

[12]

N. Lazarev, N. Adit, S. Xiang, Z. Zhang, and C. Delimitrou, “Dagger:
Towards Efficient RPCs in Cloud Microservices with Near-Memory
Reconfigurable NICs,” in Proceedings of the Twenty Sixth International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), April 2021.

J. Lin, P. Chen, and Z. Zheng, “Microscope: Pinpoint performance issues
with causal graphs in micro-service environments,” in International
Conference on Service-Oriented Computing. Springer, 2018, pp. 3—
20.

Y. Zhang, W. Hua, Z. Zhou, E. Suh, and C. Delimitrou, “Sinan: ML-
Based and QoS-Aware Resource Management for Cloud Microservices,”
in Proceedings of the Twenty Sixth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS), April 2021.

	Introduction
	System Design and Implementation
	Tracing System
	ML Pipeline for Root Cause Analysis
	Actuation
	Handling Microservice Updates

	Evaluation
	Methodology
	Sage Validation
	Counterfactual Generation Accuracy
	Root Cause Diagnosis

	Actuation
	Sage Retraining
	Retraining Time
	Root Cause Detection Accuracy

	Sage Scalability

	Discussion
	References

