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Magic-angle twisted bilayer graphene (MATBG) exhibits a panoply of many-body phenomena that are intimately tied to the
appearance of narrow and well-isolated electronic bands. The microscopic ingredients that are responsible for the complex
experimental phenomenology include electron—electron (phonon) interactions and nontrivial Bloch wavefunctions associated with
the narrow bands. Inspired by recent experiments, we focus on two independent quantities that are considerably modified by
Coulomb interaction-driven band renormalization, namely the density of states and the minimal spatial extent associated with the
Wannier functions. First, we show that a filling-dependent enhancement of the density of states, caused by band flattening, in
combination with phonon-mediated attraction due to electron-phonon umklapp processes, increases the tendency towards
superconducting pairing in a range of angles around magic-angle. Second, we demonstrate that the minimal spatial extent
associated with the Wannier functions, which contributes towards increasing the superconducting phase stiffness, also develops a
nontrivial enhancement due to the interaction-induced renormalization of the Bloch wavefunctions. While our modeling of
superconductivity (SC) assumes a weak electron-phonon coupling and does not consider many of the likely relevant correlation
effects, it explains simply the experimentally observed robustness of SC in the wide range of angles that occurs in the relevant

range of fillings.
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INTRODUCTION

The origin of electron pairing in magic angle twisted bilayer
graphene (MATBG) has been at the heart of the discussion since
the discovery of superconductivity (SC)' in MATBG, while the
phase diagram and the associated experimental phenomenology
has continued to evolve dramatically*. At the time of writing of
this letter, the following observations related to SC are universally
accepted in MATBG: (i) multiple pockets of SC are present over an
extended range of fillings, —4 <v<4 (v=electron filling in the
moiré “flat” bands). The location of these SC regions are not simply
tied to either the near vicinity of the correlation-induced insulators
at commensurate fillings?>>°, or to the van Hove singularities (vHs)
associated with the noninteracting bandstructure. (Note that
although different models for the noninteracting bandstructures
may predict vHs to occur at different fillings, no single model
predicts multiple vHs to be present at fillings corresponding to
locations of the SC pockets.) (ii) The SC regions are more resilient
to external screening and deviations away from magic-angle®®,
i.e, even when the sharp insulating gaps in the limit of low
temperatures are no longer observable at the various commensu-
rate fillings, SC continues to remain robust with only minor
changes to the transition temperatures, T.

Inspired by these experimental facts, we focus here on the
following interesting theoretical scenario, where the sole effect
of the electron—electron (Coulomb) interaction is to renormalize
the bare noninteracting bandstructure in a filling-dependent
fashion (see Fig. 1a, b), while the attraction required for pairing
stems from electron-phonon interactions. We capture the
effects of these renormalizations on both the bandstructure
and Bloch wavefunctions at the level of a Hartree-Fock (HF)
approximation. As explained below, we match various

qualitative aspects of the filling-dependent, renormalized
bandstructure to recent experimental observations'®. Within
this setup, we will demonstrate that the superconducting phase
diagram as a function of density and twist-angle is markedly
different from the one derived from a model of noninteracting
bandstructure. With this plan in place, we are led to a number of
important questions, that we address in this letter: (i) What
controls the propensity towards pairing at angles away from
magic-angle? (ii) To what extent does the bare electronic
bandstructure influence the SC phase diagram and its pairing
tendencies? (iii) What are the modified properties of the Bloch
functions associated with the renormalized Hamiltonian and
their possible effect on superconducting properties?

A number of recent theoretical works have focused on the role
of bandstructure renormalizations in MATBG on the possible
symmetry-broken insulating phases at commensurate fillings at
the level of an HF approximation. However, the role of these
renormalizations and especially the band “flattening” behavior
(to be made precise below; see Fig. 1a-h) on the pairing
tendencies has not been analyzed explicitly. In MATBG, as a
result of the uneven real-space charge distribution within the
unit cell that reflects the effective triangular symmetry of the TBG
lattice (Fig. 1i, j), the Hartree corrections become prominent''~">,
The exchange effects, which can lead to gap openings and
change the topological properties, are directly accessible in
transport experiments (e.g., Landau fan)'®-2°, On the other hand,
the Hartree corrections only alter qualitative aspects of the
bandstructure and the underlying Bloch wavefunctions, leaving
the topological properties unaltered and thereby making them
harder to detect in transport. Interestingly, these changes can be
imaged directly in local-probe experiments'. Here we build on

"Department of Physics, California Institute of Technology, Pasadena, CA 91125, USA. ZInstitute for Quantum Information and Matter, California Institute of Technology, Pasadena,
CA 91125, USA. 3T. J. Watson Laboratory of Applied Physics, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA. “Department of Physics,
Cornell University, Ithaca, NY 14853, USA. *email: cyprian@caltech.edu; debanjanchowdhury@cornell.edu

Published in partnership with Nanjing University

NP| nature partner
pJ journals


http://crossmark.crossref.org/dialog/?doi=10.1038/s41535-021-00379-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41535-021-00379-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41535-021-00379-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41535-021-00379-6&domain=pdf
http://orcid.org/0000-0002-6944-9805
http://orcid.org/0000-0002-6944-9805
http://orcid.org/0000-0002-6944-9805
http://orcid.org/0000-0002-6944-9805
http://orcid.org/0000-0002-6944-9805
http://orcid.org/0000-0002-2394-9070
http://orcid.org/0000-0002-2394-9070
http://orcid.org/0000-0002-2394-9070
http://orcid.org/0000-0002-2394-9070
http://orcid.org/0000-0002-2394-9070
http://orcid.org/0000-0003-0758-0282
http://orcid.org/0000-0003-0758-0282
http://orcid.org/0000-0003-0758-0282
http://orcid.org/0000-0003-0758-0282
http://orcid.org/0000-0003-0758-0282
https://doi.org/10.1038/s41535-021-00379-6
mailto:cyprian@caltech.edu
mailto:debanjanchowdhury@cornell.edu
www.nature.com/npjquantmats

npj

C. Lewandowski et al.

5
Y 20 N 1.20°JN ©)pos @u)] © 8
<
% = % ° 2
E) g 8
g —v=0 | = 4 =
6 —v=05|] & 2
& b1 || E 2 =
= =
0
b) 16,
_ - g
o s £
g g %
E E F
& & =
®
E

0

ry/Ly

Fig. 1 Hartree-Fock renormalized bandstructures. TBG bandstructures as a function of filling for a 6 =1.2°, and b 6 = 1.06° after including
the HF corrections. One of the important features is related to band flattening and eventual inversion at the I' point of the MBZ. The energy
dependence of the density of states (c, d, g, h), demonstrating maximal enhancement when the band gets flattened, is shown next to each
bandstructure. TBG bandstructures including HF corrections as a function of twist angle for e v= 3, and f v = —3, respectively. In (a, b, e, f) we
plot bandstructures for the { = —1 valley. i The noninteracting energy landscape in the extended zone scheme of an electron band for { = —1
at 6 =1.06". One MBZ is shown as a white hexagon. With red energy contour we denote Fermi surface for v=3. j Charge density for a
noninteracting bandstructure corresponding to Er=4.92 meV corresponding to the red energy contour in (i) and a filling of v~ 3. Note that
even at this large filling majority of charge density is located on the AA sites of the effective triangular lattice giving rise to the large Hartree

potentials. Here charge density is normalized by the highest charge density at full filling.

this recently seen mechanism relying on the Hartree-correction,
that modifies the bandstructure and Bloch wavefunctions, and
analyze their role on enhancing the tendency towards pairing
in MATBG.

We note at the outset that we intentionally do not include the
effects associated with the “cascade transitions” at integer fillings
near magic-angle®’?2, which though relevant for concrete
experimental observations will inevitably complicate further the
discussion of SC. As already indicated above, it is at present
unclear to what extent the cascade is tied to the origin of SC;
nevertheless, in what follows the doping dependence of SC near
magic-angle will be modified in the vicinity of integer fillings
where a cascade would be expected to occur. On the other hand,
away from magic-angle where the effects of the cascade become
less pronounced, the results for SC are less likely to change
qualitatively (even though cascade-related signatures were
observed down to low twist angles®). For simplicity, we leave a
careful analysis of the SC phase diagram, including the effects of
the cascade transitions, to a future study.

RESULTS
Renormalized bands
We begin with the single-particle continuum Hamiltonian?3;

Ho= 3 / dryl(nH "y, p),
y={€.0}’

[0 _ < He  UL(r) )

Ug(r)  He
where the explicit form of I:I(s’a) appears in the Methods section.
The spinor, y,, is written in the basis of (A;, By, A;, B,) sites of the
original two layers (/=1, 2) and we use the shorthand notation,
y={{(= 1), o(= 1)}, for the valley/spin degrees of freedom. The
real space integration is over a moiré unit cell Q. In what follows,
any reference to the “noninteracting model” corresponds to a
calculation that is based solely on the eigenvalues and eigenstates
of this Hamiltonian in Eq. 2.

)
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The Coulomb interaction is given by,

He = %/ d’rd’r 8p(r) Ve(r —r') 8p(r'), ®
Q

8o(r) = 3 w1, (r) — pex(r)- @
y

Here 8p(r) tracks the density relative to that at charge neutrality,
pen(r), and Ve(r —r') is the Coulomb potential with a Fourier
transform, V.(q) = 2me? /&q. For reasons to be made clear below,
the dielectric screening by the substrate (denoted ¢) is treated as a
free parameter.

We approximate the above interaction term using a self-
consistent HF approximation as,

He = Hu + He = Zue(v), (5)
where the many-body renormalization, Xe(v), will lead to a
modified electronic bandstructure due to either the Hartree (Hy)
or Fock (Hr) terms, respectively. The Hartree correction is given by,

=3 / Rzerierac ©

valr) = [ @ vir=) S (0w w), %
Y

where (. . .)  denotes a summation over occupied states
measured from CNP (v=0)"". As a function of increasing doping
relative to charge neutrality, there is a preferential buildup of
charge at AA sites in real space (Fig. 1j), corresponding to electronic
states near K points of the mini-Brillouin zone. The nonuniform
spatial charge distribution generates an electrostatic potential that
prefers an even redistribution of the electron density. In contrast,
the real space charge distribution corresponding to electronic
states near I point is more uniform in the unit cell. The effect of the
electrostatic Hartree potential and the associated charge redistribu-
tion thus leads to a lowering of the energy of the electronic states
near the T point compared to the energy of states near the K points
(Fig. 1a, b).

The effect of the Hartree potential becomes increasingly
pronounced as a function of decreasing twist-angle, especially
near the magic-angle where the noninteracting bandwidth is
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minimal. There is an increasing tendency towards band-inversion
near the T point'>'%, a feature that has not been observed in
experiments till date'®. However, it is important to note that the
Fock term, Hg, inherently acts against this tendency towards
band-inversion via two key mechanisms?*: (i) by increasing the
overall bandwidth and (ii) by contributing an opposing correction
to the self-energy as compared to the Hartree term, Eq. 7.
The Fock term, H, is given by,

He =) Z / . d’rdr' VL, (r,r) il (i (r), ®)
Yy

Vi, (rr) = ~Velr =) (W () . ©)
Note that the Fock potential, unlike Hartree, does not contain a
summation over valley/spin degrees of freedom and as a result of
the block-diagonal nature of the noninteracting Hamiltonian
(Eg. 2) that does not contain any inter-flavor terms. We explicitly
forbid any inter-flavor terms to be generated spontaneously?*2>,
since our goal here is to focus on the qualitative changes to the
band structure and not on determining the precise nature of the
correlated insulators?®. Finally, the notation (... ), corresponds to
a summation over occupied states; see Methods for a more
detailed discussion of the subtleties and the various conventions
adopted in earlier works regarding the Fock term.

Our modeling of the bandstructure is motivated by recent
experiments'?; see Methods for details. In particular, we determine
the microscopic parameters for the model by matching our
theoretical bandstructures to the experimental results sufficiently
far away from the magic angle. These parameters are kept fixed
for all twist angles and as a result, we do not capture the subtle
lattice-relaxation effects near magic-angle?’?%, Note also that as a
result of our adopted procedure, the location of the magic angle is
6= 1°, which is different from the value encountered most often in
literature, 6= 1.1°. At the same time, it is worth noting that in the
continuum model, varying the ratio of the interlayer parameters
does not drastically alter the location of vHs. It is thus possible, in
principle, to disentangle the effects due to twist-dependent
interlayer hopping ratio from those due to band-flattening physics
(see Supplementary Materials for further discussion). For general
agreement with the experimental results, we found it necessary to
use a dielectric constant ¢ larger than that set by the substrate, in
accordance with similar observations made in earlier stu-
dies'"324 |n spite of these simplifying approximations, our
modeling captures the qualitative behavior exhibited by the
measured MATBG bandstructure as the twist angle is brought
closer to the magic-angle condition (See ref. '° and discussion in
Supplementary Materials).The final renormalized bandstructures at
fixed angles of 6 =1.20°, 1.06° are shown as a function of filling in
Fig. 1a, b. Similarly, for a fixed filling, the bandstructures for
increasing twist angles are shown in Fig. 1e, f. Most notably, we
see that as the twist angle approaches the magic angle, the
bandstructure becomes locally flat near the T point beyond a
certain filling. At these fillings, the location of the vHs changes
from that set by the noninteracting model parameters as a result
of the HF renormalization, cf. the density of states panels in Fig. 1.
We note that ref. 2° has also studied the onset of band-flattening
in MATBG and commented on its possible relevance for
enhancing the effects of interactions. For our ensuing discussion
of phonon-mediated attraction, the nontrivial band flattening and
associated interaction-induced shift of the vHs will play a crucial
role in determining the shape of the superconducting dome.

Phonon-mediated attraction

With the role of electron-electron interactions limited only to the
corrections discussed above, we now take these bandstructures
and accompanying wavefunctions to investigate phonon-mediated
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pairing. Earlier works have highlighted the importance of a purely
phonon-driven mechanism, within various approximations, when
the electronic bandstructure is limited to the noninteracting
model**=°, We employ here the framework and notation of an
earlier work by us, focusing exclusively on an intervalley, spin-
singlet gap function with zero center of mass momentum for
simplicity’. The effective electron-electron interaction, after
integrating out the phonons, has the form:

Int - f Z V{E (q7 Iw)pf(qa I(JJ) pf ( q, —I(.())7

6 f (10)
pe(q,iw) = A,

o (k +q, k) C\T/+wk+q{y}CVk{V'} )

where the projected density operators, pg(q, iw), include the form-
factors, Ay (p,k) = 8¢ 600 (P, {v}|€P" |k, {y'}). Here iw is the
fermionic Matsubara frequency and |k,{y'}) denotes a Bloch
wavefunction of the mean-field Hamiltonian, which includes the
HF renormalizations due to the Coulomb interactions. The phonon
mediated interaction vertex is given by,

2
ph . = wph(q)
Ve @) = ~0 5 % i
where wph(q) =c,q is the acoustic phonon dispersion for
graphene. The electron-phonon coupling constant, g = Dz/pmcf,
is related to the deformation potential, D = 25 eV, the speed of
sound in graphene, ¢;= 12,000 m/s, and atomic mass density,
Pm=7.6x 1078 g/cm? ***1 Here we have redefined g = g/N with
a large-N prefactor to obtain a controlled theoretical limit in which
the Eliashberg equations for the pairing gap function are
asymptotically exact; see ref. 37 for details of our earlier large-N
framework. In the large-N formulation, the HF corrections of
interest to us here are subleading in 1/N*’. On the other hand,
partly inspired by the emerging phenomenological considerations
pointing towards the importance of these corrections, we employ
a two-step calculation procedure where the HF modifications to
the bandstructure are included first at leading order in the
interaction strength, followed by the second stage where the
pairing computation is carried out using the Eliashberg approach
ignoring vertex corrections.

The Eliashberg equation for the gap function, A(iw, k), is
given by

Aliw, k) ——TZZKIwkIw p)A(iw', p), (12)
with a kernel K(. . .),
K(iw, k; iw', p) =
. .\ NpkON(—p, (13)
o J Ve (k — priw — i) AelMopl),

=
w' +E5bp

where [dQ, denotes integration over the angle between vector k
and p for a fixed direction of k. Importantly, E¢, is the electronic
dispersion including the density-dependent HF renormalization.
Note that it is important to include a summation over the moiré
umklapp processes in Eq. 13, that were shown to lead to an
increase in the pairing scale as in ref. 3. We summarize the role
of the form-factors A(... ) and the origin of this effect in the
Supplementary Discussion and demonstrate its effect on pairing
tendencies in Supplementary Fig. 3.

Robustness of SC away from magic-angle

Within the framework of Eqgs. 12, 13, T, is determined by the
temperature at which the linearized Eliashberg equation (Eq.12)
has an eigenvalue of 1. One of the central results of this paper
appears in Fig. 2, which shows T, for (i) a noninteracting model
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Fig. 2 Pairing temperature with and without HF interactions. T_ is
obtained from the linearized Eliashberg equation (Eq. 12) as a
function of v and 6 for a noninteracting and b HF-corrected
bandstructure. The values of T, are normalized in both (a) and (b)
relative to the highest pairing temperature T¢ max in (a). The density
of states at the Fermi level, Ng, as a function of v and 0 for ¢
noninteracting and d HF-corrected bandstructure. In (a) and (c), the
vHs (labeled by white dashed line) is fixed by parameters of the
noninteracting bandstructure and is peaked near the magic angle.
With band flattening, the location of vHs in (d) becomes filling and
twist-angle dependent. (See also Supplementary Discussion and
Supplementary Figs. 1, 2 for further comparison of the noninteract-
ing and HF-corrected system).

without HF corrections (Fig. 2a) and (ii) a model that includes the
density-dependent HF corrections (Fig. 2b), for a range of fillings
and twist-angles. The results are qualitatively distinct; in particular,
the intricate structure for T, as a function of 6 and v in Fig. 2b is
seemingly unrelated to properties of the noninteracting band-
structure. For the latter, T, peaks at the magic angle and then
rapidly falls off with a varying twist angle. The peak of the SC
dome as a function of v is also pinned to be at the same filling. On
the other hand, T, for the HF corrected bandstructure does not
abruptly fall off with changing twist angle and its maximal value is
not pinned at a fixed filling. The qualitative behavior for v < 0, both
with and without HF interactions, is similar to the corresponding
results for v> 0 (Fig. 2); the quantitative differences arise from the
particle-hole asymmetry that is present between the electron and
hole bands (see Supplementary Discussion for further details).
Within our Eliashberg analysis of the “weak” electron-phonon
coupling (controlled by large-N), T, is ultimately controlled by the
density of states at the Fermi surface, N(Ef), as shown in panels
Fig. 2 ¢, d for the same range of fillings and twist-angles. The
interesting structure associated with N(Ef) in Fig. 2d arises from
the Hartree contribution to the bandstructure. The phenomenon
of band-flattening shifts the van Hove singularity in the density of
states away from the location dictated by the parameters of the
noninteracting band structure (bright feature indicated with
arrows in Fig. 2¢) and enhances the density of states at the Fermi
level as shown in Fig. 1a, b. As a function of decreasing twist angle
(especially approaching magic-angle), the filling beyond which we
see an onset of band flattening near T point (see Fig. 1a, b) also
decreases. This is evident from the “three-prong” like feature in
Fig. 2d. Remarkably, the inclusion of the many-body renormaliza-
tion to the bandstructure offers a plausible explanation for the
robustness of SC over a broader range of twist angles, in line with
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experimental results’?%5-8 and unlike the prediction of the bare

unrenormalized bandstructures.

Before proceeding any further, we remind the reader that the
apparent appearance of a two-peak-like structure at magic angle
(Fig. 2b) will be masked by the onset of “cascade-like” transitions
occurring near the integer fillings®'?%; these latter effects have not
been included in this study. In particular, this will lead to a
suppression of band-flattening and, more crucially, induce a
sequence of flavor selective cascade transitions that will alter the
profile of density of states (and thereby T,). Importantly, the
Hartree-induced band-inversion near T becomes suppressed for v
> 1 after a cascade transition. This in turn will likely increase the
density of states near v=2 for twist angles near the magic-angle
compared to the results of our current analysis (Fig. 2d), possibly
resolving the apparent contradiction with the experimental
results®. We also anticipate that Cooper pairing will be unlikely
for v> 3 due to the same underlying reasons.

In our discussion thus far, we have identified T, with the onset
of a pairing amplitude. In two-dimensions, the actual T, is
determined by the superconducting phase stiffness. Thus even
though our simplified analysis predicts an enhanced tendency
towards SC near v ~ 0 in the vicinity of magic-angle (Fig. 2b) and a
peak that is shifting towards higher fillings at increasing twist
angles (6 2 1.15°), the SC phase stiffness will drop precipitously as
the bands become nearly filled (v<4) or approach charge
neutrality (v~0). Nevertheless, we already see that band-
flattening aids in the onset of the simplest phonon-induced
attraction as a result of a renormalized density of states at the
Fermi energy at larger twist angles.

Fubini-Study metric

As noted above, T, is ultimately determined by the super-
conducting phase stiffness. For large bandwidths, the higher
electronic kinetic energy contributes to a larger phase stiffness. On
the other hand, for narrower bands, the problem becomes
inherently non-perturbative and the exact mechanism that leads
to a finite phase stiffness is presently unclear. However, if the
Wannier functions are non-localizable*? (e.g., as in topological
bands), or have a finite geometric extent, the local Cooper pairs
can contribute to the phase stiffness even in a perfectly flat-band
limit*3, Within a BCS mean-field description of the projected
interaction, the stiffness in the flat-band limit is proportional to the
minimal spread of the Wannier functions*~%’, which would also
be the case for our weak-coupling computation. To investigate
how the geometrical properties of the Bloch functions of the
renormalized HF Hamiltonian evolve with density and twist-angle,
we study the Fubini-Study (FS) metric,

9op(k) = 3 (ULaukﬁ + ULBUk,a> + Ui alijUip
where uk = |k, {v}) ,Uka = Ok, Uk ,

evaluated for the same flavor y. The trace of the FS metric, Tr(g,g),
controls the minimal spread of the associated Wannier functions
via M = [, Tr(gs). The results are as shown in Fig. 3.

The Bloch wavefunctions and the associated FS metric (Eq. 14)
for the renormalized Hamiltonian, Hy + H,, undergo a qualitative
change from the corresponding quantities for the single-particle
Hamiltonian, H,o, as twist angle approaches magic-angle. Suffi-
ciently far away from magic-angle (e.g, 6 =1.20°, there is a
negligible difference between the metric for the noninteracting
(Fig. 3a) vs. HF-modified bands (Fig. 3b). The subtle band-
flattening features present in the bandstructures, Fig. 1a, do not
qualitatively alter the momentum dependence of the metric.
Closer to the magic-angle (e.g, 6=1.06°) wherein the HF-
modified bands develop band inversions (Fig. 1b), the modified
Bloch wavefunctions lead to an appearance of distinct new
features in the momentum dependence of the metric (see orange

(14)

Published in partnership with Nanjing University



——6=12° 1 6 =1.06° —
| 1.8 ‘
a)
0.5
1.6
R
T~ 0 1
g &
& 1.4
L-o.&s
=120
0.5 =
b) S
0.5 )
= Ii 0 0
< 0.8
-0.5
0.6
05 0 05 05 0 05
ky/ K ky/K

C. Lewandowski et al.

np)j

Fig. 3 HF-driven modification of the Fubini-Study metric. Tr(gy;) for 6=1.20° 1.06° for a, ¢ noninteracting, and b, d HF-corrected
bandstructures for valley £ = —1 at a filling of v = 4. The behavior changes qualitatively near magic-angle (1.06°) with and without interactions.
In panels a-d, we saturate the color scale to help delineate the features near the center of the MBZ. e A comparison of M for the HF-corrected
bandstructure as a function of twist angle and filling with the noninteracting result. There is a dramatic enhancement in M for 6 and v where

the tendency towards band inversion is most pronounced.

arrows and dashed circles in Fig. 3¢, d). The locations of these new
features correspond to the local maxima of the HF-corrected
bandstructure. As a result, the integrated metric, M, is also
strongly modified in the vicinity of magic-angle (Fig. 3e) and
might contribute towards an independent source of enhancement
of the superconducting phase stiffness. Note that within the
general weak-coupling setup, the contribution to the stiffness due
to the enhanced spatial extent of Wannier-functions is indepen-
dent of the underlying details of the pairing symmetry and
phonon-mediated attraction.

It is important to note here that irrespective of whether the bands
are topological or not, the minimal spatial extent of the Wannier
functions is related to the integral of the trace of the FS metric.
Regardless of the actual form, shape, and other properties of the
Wannier functions, the strong non-monotonic enhancement of this
quantity as a function of twist angle near the magic-angle is an
important consequence of the band-flattening mechanism (Fig. 3c).

We note that while the presence of cascade can partly obscure
the large enhancement of the integrated metric near magic-angle,
c.f. Fig. 3e, we anticipate M to increase even when effects of the
cascade are taken into consideration. The enhancement of M is
tied to incipient band-inversions near the T point, hints of which
have been observed in recent experiments'®. Interestingly, the
distribution of the Berry curvature in the MBZ is also affected due
to the HF corrections even though the valley projected Chern
invariant remains unchanged; see Supplementary Discussion for
further discussion. A recent experimental work?® highlights the
role played by redistribution of Berry curvature in the MBZ as a
key-element driving appearance of new insulating states.

DISCUSSION

In this work, we have focused on HF-driven corrections to the
narrow electronic bands and their effect on phonon-induced
pairing in the s-wave channel. However, phonons can also induce

Published in partnership with Nanjing University

(weaker) attraction in other channels (e.g., d-wave) that will
nevertheless exhibit qualitatively similar behavior as a function of
filling and twist-angles (albeit with lower T,), especially if the short
distance part of the Coulomb repulsion suppresses s-wave
pairing®3. Beyond the weak-coupling limit considered here, it is
difficult to speculate on the robustness of our conclusions and on
the possibility of other competing instabilities in the absence of a
non-perturbative analysis. Nonetheless, given the experimental
evidence for filling-dependent band-flattening and our explicit
demonstration of the dramatic many-body effects on the
electronic bands and Bloch wavefunctions, it is clearly necessary
to include them for a complete understanding of SC in TBG, and
moiré materials in general. (See refs. **°° for a more recent
discussion of the role of band-flattening in other settings).

Let us now comment on the subtle effects of an external gate-
induced screening on the interplay between electron—-electron
interaction induced modifications to the bands and phonon-
mediated SC for the same device without simultaneously varying
twist-angle—a question that was partly addressed in a recent
experiment®. Although the overall scale of both Hartree and Fock
terms is controlled by the strength of the dielectric screening (g),
the absolute magnitude of Hartree and Fock contributions can
differ as they are dominated by scattering processes on different
momentum scales. While the Hartree correction is controlled only
by momenta on scales comparable to and larger than the moiré
reciprocal lattice vector, Gy = 471/v/3Ly,"""® (Ly = moiré period),
the Fock term receives a contribution from small (less than MBZ
size) momentum processes as well. As such, when the screening
gate is at a distance, d $1/2Gy, the Fock term will be more
strongly suppressed relative to the Hartree term. Since the former
is responsible for preventing band-flattening (and incipient band-
inversion), we expect screening to enhance pairing tendencies. On
the other hand, even if future experiments can resolve such
changes in T, it might be difficult to disentangle these effects
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from a more conventional source of enhancement arising from
suppression of the Coulomb repulsion.

It is worthwhile to comment on the regime of validity of some of
the approximations we have made, specifically with regard to the
temperature-dependent corrections in the HF analysis and the
possible effects of including cascade-like transitions in the analysis
here. The HF corrections are included at zero temperature, which is
justified and self-consistent within our setup. Specifically, the
leading temperature-dependent corrections to the Hartree self-
energy are small in T/E;, where Eg is defined as the chemical
potential difference of the minority carriers measured with respect
to the bottom/top of the band. At weak-coupling, the T, obtained
by us is already much smaller than Ef, and including the additional
corrections to the Hartree self-energy will not alter the results
significantly. The origin of the Hartree corrections (and the
associated band-flattening) is expected on more general grounds
even at finite, but small, temperatures due to the inhomogenous
charge distribution in real space.

The effects of the cascade transitions, which have been neglected,
can be included, in principle, in a future extension of the framework
discussed here. The actual implementation would inevitably have to
rely on a detailed input of the precise ground state near the integer
fillings (see e.g., refs. 2>26°12)and the nature of the superconduct-
ing state in the vicinity of such a state. Our results for the FS metric
are likely less sensitive to the cascades, since the resulting real space
inhomogeneous charge distribution and the associated band-
flattening should continue to be relevant.

Finally, given the extent to which interactions can modify the
Bloch wavefunctions and the associated quantum geometric
tensor, it is desirable to design experiments suited towards moiré
materials that can probe these quantities directly (regardless of
whether, e.g., M determines the actual phase stiffness). In principle,
transport or optical measurements can be used to infer the
distribution of Berry curvature®~>5, Similarly, it would be interesting
to extract the FS metric by analyzing corrections to the predictions
of semiclassical equations of motion in the presence of nonuniform
electric fields away from magic-angle®’. Given that many of these
techniques are not restricted to operate only at low temperatures,
hopefully, future experiments can extract these quantities and
probe the physics of band-flattening well above the temperatures
associated with cascade transitions and SC, thereby providing
further direct insight into the complexities of TBG.

METHODS
1. TBG continuum model

Let us review the continuum model used to capture the noninteracting
bandstructure of TBG. The parametrization of the noninteracting
Hamiltonian and the mean-field treatment of the Coulomb interactions
follows the procedure outlined in ref. '°, which we reproduce here for
completeness.

For the noninteracting Hamiltonian, H,, we employ the continuum
model introduced in ref. 23, As described in Eq. 2 of the main text, the
noninteracting Hamiltonian is given by

~ (€0 ~ (€0 H. UT(I’)
Ho = /derrH(‘E) r, A9 "o Y 15
07,20, LT Uelr)  He )

where the explicit form of the elements of the operator I:I(fm are detailed
below. The spinor, y,, is written in the basis of (A;, B;, A, B,) sites
of the original two layers (/= 1, 2) and we use the shorthand notation,
y={(==1),0(==1)}, for the valley/spin degrees of freedom. The real
spacg(gr;;cegration is over a moiré unit cell Q. The intralayer elements of
the H are

He = —hv [R(£6/2)(k — K{")] - (€05,0,), (16)
where k is a momentum in the BZ of the original graphene layers, R(¢p) is

the 2x2 two-dimensional counterclockwise rotation matrix that
accounts for rotation of the BZs for the original graphene layers, and

npj Quantum Materials (2021) 82

the signs +in Eq. 16 correspond to the layers /=1 and 2, respectively. For
all twist angles studied in the paper, we use #av/a=2.1354¢eV as the
energy scale for the Hamiltonians Hg. In Eq. 16 above the k - p expansion
is taken around the two vectors KSI), Kﬂ, which denote the Dirac points K
and K’ of the two layers, respectively:

1 1
K = —Eg—ZR(—O/Z) <0> K = —6:—2"?(9/2) <o> a7

Within the convention of ref. 2> the moiré superlattice BZ is defined using
two reciprocal lattice vectors

2m 1 4 1
GV = — , G = < ) , (18)
! V3lm ( \/§> 2 3Ly \o
with Ly = a/2sin(6/2) being the moiré effective lattice period and a=
0.246 nm corresponding to the lattice constant of graphene. We denote

the reciprocal lattice vector length as Gy = |G)!| = |G| = 477/+/3Lw. The
operator Ug(r) in Eq. 15 encodes the interlayer hopping and is given by:

/ ! o—i2mE[3 ! i21€ /3
U = u u 4 u ue EI‘EG"W vy u ue elE(G/‘M+G;A) r
uou u'el2ré/3 u ue—i2né/3 u

(19)

We treat the interlayer couplings u and u’ as fitting parameters for the
band structure according to the procedure introduced in ref. '® and
summarized below. To determine the energy bands and the eigenstates
of both the noninteracting model and the one that includes mean-field
corrections, we take the Bloch wavefunction ansatz for valley € as

q)l;f,n‘k(r) _ ; Cj"&mk(G)ei(kJrG).r7 20)

where j=A,, By, Ay, B; label the spinor components, n is a band index,
and k is the Bloch wave vector in the BZ of the original graphene layers.
In the above ansatz, the G sum runs over all possible integer
combinations of the reciprocal lattice vectors G = m;G)' +m,GY with
integer m; and m,. In practice we constrain —15<m;, m, <15 thus
ensuring that the mean-field band-flattening and pairing calculations do
not suffer from any noninteracting model cut-off effects.

2. Mean-field treatment of interactions

In this section, we provide explicit forms for the mean-field Hartree and
Fock potentials defined in the main text. The Hartree self-energy, Hy of Eq.
7, when expressed in the basis used for the Bloch ansatz from Eq. 20, takes
the form

(k+G,y,i|Hulk + G’,y',i’) =06,y 0iiV(G— G/)
/ *

x 3 (c;‘;’,k/(a”)) (6 G +G).

v/ k.G "

(21)

’
In the above expression > denotes summation over occupied states for a
given filling measured with respect to the CNP as explained in the main
text (denoted (...),). As explained in refs. '3 since the Hartree
potential is controlled primarily by the contribution of the first-star of
reciprocal lattice vectors, it is sufficient to consider combinations of G, G’
satisfying G — G’ = mG)' -+ nGY with (m, n) ={(z1, 0), (0, £1), (£1, £1)}. As
argued in refs. 132>, going beyond the first-star of reciprocal vectors does
alter results drastically. We note however that this is one explicit cut-off
used in the calculation. As usual, the G = G’ = 0 contribution is excluded
since it is canceled by the positive (jellium) ionic background.
Similarly, the Fock self-energy, Hg, in Eq. (9) becomes

(k+Goy.i[Helk + Gy, 1) = —6,,
! il o * i J
x Y Vek-p+G -G )(cly,‘,(a )) (@ +6-G),
o

(22)

where 3" denotes summation over occupied states, i.e, (... ), of Eq. 9 from
the main text, in a manner explained in Section 3 below. Importantly, the
self-energy explicitly depends on the crystal momentum k due to the
nonlocal nature of the Fock potential. This dependence imposes significant
numerical complexity for self-consistent calculations, unlike the Hartree
form of Eq. 21, since the self-energy due to the Fock term has to be
determined separately for each momentum k.
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3. Procedure for fitting TBG continuum model to scanning
tunneling microscopy (STM) experiments

Here we elaborate further on the modeling and analysis introduced in
Section 1, 2, specifically focusing on the relation to experiments. The
specific fitting procedure follows closely the one adopted in ref. '° and is
meant to be an accompanying reference. Our key objective here is to
provide experimentally inspired modeling of the qualitative behavior of
the bandstructure and corresponding Bloch wavefunctions as a function of
twist angle and filling, rather than provide a complete and full treatment of
the HF problem in TBG. We also note the large body of existing work in the
literature that analyzes HF contributions (e.g., refs. 13247265859 Finally, as
already emphasized in the main text, we do not address here the detailed
nature of cascade states, and the presence or absence of Fock-induced
gaps at integer fillings.

The noninteracting continuum model as introduced in Section 1 for a
given twist angle has two free parameters—the interlayer couplings u, u’.
Although their dependence on twist angle has been studied through ab
initio methods?’, here we choose a simpler approach intended to highlight
the important interaction-driven qualitative changes to the band structure.
We assume that the two parameters u and v/, corresponding to same-
sublattice and opposite-sublattice interlayer tunneling, have fixed values
for all twist angles. This approximation misses the subtle role relaxation
physics plays on increasing the ratio of these parameters n = u/u’ as the
twist angle is brought closer to the magic angle?’. To fix u and u’, we focus
on the measurements at the largest available angle of 6= 1.32" in ref. '°,
where the role of interactions is least important. By matching the
measured Landau-level (LL) spectrum to that obtained numerically from
this continuum model, we fix v = 90 meV and u = 0.4u’. As noted in the
main text, as a result of this approximation scheme the magic-angle of the
noninteracting model occurs at 6=0.99°, which differs from the typical
values 6=1.1° quoted in the literature. At the same time, however, the
twist-dependent ratio of n = u/u’ will not qualitatively alter our results.
Specifically, the location of vHs in each band does not change with n for
values of n < 0.8 (See also discussion in ref. °) Combining this observation
with the property that the peak of the pairing dome (within weak-coupling
limit) is dictated by the location of the van Hove singularity, we argue that
band-flattening corrections to pairing can be disentangled from any of
those coming from varying (u, u’).

We now proceed to parametrize the strength of the dielectric screening
€ in the Coulomb potential V(q) = 2me?/eq. Nominally the value set by
the substrate, i.e., typical of an hBN encapsulated graphene is €= 5. This
value however massively overestimates the role of Hartree and Fock
processes, leading to band structures with large T point inversions that are
not observed experimentally. To overcome this unwarranted behavior,
earlier works'''3?* use a range of values for € ranging from 5 to 66. In the
same spirit, we choose £ = 15 to quantitatively capture the following three
experimental characteristics seen in the LL spectra of ref. '% (i) the energy
spacing between LLs arising from the T point band structure at 8 = 1.32°
(Fig. 1 in ref. '9), (ii) the energy spacing between the highest energy LL
from the flat band and the lowest energy LL from the dispersive bands at
6 =1.32° (Fig. 1 in ref. '°), and (iii) the critical angle at which largest energy
LL from the flat-band joins the vHs (Fig. 2 in ref. '°). These criteria are met
with a choice of € =15, which we then keep constant for all values of 6.
With this parametrization, it was found in ref. '° that including Hartree-only
correction adequately captures experimental observations at 6 =1.32",
suggesting that the Fock term plays a subdominant role at least at this
large twist angle.

As mentioned in the previous Section 2, the Fock potential is nonlocal
and thus carries a high computational cost, making a parameter sweep like
that in Fig. 2 prohibitive. Motivated by the physical intuition that the role of
Fock is to oppose the Hartree potential, further substantiated by recent
works?4, we approximate Eq. 22 as

(k+G.y.ilHe k + Gy, 1) ~ ~8,,9(6)Ve(G — G)

" P
x 3 (c (@) C (G +G-G).
k,‘G/,< vk ) vk

(23)

In particular, we replace the nonlocal dependence with a constant, twist-
angle dependent prefactor g(8) with the characteristic energy scale of the
Fock interaction being set by the Hartree potential V(G — G'). We stress
that despite the similarity to a local approximation, e.g., Vc(r) « &(r), the
form of Eq. 23 carries the additional dependence on reciprocal momenta
G, G'. In analogy to the Hartree potential, we limit the reciprocal momenta
included in the self-energy to a difference G — G’ residing in the first star of
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reciprocal lattice vectors. Unsurprisingly, the Fock potential so constructed
acts in opposition to the Hartree potential due to the overall minus sign
above. We reiterate here that this is a phenomenological approximation,
which nonetheless captures qualitative behavior of the Fock term reported
by other authors, e.g., refs. '>?42°_ Namely, it demonstrates how the Fock
term can counteract band inversion stemming from the Hartree term; at
charge neutrality point it also predicts an increase in the van Hove to van
Hove separation and a broadening (splitting) of each flat-band’s van Hove
peak—both features seen in STM experiments'®%2 For a further
discussion of this approach together with other possible mechanisms
(e.g., strain) that can similarly prevent Hartree-driven band inversions we
refer to ref. '°,

In ref. '° several forms for the prefactor of the Fock interaction g(6) were
considered. It was observed that a twist-angle-independent prefactor does
not manage to capture the qualitative band structure behavior seen in
experiments: A constant value that is too large prevents unphysical band
inversion near the magic angle, yet it also prevents band flattening for v=3,
4 seen in the experiment at intermediate angles that could be recovered
with a Hartree-only analysis; A constant value that is unusually small allows
for band flattening seen in experiments, but does not prevent unphysical
band inversions near the magic angle. To remedy these issues in ref. '°, the
following g(6) dependence was chosen which we use in our analysis as well:
we take g(6) =0 for 6= 1.14° and 6 < 0.84°, whereas for 0.84° < 6 < 1.14° range
we assume a triangular profile with a maximum of g(6 = 0.99°) = 1.875.

A final element of the Fock term description is the specification of what
bands are included in the summation ¥” in Eqs. 22 and 23 (or as
schematically indicated with (...), in the main text). Several summation
schemes are present in the literature with the key difference being whether
only flat bands'>?* or also dispersive bands?®*° are included. Qualitatively,
at v=4 the Fock term arises predominantly from the flat bands; on the
other hand, at v= —4 the dominant contribution arises from the dispersive
valence bands. The contribution from the dispersive valence bands is also
opposite in sign and effect to that of the flat bands as seen in ref. 2%, We
verified that this behavior holds within our approximation of Eq. 23, but due
to the local form of the Fock potential contribution from dispersive bands
at v=—4, one finds gap opening near the K, K points beyond what is
experimentally plausible. To qualitatively capture the above sign trend in
the Fock term while mitigating the preceding gap issue, we include in the
summation ¥” all flat band states both at v=4 and v = —4, but change the
sign of the contribution at v = —4. For other fillings, motivated by ref. %%, we
interpolate our solution as explained in the next paragraph.

As the contribution of the Hartree and Fock terms to the self-energy
depends linearly (in the absence of cascade and gap opening at the CNP)
on filling'*'%24, for ease of computation we linearly interpolate between
the solutions at v=4 and v= —4. We verified that the results do not
qualitatively change if a self-consistent approach is used at every filling.
To that end, the mean-field interacting HF Hamiltonians for filling v are
taken to be

He(v) =3 [(He(v = 4) + Helv = —4) + 5 (He(v = 4) — He(v = 4)]
(24)

M) = 3 [(Halv = ) + Hulv = ~4)) + % (Hulv = 4) — v = ~4))]
(25)

where Hy(v), Hr(v) denotes Hartree or Fock correction for a filling v. For
the bandstructures and calculations presented in this paper, we evaluate
the solutions at v=4 and v= —4 self-consistently until convergence is
reached. We set the convergence threshold for all self-consistent
parameters as 0.1% total relative error (difference between successive
self-consistent steps). A grid of 441 k-points was used for the analysis of
the self-consistent potentials (see next section for parametrization of the
SC calculation), where the convergence was reached after a few (typically
in less than 5) iterations.

4. Numerical solution of the linear gap equations

Here we provide additional technical details of the Eliashberg procedure
we adopt in this paper. We note again that we have used the same
framework as detailed in our earlier work ref. 37, For a given twist angle
and filling we start the calculation by pre-computing a 2D MBZ mesh of
points, with their associated Bloch wavefunctions and energies. We note
that because of the HF-corrections that enter at a mean-field level into
this calculation, a different 2D mesh of points has to be precomputed for
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each filling. In the calculations, we use a mesh of 10201 MBZ points for
each v and 0. To carry out an angle-average of the kernel from Eq. 13, we
first fix a particular direction of vector k (upon verifying that the
conclusions are not dependent on the specific direction) and then
identify all p points that are of magnitude p (within a resolution admitted
by the mesh). We then estimate the angular average Eq. 13 by averaging
over these p points—in practice, ~50—100 points are used for each pair
of k and p momentum values.

To determine the critical temperature, we seek the temperature T for
which Eg. 12 has an eigenvalue of unity. In practice, we carry out a
bisection method search for a T giving an eigenvalue within £0.01 of unity.
In the calculations, we use a linearly spaced grid of 30 k points ranging
from the center of the MBZ T to the K point. For the Matsubara grid, in
analogy with the procedure of ref. 3 we employed an approximate
scheme that consists of ten first Matsubara frequencies followed by 20
linearly spaced frequencies starting from the 11th Matsubara frequency to
the UV cutoff, where the cutoff is chosen to be 8W (W is the flat-band
bandwidth).
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