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We perform a detailed study of the phase transitions and mechanisms of electron localization in the extended
Hubbard model using the dynamical cluster approximation on a 2 x 2 cluster. We explore the interplay of charge
order and Mott physics. We find that a nearest-neighbor Coulomb interaction V causes “screening” effects close
to the Mott phase transition, pushing the phase boundary to larger values of U. We also demonstrate the different
effects of V on correlations in metallic and insulating regimes, and document the different correlation aspects of

charge order and Mott states.
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I. INTRODUCTION

Understanding the effects of strong electron correlation
and the associated localization of charged particles remains
a challenge in condensed matter physics. As various exotic
quantum states including high-temperature superconductivity
emerge in the vicinity of localized states, metal-insulator tran-
sitions [1-3] are the subject of intense investigation [4-7].

The Hubbard model, where Coulomb interactions between
electrons are assumed to be local, has been commonly used
to study Mott localization and the related correlation-induced
effects [8—10]. However, the approximation of purely local in-
teractions may be severe in low-dimensional systems [11-22]
where electron interactions are not fully screened. In these
systems, nonlocal Coulomb interactions may lead to new
physics that cannot be described by the Hubbard model. In
particular, intersite interactions are found to cause a strong
modification of the effective on-site interactions resulting in a
reduced Mott gap or even metallic behavior of otherwise in-
sulating systems [12,23]. Moreover, they may lead to electron
localization by charge ordering (CO).

The extended Hubbard model, where the nearest-neighbor
Coulomb repulsion V is included in addition to the local Hub-
bard interaction U, is a minimal model to study such effects.
In it, the inclusion of V energetically favors the breaking
of translational symmetry with (, 7) checkerboard charge
ordering on a square lattice [24-26].

Computational tools have played a crucial role in de-
scribing strong correlation physics in lattice systems. Various
nonperturbative many-body methods have been developed
[27]. Several of these are based on embedding schemes where
the original lattice problem is mapped onto an auxiliary
quantum impurity problem embedded in a self-consistently
determined effective medium. The dynamical mean field the-
ory (DMFT) [28-30], which utilizes such a mapping, has
been successfully used to understand electron localization
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in the Hubbard model. Several extensions of DMFT have
been developed to capture nonlocal spatial correlations effects
[31-41].

Similarly, quantum embedding tools have been developed
for the extended Hubbard model. This includes the extended
DMFT (EDMFT) [42-46], and nonlocal perturbative tech-
niques such as EDMFT+GW [23,43,47,48], the two-particle
irreducible functional renormalization-group method [49],
and the dual boson (DB) approach [50-54]. In addition,
cluster DMFT methods have been applied to explore two-
dimensional (2D) extended Hubbard models on the square
[55,56] and honeycomb lattices [57] in the context of CO as
well as superconductivity [19,58,59].

In this paper, we extend our previous analyses for the 2D
extended Hubbard model [56,60,61] to larger values of U,
and explore the interplay of CO and Mott physics. Due to
the fermion sign problem, which for finite V exists even at
half filling and becomes especially pronounced for larger U
and V, our dynamical cluster approximation (DCA) analyses
are currently limited to small N, = 2 x 2 clusters. While such
clusters provide only an approximate solution of the model,
they allow us to treat local and nonlocal correlations on equal
and nonperturbative footing and provide results in the inter-
esting parameter regime near the Mott transition.

We construct the V-U phase diagram with three different
phases—the metal, the U-driven Mott insulator, and the V-
induced CO phase—and perform a detailed analysis of model
properties upon change of U and V. In the extended Hub-
bard model the electron localization emerges either via Mott
localization or CO. These two ways of localization differ in
behavior. For the Mott metal-insulator transition, an increase
of U leads to increasing correlation effects accompanied by
a decrease in the double occupancy, an increase in the self-
energy, and a decrease in the quasiparticle peak. For the CO
phase transition, the double occupancy increases with V. The
V-induced decrease in correlations is seen in the correlated
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metal and insulating regimes, where the self-energy decreases
with increasing V. Also, by exploring the properties of the CO
insulating phase, we show that, unlike the Mott insulator, the
CO insulator is weakly correlated, with a bandlike insulating
gap opening in the spectrum [55]. We also study the notice-
able “screening” effects where the local on-site interaction U
is effectively being reduced by nonlocal charge fluctuations,
resulting in a shift of the Mott transition to larger values of U
[12].

The paper is organized as follows: In Sec. II we introduce
our model and briefly describe the numerical method we use
in this work. In Sec. III, we present our results. Section IV
contains a summary and conclusions.

II. MODEL AND METHOD

We consider the half-filled extended Hubbard model on a
2D square lattice defined by the Hamiltonian

H=—¢t Z(C;ng +C;0Ci0) +U Zl’l,‘ﬂ’lw

(ij).o i

+ %(Z NigNjg' _M;nid’ (M

ij),o0’

where c;, (c:f(,) denotes creation (annihilation) operators of an
electron with spin o =17, | at the lattice site i; n;, = c;ci(7 is
the number operator at site #; ¢ is the nearest-neighbor hopping
amplitude; U is the on-site interaction between electrons with
opposite spins; V is the intersite interaction between two elec-
trons on the neighboring sites; and u denotes the chemical
potential. The system is half filled at u = % +zV (z is the
coordination number). Throughout the paper we sett = 1 as
the energy unit.

In the limiting case of V = 0, the Hamiltonian of Eq. (1)
describes the conventional Hubbard model with only local
on-site electron-electron interaction [8]. We limit our analysis
to the unfrustrated Hubbard model with only nearest-neighbor
hopping in the paramagnetic phase at half-filling with repul-
sive interactions U > 0.

For nonzero V, Eq. (1) serves as the minimal model for
describing CO induced by short-range Coulomb interactions.
The emergence of CO in this model may be understood in
terms of a simple energy argument: For large local interactions
(U > zV), it is energetically favorable for the systems to
have a uniform arrangement of electrons with one electron
per site so that the on-site Coulomb repulsion is minimized;
in the opposite limit (zV > U), the system prefers CO in
a checkerboard arrangement of doubly occupied and empty
sites, such that the off-site repulsion between electrons on
nearest-neighbor sites is minimized. In the mean-field ap-
proximation [62], a zero-temperature phase transition from a
Mott insulator to a CO insulator occurs at V., = U/z. Several
beyond-mean-field approaches have been applied to the ex-
tended Hubbard model, including the Monte Carlo on a finite
size cluster [24], perturbation theory [25], variational cluster
approximation [63], the two-particle self-consistent approach
[64], the two-particle irreducible functional renormalization-
group method [49], and, more recently, effective medium
quantum embedding methods [23,42—48,50-59,65].

In our study, we solve the Hubbard (V =0) and the
extended Hubbard (V # 0) model using the DCA method,
which is a momentum-space cluster extension of the DMFT
[31]. In the DCA, the lattice problem is mapped onto a
periodic cluster of size N, embedded in a self-consistently
determined dynamical effective medium.

In standard DCA for isotropic systems [31], the first Bril-
louin zone is divided into N, patches, each of which is denoted
by a cluster momentum K. The lattice self-energy X, (k, iw,)
within a patch is assumed to be constant and is approximated
by the cluster self-energy X, (K, iw,) with X, (k, iw,) =
Y, (K, iw,). The DCA self-consistency condition requires that
at convergence, the cluster Green’s function G, (K, iw,) and
the coarse-grained (averaged over N, patches) lattice Green’s
function G, (K, iw,) are equal. The lattice Green’s function is
constructed by using the cluster self-energy X, (K, iw,) and
is obtained by coarse graining as G, (K, iw,) = % > ilio, +
w—e(k +K) — 2, (K, iw,)]~". Here the summation is done
over the N./N momenta k within the patch about the cluster
momentum K, with lattice momentum k = k + K, and ek) =
—2t(cos(ky) + cos(ky)) is the lattice dispersion of the model
in Eq. (1) on the 2D square lattice.

The effective cluster problem is then set up using the
cluster-excluded Green’s function obtained via the Dyson
equation G, (K, iw,) = G; (K, iw,) + o (K, iw,). Solving
the cluster problem for a given U, one then gets the
cluster Green’s function G, (K, iw,) and cluster self-energy
¥, (K, iw,). The calculation is repeated iteratively until con-
vergence is reached. For further details on the DCA and the
numerical procedure, the reader is referred to Ref. [31].

The major numerical work in solving the DCA self-
consistency loop consists of solving the quantum cluster
problem. Here we used the continuous-time auxiliary field
(CT-AUX) [66] method generalized to the systems with
nonlocal density-density intersite interactions V [56]. As de-
scribed in Refs. [57,59], in the DCA, nonlocal interactions
are periodized and treated only within the cluster with the
coarse-graining procedure renormalizing the nearest-neighbor
interactions V as V = V sin(sr /N..)/ (7 /N,.) .

Our implementation of the DCA at finite V also allows us
to simulate the symmetry-broken CO phase, as long as the
symmetry breaking is commensurate with the cluster [31,67].
This enables an explicit study of not just the onset of the CO
transition but also allows us to conduct simulations directly in
the CO phase. For this, we consider a bipartite lattice structure
with sublattices A and B. To enable the CO broken-symmetry
analysis, we break the translation symmetry by adding a stag-
gered chemical potential u; to our Hamiltonian of Eq. (1), i.e.,
H,,=H+Y , wni,, where u; = woe'?i and Q = (i, 7).
In practice, we are interested in the @, — 0 solution. We
therefore start the simulations with a small pg & 0.1 on the
first iteration of the DCA self-consistency loop and then set (g
to zero on subsequent iterations. The system is then allowed
to evolve freely, and will either converge to a state with a
uniform distribution of electron density over lattice sites or
fall into the CO state with a nonuniform charge distribution
[56].

Adding a staggered chemical potential u breaks the trans-
lational symmetry of the lattice, leading to the doubling of the
unit cell in real space. This implies that the size of the first
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Brillouin zone is halved, such that in the symmetry-broken
CO phase the momentum space points k and k + Q be-
come degenerate. Following Ref. [67], the broken translation
symmetry introduces off-diagonal elements in DCA Green’s
functions G, (K, K';iw,) and self-energies X, (K, K';iw,).
Consequently, the scalar DCA self-consistency equations
become 2 x 2 matrices. For example, the cluster Green’s
function takes on the form

G, (K',K")

" Gy (K', K"+ Q)
GU(K ) - <G(7(K,+Q, K/)

G, (K +0Q.K + Q))’ @

where K’ is the momentum in the reduced Brillouin zone,
and we omitted iw, indices. The symmetry relations
for the diagonal and the off-diagonal elements of the
Green’s function are given as G, (K', K'; iw,) = —(G5(K' =
0;K' + Qsiwy)) and Go(K',K'+ Q) =G, (K'+ 0. K) =
G, K,K'+0)=G_,(K+0Q,K'), respectively. They
hold for both the Green’s functions and for the self-energy.
In the absence of CO, the off-diagonal elements vanish,
G,(K',K'+Q)=G,(K'+Q,K')=0 [60,67], and the
Green’s function matrix becomes diagonal in momentum
space.
The linear transformation [67]
Gg/B(K/) _ GU(K/aK/)+G02(K/+Qa K/+Q) (3)

+G,(K,K+0)

allows to study the Green’s function or self-energy on each
sublattice. Here + is used for A and B sublattices, respectively.

III. RESULTS
A. V = 0 phase diagram: N, = 4 DCA Hubbard model results

The purpose of this section is to set the stage for the discus-
sion of the finite V extended Hubbard model in Sec. III B. For
this, we first consider the V = 0 paramagnetic half-filled Hub-
bard model on a square lattice. We focus on the temperature
T versus interaction strength U phase diagram.

Figure 1 shows the T-U phase diagram for the half-filled
2D square lattice Hubbard model in the absence of the long-
range order. At low temperatures, as the interaction strength U
increases, the system undergoes the first-order Mott-Hubbard
transition between a metal and Mott insulator [29]. The first-
order coexistence region is delineated by two spinodal lines,
U,, and U.,. The metallic solution exists for U < U,,, and
the insulating solution is stable for U > U,,. As temperature
increases, the coexistence region narrows, the metallic and
insulating spinodals cross at a critical point (U,, T.) and the
transition becomes continuous. The region above T, displays
a crossover between metal and insulator. Above T, various
types of crossover lines have been identified depending on the
criteria used [29,69-74].

For comparison purposes and to demonstrate the effect
of nonlocal correlations beyond the DMFT, we present the
results obtained by DMFT (N, = 1) in addition to our N, =
4 DCA data. We also show the results of Ref. [68] ob-
tained by the real-space cluster dynamical mean field theory
(CDMFT) approach for a 2 x 2 cluster [68,74]. The N, = 4
DCA data show that when the nonlocal correlations are taken
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FIG. 1. T-U phase diagram of the paramagnetic 2D Hubbard
model at half filling. Single-site DMFT (diamonds), 2 x 2 DCA
(circles), and 2 x 2 CDMFT (triangles). CDMFT data are taken from
Ref. [68]. Closed symbols below T, mark the metallic spinodal U,,,
and open symbols mark the insulating spinodal U,,. Above T, the
crossover between the bad metal and the bad insulator is marked by
open squares.

into account the Mott transition remains first order, but with
significantly modified phase transition boundaries as com-
pared to the DMFT results. These findings are in agreement
with other beyond-DMFT methods, including the CDMFT
of Refs. [68,74] and second order dual fermion results [75].
This indicates that the nonlocal short-range antiferromagnetic
fluctuations that are captured in the DCA significantly reduce
the critical value of U, and T, at which a transition occurs
[76]. In addition, all beyond-DMFT methods show a positive
slope of the coexistence region in the phase diagram of Fig. 1,
which is different from the DMFT results. This change of
slope has been explained by an entropy argument, with the
low-temperature insulating solution having a smaller entropy
than the metal [74].

‘We find that the critical value of U, =~ 4.15in N, = 4 DCA
[77] is substantially reduced compared to the DMFT value
of U, ~ 9.35 [33,74,75] and agrees with the trend seen in
the CDMFT results [68,74], as well as with other nonlocal
methods [76], such as the variational cluster approach (VCA)
[78,79] and dual fermions [75]. We also find that the critical
end point temperature 7. &~ 0.05 in N, = 4 DCA is substan-
tially reduced when the nonlocal correlations are taken into
account. Our results for 7, are similar to the recent CDMFT
results [68] where T. =~ 0.06 &+ 0.005 was reported. While
DCA and CDMFT agree at large N, [31], for smaller cluster
sizes the results are expected to be different due to different
embedding schemes.

All beyond-DMFT methods [76] show that nonlocal cor-
relations modify the shape of the transition lines, reduce
substantially the critical values of U, for the MIT, and shrink
the size of the coexistence region. While there is some differ-
ence in the values of (U,, T.) for various cluster extensions
of DMFT, all of the nonlocal methods are consistent that
nonlocal antiferromagnetic correlations are strong in 2D Hub-
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FIG. 2. (a) Solid symbols: Evolution of the imaginary part of
the DCA self-energy ImX, ) (iw,) for several interaction strengths
U obtained starting from the metallic solution at 7 = 0.025. Open
symbols: Data for U = 4 obtained starting from the insulating solu-
tion. (b) AImX; o) as a function of U for indicated 7. Hysteresis
loops are obtained by sweeping the interaction strength U from low
to high (solid symbols) and from high to low (open symbols). Jumps
in AImX; o) at T < T, define the spinodal points.

bard models and can have a dramatic effect on the Mott
transition [76].

We now discuss the details of the construction of Fig. 1.
The phase transition boundaries of Fig. 1 are constructed
from the analysis of the self-energy behavior presented in
Fig. 2. To distinguish between metal and insulator, we con-
sider the self-energy X(K, iw) at K = (i, 0) as in Ref. [74].
We confirm that for N, = 4 this procedure gives the same
results as using the local self-energy. The Mott-insulating state
is identified by a divergence of the imaginary part of the
self-energy, ImX ;o) (iw, ), at the lowest Matsubara frequency.
This indicates that a pole is developed at zero frequency and
the gap opens in the spectrum. We use the following metric to
distinguish between metal and insulator: if ImX,; o)(iwp) >
ImX; oy(iw;) the state is metallic, and insulating otherwise.
Figure 2 demonstrates such changes in the behavior from
metal (e.g., at U = 3.75) to insulator (e.g., at U = 4.06) at
T = 0.025 as U increases. The self-energy here is obtained
starting from the metallic solution, and as U increases, the
self-energy gets larger, indicating increase of the correla-
tions in the system, and diverges at larger U values. Since
T = 0.025 is below the critical temperature 7., a coexistence
region exists between the metallic and insulating spinodals.
To demonstrate the coexistence of metallic and insulating
solutions, we show the results for U = 4.0 obtained starting
from the metallic (solid lines) and insulating solutions (dashed
lines), respectively.

To identify the spinodal U, and U, phase bound-
aries, based on definitions of metal and insulator, we
introduce a shorthand notation AImX; o) = ImX; 0)(iw;) —
Im2X; oy(iwp), which is negative for a metal and positive for
an insulator. Figure 2(b) shows AImZX, o) as a function of in-
teraction strength U at several temperatures 7 = 0.01, 0.025,
0.035, 0.05, and 0.06 obtained for the increasing (solid sym-
bols) and decreasing (open symbols) values of U. For T < T,
AImX; o) shows hysteresis loops, which are indications of

@ 7 (b)

A—A T=0.01 0 15:
Y \N

0.14}

FIG. 3. (a) The quasiparticle weight Z ¢y and (b) the double
occupancy (n4n,) as a function of interaction strength U at temper-
atures indicated. Solid symbols mark the results obtained by starting
from a metallic solution, while open symbols mark the results started
from an insulating solution.

a first-order transition. The discontinuous jumps signal the
disappearance of the metallic state at U, and insulating state
at U,,, respectively. The locations of the spinodal lines U, (T')
and U,,(T') are then determined by performing sweeps of U
at different temperatures. The hysteresis loops are widest at
the lowest temperatures (e.g., 7 = 0.01), decrease in size as
temperature is increased (7 = 0.035), and vanish at and above
the second-order critical end point 7. (as seen from the data for
T = 0.05, 0.06). Above the second-order critical point T, the
U dependence of the one-particle quantities becomes smooth.
This region defines the crossover region [29,69-73].

We show in Fig. 3 the results for the quasiparticle weight
Z.0) = limjg, o(1 — %ﬂ;“’(m’”))‘l and the double occu-
pancy (n4n,) at several temperatures T versus the interaction
strength U. The U -dependent behavior of these quantities also
serves as an indicator of the correlation-induced nature of
the Mott transition. We observe that the quasiparticle weight
Zx,0) gets suppressed as U increases, indicating that the
quasiparticles acquire a large renormalized mass as the in-
teraction strength U increases. The double occupancy (n4n)
also decreases with U as the Mott insulator energetically
favors the singly occupied over the double-occupied states.
As the temperature increases, the double occupancy increases,
and it takes larger values of U for the Mott transition to occur.
Both Z; gy and (nyn;) demonstrate hysteresis behavior at
T < T, and can also be used to extract the phase boundary
of the phase diagram from Fig. 1 [68].

B. V # 0 phase diagram: N, = 4 DCA extended Hubbard
model results

To understand the effects brought about by intersite
nearest-neighbor interactions V, we now present results for
the extended Hubbard model. First, we show in Fig. 4 the
phase diagram in the presence of both local on-site interaction
U and nearest-neighbor interactions V obtained by N, =4
DCA. Due to the sign problem, especially pronounced at
larger U and V', we limit our analysis to a temperature 7 = 0.1
and N, = 4, and U values below and not far from the Mott
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FIG. 4. The V-U phase diagram of the 2D extended Hubbard
model on a square lattice obtained with N. =4 DCA at T = 0.1.
Three different phases are found under the changes of electron-
electron interactions: the isotropic metal, the Mott insulator, and
charge order. The metal-to-Mott-insulator crossover line is shown by
red open symbols, and the V-induced charge order phase transition
boundary is denoted by solid (red) circles. The mean-field charge
order phase boundary with V = U/z is shown by the black dashed
line. Inset: Circles show zV rescaled 2 x 2 DCA data at T = 0.1;
triangles show zV rescaled EDMFT data of Ref. [80]. Solid triangles
are the data obtained starting from the metallic solution, and open
symbols are obtained starting from the insulating solution [80]. The
blue dashed line is a fit to the crossover boundary (see Sec. III B 1).

transition. Figure 4 shows that the phase diagram of the 2D
extended Hubbard model at half filling features three phases:
the isotropic metal, the Mott insulator, and a charge ordered
state. Similarly to the case of V =0, as the strength U in-
creases, the crossover from metal to Mott insulator occurs.
However, with increasing V, the metal-insulator crossover
boundary (shown by red open symbols, dashed line) occurs
at larger values of U due to the “screening” effects induced
by a competition between U and V [11,12,51]. In addition
to the isotropic metallic and Mott-insulating phases, the ex-
tended Hubbard model exhibits a new V-induced CO phase.
The corresponding phase boundary (shown by solid circles)
separates the parameter space where symmetry is broken and
the checkerboard arrangement of electrons with nonequivalent
electron density on two sublattices A and B is energetically
favorable. The values of V' at which the system favors charge
ordering increase with increasing local interactions U. The
DCA-determined phase boundary for the CO phase transition
(obtained from the staggered density n = |ng — ngl) is found
to be higher than the mean-field prediction V = U/z [62]
(shown by the dashed line).

Our results for the V-U phase diagram and the trends in
behavior of the phase boundaries are in agreement with the re-
sults obtained by other methods for the 2D extended Hubbard
model, including exact diagonalization [80], EDMFT-based
[23,43,48], and DB [51] methods. In particular, the previ-
ous studies also find that the Mott metal-insulator crossover
line at finite V has a positive slope, indicating that the
crossover occurs at larger values of U [12]. In addition,

Refs. [23,43,48,51,80] also find that the CO boundary is above
the mean-field solution. The major difference with our find-
ings is the V = 0 metal-insulator Mott crossover boundary
position. We find smaller values of U compared to the meth-
ods where EDMFT is a starting point. This discrepancy is due
to the DMFT starting point that substantially overestimates
the critical value of U for the Mott transition. The inset of
Fig. 4 shows a comparison between 2 x 2 DCA and EDMFT
[80]. We note that the 2 x 2 DCA cluster has only two distinct
nearest neighbors (the one to the left is identical to the one
to the right), and we therefore plot data for zV with z =2
for 2 x2 DCA and z =4 for EDMFT. Finite-size effects
of this system are analyzed in Ref. [56]. In addition to the
agreement with EDMFT (after rescaling of V'), we find that
the DCA Mott transition line remains substantially below the
one from EDMFT, and that the slope of the Mott line becomes
much less steep, indicating a much larger regime where V
suppresses the Mott transition.

1. Metal-to-Mott-insulator crossover boundary: V -induced effects

In this section, we examine more closely the effect of V
on the U-driven metal-to-Mott-insulator crossover boundary
(shown by red open symbols in Fig. 4). In low-dimensional
systems, large screening contributions from nonlocal inter-
actions have been postulated [12,23,48]. In fact, nonlocal
Coulomb interactions can dramatically reduce the effective
on-site interactions [11], and therefore stabilize the metal-
lic behavior against the transition to a Mott insulator. To
demonstrate this, we now examine in detail how the finite
nonlocal interactions V affect the position of the metal-to-
Mott-insulator crossover boundary of Fig. 4. The position of
this crossover line is determined by the same procedure we
used for the V = 0 Hubbard model. The crossover points U,
are determined from the change in sign of AImX; o) as U in-
creases, with AImX; oy < 0 for a metal, and AIm>; o) > 0
for an insulator. First, to demonstrate the effect of V on the
self-energy, we plot in Fig. 5(a) ImX; ¢)(iw,) as a function of
Matsubara frequency for several values of U = 3.5, 4.25, 4.5,
and 4.85 at V = 0 (solid symbols) and V = 1.5 (open sym-
bols). As seen from Fig. 5(a), as U increases, the self-energy
increases and changes behavior from metal-like (U = 3.5) to
insulator-like (U = 4.5, 4.85). The metal-to-Mott-insulator
crossover occurs at U ~ 4.25. However, the corresponding
self-energy at finite V = 1.5 (shown by open symbols, dashed
lines) is smaller compared to V = 0. Consequently, at finite V
the crossover from the metal to insulator boundary of the 2D
extended Hubbard model is pushed to larger U. This is also
seen in Fig. 5(b), where we plot AImX, o) as function of U
for several values of V. We see that the critical value of U,. for
which the crossover occurs (AImX, gy = 0) increases with
increasing values of the nonlocal interaction V.

The V-induced screening effects can also be detected in
other quantities. In Fig. 5(c) we plot the U evolution of the
double occupancy (n4n,) for increasing values of V. The
intersite interactions V favor the increase of the double occu-
pancy at a given site. As a result, it then requires larger values
of U to suppress the double occupancy to localize electrons
in the Mott-insulating phase. Finally, the nonlocal interaction-
driven metallicity near the Mott transition is also observed in
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FIG. 5. (a) TheU = 3.5,4.25,4.5,4.85and V = 0.0, 1.5 depen-
dencies of ImX, o)(w,) as a function of Matsubara frequency. Solid
symbols and solid lines, V = 0; open symbols and dashed lines,
V = 1.5. (b) The finite V metal-to-Mott-insulator crossover bound-
ary of Fig. 4 is determined from the change in sign of AImXg_; o)
as a function of local interactions U at different values of V. (c) The
double occupancy (n;4n,) as a function of U at increasing values of
V. (d) The DOS(w) for V = 0 (solid line) and V = 2.0 (dashed line)
at U = 5.0. Other parameters: 7 = 0.1, N, = 4.

Fig. 5(d). Here, for comparison we plot the density of states
(DOS) versus frequency w forV =0andV =2.0atU = 5.0.
We used the Padé approximation to perform the analytical
continuation. Figure 5(d) shows that the V = 0 insulating gap
at the Fermi energy gets filled up at finite V, and the system
becomes more metallic.

In the following, we demonstrate how nonlocal Coulomb
interactions V affect the correlations and screening in the
extended Hubbard model. Reference [11], using a variational
principle, mapped the generalized extended Hubbard model
with nonlocal Coulomb interactions onto an effective Hub-
bard model with on-site interactions being reduced according
to U* =U —V, where V is a weighted average of nonlo-
cal interactions [11,81]. Using this approximation, this work
found that nonlocal Coulomb interactions, in general, can
significantly weaken the local interaction effects in various
low-dimensional sp-electron materials in a wide range of dop-
ing [11]. In particular, it has been shown that in graphene,
benzene, and silicene the nonlocal interaction V-induced
screening effects decrease the effective local interactions by
more than factor of 2, which in turn leads to stabilization
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FIG. 6. Imaginary part of the self-energy, ImX, (), as a function
of Matsubara frequency w, at K = (i, 0) for different values of V
(open symbols) for U =4.5 and T = 0.1. The data for a model
with only a local screened interaction U* and V =0 are shown
by dashed lines. The inset shows the V dependence of the double
occupancy (n4n) (blue triangles) and the prefactor « (black circles)
extracted from the corresponding U* = U — «V values. We also
show the rescaled data (red dashed line) obtained as ((n4n))y,y —
(nyny)v.u=0) x A/B, with the parameters A and B being determined
from fits of the original data. (n4n;) =0.11 +0.0111V? and o =
0.06445V2.

of the metallic-like phase against the gapped (spin-liquid or
antiferromagnetic Mott) insulating phases in these materials.
In Fig. 6, we explore this U™ behavior and demonstrate the
V-induced screening in the 2D half-filled extended Hubbard
model. For this we focus on the nonlocal interaction V effects
on the Mott-insulating phase at U = 4.5. First, we plot the
imaginary part of the self-energy, Im¥(iw, )(r 0y, as a function
of Matsubara frequency for different values of the nonlocal in-
teraction V (open symbols). We find that V gradually reduces
the self-energy, corresponding to a decrease in correlation
effects. As V increases, the system gradually becomes less
insulating due to V-induced screening effects. To demon-
strate further that the nonlocal interaction effectively reduces
the local interaction U, we plot in Fig. 6 the corresponding
N, =4 DCA data for U*. Here U* is estimated by fitting
the finite V results for the self-energy with corresponding
self-energy data obtained from the U* Hubbard model with
V = 0. Comparing the finite V data with the U* data for
the self-energy in Fig. 6, we see that the self-energy of the
extended Hubbard model with finite V (we limit our analysis
to V below the CO phase) is well described by the results
of a Hubbard model with only local interaction U* < U.
We find that the effective U* decreases with increasing V.
In particular, the data show that the nonlocal interaction V
significantly weakens the effective local interaction, according
to U* =U — oV, where « is a renormalized prefactor for
V. It was shown in Ref. [11] that the renormalization of
the intersite interactions V can be modeled by the prefactor
related to the density-density correlation function. We analyze
the V dependence of the renormalized prefactor «, extracting
it directly from our U™ estimates as o = (U — U™*)/V. As
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FIG. 7. (a) The order parameter of the CO phase én = |ny — ng|
as a function of V at several values of U. (b) The double occupancy
(nyn,) as a function of V for increasing values of U [the same as
in (a)]. The insets show the corresponding V dependence of the
double occupancy on the A (solid symbols) and B sublattices (open
symbols). Other parameters: T = 0.1, N, = 4.

shown in the inset of Fig. 6, we find that o and the double
occupancy (nyny) at a given site both increase with V in a
similar way (our best fits indicate quadratic behavior with
V, with (nyn;) = 0.11 + 0.0111V?2, and o = 0.06445V?, re-
spectively) [82]. To highlight a similar V dependence of these
quantities, we also show the rescaled double occupancy data
(red dashed line) obtained as ({(n4n))y v — (npny)v,y=o) X
A/B, with the parameters A and B being determined from the
above quadratic fits of the original data. To test these ideas
further, we also look at the renormalization of Upssover fOr
the Mott metal-insulator crossover boundary as a function of
V. In Flg 4, we PlOt Ucrossover(v) = Ucrossover(v = 0) +aV
(see Fig. 4, blue dashed line), where we use the above fit for
o, and Ucrossover (V = 0) = 4.25. We find excellent agreement
between the fit and the crossover line obtained from the direct
DCA analysis using the self-energy behavior.

2. Charge order phase boundary and effect of V on self-energy

Now we focus on the CO phase boundary (Fig. 4) as a func-
tion of V at fixed values of U and T = 0.1. The V-induced CO
transition is characterized by a checkerboard arrangement of
electrons on the cluster sites and, hence, can be detected by
a staggered density, n = ny — ng, calculated in the DCA as
follows:

“

on=—

The staggered electron density én describes the difference
between the occupancies on the two sublattices A and B and
serves as a natural order parameter for the CO phase tran-
sition, i.e., én = 0 in the uniform phase, and én # 0 for the
charge ordered phase.

In Fig. 7(a), we show the order parameter én as a function
of V at fixed values of U = 0.0, 1.0, 2.0, 3.0, and 4.0 at fixed
temperature 7 = (.1 obtained with N, = 4 site cluster DCA.
At fixed U, increasing the nonlocal interaction V eventually
results in CO as signaled by a nonzero staggered density én #
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FIG. 8. V dependence of the imaginary part of the self-energy
as a function of Matsubara frequency at K = (7, 0) for small (U <«
Union) and larger values of the local interaction U =~ Uygy: () U = 0,
(b) U =2.0, (c) U =4.0, and (d) U = 5.0. Other parameters: T =
0.1, N, = 4.

0. For larger values of U, the critical values of V at which the
transition to the CO phase occurs increase as well. This results
in the positive slope of the CO boundaries of Fig. 4.

Similarly, the CO can be detected from the double oc-
cupancy shown in Fig. 7(b). Notice that in contrast to the
U-driven Mott transition [see Fig. 3(b), where the double
occupancy is suppressed with U], the CO transition is char-
acterized by an overall increase of the double occupancy as V
increases at fixed U. In the inset of Fig. 7(b), we also show
the V dependence of (n4n,) for sublattices A and B. At fixed
U for V below the CO transition, the double occupancies
(n4ny) on sublattices A and B are identical. Once the CO
is established, the double occupancy on the two sublattices
becomes different.

In order to further study the effects of the charge fluctua-
tions on the single-particle dynamics, in Fig. 8 we consider
the effect of the intersite interaction V' on the self-energy
for different values of U corresponding to a good metal, a
correlated metal, and the Mott-insulator regimes. Here we
plot the V' evolution of the imaginary part of the self-energy
2(x,0) as a function of Matsubara frequency for U = 0.0, 1.0,
2.0, 3.0, and 4.0. The values of V are chosen below the CO
transition boundary. We begin with Figs. 8(a) and 8(b) for
U = 0.0 and 2.0, respectively. In this case we find that as
V grows, |[ImX(iw,),0)| increases and remains metallic. For
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FIG. 9. Left: Density of states (DOS) plotted as a function of
real frequency w. Data are for fixed V = 1.5 at values of U indi-
cated. Right: The corresponding imaginary part of the local Green’s
function, ImG,.(iw, ), as a function of Matsubara frequency. Other
parameters: V = 1.5, T = 0.1, N, = 4.

this parameter regime, the effect of V becomes very similar to
the increase of the effective local interactions by V. A similar
increase in the self-energy with V for small values of U has
been observed in Ref. [57], where for small values of U the
Fermi liquid behavior persisted with increasing values of V.
In Figs. 8(c) and 8(d), we show the results for larger values
of U = 4.0 and 5.0, corresponding to the correlated metal and
the Mott insulator, respectively. As V increases, the magni-
tude of the self-energy decreases, indicating that the system
becomes less insulating as a result of the screening effect of
V. A similar screening effect and decrease in correlations in
the presence of V has been also observed in other studies of
extended Hubbard models [23,42,57].

3. U-induced CO insulator to metal-to-Mott-insulator transitions

So far we have mainly focused on the correlation-induced
electron localization driven either by the nonlocal interaction
V in the CO phase, or by the local interaction U in the
Mott-insulating case. In this section, we will compare these
two insulating phases, and we will show that correlations can
also act to induce metallic behavior.

In Fig. 9 we illustrate the correlation-induced metallic
behavior for the U-driven CO to metal, and metal-to-Mott-
insulator transitions at fixed V = 1.5. In the left panel of
Fig. 9 we show the evolution of the DOS as the strength of U
changes at fixed V = 1.5. The DOS is obtained via analytical
continuation of ImGj,.(w,) using the Padé approximation.
The data demonstrate how DOS(w) evolves from the CO
insulator to metal and the Mott-insulator behavior with in-
creasing values of U. AtU = 1.0 and 2.0 the system is in a CO
insulator state with a gap in the DOS (top panel, left column),
with the DOS, (w) = DOSp(—w). As U increases, the CO gap
in the DOS gets narrower, and it closes in the metallic phase

@ o CO insulator ® o Mott insulator
T
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\0\0‘ |
o002
0.1} _
i O-0U=1.0 i~ -uU=5.0
[’; &0 U=2.0 2 | U=6.0
05F §
ﬂé ol ok
0.2 # 05 |00 0 0-0-0-0-0 00-0-0-0- 6 0]
-~ 0000000 000000 -c‘Ao
0 306 9
P NS N (R (T S PR IR N N | |
0O 1 2 3 4 5 6 0O 1 2 3 4 5 6
mn 0)l”l

FIG. 10. Imaginary part of the local self-energy, ImX,.(w,), for
(a) the CO insulator at U = 1.0 and 2.0 and (b) the Mott insula-
tor at U = 5.0 and 6.0. Inset: Real part of the local self-energy,
ReXj.(w,), in CO state. Other parameters: V =1.5, T =0.1,
N, =4.

(middle panel of the left column) for U = 3.0 and U = 4.0.
Further increasing U to 5.0 and 6.0 eventually leads to the
Mott-insulating behavior with an interaction-driven gap open-
ing in the DOS. Such correlation-driven metallic behavior has
been reported to appear in other systems featuring an electron
localized insulating phase to start with. This includes systems
on bipartite lattices with a staggered potential leading to a
band insulator [83—85] and systems with disorder [86,87].

The corresponding Padé input data on the Matsubara
axis for the imaginary part of the local Green’s function,
ImGo.(wy,) = I%L_ZKImG(K, wy), are shown in Fig. 9(b). For
both the CO and Mott insulators, ImGj..(w,) is small and
turns towards zero for w, — 0, consistent with the gap open-
ing in the DOS. For the metallic case, ImGj,.(w,) remains
finite for w, — 0, indicating a finite quasiparticle weight at
the Fermi energy.

To further compare the CO insulator and the Mott insulator,
in Fig. 10 we show the Matsubara axis data for the imaginary
part of the local self-energy, ImX,.(w,,), which is a measure
of the strength of correlations. The corresponding data for the
local Green’s function are shown in Fig. 9(b). For the CO
phase [Fig. 10(a)], ImXj,c(w, — 0) — O indicates that the
band-gap opening is due to the large ReX,. [shown in inset
of Fig. 10(a)], and the CO behaves as a weakly correlated
band insulator. In contrast, for the Mott insulator at large U =
5.0, 6.0 [Fig. 10(b)], while Re X (w,) = 0 (not shown), the
imaginary part, ImX.(w,), is large (indicating an increased
scattering rate and stronger correlations) and turns towards
—o0. These results clearly show the difference in the nature of
the insulating CO and Mott states, characterizing the former
as a band insulator and the latter as a correlation-driven Mott
insulator.

IV. CONCLUSIONS

In conclusion, using DCA on a 2 x 2 cluster, we have
performed a comprehensive study of the effects of nonlocal
correlations and interactions on the metal-insulator transitions
in a 2D half-filled extended Hubbard model. We emphasize
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that while 2 x 2 clusters provide only an approximate solution
of the model, they allow us to treat the local and nonlocal cor-
relations on equal footing in the interesting large interaction
parameter regime near the Mott transition. We have done an
analysis of the phase diagrams and the related properties for
both the V = 0 paramagnetic Hubbard model and the finite
V extended Hubbard model. At V = 0, we have constructed
the T-U phase diagram, where we compare the DMFT, 2 x 2
DCA, and 2 x 2 CDMFT results. We have demonstrated that
in the 2D Hubbard model, the nonlocal correlations beyond
DMFT are important; they suppress the coexistence region
and significantly reduce the critical U at which the transition
happens, and the critical temperature 7, below which the first-
order transition occurs.

For the finite V case, we used the DCA formalism
for an extended unit cell, and constructed the V-U phase
diagram for a 2D extended Hubbard model at 7 = 0.1. Ex-
ploring the V effects on the Mott metal-insulator crossover,
we have shown that a finite nearest-neighbor interaction
V pushes the Mott metal-insulator crossover boundary to
larger U values. We have also demonstrated that in addi-
tion to the U-driven Mott localization of electrons, non-
local interactions V' can also localize electrons via CO.
We have presented a careful study of the U and V de-
pendence of the order parameter, the double occupancy,
self-energy, and density of states. We have also shown that
nonlocal interactions V can have different effects on the
self-energy behavior, depending on the values of the local in-
teraction U. At larger values of U, the nonlocal interaction V
introduces strong screening effects with the system becoming
more metallic and the self-energy mimicking the behavior of

the standard U-only Hubbard model with a reduced effective
local on-site interaction.

To further highlight the emergence of competing states as
a function of correlations U and V in the extended Hubbard
model, we have demonstrated that, in addition to localization,
the electron interaction U can lead to a metallic phase be-
tween the Mott and CO insulating states. Such a behavior has
been argued to appear in other bipartite lattices with band-
insulating phases as well as in systems with disorder [83-87].

Finally, comparing the U- and V -induced localization of
electrons, we have shown that, unlike the Mott transition, the
CO transition is associated with an increase of the double
occupancy and a suppression of the self-energy. The gap in the
charge ordered phase is not associated with strong correlation
effects, but rather with a large real part of the self-energy
consistent with a band insulator.
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