

Atmospheric degradation of cyclic volatile methyl siloxanes: Radical chemistry and oxidation products

3 *Mitchell W. Alton^{1,2} and Eleanor C. Browne^{*1,2}*

4 ¹Department of Chemistry, University of Colorado, Boulder, Colorado, 80309, United States

7 *KEYWORDS:* *VMS, Siloxanes, Atmospheric Oxidation, Peroxy Radical, Oxidized VMS,*
8 *Contaminants of Emerging Concern*

9 ABSTRACT

10 Cyclic volatile methyl siloxanes (cVMS) are anthropogenic chemicals that have come under
11 scrutiny due to their widespread use and environmental persistence. Significant data on the
12 environmental concentrations and persistence of these chemicals exists, but their oxidation
13 mechanism is poorly understood, preventing a comprehensive understanding of the environmental
14 fate and impact of cVMS. We performed experiments in an environmental chamber to characterize
15 the first-generation oxidation products of hexamethylcyclotrisiloxane (D3),
16 octamethylcyclotetrasiloxane (D4), and decamethylcyclopentasiloxane (D5) under different
17 peroxy radical fates (unimolecular reaction or bimolecular reaction with either NO or HO₂) that

18 approximate a range of atmospheric compositions. While the identity of the oxidation products
19 from D3 changed as a function of the peroxy radical fate, the identity and yield of D4 and D5
20 oxidation products remained largely constant. We compare our results against output from a
21 kinetic model of cVMS oxidation chemistry. The reaction mechanism used in the model is
22 developed using a combination of previously proposed cVMS oxidation reactions and standard
23 atmospheric oxidation radical chemistry. We find that the model is unable to reproduce our
24 measurements, particularly in the case of D4 and D5. The products that are poorly represented in
25 the model help to identify possible branching points in the mechanism which require further
26 investigation. Additionally, we estimated the physical properties of the cVMS oxidation products
27 using structure activity relationships and found that they should not significantly partition to
28 organic or aqueous aerosol. The results suggest that cVMS first-generation oxidation products are
29 also long-lived in the atmosphere and that environmental monitoring of these compounds is
30 necessary to understand the environmental chemistry and loading of cVMS.

31 1 INTRODUCTION

32 Cyclic volatile methyl siloxanes (cVMS) are high production volume chemicals^{1,2} that are
33 common components of consumer and industrial products such as deodorants, lotions, sealants,
34 and lubricants. cVMS have high vapor pressures and low Henry's law constants, leading to
35 preferential partitioning into the atmosphere³ where they primarily degrade through reactions with
36 OH.⁴ cVMS lifetimes with respect to oxidation by OH are between 4 and 10 days (assuming a 24-
37 hour average OH concentration of 1.2×10^6 molecules cm^{-3}),⁴⁻¹² and consequently, cVMS are
38 globally distributed and have been identified in remote environments such as the arctic.¹³⁻¹⁵ These
39 abundant chemicals are also bioaccumulative and toxic.^{13,16-18} Consequently, the European Union

40 placed restrictions on the use of cVMS in certain cosmetic products in 2016, with
41 recommendations in 2021 to restrict the use in certain industrial processes.^{19–21} Owing to their
42 widespread use, toxicity, and environmental persistence, there has been significant interest in
43 understanding the environmental fate of cVMS.^{5,12,13,16,17,22–38}

44 Previous research has largely focused on quantifying ambient concentrations of parent
45 cVMS^{13,35,38,39} and understanding their oxidation kinetics;^{5,10,11} significantly less is understood
46 about the identity of cVMS oxidation products and their environmental chemistry.^{31,32} In the
47 atmosphere, cVMS oxidation is initiated by reactions with OH or Cl to produce an alkyl radical
48 ($\text{R}_3\text{SiCH}_2\cdot$) which quickly reacts with O_2 to produce a peroxy radical ($\text{R}_3\text{SiCH}_2\text{O}_2\cdot$, or more
49 generally, RO_2). The subsequent reactions depend on atmospheric composition: reactions with NO
50 will dominate under high NO mixing ratios, such as in urban areas; reactions with HO_2 will
51 dominate where high HO_2 mixing ratios are found, such as in areas dominated by biogenic
52 emissions; and unimolecular reactions can dominate in areas with low concentrations of NO or
53 HO_2 , such as remote regions or even in urban areas for reactions with sufficiently fast unimolecular
54 reactions.⁴⁰

55 Laboratory investigations of cVMS oxidation have observed numerous oxidation products but
56 typically identify the siloxanol (-CH₃ replaced with -OH) as the main product.^{4,7,8} Two
57 experimental studies have also reported the formate ester (-CH₃ replaced with -CH(O)H)
58 product.^{4,5} Additionally, oxidation products such as hydroperoxides, alcohols ($\text{R}_3\text{SiCH}_2\text{OH}$), and
59 products with an increased number of silicon atoms have been detected.^{8,41} Siloxanol formation
60 has often been ascribed to the hydrolysis of the formate ester,^{4,7} a process that likely occurs on
61 surfaces. Attempts to develop an oxidation mechanism based on these observations and known
62 atmospheric peroxy radical chemistry have largely been unsuccessful, in part because the RO_2 fate

63 has been unclear in many of the past experiments. It has generally been concluded that the Si in
64 cVMS allows for unique chemistry to occur and several unusual reactions have been proposed
65 based on the laboratory results.^{4,8,42} Recent theoretical investigations of organosilicon chemistry
66 provide evidence that organosilicon compounds undergo unique rearrangements inaccessible to
67 carbon-based compounds.^{31,32} The net effect of the mechanism proposed by the theoretical
68 investigations oxidation under high NO_x (= NO + NO₂) conditions includes the production of HO₂
69 and the oxidation of two NO radicals to NO₂.^{31,32} This net effect is inconsistent with laboratory
70 measurements showing that at most one NO is oxidized to NO₂ during cVMS oxidation and that
71 cVMS reduces O₃ production and OH radical concentrations.¹⁸ However, as cVMS oxidation
72 products were not measured there is still opportunity for better online characterization of the
73 chemistry.

74 Without an understanding of the cVMS oxidation mechanism and products, it is difficult to
75 predict the fate of the oxidation products. For instance, one possibility is that the oxidation products
76 contribute to aerosol mass. Based on observations of Si in urban nanoparticles it has been
77 suggested that oxidation products of cVMS from personal care products are present in
78 aerosol,^{24,39,43} while other studies have suggested that the silicon in aerosol from organosilicon
79 compounds is minimal.^{44,45} There are substantial variations in the reported aerosol yields of cVMS,
80 which range from approximately 0% to 50%.⁴⁶ The range in the reported yields is likely due to
81 experimental conditions creating different oxidation products. Without knowledge of the oxidation
82 mechanism and measurements of the oxidation products, however, this hypothesis is difficult to
83 test.

84 In this study, we conducted a series of atmospheric chamber experiments designed to investigate
85 the reaction mechanisms of hexamethylcyclotrisiloxane (D3), octamethylcyclotetrasiloxane (D4),

86 and decamethylcyclopentasiloxane (D5) under conditions of different RO₂ lifetimes and reaction
87 partners. We also oxidized fully deuterated hexamethyldisiloxane (D₁₈L2) with Cl atoms to
88 provide some constraint on the identity of the oxidation products. Using a combination of our
89 measurements, kinetic modeling, and constraints from the literature, we propose that a simplified
90 oxidation mechanism for cVMS that can be used in modeling atmospheric cVMS chemistry. We
91 identify points in the cVMS oxidation mechanism that require further investigation. The
92 environmental fate of the observed products is investigated through estimations of vapor pressure
93 and water solubility, with the results suggesting that the first-generation of cVMS oxidation does
94 not create oxidation products that will participate in aerosol growth.

95 **2 MATERIALS AND METHODS**

96 Experiments were performed in a ~1 m³ FEP Teflon® chamber at ambient lab temperature (295
97 ± 3 K) and pressure (~860 mbar) at low relative humidity (<5% RH). A low RH was used to
98 minimize the wall loss of the oxidation products. The chamber, previously described in Alton and
99 Browne (2020),⁵ was run in either batch mode, in which the chamber was slowly collapsed as air
100 was sampled from it, or semi-batch mode, in which the sampled air was continuously replaced. To
101 correct for dilution in semi-batch mode, the dilution rate was quantified by sampling for 30 minutes
102 after completion of the experiment and determining the first order loss constant for each product.
103 This rate constant represents both loss to the walls and dilution and was used to correct the
104 measured values for individual species. Experiments for D3 were conducted in both batch and
105 semi-batch modes and product distributions were determined to be consistent between the two
106 methods of chamber operation on the timescale we are interested in (~3 hours). Experimental

conditions are summarized in Table 1.

Table 1 Radical precursor concentrations, estimated oxidant concentrations, and estimated ratios of reaction between RO₂ and NO to HO₂ and HO₂ to other RO₂.

cVMS ^a	Oxidant Precursor and Concentration (ppb _v) ^b	[OH] or [Cl] (molec cm ⁻³)	[NO], [NO ₂] (ppb)	NO:HO ₂ ^c	τ _{RO2} (s) ^d
D3* ^e	Cl ₂ , 15	1.0×10 ⁶	-	0.4:1	27
D3*	H ₂ O ₂ , 1000	8.0×10 ⁷	-	0.04:1	4
D3*	HONO, 400	5.0×10 ⁷	200,150	200:1	0.02
D3	Cl ₂ , 15	1.0×10 ⁶	-	0.4:1	27
D4	Cl ₂ , 15	6.0×10 ⁵	-	0.9:1	40
D4	H ₂ O ₂ , 1000	8.0×10 ⁷	0.05, 8	0.04:1	4
D4	HONO, 400	5.0×10 ⁷	230,190	100:1	0.02
D4	Cl ₂ , 100	7×10 ⁵	-	0.02:1	1.6
	CH ₂ O, 1000				
D5	Cl ₂ , 15	4.0×10 ⁵	0.05, 0.05	1:1	46
D5	H ₂ O ₂ , 1000	8.0×10 ⁷	0.05, 4	0.04:1	4
D5	HONO, 400	5.0×10 ⁷	250,180	100:1	0.02

^aApproximately 80 ppb_v of cVMS was added to the chamber. ^bThe initial mixing ratios of NO and NO₂ before the lights were turned on in the HONO experiments were ~50 ppb_v, and ~100 ppb_v, respectively, except for D3 which had ~100 ppb_v of NO. Differences in mixing ratios are due to the inconsistency of HONO generation using HNO₃ and NaNO₂. NO and NO₂ were only measured in experiments for which mixing ratios are reported. For other experiments, background mixing ratios of 50 ppt_v were assumed. ^cEstimated radical concentrations were determined at the point that 10% of the cVMS has reacted, as calculated from the KinSim model.

^dRate constants used in calculating the RO₂ lifetimes were obtained from Ziemann and Atkinson (2012)⁵²: k_{RO2+HO2} = 1.5×10⁻¹¹ molec cm⁻³ s⁻¹, k_{RO2+NO} = 9×10⁻¹² molec cm⁻³ s⁻¹, k_{RO2+RO2} = 1×10⁻¹⁴ molec cm⁻³ s⁻¹, and k_{RO2+OH/Cl} = 2×10⁻¹⁰ molec cm⁻³ s⁻¹. ^eExperiments marked with (*) were performed in semi-batch mode, in which sampled air is continually replaced with clean air to maintain a constant chamber volume for the duration of the experiment.

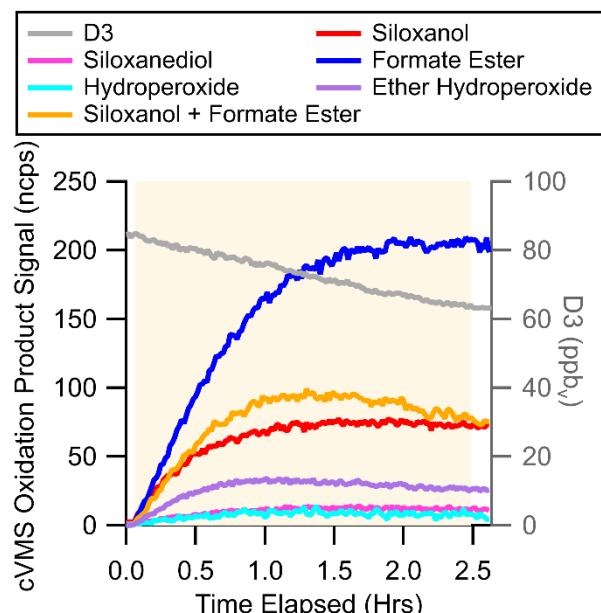
109 D3 (98%, Acros Organics), D4 (98%, Acros Organics), D5 (97%, Sigma-Aldrich) were diluted
110 in acetonitrile (99.8%, Sigma-Aldrich) to 5% (w/w) and injected into the chamber using a gently
111 heated borosilicate glass tube with a stream of zero-air (AADCO Instruments, 737 series)
112 transporting the evaporated cVMS to the chamber. We saw no evidence for thermal degradation
113 of the cVMS from heating of the tube (maximum temperature estimated at less than 60°C). The
114 oxidation chemistry of each precursor was investigated under three different RO₂ fates. Peroxy
115 radical lifetimes were calculated using measured concentrations of NO or estimated concentrations
116 of reactive species from a kinetic model, which will be discussed later in Section 3.3. Experiments
117 using Cl₂ as an oxidant precursor were designed to favor unimolecular RO₂ reactions. For these
118 experiments we calculate a RO₂ lifetime with respect to bimolecular reactions of about 0.4 minutes
119 with ~55% of the RO₂ reacting with HO₂ and 20% undergoing unimolecular rearrangements
120 (assuming a rate constant of 8×10^{-3} s⁻¹ for isomerization),³¹ and the rest reacting with background
121 NO. Experiments using H₂O₂ as an oxidant precursor probed conditions where >90% of RO₂ react
122 with HO₂ while experiments using HONO resulted in ~99% of RO₂ reacting with NO.

123 Cl₂ was added by a flow of N₂ over a gravimetrically calibrated permeation device (VICI
124 Metronics). Hydrogen peroxide was added via a solution added into the heated borosilicate glass
125 tube with a zero-air flow. HONO was generated by addition of 40 μL of a 1.5 M sodium nitrite
126 solution (>99%, Sigma-Aldrich) to a 2 M nitric acid solution (70%, Fischer Scientific) while
127 passing zero-air over the headspace of the solution, transporting any evolved gases into the
128 chamber. Cl₂ and HONO were photolyzed into Cl atoms and OH + NO, respectively, with 370 nm
129 fluorescent lights (General Electric, F40BL) positioned below the chamber. H₂O₂ was photolyzed
130 with 254 nm lights (General Electric, G36T8) to generate OH. Control experiments were
131 performed to ensure the parent cVMS were stable in the presence of UV light. To test for

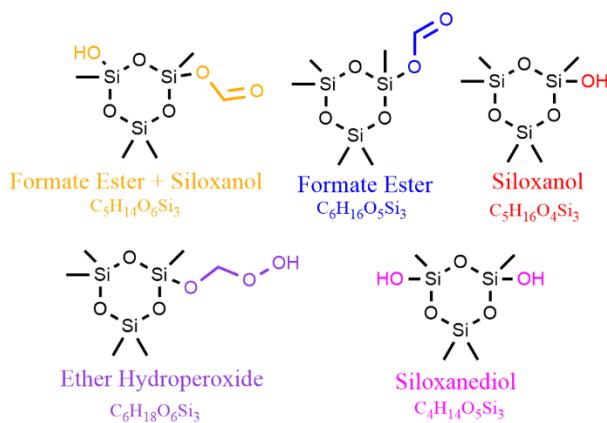
132 photostability of hydroperoxides generated from D4 oxidation, we performed a control experiment
133 where we photolyzed Cl₂ with the 370 nm lights with ~1 ppm_v of added formaldehyde to generate
134 HO₂. Partway through the experiment, the 254 nm lights were also turned on with the 370 nm
135 lights. The production of the hydroperoxides increased at the same rate as the siloxanol, suggesting
136 that more Cl₂ was photolyzed with the additional lights increasing total oxidation, but there was
137 no additional loss of the hydroperoxide from photolysis.

138 As in our previous work,⁵ a high-resolution long time-of-flight chemical ionization mass
139 spectrometer (CIMS; Aerodyne Research, Inc. and Tofwerk AG; resolving power ~8000
140 $m/z/\Delta m/z$) using protonated toluene as the reagent ion measured the cVMS parent compounds and
141 oxidation products during the experiments. Compounds are detected as [M+H]⁺ products. The
142 ionization is relatively soft; we do not detect the methane fragment (R₃Si⁺⁺) from the parent cVMS
143 that is generally seen in other proton transfer ionization schemes. We did observe R₃Si⁺ as a
144 fragment of the siloxanol product, though less than 3% of the siloxanol signal was detected as this
145 fragment. The CIMS sampled a total of 1.7 slpm, with 700 sccm of that flow consisting of
146 humidified zero-air and the rest sampled from the chamber. The addition of water vapor enhances
147 the instrument response (counts per second per ppb_v normalized to the toluene reagent ion signal;
148 ncps) for detection of cVMS and the oxidation products. Data was post-processed in Tofware
149 v3.2.3 (Tofwerk AG) in the IGOR Pro environment (Wavemetrics, v8.0.4.2) using fully
150 constrained peak fitting and allocation of isotope signals. An example of the peak fitting is shown
151 in Section 1 of the Supporting Information (Figure S1). NO and NO₂ concentrations were
152 measured using a chemiluminescence NO and NO₂ analyzer with a blue light converter for true
153 NO₂ measurements (Teledyne, T200UP) with one minute resolution and 50 ppt_v limit of detection.

154 We used KinSim v4.14⁴⁷ in Igor Pro to simulate gas-phase chemistry for each experiment.
155 KinSim is open-source solver for kinetics modeling. Rate constants for non-cVMS species were
156 obtained from Atkinson et al. (2004)⁴⁸ and Atkinson (2007).⁴⁹ The mechanism used in the KinSim
157 simulations is presented in Section 2 of the Supporting Information. The lifetime of cVMS species
158 with respect to oxidation by OH (~days) requires the use of elevated radical concentrations to
159 ensure sufficient oxidation on the timescale of our experiment. However, the experiments were
160 designed to avoid potentially unrepresentative reactions in the atmosphere (such as $\text{RO}_2 + \text{RO}_2$ or
161 $\text{RO}_2 + \text{OH}$). We assumed the chamber was well mixed. Wall partitioning calculations for all cVMS
162 products were included using KinSim's built in wall-partitioning functions.⁵⁰ The reversible
163 vapor–wall interactions were calculated upon mechanism compilation using the first-order vapor
164 condensation rate coefficient ($1 \times 10^{-3} \text{ s}^{-1}$),⁵¹ the mass vapor saturation concentration of the
165 partitioning molecule, and enthalpy of vaporization, with the latter two values estimated by the
166 Melting Point, Boiling Point, and Vapor Pressure module (MPBPWIN v1.44) in the Environmental
167 Protection Agency's (EPA) Estimations Programs Interface for Windows (EPIWIN v4.11). Rate
168 constants for peroxy radical reactions with NO and HO_2 were taken from Atkinson and Ziemann
169 (2012)⁵² and were kept constant. As the oxidation rate constants for the different parent cVMS are
170 known,⁵ the decay of the cVMS was used to constrain the concentration of oxidants, which was
171 then used to determine the photolysis rates of the oxidant precursors. An average photolysis rate
172 was used for all experiments using the same oxidant precursor ($7 \times 10^{-5} \text{ s}^{-1}$, $2 \times 10^{-4} \text{ s}^{-1}$, and $4 \times 10^{-4} \text{ s}^{-1}$
173 for H_2O_2 , Cl_2 , and HONO , respectively).


174 For estimating partitioning between condensed phases in the atmosphere we used EPIWIN to
175 calculate the water solubility with the Water Solubility and Octanol-Water Partition Coefficient
176 (WSKOW v1.43) and the Henry's Law constant with the HenryWin v3.21 module. In addition to

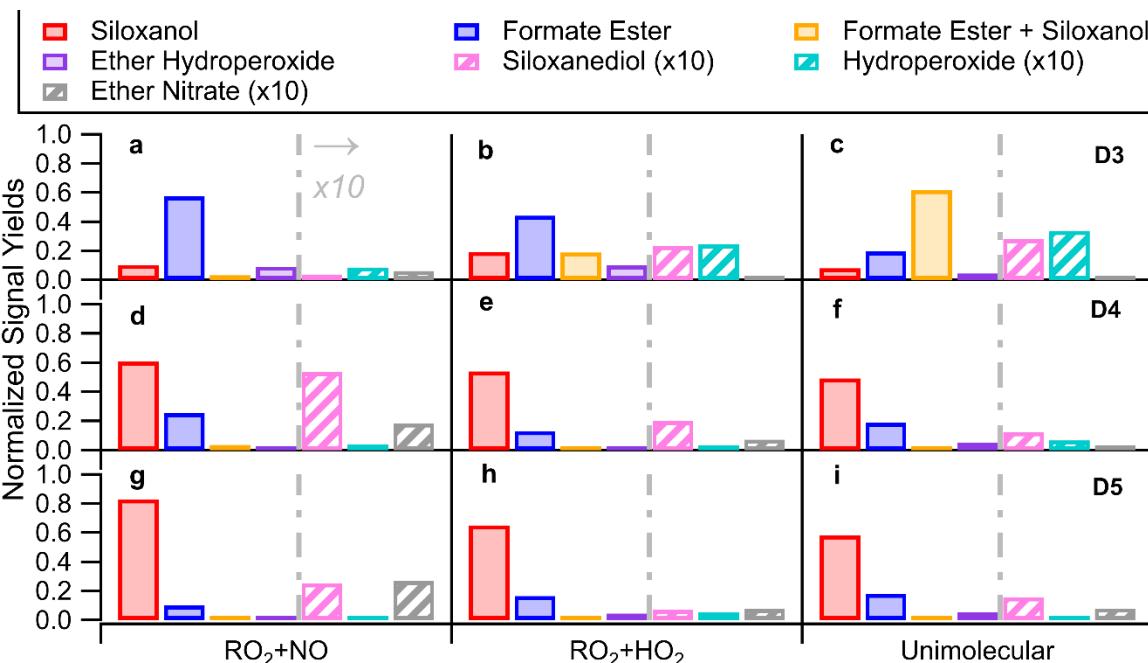
177 EPIWIN, the EPA's Toxicity Estimation Software Tool (TEST) was used to estimate the vapor
178 pressures, boiling points, and water solubilities of the cVMS and their oxidation products. TEST
179 does not estimate Henry's Law constants; however, a proxy of the ratio between the vapor pressure
180 and the water solubility of the compound can be used to compare between the EPIWIN and
181 TEST.⁵³ TEST reports a consensus value where it estimates the values using multiple methods
182 then averages those results together. These estimations are further discussed in Section 3.4.


183 **3 RESULTS AND DISCUSSION**

184 **3.1 cVMS Oxidation Products**

185 Figure 1 shows an example time series from a
186 D3 oxidation experiment with H₂O₂ as the oxidant
187 precursor. The only product to exhibit significant
188 loss after the lights are turned off is the
189 difunctional siloxanol + formate ester product. As
190 oxidants are continuously generated during these
191 experiments, the first-generation oxidation
192 products will undergo further oxidation. To
193 minimize the impact of this oxidation, we analyze
194 the product signals at the point where only 10% of
195 the parent cVMS has been oxidized. This metric
196 was chosen as only 4% of the oxidation products
197 are expected to have reacted at this point due to the
198 continued generation of oxidants. Additionally,
199 although the oxidation products are expected to

Figure 1 Example time series of D3 oxidation with H₂O₂ as the oxidant precursors. The shading signifies when the lights are on, and the dashed vertical line signifies when 10% of D3 had been oxidized. Signals averaged to 1 min time resolution are shown.


206
Figure 2 Example cVMS oxidation product
 structures.

208

have lifetimes with respect to wall loss greater than one hour, measuring the products after only 10% of the cVMS reacted (~30 min) minimizes the impacts of wall loss on the measured concentrations. Comparing the results at the point where 10% of the cVMS has reacted allows for an easier intercomparison between the different experiments, as we are achieving the same oxidant exposures.

209 Possible isomers of select D3 oxidation products are shown in Figure 2. These assignments are
 210 proposed based on previous works^{4,7,8} and further informed through isotopically labeled linear
 211 VMS experiments (described in Section 3 of the Supporting Information). We did not detect the
 212 formation of any oxidation products that contained either fewer or greater silicon atoms than the
 213 parent compound. For instance, we did not observe the formation of either D4 or a product with
 214 10 silicon atoms during the oxidation of D5.

215 The CIMS was calibrated for the parent siloxanes. The sensitivity to the parent compounds in
 216 these experiments was lower than reported in previous works⁵ as the ion optics were tuned for
 217 optimal resolving power, which sacrificed sensitivity. Authentic standards for cVMS oxidation
 218 products are not commercially available and thus we are unable to quantify their concentrations.
 219 However, after normalization to the reagent ion and when working in the linear response region,
 220 the instrument response to a specific compound will be linear with respect to changes in

221

Figure 3 Signal yield of the different cVMS oxidation products when the RO_2 was most likely to react with (a,d,g) NO, (b,e,h) HO_2 , or (c,f,i) when unimolecular reactions are favored, divided by the signal of the siloxane lost at that point. (a-c) are for D3, (d-f) for D4, and (g-i) for D5 oxidation. The signals for the siloxanediol, ether hydroperoxide, and ether nitrate are multiplied by 10 and striped for visual clarity.

222 concentration. As the reagent ion exhibited no significant depletion and the signals were
 223 significantly above the limit of detection, these experiments are within the linear response region.
 224 Thus, although the oxidation products cannot be quantified, differences across RO_2 fate conditions
 225 in the signal of a given product can be interpreted as changes in the relative amount of a product
 226 being formed. Moreover, as shown in Section 4 of the Supporting Information, when 10% of the
 227 cVMS had reacted, the total signal of the oxidation products detected normalized to the mixing
 228 ratio of cVMS reacted, varied by <20% across the experimental conditions (Figures S3 and S4)
 229 even when there are significant changes in the compositions of the ions formed (particularly for

230 D3). This finding suggests that variations in instrument response to different products were
231 relatively small and that we were capturing most of the oxidation products.

232 Given the absence of authentic calibration standards, we elect to report the product abundance
233 in terms of normalized signal yield. This quantity is calculated as the signal of an individual
234 product divided by the sum of the total product signals and would be approximately equal to the
235 molar yield if we had equal sensitivity to every oxidation product. Figure 3 shows the normalized
236 signal yields of each of the products for the different cVMS studied.

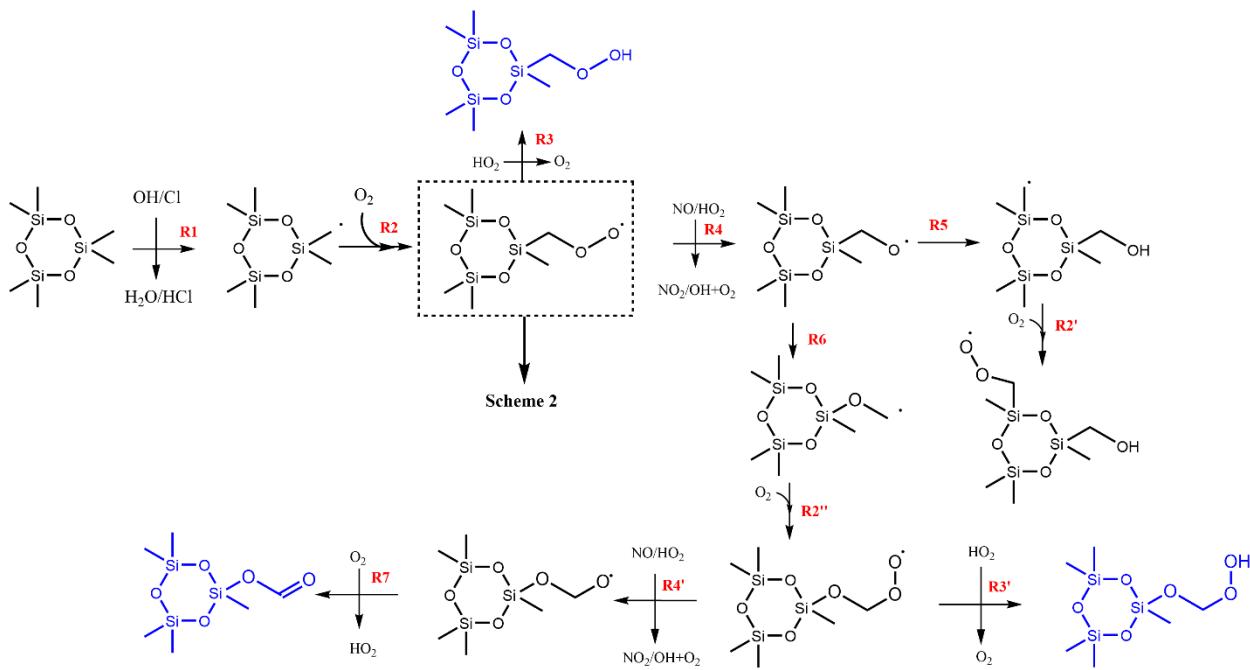
237 The oxidation mechanism of D3 has been studied with theoretical calculations and will be
238 discussed first. The most intense product signal formed in the D3 experiments under conditions
239 that favored unimolecular reactions, as seen in Figure 3a, was $(C_5H_{14}O_6Si_3)H^+$. We assign this
240 formula as a difunctional product, the siloxanol and formate ester. In the $RO_2 + NO$ and $RO_2 + HO_2$
241 conditions, the product with the most intense signal was $(C_6H_{16}O_5Si_3)H^+$, which corresponds to
242 the formate ester product. The next most intense signal in the experiments was $(C_5H_{16}O_4Si_3)H^+$,
243 which we identified as the siloxanol. We attribute $(C_6H_{18}O_6Si_3)H^+$ to an ether hydroperoxide and
244 $(C_6H_{18}O_5Si_3)H^+$ to the hydroperoxide. The hydroperoxide was identified by Sommerlade et al.
245 (1993),⁸ though the ether hydroperoxide was not. No nitrogen containing peaks were identified
246 when D3 was oxidized in high NO_x (~ 100 ppb_v NO_x) conditions. This observation may suggest
247 that the formation of organic nitrates was unfavorable. Alternatively, organic nitrates may be
248 detected with low efficiency because of either fragmentation or low ionization efficiency. The
249 presence of and instrument response to organic nitrates will be discussed further in the context of
250 D4 and D5 oxidation.

251 The assignment of $(C_6H_{16}O_5Si_3)H^+$ as a formate ester rather than a carboxylic acid was informed
252 by previous experimental and theoretical work.^{4,32} Additionally, we oxidized fully deuterated

253 hexamethyldisiloxane ($D_{18}L2$) with Cl atoms in a similar experiment to Atkinson et al. (1995),⁴
254 and observed $(C_6D_{16}O_3Si_2)H^+$ as the major ion. No detectable signal existed for ions with
255 exchangeable hydrogens. The 1H in the formula originated from the proton transfer reaction
256 leading to ionization in the CIMS. If the product were instead a carboxylic acid, we would expect
257 to observe $(C_6D_{15}HO_3Si)H^+$. Further details regarding this experiment are in Section 3 of the
258 Supporting Information.

259 The product distribution in the D4 and D5 oxidation experiments differed substantially from the
260 D3 experiments. Monofunctional products, the siloxanol and to a lesser extent the formate ester,
261 dominated the product signals. Additionally, the signal yields of the siloxanol and formate ester
262 showed little sensitivity to the RO_2 lifetime and reaction partner. In the D4 and D5 experiments,
263 signals for $(C_8H_{23}O_7Si_4N)H^+$ and $(C_{10}H_{29}O_8Si_5N)H^+$, attributed to the organic nitrates, and
264 $(C_8H_{23}O_8Si_4N)H^+$ and $(C_{10}H_{29}O_9Si_5N)H^+$, attributed to the ether organic nitrates, were detected.
265 However, these compounds appeared to be formed with significantly smaller yields than the
266 siloxanol and formate ester products. Only the ether nitrate yields are shown in Figure 3. Proton
267 transfer ionization can lead to fragmentation of organic nitrates through nitric acid loss. As a result,
268 instrument response for the protonated organic nitrate can be low with high limits of detection. We
269 detected the nitric acid loss fragment, $(C_{10}H_{28}O_6Si_5)H^+$, for the ether nitrate product at ~25% of
270 the ether nitrate signal for D5, which suggests that some fragmentation did occur. We did not
271 observe ions consistent with either water- or NO_2 -loss fragmentation pathways or charge transfer
272 products. Although the reagent ion may be ineffective at detecting organic nitrates, we expect that
273 the yield of organic nitrates in these experiments was small given that both the organic nitrate
274 signal and the total product signals were similar under the different RO_2 fates investigated which
275 ranged from 99% of RO_2 reacting with NO in the $RO_2 + NO$ conditions to ~5% reacting with NO

276 in the RO₂ + HO₂ experiments. More discussion on the instrument response is in Section 4 of the
277 Supporting Information. Additionally, previous work suggests that organic nitrate yields are low.
278 Organic nitrates have not been detected before this work, even when cVMS was oxidized under
279 high NO conditions.^{4,18} Carter et al. (1992)⁵⁴ performed environmental chamber experiments
280 investigating how siloxanes alter ozone formation in high NO_x conditions. Through a model-
281 measurement comparison, they determined that their results were inconsistent with organic nitrate
282 formation, however, siloxane oxidation products were not measured.


283 In works that identified products with an increased number of silicon atoms, RO₂ + RO₂
284 reactions or reactions within the condensed phase likely occurred. In our experiments, RO₂ + RO₂
285 reactions were minimal under all conditions (<1%) and no aerosol was formed, thus we did not
286 expect to observe products with an increased number of silicon atoms.

287 **3.2 Discussion of Reaction Mechanism**

288 In most previous studies, the major oxidation products have typically been attributed to the
289 siloxanol and the formate ester, though the formate ester has only been detected experimentally
290 twice.^{4,5} The siloxanol has been suggested to be a hydrolysis product of the formate ester.⁴ Other
291 works have suggested unusual reactions that could potentially explain the formation of the
292 siloxanol and the formate ester products,^{8,31,32} however, a lack of controlled and varied RO₂ fates
293 in these experiments prevents a comprehensive assessment of the mechanism. In this work, we
294 varied the lifetime and reaction partner of the RO₂ radical to gain insight into these reactions.
295 Additionally, our real-time measurement technique has the advantage that conversion of the
296 formate ester to the siloxanol on surfaces will be minimized. In this section we discuss the potential
297 cVMS oxidation mechanism as compiled from previous experimental and theoretical
298 studies.^{4,8,31,32,42} The schemes presented in this section are based on these previously proposed

299 reactions as well as typical oxidation pathways in the atmosphere. In the following section, we
 300 implement the reaction mechanism in a zero-dimensional kinetic box model and compare to our
 301 measurements.

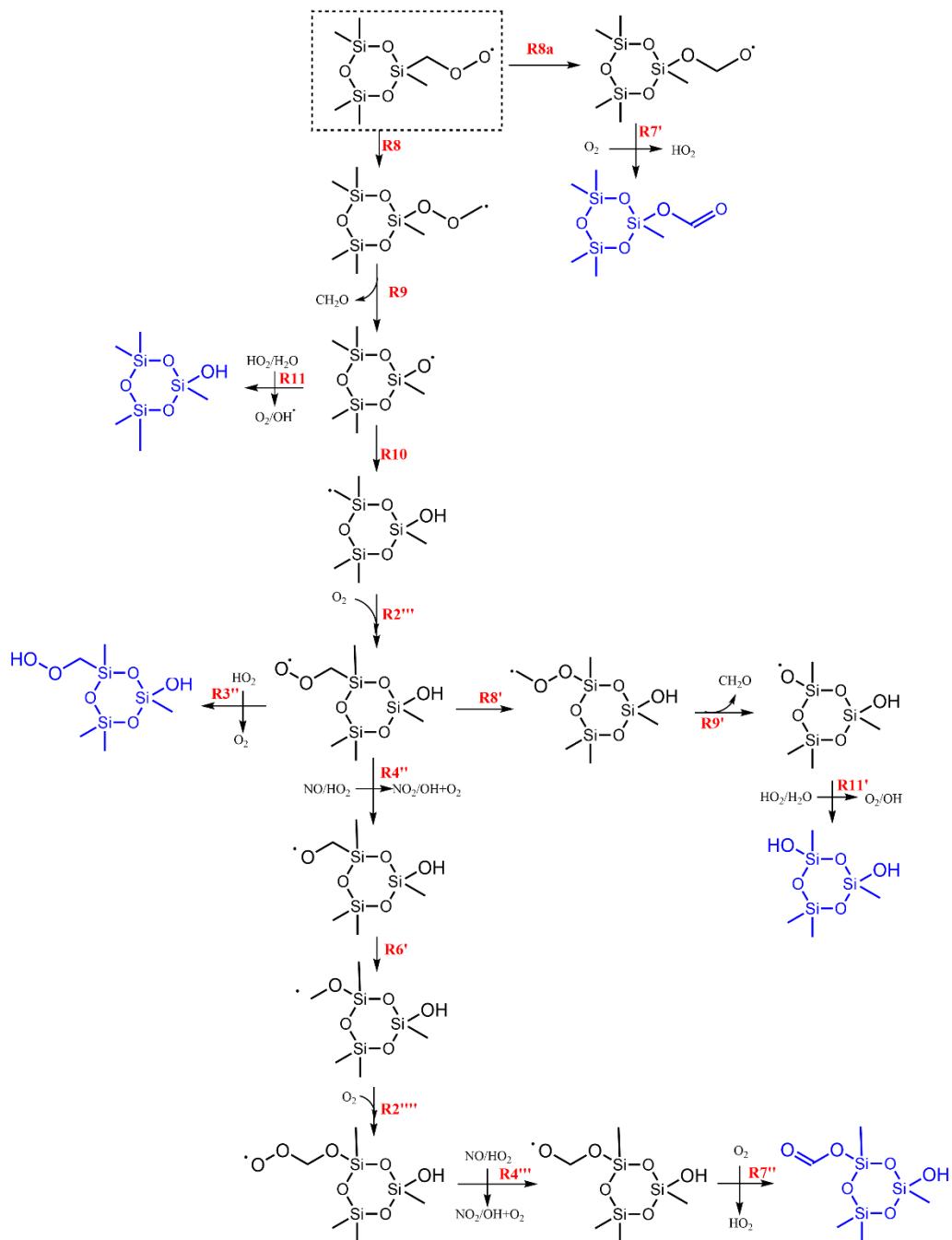
302 **Scheme 1** Potential reactions of cVMS in high NO_x/HO₂ conditions

304 **3.2.1 RO₂ + NO**

305 As shown in Scheme 1, cVMS oxidation is initiated by OH or Cl abstracting a hydrogen from
 306 one of the methyl groups (R1). The resulting alkyl radical quickly reacts with O₂ forming RO₂
 307 (R2). When the NO/HO₂ ratio is greater than 2, such as urban locations, the primary reaction of
 308 RO₂ is with NO.⁵² This reaction has two channels, one that forms an alkoxy radical (RO) and NO₂
 309 (R4), and one that forms an organic nitrate (-ONO₂; not shown). Based on our measurements and
 310 as discussed in Section 3.1, we suggest that the organic nitrate channel is minor and that reaction
 311 with NO mainly proceeds through reaction R4. Possible fates for the R₃SiCH₂O[·] radical include
 312 reaction with O₂, decomposition, and isomerization. Isomerization reactions were expected to

313 dominate as reactions with O_2 to form R_3SiCHO (not shown) and decomposition have been
314 calculated to be at least 10 orders of magnitude slower than isomerization.³¹ Possible isomerization
315 pathways include a hydrogen shift from an adjacent methyl group or a unique rearrangement (R6)
316 to form a carbon based radical. R6 is inaccessible to carbon-based volatile organic compounds
317 (VOCs). The calculated lifetime (from theoretically determined rate constants) for $R_3SiCH_2O^\bullet$ with
318 respect to R6 was $\sim 6 \times 10^{-12}$ seconds for D3, and this isomerization is expected to be the major RO
319 fate.³¹ The most intense hydroperoxide and nitrate signals detected during oxidation in this work
320 are consistent with the formation of the ether hydroperoxide and ether nitrate, consistent with R6
321 occurring rapidly. Note that the peroxy radicals formed from R5 followed by R2' and R6 followed
322 by R2'' are isomers. However, based on theoretical calculations,³¹ R5 is expected to be slow
323 relative to R6 and thus further reactions and products from R2' were not considered. The carbon
324 centered radical formed by R6, $R_3SiOCH_2^\bullet$, will subsequently add O_2 (R2'') to form a new ether
325 peroxy radical.^{31,32} This radical can react with NO/ HO_2 again (R4') to form an ether alkoxy radical.
326 The formate ester forms when the ether alkoxy radical reacts with O_2 (R7). The ether peroxy
327 radical can also react with HO_2 to form the ether hydroperoxide (R3') or with NO to form the ether
328 nitrate (not shown).

329 3.2.2 $RO_2 + HO_2$


330 The main channel of the RO_2 reaction with HO_2 typically results in the formation of a
331 hydroperoxide (R3).^{55,56} In our experiments, the observed intensity of this expected product was
332 low. While this may be due to a low instrument response to hydroperoxides when using proton
333 transfer ionization, the fact that similar products in similar yields are formed under both $RO_2 + NO$
334 (<1% of RO_2 reacting with HO_2) and $RO_2 + HO_2$ (>90% of RO_2 reacting with HO_2) conditions
335 leads us to suggest that the RO_2 radicals can react with HO_2 to form the RO radical, OH, and O_2

336 (R4). The formation of the RO radical from reaction of RO₂ with HO₂ has been observed
337 previously in oxygenated organic molecules, leading to a radical recycling mechanism.^{56,57} Once
338 R6 occurs, the reactions are the same in the NO case with the addition of R3' to form the ether
339 hydroperoxide.

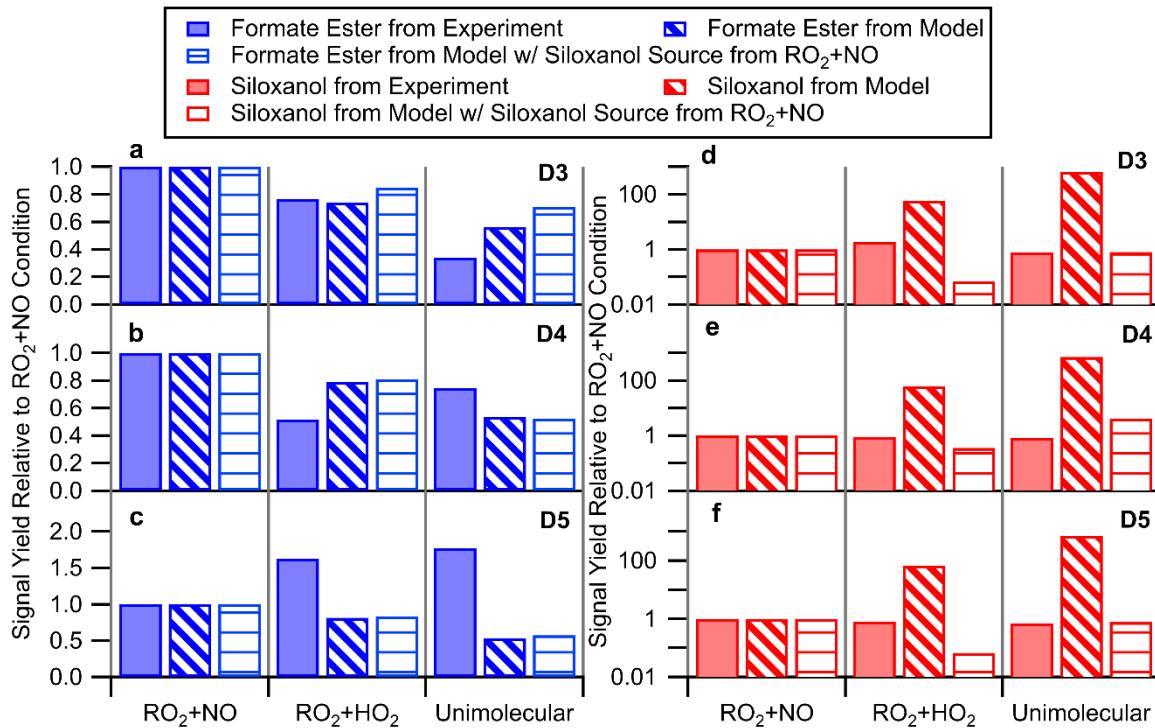
340 3.2.3 Conditions Favoring Unimolecular Reactions

341 Under conditions of low HO₂ or NO concentrations, the lifetime of the RO₂ radical with respect
342 to bimolecular reactions is long and unimolecular reactions may become important. Possible
343 unimolecular reactions of cVMS derived RO₂ identified through quantum chemical calculations
344 include 1,3-, 1,5-, and 1,7-hydrogen shifts to form QOOH with a propagated radical. However, the
345 more favorable (lower energy barrier) isomerization was predicted to be the unusual pathway
346 shown in R8 (Scheme 2).³¹

347 **Scheme 2** Potential reactions of cVMS in low NO_x/HO₂ condition.

348

349 After undergoing R8, the resulting radical is expected to quickly proceed through R9, generating
 350 a siloxy radical and formaldehyde. We suggest that the siloxy radical can undergo reaction R11 to
 351 make the siloxanol product after reaction with H₂O or HO₂. The reaction of RO with H₂O (R11)


352 has been proposed to occur on silica surfaces,⁵⁸ while Carter et al. (1992)⁵⁴ previously proposed
353 the reaction of RO with HO₂ to make the siloxanol. Fu et al. (2020)³¹ suggested RO could undergo
354 a reaction and abstract a hydrogen from a methyl group on a nearby silicon atom (R10, 1,5 H-
355 shift), or on the same silicon atom (1,3 H-shift), which is less favorable than the 1,5 H-shift. Both
356 reactions propagate the radical to create another functional group on the cVMS molecule, and our
357 measurement technique cannot distinguish which methyl groups have been modified, therefore we
358 did not consider this difference. Another unusual isomerization of the RO₂ radical (R8a) that was
359 proposed initially by Atkinson et al. (1995)⁴ and used to explain observation of the formate ester
360 product was previously investigated with quantum chemical calculations and determined to be
361 energetically unfavorable.^{31,32}

362 **3.3 Kinetic Model Using the Proposed Mechanism**

363 We implement the reactions in Schemes 1 and 2, with rate constants informed from previously
364 published quantum chemical calculations,³¹ in a kinetic model (KinSim in Igor Pro) to investigate
365 if the proposed mechanism can reproduce the changing intensity of different products under
366 different RO₂ fates. The full mechanisms with rate constants for the three VMS studies are
367 presented in Section 2 of the Supporting Information. Reactions to form the organic nitrate with
368 NO were excluded from the model. RO₂ + RO₂ reactions were minimal in all experiments (<0.5%
369 of the RO₂ reactions were with another RO₂), and therefore were not considered in the mechanism.
370 In the model, we held bimolecular reaction rates (RO₂ + HO₂ and RO₂ + NO) constant. As reaction
371 R8a was previously determined to not be energetically favorable,³¹ this reaction was not used. We
372 included the oxidation of the first-generation products with rate constants equal to the parent
373 cVMS. As there is uncertainty in the molar yields due to a lack of calibration standards, we focus
374 on comparing the relative changes in signal yields as a function of RO₂ fate. Figure 4 shows the

375 signal yields of the siloxanol and formate ester products from our experiments and the kinetic
376 model at the point 10% of the cVMS was oxidized, normalized to the signal yield in the RO₂ +
377 NO conditions. By observing the relative changes between the conditions, the absolute calibration
378 of the oxidation products should not affect the interpretation of the data.

379 In our experiments with D3, we detect that the signal corresponding to the formate ester
380 decreases with an increasing RO₂ lifetime, which is consistent with the formate ester being formed
381 after RO₂ reacts with NO/HO₂. Consequently, the model captures this decrease albeit the measured
382 decrease in formate ester yield with increasing RO₂ lifetime is greater than the decrease predicted
383 by the model (Figure 4). For D5, we observed an increase in the formate ester with increasing RO₂
384 lifetime, which contrasts with the model prediction of a decreasing trend. The model also fails to
385 capture the trends in the relative siloxanol yield for all three cVMS species; the model predicts an
386 increase in siloxanol yield with increasing RO₂ lifetime while the measurements suggest that the
387 siloxanol yield is essentially independent of RO₂ lifetime and fate. In fact, the model predicts
388 negligible siloxanol yield under RO₂ + NO conditions (Figure S5), which causes the modeled
389 siloxanol yield normalized to the RO₂ + NO conditions to change by orders of magnitude as the
390 RO₂ lifetime increases. The model also predicts significantly less siloxanol (~100× less) formation
391 than in our experiments, if we assume that we detect all the products with equal sensitivity.
392 Siloxanol formation has previously been attributed to hydrolysis of the formate ester prior
393 investigations of siloxane chemistry.^{4,7,18} Our high time-resolution measurements of the formate
394 ester and siloxanol are inconsistent with this hypothesis since we observed simultaneous formation
395 of both the formate ester and the siloxanol.

396

Figure 4 The signal yields of the formate ester (a-c) and siloxanol (d-f) for all three cVMS from the experimental results and kinetic modeling using the mechanism presented, normalized to the results from the RO₂ + NO conditions. (a) and (d) are for D3 oxidation, (b) and (e) are for D4 oxidation, and (c) and (f) for D5. Note the log axis on the siloxanol results. Only the rate constants for reactions with OH/Cl and wall loss constants were changed between cVMS. In the model results that had a source of siloxanol from the RO₂ + NO reaction, 5% of the reaction product made the siloxanol directly, and the other 95% made RO.

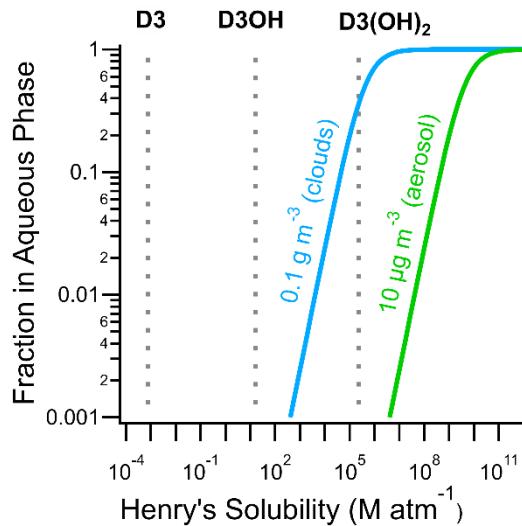
397 The model-measurement gap could potentially be explained by an unknown formation mechanism
 398 of the siloxanol in high NO/HO₂ conditions. As a thought experiment, if a branching ratio is added
 399 to produce 5% of the siloxanol and 95% of the RO after the reaction of RO₂ with NO, then the
 400 amount of siloxanol formed between experiments is slightly closer to the experimental results,
 401 though it underestimates the siloxanol formation in the RO₂ + HO₂ conditions (Figure 4). This

402 formation of the siloxanol could be achieved through a process such as decomposition of a
403 chemically activated alkoxy radical. Another possibility would be to have a faster rate constant for
404 the isomerization in R8, as the siloxy radical formed after that isomerization could be a source of
405 siloxanol. However, for this reaction to be important in all conditions (as the siloxanol is the largest
406 product in the high NO_x experiments with D4 and D5), the rate constant would need to be increased
407 by multiple orders of magnitude to compete with the RO₂ + NO reaction. Overall, the siloxanol
408 formation mechanism remains unclear and more investigation to better understand why RO₂ fates
409 do not significantly affect the products formed from D4 and D5 oxidation is required.

410 The model also fails to accurately capture the evolution of the largest product in the conditions
411 that favor unimolecular reactions from D3 oxidation, the formate ester and siloxanol difunctional
412 product (not shown in Figure 4). Because this difunctional product was the largest signal during
413 the conditions that favor unimolecular reactions, it was anticipated that D3 R₃SiO[•] radicals can
414 readily undergo the auto-oxidation reaction shown in R10 after being formed from R8 and R9.
415 Since the siloxanol was formed in R10, the next steps need to preferentially make the formate ester
416 over another siloxanol. Therefore, R4'' needs to dominate over R8', though to form the initial
417 siloxanol, R8 needs to dominate over R4. This pathway requires that the ratio of the R4:R8 rate
418 constants is less than R4'':R8', which stands in contrast to theoretical calculations suggesting that
419 the isomerization rate increases as the molecules become more functionalized.³¹ However, we did
420 not detect any evidence in these experiments of the siloxanetriol product, which would likely be
421 formed if the isomerization reactions R8 and R8' both dominated over bimolecular reactions, as
422 the next RO₂ isomerization branching would likely not be different. Another possible explanation
423 is that concentrations of NO or HO₂ were higher later in the experiment, pushing the mechanism

424 down R4''. The model, however, indicates that NO and HO₂ concentrations do not change enough
425 to alter the product distribution.

426 Overall, it is evident that the oxidation mechanism is unable to replicate our experimental results,
427 particularly for D4 and D5. The finding that D3 oxidation produces different products than D4 and
428 D5 suggests that results, either from laboratory-based experiments or theoretical calculations, from
429 smaller VMS and Si-containing molecules (i.e., D3, hexamethyldisiloxane [L2], and
430 tetramethylsilane) may not hold for larger Si compounds. In particular, the lack of sensitivity on
431 the oxidation product yields on RO₂ fate for D4 and D5 is unusual. As the siloxanol was the most
432 abundant product for D4 and D5 under all conditions, our results suggests that there is more unique
433 chemistry occurring that requires further investigation.


434 **3.4 Possible Fates of the First-Generation Products**

435 As cVMS are globally distributed due to their long atmospheric lifetimes, their oxidation
436 products will also be globally distributed. Previous research has focused on the parent compounds,
437 though the oxidation products should not be discounted. Here, we use various structure activity
438 relationships (SAR) to investigate possible loss pathways for the main cVMS oxidation products
439 we measured and discussed (siloxanol, formate ester, multi-substituted siloxanols/formate esters,
440 hydroperoxides, and organic nitrates). The estimated values of vapor pressure, water solubility,
441 and Henry's Solubility (M atm⁻¹) constants of all the products are presented in Table S6 of the
442 Supporting Information.⁵⁹ Note that the Henry's Law Constant (atm M⁻¹) is the inverse of the
443 Henry Solubility.

444 Using the estimated vapor pressures, and assuming that absorption into organic aerosol is the
445 main gas-particle partitioning method for these compounds, less than 1% of the least volatile
446 oxidation product (the D5 siloxanediol) mass would partition to aerosol at a moderate organic

447 aerosol loading of $10 \mu\text{g m}^{-3}$.⁶⁰ This value was
448 determined using the vapor pressure estimated by
449 MPBPWIN, which predicts vapor pressures about
450 one order of magnitude lower than TEST, thus
451 giving an upper limit to aerosol partitioning. It has
452 been determined that cVMS heterogenous
453 reactions with components of mineral dust aerosol
454 can lead to significant removal of the cVMS and
455 its oxidation products, but due to the low typical
456 dust loadings, the total loss to dust is expected
457 to be minimal.²⁷

458 The oxidation products have estimated
459 Henry's Solubility constants that can be up to ~ 8
460 orders of magnitude higher (higher partitioning
461 into the aqueous phase) than the parent cVMS.
462 Out of the various methods compared,
463 HenryWIN gave the largest estimated Henry's
464 Solubility coefficient of $\sim 10^5 \text{ M atm}^{-1}$ for the D3
465 siloxanediol. Even using this Henry's Solubility
466 constant, at most 30% of the siloxanediol will
467 partition to cloud droplets, while there is no
468 significant partitioning into aqueous aerosol, as
469 shown in Figure 5, adapted from Daumit et al.⁶¹ We note that this estimate is uncertain as Henry's

Figure 5 Estimated Henry's Solubility, estimated with HenryWIN v3.21, for D3 and the siloxanol oxidation products (dashed lines). The mass concentration labels on the solid lines correspond to the amount of liquid water in clouds or ambient aerosol. Only siloxanol products are shown as the hydroxyl groups change the Henry's Solubility most significantly. Larger cVMS oxidation products are estimated to have lower Henry's solubility than D3. All values are listed in Table S6 of the Supporting Information. Adapted with permission from Daumit, K. E.; Carrasquillo, A. J.; Hunter, J. F.; Kroll, J. H. Laboratory Studies of the Aqueous-Phase Oxidation of Polyols: Submicron Particles vs. Bulk Aqueous Solution. *Atmos. Chem. Phys.* 2014, 14 (19), 10773–10784. <https://doi.org/10.5194/acp-14-10773-2014>.

470 Solubility and Law constants measured in the laboratory vary by orders of magnitude between
471 studies for the parent cVMS.⁶² and the Henry's Law constants of the different oxidation products
472 have not been measured.^{59,63,64} However, as we use the most extreme values from the structure
473 activity relationships, we assume these to be the upper limits for partitioning and thus conclude
474 that absorptive and aqueous partitioning will have minor impacts on the mixing ratios of the
475 oxidation products.

476 The oxidized products may also be transformed in the atmosphere via oxidation. Atkinson et al.
477 (1995)⁴ measured the rate constants of the tetramethylsilane and trimethylsiloxanol reactions with
478 Cl atoms and OH radicals which showed the rate constant for the siloxanol oxidation reactions
479 were 2 times faster than the parent compounds for Cl and 10 times faster for OH. However, it is
480 uncertain how the rate constants will change with larger cVMS. Using the Atmospheric Oxidation
481 Program for Microsoft Windows (AOPWIN) in EPIWIN with the adjustments to the Si containing
482 group contributions suggested by Alton and Browne (2020),⁵ the rate constant for reaction with
483 OH is estimated to be approximately a factor of 5 times faster for D3OH compared to D3, and 3
484 times faster for D5OH compared to D5. This lowers the lifetime of D3OH and D5OH to
485 approximately 2 days for both of the products, compared to 11 and 4.4 days.⁵ Based on this work,
486 it is probable that, like the parent VMS compounds, these first-generation oxidation products will
487 have atmospheric lifetimes of days and thus it is necessary to better understand multiple-generation
488 oxidation products and their potential chemistry and deposition to completely understand cVMS
489 environmental fates.

490 **4 CONCLUSIONS**

491 As ~90% of cVMS emitted into the environment partitions into the atmosphere,³ understanding
492 the atmospheric degradation of these compounds is critical for understanding their environmental

493 impacts. In this work, we oxidized three cVMS under conditions of different RO₂ fates and
494 measured the oxidation products to gain insight into the cVMS oxidation mechanism. We observed
495 that the main oxidation product for D4 and D5 is the siloxanol, regardless of the fate of the peroxy
496 radical. As D4 and D5 are the most abundant cVMS in the atmosphere, we suggest that in chemical
497 transport models cVMS oxidation products can be adequately represented as the siloxanol, similar
498 to previous representations of this chemistry.²⁵ Due to the high vapor pressure and low water
499 solubility of the cVMS and oxidation products, it is predicted that not only is the parent cVMS
500 globally distributed,^{13,65} the oxidation products are likely also globally present, requiring multiple
501 generations of oxidation before significant removal will occur. Because the oxidation products are
502 also likely to be long lived in the atmosphere, more measurements of the oxidation products in the
503 atmosphere and environmental matrices are necessary to better understand the environmental
504 processing of these anthropogenic chemicals.

505 ASSOCIATED CONTENT

506 **Supporting Information.**

507 Detailed information of the peak fitting in TOFWARE, KinSim mechanism and inputs,
508 isotopically labeled D₁₈L2 oxidation experiment, instrument response in different conditions, and
509 the estimated physical parameters of cVMS and the oxidation products are presented in the
510 Supporting Information (PDF) available free of charge.

511 **Data Availability**

512 Upon acceptance, the experimental data will be made publicly available through the Index of
513 Chamber Atmospheric Research in the United States website (<https://icarus.ucdavis.edu/>).

514 **Safety**

515 **Caution!** Ultraviolet light is damaging to biological tissues. Caution is required when working
516 with the any lights that emit ultraviolet wavelengths and protective eyewear must be used at all
517 times.

518 **AUTHOR INFORMATION**

519 **Corresponding Author**

520 *Eleanor C. Browne, Department of Chemistry, University of Colorado, Boulder, Colorado 80309,
521 United States and Cooperative Institute for Research in Environmental Sciences, University of
522 Colorado, Boulder, Colorado 80309, United States; orcid.org/0000-0002-8076-9455; Phone: 303-
523 735- 7685; Email: Eleanor.Browne@Colorado.edu

524 **Author Contributions**

525 Mitchell W. Alton – Department of Chemistry, University of Colorado, Boulder, Colorado
526 80309, United States and Cooperative Institute for Research in Environmental Sciences,
527 University of Colorado, Boulder, Colorado 80309, United States; orcid.org/0000-0002-7119-3706

528 MWA and ECB designed the experiments. MWA performed all the experiments that contributed
529 to this work. The analysis of the data was performed mainly by MWA with support and guidance
530 from ECB. The manuscript was written through contributions of both authors. Both authors have
531 given approval to the final version of the manuscript.

532 **ACKNOWLEDGMENTS**

533 This research was supported by the National Science Foundation under Grant CHE-1808606.
534 Additional funding to support MWA was provided by the Cooperative Institute for Research in
535 Environmental Sciences Graduate Student Research Fellowship Grant.

536 REFERENCES

537 (1) Organisation for Economic Co-Operation and Development. The 2004 OECD List of High
538 Production Volume Chemicals. **2004**.

539 (2) U.S. Environmental Protection Agency. CompTox Chemicals Dashboard
540 <https://comptox.epa.gov/dashboard/DTXSID102718> (accessed Oct 3, 2021).

541 (3) Mackay, D.; Cowan-Ellsberry, C. E.; Powell, D. E.; Woodburn, K. B.; Xu, S.; Kozerski, G.
542 E.; Kim, J. Decamethylcyclopentasiloxane (D5) Environmental Sources, Fate, Transport,
543 and Routes of Exposure. *Environ. Toxicol. Chem.* **2015**, *34* (12), 2689–2702.
544 <https://doi.org/10.1002/etc.2941>.

545 (4) Atkinson, R.; Tuazon, E. C.; Kwok, E. S. C.; Arey, J.; Aschmann, S. M.; Bridier, I. Kinetics
546 and Products of the Gas-Phase Reactions of (CH₃)₄Si, (CH₃)₃SiCH₂OH,
547 (CH₃)₃SiOSi(CH₃)₃ and (CD₃)₃SiOSi(CD₃)₃ with Cl Atoms and OH Radicals. *J. Chem.*
548 *Soc. Faraday Trans.* **1995**, *91* (18), 3033. <https://doi.org/10.1039/ft9959103033>.

549 (5) Alton, M. W.; Browne, E. C. Atmospheric Chemistry of Volatile Methyl Siloxanes:
550 Kinetics and Products of Oxidation by OH Radicals and Cl Atoms. *Environ. Sci. Technol.*
551 **2020**, *54* (10), 5992–5999. <https://doi.org/10.1021/acs.est.0c01368>.

552 (6) Atkinson, R. Kinetics of the Gas-Phase Reactions of a Series of Organosilicon Compounds
553 with Hydroxyl and Nitrate (NO₃) Radicals and Ozone at 297 +/- 2 K. *Environ. Sci. Technol.*

554 1991, 25 (5), 863–866. <https://doi.org/10.1021/es00017a005>.

555 (7) Markgraf, S. J.; Wells, J. R. The Hydroxyl Radical Reaction Rate Constants and
556 Atmospheric Reaction Products of Three Siloxanes. *Int. J. Chem. Kinet.* **1997**, 29 (6), 445–
557 451. [https://doi.org/10.1002/\(SICI\)1097-4601\(1997\)29:6<445::AID-KIN6>3.0.CO;2-U](https://doi.org/10.1002/(SICI)1097-4601(1997)29:6<445::AID-KIN6>3.0.CO;2-U).

558 (8) Sommerlade, R.; Parlar, H.; Wrobel, D.; Kochs, P. Product Analysis and Kinetics of the
559 Gas-Phase Reactions of Selected Organosilicon Compounds with OH Radicals Using a
560 Smog Chamber-Mass Spectrometer System. *Environ. Sci. Technol.* **1993**, 27 (12), 2435–
561 2440. <https://doi.org/10.1021/es00048a019>.

562 (9) Safron, A.; Strandell, M.; Kierkegaard, A.; Macleod, M. Rate Constants and Activation
563 Energies for Gas-Phase Reactions of Three Cyclic Volatile Methyl Siloxanes with the
564 Hydroxyl Radical. *Int. J. Chem. Kinet.* **2015**, 47 (7), 420–428.
565 <https://doi.org/10.1002/kin.20919>.

566 (10) Bernard, F.; Papanastasiou, D. K.; Papadimitriou, V. C.; Burkholder, J. B. Temperature
567 Dependent Rate Coefficients for the Gas-Phase Reaction of the OH Radical with Linear
568 (L₂, L₃) and Cyclic (D₃, D₄) Permethylsiloxanes. *J. Phys. Chem. A* **2018**, 122 (17), 4252–
569 4264. <https://doi.org/10.1021/acs.jpca.8b01908>.

570 (11) Kim, J.; Xu, S. Quantitative Structure-Reactivity Relationships of Hydroxyl Radical Rate
571 Constants for Linear and Cyclic Volatile Methylsiloxanes. *Environ. Toxicol. Chem.* **2017**,
572 36 (12), 3240–3245. <https://doi.org/10.1002/etc.3914>.

573 (12) Tuazon, E. C.; Aschmann, S. M.; Atkinson, R. Atmospheric Degradation of Volatile
574 Methyl-Silicon Compounds. *Environ. Sci. Technol.* **2000**, 34 (10), 1970–1976.

575 https://doi.org/10.1021/es9910053.

576 (13) Genualdi, S.; Harner, T.; Cheng, Y.; MacLeod, M.; Hansen, K. M.; Van Egmond, R.;
577 Shoeib, M.; Lee, S. C. Global Distribution of Linear and Cyclic Volatile Methyl Siloxanes
578 in Air. *Environ. Sci. Technol.* **2011**, *45* (8), 3349–3354. <https://doi.org/10.1021/es200301j>.

579 (14) Xu, S.; Warner, N.; Bohlin-Nizzetto, P.; Durham, J.; McNett, D. Long-Range Transport
580 Potential and Atmospheric Persistence of Cyclic Volatile Methylsiloxanes Based on Global
581 Measurements. *Chemosphere* **2019**, *228*, 460–468.
582 <https://doi.org/10.1016/j.chemosphere.2019.04.130>.

583 (15) Warner, N. A.; Evenset, A.; Christensen, G.; Gabrielsen, G. W.; Borgä, K.; Leknes, H.
584 Volatile Siloxanes in the European Arctic: Assessment of Sources and Spatial Distribution.
585 *Environ. Sci. Technol.* **2010**, *44* (19), 7705–7710. <https://doi.org/10.1021/es101617k>.

586 (16) Brooke, D.; Crookes, M.; Gray, D.; Robertson, S. *Environmental Risk Assessment Report:*
587 *Decamethylcyclopentasiloxane*; Environment Agency, 2009.

588 (17) Brooke, D. N.; Brooke, M. J.; Gray, D.; Robertson, S.; Crookes, M.; Gray, D.; Robertson,
589 S. *Environmental Risk Assessment Report: Octamethylcyclotetrasiloxane*; Environment
590 Agency, 2009.

591 (18) Allen, R. B.; Annelin, R. B.; Atkinson, R.; Carpenter, J. C.; Carter, W. L. P.; Chandra, G.;
592 Fendinger, N. J.; Gerhards, R.; Grigoras, S.; Hatcher, J. A.; Hobson, J. F.; Kochs, P.;
593 Lehmann, R. G.; Maxim, L. D.; Mazzoni, S. M.; Mihaich, E. M.; Miyakawa, Y.; Pohl, E.
594 R.; Powell, D. E.; Roy, S.; Sawano, T.; Slater, G. S.; Spivack, J. L.; Stevens, C.; Wischer,
595 D. *Organosilicon Materials*; Chandra, G., Ed.; The Handbook of Environmental Chemistry;

596 Springer Berlin Heidelberg: Berlin, Heidelberg, 1997; Vol. 3. <https://doi.org/10.1007/978-3-540-68331-5>.
597

598 (19) European Chemicals Agency. Recommendation of the European Chemicals Agency of 20
599 December 2011 for the Inclusion of Substances in Annex XIV to REACH (List of
600 Substances Subject to Authorisation) of Regulation (EC) No 1907/2006. **2011**, *1* (April), 1–
601 7.

602 (20) United Kingdom Health & Safety Executive. Annex XV Restriction Report Proposal for a
603 Restriction. **2015**, No. June 2015, 1–89.

604 (21) European Chemicals Agency. Recommendation of the European Chemicals Agency of 14
605 April 2021 for the Inclusion of Substances in Annex XIV to REACH (List of Substances
606 Subject to Authorisation). **2021**, *1* (April), 1–7.

607 (22) US EPA. Enforceable Consent Agreement for Environmental Testing for
608 OCTAMETHYLCYCLOTETRASILOXANE (D4) (CASRN 556-67-2) Docket No . EPA-
609 HQ-OPPT-2012-0209. **2014**.

610 (23) Dudzina, T.; Von Goetz, N.; Bogdal, C.; Biesterbos, J. W. H.; Hungerbühler, K.
611 Concentrations of Cyclic Volatile Methylsiloxanes in European Cosmetics and Personal
612 Care Products: Prerequisite for Human and Environmental Exposure Assessment. *Environ.*
613 *Int.* **2014**, *62*, 86–94. <https://doi.org/10.1016/j.envint.2013.10.002>.

614 (24) Bzdek, B. R.; Horan, A. J.; Pennington, M. R.; Janecek, N. J.; Baek, J.; Stanier, C. O.;
615 Johnston, M. V. Silicon Is a Frequent Component of Atmospheric Nanoparticles. *Environ.*
616 *Sci. Technol.* **2014**, *48* (19), 11137–11145. <https://doi.org/10.1021/es5026933>.

617 (25) Janechek, N. J.; Hansen, K. M.; Stanier, C. O. Comprehensive Atmospheric Modeling of
618 Reactive Cyclic Siloxanes and Their Oxidation Products. *Atmos. Chem. Phys.* **2017**, *17*(13),
619 8357–8370. <https://doi.org/10.5194/acp-17-8357-2017>.

620 (26) Chandramouli, B.; Kamens, R. M. The Photochemical Formation and Gas-Particle
621 Partitioning of Oxidation Products of Decamethyl Cyclopentasiloxane and Decamethyl
622 Tetrasiloxane in the Atmosphere. *Atmos. Environ.* **2001**, *35* (1), 87–95.
623 [https://doi.org/10.1016/S1352-2310\(00\)00289-2](https://doi.org/10.1016/S1352-2310(00)00289-2).

624 (27) Navea, J. G.; Xu, S.; Stanier, C. O.; Young, M. A.; Grassian, V. H. Heterogeneous Uptake
625 of Octamethylcyclotetrasiloxane (D4) and Decamethylcyclopentasiloxane (D5) onto
626 Mineral Dust Aerosol under Variable RH Conditions. *Atmos. Environ.* **2009**, *43* (26), 4060–
627 4069. <https://doi.org/10.1016/j.atmosenv.2009.05.012>.

628 (28) Janechek, N. J.; Marek, R. F.; Bryngelson, N.; Singh, A.; Bullard, R. L.; Brune, W. H.;
629 Stanier, C. O. Physical Properties of Secondary Photochemical Aerosol from OH Oxidation
630 of a Cyclic Siloxane. *Atmos. Chem. Phys.* **2019**, *19* (3), 1649–1664.
631 <https://doi.org/10.5194/acp-19-1649-2019>.

632 (29) Fairbrother, A.; Woodburn, K. B. Assessing the Aquatic Risks of the Cyclic Volatile Methyl
633 Siloxane D4. *Environ. Sci. Technol. Lett.* **2016**, *3* (10), 359–363.
634 <https://doi.org/10.1021/acs.estlett.6b00341>.

635 (30) Tang, X.; Misztal, P. K.; Nazaroff, W. W.; Goldstein, A. H. Siloxanes Are the Most
636 Abundant Volatile Organic Compound Emitted from Engineering Students in a Classroom.
637 *Environ. Sci. Technol. Lett.* **2015**, *2* (11), 303–307.
638 <https://doi.org/10.1021/acs.estlett.5b00256>.

639 (31) Fu, Z.; Xie, H.-B.; Elm, J.; Guo, X.; Fu, Z.; Chen, J. Formation of Low-Volatile Products
640 and Unexpected High Formaldehyde Yield from the Atmospheric Oxidation of
641 Methylsiloxanes. *Environ. Sci. Technol.* **2020**, *54* (12), 7136–7145.
642 <https://doi.org/10.1021/acs.est.0c01090>.

643 (32) Ren, Z.; da Silva, G. Auto-Oxidation of a Volatile Silicon Compound: A Theoretical Study
644 of the Atmospheric Chemistry of Tetramethylsilane. *J. Phys. Chem. A* **2020**, *124* (32),
645 6544–6551. <https://doi.org/10.1021/acs.jpca.0c02922>.

646 (33) Coggon, M. M.; McDonald, B. C.; Vlasenko, A.; Veres, P. R.; Bernard, F.; Koss, A. R.;
647 Yuan, B.; Gilman, J. B.; Peischl, J.; Aikin, K. C.; DuRant, J.; Warneke, C.; Li, S.; de Gouw,
648 J. A. Diurnal Variability and Emission Pattern of Decamethylcyclopentasiloxane (D5) from
649 the Application of Personal Care Products in Two North American Cities. *Environ. Sci.
650 Technol.* **2018**, *52* (10), 5610–5618. <https://doi.org/10.1021/acs.est.8b00506>.

651 (34) Wu, Y.; Johnston, M. V. Molecular Characterization of Secondary Aerosol from Oxidation
652 of Cyclic Methylsiloxanes. *J. Am. Soc. Mass Spectrom.* **2016**, *27* (3), 402–409.
653 <https://doi.org/10.1007/s13361-015-1300-1>.

654 (35) Yucuis, R. A.; Stanier, C. O.; Hornbuckle, K. C. Cyclic Siloxanes in Air, Including
655 Identification of High Levels in Chicago and Distinct Diurnal Variation. *Chemosphere*
656 **2013**, *92* (8), 905–910. <https://doi.org/10.1016/j.chemosphere.2013.02.051>.

657 (36) Milani, A.; Al-Naiema, I. M.; Stone, E. A. Detection of a Secondary Organic Aerosol Tracer
658 Derived from Personal Care Products. *Atmos. Environ.* **2021**, *246* (July), 118078.
659 <https://doi.org/10.1016/j.atmosenv.2020.118078>.

660 (37) Ahrens, L.; Harner, T.; Shoeib, M. Temporal Variations of Cyclic and Linear Volatile
661 Methylsiloxanes in the Atmosphere Using Passive Samplers and High-Volume Air
662 Samplers. *Environ. Sci. Technol.* **2014**, *48* (16), 9374–9381.
663 <https://doi.org/10.1021/es502081j>.

664 (38) Gallego, E.; Perales, J. F.; Roca, F. J.; Guardino, X.; Gadea, E. Volatile Methyl Siloxanes
665 (VMS) Concentrations in Outdoor Air of Several Catalan Urban Areas. *Atmos. Environ.*
666 **2017**, *155*, 108–118. <https://doi.org/10.1016/j.atmosenv.2017.02.013>.

667 (39) Tran, T. M.; Abualnaja, K. O.; Asimakopoulos, A. G.; Covaci, A.; Gevao, B.; Johnson-
668 Restrepo, B.; Kumosani, T. A.; Malarvannan, G.; Minh, T. B.; Moon, H. B.; Nakata, H.;
669 Sinha, R. K.; Kannan, K. A Survey of Cyclic and Linear Siloxanes in Indoor Dust and Their
670 Implications for Human Exposures in Twelve Countries. *Environ. Int.* **2015**, *78*, 39–44.
671 <https://doi.org/10.1016/j.envint.2015.02.011>.

672 (40) Praske, E.; Otkjær, R. V.; Crounse, J. D.; Hethcox, J. C.; Stoltz, B. M.; Kjaergaard, H. G.;
673 Wennberg, P. O. Atmospheric Autoxidation Is Increasingly Important in Urban and
674 Suburban North America. *Proc. Natl. Acad. Sci. U. S. A.* **2018**, *115* (1), 64–69.
675 <https://doi.org/10.1073/pnas.1715540115>.

676 (41) Wu, Y.; Johnston, M. V. Aerosol Formation from OH Oxidation of the Volatile Cyclic
677 Methyl Siloxane (CVMS) Decamethylcyclopentasiloxane. *Environ. Sci. Technol.* **2017**, *51*
678 (8), 4445–4451. <https://doi.org/10.1021/acs.est.7b00655>.

679 (42) Allen, R. B.; Annelin, R. B.; Atkinson, R.; Carpenter, J. C.; Carter, W. L. P.; Chandra, G.;
680 Fendinger, N. J.; Gerhards, R.; Grigoras, S.; Hatcher, J. A.; Hobson, J. F.; Kochs, P.;
681 Lehmann, R. G.; Maxim, L. D.; Mazzoni, S. M.; Mihaich, E. M.; Miyakawa, Y.; Pohl, E.

682 R.; Powell, D. E.; Roy, S.; Sawano, T.; Slater, G. S.; Spivack, J. L.; C. Stevens, D. W.
683 *Organosilicon Materials*; Chandra, G., Ed.; The Handbook of Environmental Chemistry;
684 Springer Berlin Heidelberg: Berlin, Heidelberg, 1997; Vol. 3. <https://doi.org/10.1007/978-3-540-68331-5>.

686 (43) Cheng, Z.; Qiu, X.; Shi, X.; Zhu, T. Identification of Organosiloxanes in Ambient Fine
687 Particulate Matters Using an Untargeted Strategy via Gas Chromatography and Time-of-
688 Flight Mass Spectrometry. *Environ. Pollut.* **2021**, *271*, 116128.
689 <https://doi.org/10.1016/j.envpol.2020.116128>.

690 (44) Lu, D.; Tan, J.; Yang, X.; Sun, X.; Liu, Q.; Jiang, G.; Tan, J.; Sun, X.; Lu, D.; Jiang, G.;
691 Yang, X. Unraveling the Role of Silicon in Atmospheric Aerosol Secondary Formation: A
692 New Conservative Tracer for Aerosol Chemistry. *Atmos. Chem. Phys. Discuss.* **2018**, *19*
693 (3), 1–19. <https://doi.org/10.5194/acp-2018-914>.

694 (45) Lu, D.; Liu, Q.; Yu, M.; Yang, X.; Fu, Q.; Zhang, X.; Mu, Y.; Jiang, G. Natural Silicon
695 Isotopic Signatures Reveal the Sources of Airborne Fine Particulate Matter. *Environ. Sci.*
696 *Technol.* **2018**, *52* (3), 1088–1095. <https://doi.org/10.1021/acs.est.7b06317>.

697 (46) Charan, S.; Huang, Y.; Buenconsejo, R.; Li, Q.; Cocker III, D.; Seinfeld, J. Secondary
698 Organic Aerosol Formation from the Oxidation of Decamethylcyclopentasiloxane at
699 Atmospherically Relevant OH Concentrations. *Atmos. Chem. Phys. Discuss.* **2021**, No.
700 May, 1–17. <https://doi.org/10.5194/acp-2021-353>.

701 (47) Peng, Z.; Jimenez, J. L. KinSim: A Research-Grade, User-Friendly, Visual Kinetics
702 Simulator for Chemical-Kinetics and Environmental-Chemistry Teaching. *J. Chem. Educ.*
703 **2019**, *96* (4), 806–811. <https://doi.org/10.1021/acs.jchemed.9b00033>.

704 (48) Atkinson, R.; Baulch, D. L.; Cox, R. A.; Crowley, J. N.; Hampson, R. F.; Hynes, R. G.;
705 Jenkin, M. E.; Rossi, M. J.; Troe, J. IUPAC Task Group on Atmospheric Chemical Kinetic
706 Data Evaluation, *Http://Iupac.Pole-Ether.Fr. Atmos. Chem. Phys.* **2004**, *1* (4), 1461–1738.

707 (49) Atkinson, R.; Baulch, D. L.; Cox, R. A.; Crowley, J. N.; Hampson, R. F.; Hynes, R. G.;
708 Jenkin, M. E.; Rossi, M. J.; Troe, J. Evaluated Kinetic and Photochemical Data for
709 Atmospheric Chemistry: Volume III - Gas Phase Reactions of Inorganic Halogens. *Atmos.*
710 *Chem. Phys.* **2007**, *7* (4), 981–1191. <https://doi.org/10.5194/acp-7-981-2007>.

711 (50) Liu, X.; Day, D. A.; Krechmer, J. E.; Brown, W.; Peng, Z.; Ziemann, P. J.; Jimenez, J. L.
712 Direct Measurements of Semi-Volatile Organic Compound Dynamics Show near-Unity
713 Mass Accommodation Coefficients for Diverse Aerosols. *Commun. Chem.* **2019**, *2* (1), 1–
714 9. <https://doi.org/10.1038/s42004-019-0200-x>.

715 (51) Krechmer, J. E.; Pagonis, D.; Ziemann, P. J.; Jimenez, J. L. Quantification of Gas-Wall
716 Partitioning in Teflon Environmental Chambers Using Rapid Bursts of Low-Volatility
717 Oxidized Species Generated in Situ. *Environ. Sci. Technol.* **2016**, *50* (11), 5757–5765.
718 <https://doi.org/10.1021/acs.est.6b00606>.

719 (52) Ziemann, P. J.; Atkinson, R. Kinetics, Products, and Mechanisms of Secondary Organic
720 Aerosol Formation. *Chem. Soc. Rev.* **2012**, *41* (19), 6582–6605.
721 <https://doi.org/10.1039/c2cs35122f>.

722 (53) Boethling, R.; Meylan, W. How Accurate Are Physical Property Estimation Programs for
723 Organosilicon Compounds? *Environ. Toxicol. Chem.* **2013**, *32* (11), 2433–2440.
724 <https://doi.org/10.1002/etc.2326>.

725 (54) Carter, W. L. P.; J, P.; Malkina, I. L.; D, L. *Investigation of the Ozone Formation Potential*
726 *of Selected Volatile Silicone Compounds; Final Report to Dow Corning Corporation;*
727 Midland, MI, 1992.

728 (55) Seinfeld, J. H.; Pandis, S. N. *Atmospheric Chemistry and Physics: From Air Pollution to*
729 *Climate Change*, 2nd ed.; John Wiley & Sons, Inc: Hoboken, New Jersey, 2006.

730 (56) Orlando, J. J.; Tyndall, G. S. Laboratory Studies of Organic Peroxy Radical Chemistry: An
731 Overview with Emphasis on Recent Issues of Atmospheric Significance. *Chem. Soc. Rev.*
732 **2012**, *41* (19), 6294–6317. <https://doi.org/10.1039/c2cs35166h>.

733 (57) Jenkin, M. E.; Valorso, R.; Aumont, B.; Rickard, A. R. Estimation of Rate Coefficients and
734 Branching Ratios for Reactions of Organic Peroxy Radicals for Use in Automated
735 Mechanism Construction. *Atmos. Chem. Phys. Discuss.* **2019**, No. 2, 1–46.
736 <https://doi.org/10.5194/acp-2019-44>.

737 (58) Narayanasamy, J.; Kubicki, J. D. Mechanism of Hydroxyl Radical Generation from a Silica
738 Surface: Molecular Orbital Calculations. *J. Phys. Chem. B* **2005**, *109* (46), 21796–21807.
739 <https://doi.org/10.1021/jp0543025>.

740 (59) Xu, S.; Kropscott, B. Evaluation of the Three-Phase Equilibrium Method for Measuring
741 Temperature Dependence of Internally Consistent Partition Coefficients (KOW, KOA, and
742 KAW) for Volatile Methylsiloxanes and Trimethylsilanol. *Environ. Toxicol. Chem.* **2014**,
743 *33* (12), 2702–2710. <https://doi.org/10.1002/etc.2754>.

744 (60) Donahue, N. M.; Robinson, A. L.; Pandis, S. N. Atmospheric Organic Particulate Matter:
745 From Smoke to Secondary Organic Aerosol. *Atmos. Environ.* **2009**, *43* (1), 94–106.

746 https://doi.org/10.1016/j.atmosenv.2008.09.055.

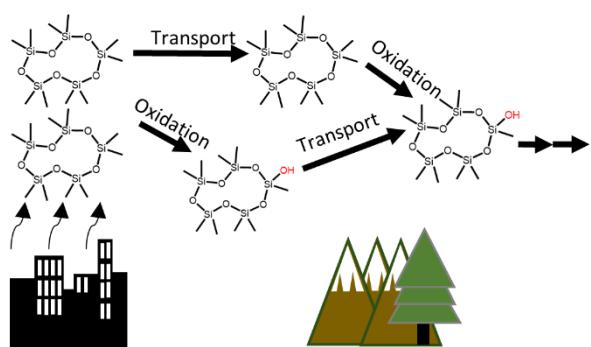
747 (61) Daumit, K. E.; Carrasquillo, A. J.; Hunter, J. F.; Kroll, J. H. Laboratory Studies of the
748 Aqueous-Phase Oxidation of Polyols: Submicron Particles vs. Bulk Aqueous Solution.
749 *Atmos. Chem. Phys.* **2014**, *14* (19), 10773–10784. https://doi.org/10.5194/acp-14-10773-
750 2014.

751 (62) Sander, R. Compilation of Henry's Law Constants (Version 4.0) for Water as Solvent.
752 *Atmos. Chem. Phys.* **2015**, *15* (8), 4399–4981. https://doi.org/10.5194/acp-15-4399-2015.

753 (63) Xu, S.; Kozerski, G.; Mackay, D. Critical Review and Interpretation of Environmental Data
754 for Volatile Methylsiloxanes: Partition Properties. *Environ. Sci. Technol.* **2014**, *48* (20),
755 11748–11759. https://doi.org/10.1021/es503465b.

756 (64) Xu, S.; Kropscott, B. Method for Simultaneous Determination of Partition Coefficients for
757 Cyclic Volatile Methylsiloxanes and Dimethylsilanediol. *Anal. Chem.* **2012**, *84* (4), 1948–
758 1955. https://doi.org/10.1021/ac202953t.

759 (65) Krogseth, I. S.; Kierkegaard, A.; McLachlan, M. S.; Breivik, K.; Hansen, K. M.; Schlabach,
760 M. Occurrence and Seasonality of Cyclic Volatile Methyl Siloxanes in Arctic Air. *Environ.*
761 *Sci. Technol.* **2012**, *47* (1), 502–509. https://doi.org/10.1021/es3040208.


762

763

764

765

TOC/Abstract Art

