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Abstract
In this article, we formulate and implement a computational multiphase peri-
poromechanics paradigm for unguided fracturing in unsaturated porous media
assuming passive pore air pressure. The same governing equation for the
solid phase applies on and off cracks. Crack formation in this framework is
autonomous, requiring no prior estimates of crack topology. As a new contri-
bution, an energy-based criterion for arbitrary crack formation is formulated
using the peridynamic effective force state for unsaturated porous media. Unsat-
urated fluid flow in the fracture space is modeled in a simplified way in line with
the nonlocal formulation of unsaturated fluid flow in the bulk. The formulated
unsaturated fracturing periporomechanics is numerically implemented through
an implicit fractional step algorithm in time and a two-phase mixed meshless
method in space. The two-stage operator split converts the coupled periporome-
chanics problem into an undrained deformation and fracture problem and an
unsaturated fluid flow in the deformed skeleton configuration. Numerical sim-
ulations of in-plane open and shear cracking are conducted to validate the accu-
racy and robustness of the fracturing unsaturated periporomechanics model.
Then numerical examples of wing cracking and nonplanar cracking in unsatu-
rated soil specimens are presented to demonstrate the efficacy of the proposed
multiphase periporomechanics paradigm for unguided cracking in unsaturated
porous media.
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1 INTRODUCTION

The mechanical and physical behavior of unsaturated porous media (e.g., unsaturated soils) plays a significant role in
resilience and sustainability of civil infrastructures (e.g., References 1-11). Cracking in unsaturated soils can significantly
deteriorate and compromise the integrity of civil infrastructures built on such materials (e.g., References 12-15). For
instance, the volume shrinkage by variations of matric suction (i.e., the difference between pore air and water pressures)
could generate tensile cracks in unsaturated soils. The bearing capacity of structural foundations on such soils can be sig-
nificantly reduced by the presence of tensile cracks. Surface cracks caused by the rapid drawdown of a reservoir can be
a trigger for landslides.12 Desiccation cracking in clay can dramatically increase its hydraulic conductivity that will com-
promise its ability to act as liner material for landfills.16 With the advance of supercomputers, computational methods
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play an increasingly significant role in modeling the mechanical and physical behavior including cracking of unsaturated
soils (e.g., Reference 9). In this study, different from the celebrated computational methods such as the extended finite ele-
ment method (e.g., References 17 and 18) and as a new contribution, we develop a fully coupled nonlocal mathematical
paradigm for modeling fracturing and fluid flow in unsaturated porous media using periporomechanics (e.g., References
19-24 and see Section 2.1 for a brief review) that is a nonlocal reformulation of classical poromechanics25-27 through peri-
dynamics28,29 for modeling variably saturated porous media. We refer to the celebrated literature (see References 13 and
14, among many others) on other robust computational techniques for modeling cracking in fracturing porous media
under variably saturated conditions. Note that the original peridynamics was proposed by Silling for modeling deforma-
tion and cracks in single-phase solid materials. In the proposed periporomechanics model the same momentum balance
equation applies on and off the crack surface by using the effective force state concept,22 as in the classical peridynamics
for modeling cracks in solids. Next, we briefly review the application of peridynamics for modeling cracks focusing on
the criterion of initiation and propagation of cracks.

In peridynamics, cracks nucleate, grow, branch, and merge when and where it is energetically favorable for them
to do so according to the global equations and constitutive model (e.g., References 30 and 31). This salient feature of
autonomous crack growth obviates the need for the remedial techniques of classical fracture mechanics. We refer to
the literature (e.g., Reference 32) for an in-depth comparison of peridynamics and classical fracture mechanics.33 Peri-
dynamics has been applied to model fractures in solids (e.g., References 34-40, among many others) and porous media
(e.g., References 15 and 41-45, among others). There are two criteria for the inception and propagation of cracks, namely
“bond-breakage” using either a kinematic criterion (stretch, shear) (e.g., References 15, 34, and 46-49) and a strain energy
criterion (e.g., References 43 and 50-53). In the kinematic-based criterion, peridynamic bonds are assumed to fail irre-
versibly when the relative extension exceeds a predetermined limit value called “critical stretch.” This criterion has some
limitations including its ad-hoc feature, its inability to correctly model shear cracks, and its apparent lack of any ratio-
nal basis or theoretical justification for the link between critical stretch and crack energy release rate. In the energy
based criterion, the elastic strain energy is correlated to the fracture potential energy. Madenci and Oterkus52 proposed
an energy-based failure criterion for fracture, based on the peridynamic equivalent of the classical J-integral.54 Breiten-
feld et al.51 formulated a peridynamic equivalent of the J-integral to extract the classical stress intensity factors of linear
elastic fracture mechanics as a means of examining the stress singularities. Lipton et al.53 developed an elastic peridy-
namic material based on a novel strain energy density function capable of modeling cracks. In this method, cracks are
modeled as material instability in the softening regime allowing spontaneous nucleation of cracks without the assistance
of supplemental criteria. Note that both criteria have been utilized to model fracture in porous media (e.g., References 15,
44, and 55) through the effective stress concept for porous media.1,25 In this article, as a new contribution, in the fractur-
ing unsaturated periporomechanics paradigm we develop an energy-based crack criterion through the recently proposed
effective force state concept22 for unsaturated porous media.

In Reference 24, the authors formulated a stabilized coupled periporomechanics model for dynamic analysis of sat-
urated porous media with no cracks. In the present article, as a new contribution the formulation in Reference 24 is
extended to model unguided fracturing and fluid flow in unsaturated porous media. In this fracturing unsaturated peri-
poromechanics model, the same governing equation for the solid phase applies on and off cracks. In line with the
original peridynamics,28,29,56 crack formation in this coupled framework is autonomous, requiring no prior estimates
of crack topology. As a major novelty, the criterion for arbitrary and unguided crack formation in three dimensions
(e.g., nonplanar) is formulated based on the peridynamic effective force state for unsaturated porous media. Unsatu-
rated fluid flow in the fracture space is coupled to the fluid flow in the bulk through a leak-off term. Different from
the fully coupled numerical implementation in Reference 24, the formulated unsaturated fracturing periporomechan-
ics is numerically implemented through the celebrated fractional step algorithm (also called staggered algorithm in
the literature, see Reference 13, 25, 26, 44, 55, and 57-59, and others) for computational efficiency and accuracy. The
two-stage operator split converts the coupled fracturing periporomechanics problem into an undrained deformation and
fracture problem and an unsaturated fluid flow problem in the deformed configuration. Note that we refer to the litera-
ture for explicit or implicit implementation of peridynamics for modeling cracks in single-phase solids (e.g., References
51, 56, and 60-63, among others). Numerical simulations are conducted to validate the accuracy and robustness of the
computational fracturing unsaturated periporomechanics paradigm. We run numerical simulations of crack propaga-
tion in porous media and analyze the influence of initial matric suction and intrinsic permeability on the wing crack
propagation. Finally, we demonstrate the efficacy of the proposed fracturing periporomechanics paradigm for model-
ing nonplanar cracks by simulating nonplanar cracks triggered by varying matric suction in a three-dimensional soil
specimen.
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The original contributions of this article are (i) the formulation of the energy-based crack criterion based on the effec-
tive force state concept for unsaturated porous media, (ii) the implicit fractional-step and mixed meshless numerical
implementation of the fracturing unsaturated periporomechanics paradigm in time and space, and (iii) the validation
of the numerical implementation by comparing numerical results from this newly formulated method with the classi-
cal extended finite element method and demonstration of the new coupled framework for modeling nonplanar cracks
in unsaturated soils. For sign convention, the assumption in continuum mechanics is followed, that is, for solid skeleton
tension is positive and compression is negative, and for pore fluid compression is positive and tension is negative.

2 UNSATURATED FRACTURE PERIPOROMECHANICS FOR UNGUIDED
CRACKING

2.1 Unsaturated periporomechanics

Periporomechanics is a reformulation of classical poromechanics through the peridynamic state concept29 for modeling
continuous or discontinuous deformation and fluid flow in variably saturated porous media.19,21-24 In periporomechanics,
it is hypothesized that a porous material body can be represented by a finite number of mixed material points that are
endowed with two kinds of degree of freedom, that is, solid displacement and fluid pressure. It is a fully coupled strong
nonlocal theory in that a material point x has direct poromechanical and physical interactions with any material point
x′ in its nonlocal family ,29 a spherical domain centered at x. The radius of  denoted by 𝛿 is called the horizon of the
porous media. For conciseness of notations, it is assumed that a peridynamic state variable without a prime is evaluated
at x on the associated bond 𝝃 = x′ − x and the peridynamic state variable with a prime is evaluated at x′ on the associated
bond 𝝃′ = x − x′, for example, T = T [x]⟨x′ − x⟩ and T′ = T

[
x′] ⟨x − x′⟩. Similarly, a non-state variable without a prime

is associated with x and that with a prime is associated with x′, for example, Sr is the degree of saturation at x and S′
r is

the degree of saturation at x′.
In unsaturated periporomechanics,22 under the assumption of passive air pressure the balance of linear momentum

at x reads

∫
[(

T − SrTw

)
−
(

T
′
− S′

rT′
w

)]
dV ′ + 𝜌g = 𝜌ü, (1)

where T and T
′

are the effective force states at x and x′, respectively, Tw and T′
w are the pressure force states at x and x′

respectively, Sr is the degree of saturation at x, g is the gravity acceleration, ü is the acceleration, and 𝜌 is the density of
unsaturated porous media

𝜌 = 𝜌s(1 − 𝜙) + Sr𝜙𝜌w, (2)

where 𝜌s is solid density, 𝜌w is water density and 𝜙 is porosity. Under the assumptions of incompressible solid grain and
water the balance of mass at x reads

𝜙
dSr

dt
+ Sr ∫

(̇ s − ̇ ′
s) dV ′ + 1

𝜌w ∫
(

Q − Q′
)

dV ′ +s = 0, (3)

where ̇ s and ̇ ′
s are the solid volume change rate states at x and x′, respectively, Q and Q′ are the fluid flow states at x

and x′, respectively, and s is a source/sink term.
The deformation state and pore fluid pressure state are essential state variables to construct constitutive models in

periporomechanics.23 The deformation state Y at x reads

Y = y′ − y, (4)

where y′ and y are the deformed positions of x′ and x, respectively. Let u and u′ be displacements at x and x′, respectively,

y = x + u, y′ = x′ + u′. (5)
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The fluid flow/pressure potential state at x reads

Φ = p′
w − pw, (6)

where pw and p′
w are water pressures at x and x′, respectively.

In line with the stabilized multiphase correspondence principle,24 the effective force state and unsaturated fluid flow
state can be written as follows. First, the effective force state with stabilization reads

T = 𝜔

(
PK−1𝝃 + GC

𝜔0
ℛs

)
, C = 18K

𝜋𝛿4 , (7)

where 𝜔 is the influence function (also called weighting function), P is the effective Piola–Kirchhoff stress tensor, K is
the shape tensor,29 ℛs is the residual deformation state (see Equation 10), G is a positive constant on the order of 1, and
K is the elastic bulk modulus of the skeleton, and 𝜔0 is defined as

𝜔0 = ∫
𝜔 dV ′. (8)

The shape tensor K is defined as

K = ∫
𝜔𝝃 ⊗ 𝝃 dV ′. (9)

The residual deformation state ℛs is defined as

ℛs = Y − F̃𝝃. (10)

It is noted that for a uniform deformation the residual deformation state ℛs is null.
The effective Piola–Kirchhoff stress tensor64,65 is defined as

P = P + J(Srpw1)F̃
−T
, (11)

where P is the total Piola–Kirchhoff stress tensor, 1 is the second-order identity tensor, and J is the determinant of F̃ that
is the nonlocal deformation gradient

F̃ =
(
∫

𝜔 Y ⊗ 𝝃 dV ′
)

K−1. (12)

Given F̃ the effective Piola–Kirchhoff stress tensor P can be determined through the classical constitutive models for
unsaturated soils. Let 𝜙0 be the initial porosity, the porosity in (3) can be written as64

𝜙 = 1 − (1 − 𝜙0)∕J. (13)

Similarly, the fluid flow state with stabilization at x22 is written as

Q = 𝜔

(
𝜌wqK−1𝝃 +

GKp

𝜔0
ℛw

)
, Kp = 6𝜌wkw

𝜋𝛿4𝜇w
, (14)

where q is the fluid flux vector, ℛw is the residual pressure potential state, kw is the intrinsic permeability, and 𝜇w is water
viscosity. The fluid flux q can be determined by the generalized Darcy’s law for unsaturated fluid flow as

q = −krkw

𝜇w
𝛁Φ, 𝛁Φ =

(
∫

𝜔 Φ 𝝃 dV ′
)

K−1, (15)

where kr is the relative permeability and 𝛁Φ is the nonlocal fluid pressure gradient. The residual fluid potential state ℛw

is defined as
ℛw = Φ − 𝛁Φ𝝃. (16)
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Note that ℛw is null for a uniform fluid pressure potential. Here, the soil–water retention curve66-68 is described by the
celebrated van Genuchen equation69 as

Sr = S1 + (S2 − S1)
[

1 +
(

s
sa

)n](1−n)∕n

, (17)

where s is matric suction (e.g., s = −pw assuming passive air pressure), and S1, S2, sa, and n are material constants. In this
study, it is assumed that S1 = 0 and S2 = 1. Given Sr the relative permeability kr can be written as

kr = S1∕2
r

[
1 − (1 − S1∕m

r )m
]2
, (18)

where m = (n − 1)∕n.
Next, we present a formulation of so-called ordinary material models for unsaturated porous media that do not exhibit

the same instability observed in the original correspondence material models. Here the ordinary means that the force
state is parallel to the bond 𝝃. Let y = |Y|, the total force state reads

T =
(

t − Srtw

)(
Y
y

)
, (19)

where t and tw are the scalar effective force state and the scalar water pressure state, respectively. For a poroelastic material,
the scalar effective force state t can be defined as

t = 𝜔

(
3K
mv
𝜃x + 15𝜇s

mv
ed
)
, (20)

where x = |𝝃|, 𝜃 is the dilatation, ed = e − (𝜃x∕3) is a measure of deviatoric deformation, e = y − x, mv is the weighted
volume, and K is the elastic bulk modulus as introduced previously, and 𝜇s the elastic shear mudulus of the skeleton.

mv = ∫
𝜔 x2 dV ′, (21)

𝜃 = 3
mv ∫

e x dV ′. (22)

In line with Equation (20), the water pressure scalar state in (19) can be defined as

tw = 𝜔
3pwx
mv

, (23)

From (19) and (20), the effective force state through the ordinary material model for the solid skeleton reads

T = t

(
Y
y

)
. (24)

We note that the ordinary material model in (24) is a special case of the general correspondence material model in
(7). To support this statement, we first demonstrate that the shape tensor can be expressed by the weighted volume in
what follows. The spherical coordinate system in Figure 1is adopted to facilitate the derivation. Given the notations in
Figure 1, the components of 𝝃 in the Cartesian coordinate system read

𝜉1 = x sin 𝛼1 sin 𝛼2, (25)
𝜉2 = x cos 𝛼1, (26)
𝜉3 = x sin 𝛼1 cos 𝛼2. (27)
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F I G U R E 1 Two material points in the spherical coordinate system

Let 𝜔 = 1 the weighted volume mv is written as

mv = ∫
𝛿

0 ∫
2𝜋

0 ∫
𝜋

0
x4 sin 𝛼1 d𝛼1 d𝛼2 dx

= 4𝜋𝛿5

5
. (28)

Similarly, the shape tensor can be written as

Kij = ∫
𝜔𝜉i𝜉jdV ′

= ∫
𝛿

0 ∫
2𝜋

0 ∫
𝜋

0
𝜔 𝜉i𝜉jx2 sin 𝛼1 d𝛼1 d𝛼2 dx, (29)

where i, j = 1, 2, 3. It follows from (25), (26), (27), and (29) that for 𝜔 = 1 we can readily show

Kij =
4𝜋𝛿5

15
𝛿ij. (30)

From (28) and (30), the shape tensor can be written as

K = (mv∕3)1. (31)

Given (31), we can establish the equivalence between correspondence material models and ordinary material models for
unsaturated porous media in what follows. Let us assume an isotropic deformation of unsaturated porous media

Y = (1 + 𝜀)𝝃, (32)

where 𝜀 is a constant scalar and |𝜀|≪ 1. Then from (12) and (30), the nonlocal deformation gradient can be written as

F̃ = (1 + 𝜀)1. (33)

It follows from (7), (11) and the assumption |𝜀|≪ 1 that the total force state can be written as

T = 𝜔
(
𝝈 + Srpw1

)
(1)

(
3

mv
1
)
𝝃

= 𝜔 (3K𝜀1 + Srpw1)
(

3
mv

1
)

x
(1 + 𝜀)𝝃
(1 + 𝜀)x

= 𝜔 (K𝜃 + Srpw)
3x
mv

Y
y
. (34)
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By (34), we demonstrate that under small isotropic deformation the total force state obtained from the correspondence
material model is equivalent to the one obtained from the ordinary material model. With (31), the nonlocal pressure
gradient and water flow state can also be written as follows.

∇̃Φ = 3
mv

(
∫

𝜔 Φ𝝃 dV ′
)

1 = 3
mv ∫

𝜔 Φ𝝃 dV ′, (35)

Q = 3
mv
𝜔𝜌wq(1𝝃) = 3

mv
𝜔𝜌wq𝝃. (36)

2.2 Fracture unsaturated periporomechanics

In this section, we present fracture unsaturated periporomechanics that extends unsaturated periporomechanics to model
fracture in unsaturated porous media. In fracture periporomechanics, both bulk and fracture space are represented by
mixed material points that have two types of degree of freedom, that is, displacement and fluid pressure. The fracturing
process in periporomechanics is modeled following the bond-breakage concept in the original peridynamics for solids.
Figure 2 schematically represents the bond-breakage concept for modeling fracture formation in unsaturated periporome-
chanics. The broken poromechanical bond will not be considered when determining the effective force state at material
point x through the constitutive model. The effective force state is zero on the broken poromechanical bond while pore
fluid pressure remains. To facilitate the modeling of unsaturated fluid flow in fracture space, the mixed material point
in fracture space is named fracture point that has two fluid pressures, that is, bulk fluid pressure pw and fracture fluid
pressure pf .

2.2.1 Fracture criterion based on the effective force state concept

The bond breakage can be modeled either by the critical stretch criterion or energy criterion (e.g., References 28 and 50).
In unsaturated porous media, the bond-breakage can be triggered by deformation or matric suction in unsaturated porous
media as illustrated by the energy-based criterion in what follows. In this study, the bond-breakage criteria in unsaturated
periporomechanics are based on the deformation energy stored in a poromechanical bond. The effective force state that
is an energy conjugate of the deformation state22 is used to determine the deformation energy, which is different from
the single-phase peridynamics analysis. The effective force principle captures the effect of pressure developed in the pore
fluid on the mechanical response of the skeleton. It is assumed that the energy density stored in a solid bond, 𝜛⟨𝝃⟩, is
fully recoverable until it exceeds some critical value 𝜛cr . With effective force state the energy density in a solid bond
𝝃 reads

𝜛 = ∫
tl

0

(
T − T

′)
𝜼̇ dt = ∫

tl

0

[(
T + SrTw

)
−
(

T′ + S′
rT′

w
)]

𝜼̇ dt, (37)

where 𝜼 = u′ − u is the relative displacement vector and tl is the total loading time. It is noted that the energy-based
criterion of (37) incorporates the coupling effect of skeleton deformation, matric suction, and degree of saturation on the

F I G U R E 2 Conceptual sketch of fracturing in periporomechanics: (A) A material point in a porous body and (B) a material point with
bond breakage in a fractured porous body
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bond breakage. In fracture unsaturated periporomechanics, bond breakage is modeled through the influence function
at the material constitutive model level for the solid and fluid phases. The influence function will be replaced by a new
influence function 𝜚𝜔, where 𝜚 is defined as

𝜚 =

{
0, if 𝜛 ≥ 𝜛cr,

1, otherwise.
(38)

In periporomechanics, with the effective force concept the failure of solid skeleton is modeled through a scalar damage
variable 𝜑 that tracks the progressive failure of unsaturated porous media. This damage variable is defined as the fraction
of broken solid bonds at a material point in its horizon

𝜑 = 1 −
∫ 𝜚𝜔 dV ′

𝜔0
, (39)

where𝜑 ∈ [0, 1] and𝜔0 is defined by (8). It is hypothesized that once a solid bond breaks it will not sustain any mechanical
load and the load at a material point will redistribute to unbroken bonds. If enough bonds break (i.e., 𝜑 >= 𝜑cr) and
coalesce into a surface, a fracture will form and propagate naturally. In this study, we assume that cracks can be identified
if 𝜑 ⩾ 0.5.

The critical energy per unit fracture area, Gc, can be determined from 𝜛cr through a spherical coordinate system as
sketched in Figure 3. Referring to Figure 3, the energy per unit fracture area Gc for completely separating the body into
two halves reads

Gc = ∫
𝛿

0 ∫
2𝜋

0 ∫
𝛿

z ∫
Ψ

0
(𝜛cr)x2 sin 𝛼1 d𝛼1 dx d𝛼2 dz,

= 𝜋𝛿4

4
𝜛cr, (40)

where Ψ = cos−1(z∕x). It follows from (40) that the critical energy density for bond breakage can be written as

𝜛cr =
4Gc

𝜋𝛿4 . (41)

From linear elastic fracture mechanics33 for mode I fracture Gc reads

Gc = K2
I (1 − 𝜈2)∕E, (42)

where E is Young’s modulus, 𝜈 is Poisson’s ratio, and KI is the fracture toughness of mode I. Then from (42) the critical
energy density for mode I fracture can be written as

𝜛cr =
4K2

I

𝜋E𝛿4 (1 − 𝜈2). (43)

It follows from (43) that the critical energy density for bond breakage can be a material property of solid phase. Following
the above lines, the critical energy density can be determined for modes II and III fracture.

We assume that a fractured space is formed between two adjacent material points x and x′ if both 𝜛 ≥ 𝜛cr as well
as 𝜑 ≥ 𝜑cr and 𝜑′ ≥ 𝜑cr at x and x′, respectively. Both the material points are defined as the fracture mixed points that
represent both the bulk and fractured space. It is further assumed that the fracture mixed point has two fluid pressure
degrees of freedom, that is, the bulk fluid pressure and fracture fluid pressure, which will be used to model unsaturated
fluid flow in fractured space in Section 2.2.3. Figure 4 draws the kinematics of a bond across the fracture. The relative
displacement vector 𝜼 = u′ − u can be decomposed into two components as sketched in Figure 4. The two components
can be assumed to represent the opening displacement and the dislocation of the crack, respectively. To determine the
crack width, we define c as the crack aperture related to the opening displacement as proposed in Reference 44,

c = y cos𝜓 − x, (44)
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F I G U R E 3 Schematic representation of the spherical coordinate system for the evaluation of the energy per unit fracture area Gc for
complete separation of two halves of a porous material body (adapted from Reference 34)

F I G U R E 4 Schematic representation of the kinematics of a bond across fracture

where 𝜓 is defined in Figure 4. Therefore, the crack width at fracture point x can be approximated by the average of bond
apertures of all broken bonds

af =
∫ 𝜚cdV ′

∫ 𝜚 dV ′
, (45)

where 𝜚 = 1 − 𝜚.
Next, we present the equations of motion and mass balance of fracturing unsaturated porous media.

2.2.2 Equation of motion

In unsaturated periporomechanics, through the effective force concept the same equation of motion is applied on and
off the crack surface or crack tip of the solid skeleton in unsaturated porous media. This is an advantage for modeling
fracture in unsaturated porous media. For the fully coupled processes of solid deformation and unsaturated fluid flow the
equation of motion of a fracture point is different from that of a bulk material point at the constitutive model level. For a
bulk material point, the equation of motion can be written by (1). To incorporate bond breakage at a bulk material point
x, the effective force state and fluid force state along 𝝃 are written as, respectively

T = 𝜚𝜔

(
PK−1𝝃 + GC

𝜔0
ℛs

)
, (46)

Tw = −𝜔PwK−1𝝃, (47)

where

Pw = Jpw1F̃
−T
. (48)
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It follows from (46) and (47) that the total force state along a broken bond is

T = −𝜔SrPwK−1𝝃. (49)

The broken bonds are eliminated through 𝜚 at the constitutive model level (e.g., the nonlocal deformation gradient
and the effective force state).35,51,70 As assumed, along a broken bond the effective force state vanishes. The total force
state only consists of the fluid force state that can be written as

Tw = −
3𝜔
mv

pw
Y
y
, (50)

where the ordinary fluid force state is used on broken bonds for simplicity.
For a fracture point, similar to (1) the equation of motion can be written as

𝜌ü = ∫
(

T − T
′)

dV ′ − ∫
(

SlTl − S′
l T

′
l
)

dV ′ + 𝜌g, (51)

where

SlTl =

{
Sr,f Tf , if 𝜑 & 𝜑′ ≥ 𝜑cr,

SrTw, otherwise.
(52)

In (52), Tf is the fluid force state between two fracture points x and x′

Tf = −
3𝜔
mv

pf
Y
y
, (53)

where pf and Sr,f are fracture fluid pressure and degree of saturation, respectively, at fracture point x.

2.2.3 Balance of mass

The balance of mass in the continuous porous space (Figure 6A) can be written by (3) at both bulk and fracture
material points. In (3), the broken bond (i.e., 𝜚 = 0) associated with x will not be considered in the second and
third terms and at the constitutive model level by multiplying 𝜔 by 𝜚. For instance, Equations (35) and (36) can be
rewritten as

∇̃Φ = 3
mv ∫

𝜚𝜔 Φ𝝃 dV ′, (54)

Q = 3
mv
𝜚𝜔𝜌wq𝝃. (55)

The sink/source term will be null for a bulk material point. For a fracture material point, the sink/source term in (3) can
be determined assuming that the fluid flow from the pore space into the fracture space follows the generalized Darcy’s
law for unsaturated fluid flow along the direction normal to the fracture surface.13,41 It follows from this assumption that
sink/source term s for the fluid flow from the bulk into the fracture at x can be written as

s = A
[
−krkw

𝜇w

(pf − pw

lx

)]
∕V , (56)

where pw and pf are water pressures in the bulk and fracture space respectively, A and V are the cross-sectional area
and volume of a material point assuming uniform spatial discretization, lx = d∕2 and d is the edge dimension of a cubic
material point. Given the source term, following the formulation for unsaturated fluid flow in porous space the mass
balance equation of unsaturated fluid flow in fracture space can be written as
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𝜕Sr,f

𝜕t
+ 1
𝜌w ∫

(
Q

f
− Q′

f

)
dV ′ −s = 0, (57)

where Q
f

and Q′
f

are the fluid flow states at fracture points x and x′, respectively, Sr,f is the degree of saturation in fracture
space that can be determined by the soil–water retention curve in (17). In (57), it is assumed that in fracture space 𝜙 = 1
and the volume coupling term vanishes.13 Q

f
is determined by (36) as

Q
f
= 3

mv
𝜔𝜌wqf 𝝃, (58)

where qf is the fluid flow vector in fracture space. Through Darcy’s law for unsaturated fluid flow3,23 the fracture fluid
flow vector qf can be written as

qf = −
kr

f kf

𝜇w
𝛁Φf , (59)

where kr
f is the relative permeability, kf is the intrinsic permeability of fracture space, and ∇̃Φf is the nonlocal fracture

fluid pressure gradient.

kr
f = S1∕2

r,f

[
1 − (1 − S1∕m

r,f )m
]2
. (60)

Given the fracture width af in (45), kf can be estimated through the celebrated cubic law (e.g., Reference 13)

kf =
a2

f

12
. (61)

The nonlocal gradient of fracture fluid pressure can be determined

∇̃Φf =
3

mv ∫
𝜔 Φf 𝝃 dV ′, (62)

where

Φf = p′
f − pf , (63)

and pf and p′
f are fracture fluid pressures at fracture points x and x′, respectively.

In summary, in the proposed fracturing unsaturated periporomechanics the fundamental unknowns are displace-
ment and fluid pressures in the bulk and fracture space. For a bulk material point, the governing equations consist of
the equation of motion and the mass balance equation, that is, (1) and (3). For a fracture material point, the governing
equations are the equation of motion, the mass balance equation in the bulk, and the mass balance equation of fluid flow
in fracture space, that is, (51), (3), and (57). For boundary conditions, the fictitious boundary layer/volume method is
adopted to apply essential boundary conditions (i.e., displacement and pore fluid pressure) and natural boundary condi-
tions (i.e., effective force and fluid flux) (see References 22-24 and 28). We refer to the literature for alternative methods
of imposing boundary conditions in peridynamics (e.g., References 56 and 71). In the following section, we present an
implicit fractional step algorithm to solve the coupled governing equations of fracturing unsaturated periporomechanics.

3 NUMERICAL IMPLEMENTATION

3.1 Fractional step method

The formulated unsaturated fracturing periporomechanics is numerically implemented through the fractional
step/staggered algorithm with a two-stage undrained operator split25,26,57,59 and mixed meshfree method.24 The two-stage
operator split converts the coupled fracturing periporomechanics problem into an undrained mechanical problem and an
unsaturated fluid flow problem in the deformed solid configuration. We note that the drained operator split that involves
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F I G U R E 5 Flowchart for the implicit fractional step algorithm for fracturing unsaturated periporomechanics

simply freezing the fluid pressure during the mechanical stage is only conditionally stable.58,72 The undrained opera-
tor split preserves the contractivity of the original coupled problem and is unconditionally stable.59 It is noted that both
monolithic and staggered approaches can be exploited to solve the fracturing unsaturated periporomechanics model
in this study. In the monolithic approach, the full system of coupled algebraic equations is solved simultaneously at
each time step. With an implicit time integration scheme, it is unconditionally stable and preserves the strong physical
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Algorithm 1. Global fractional-step time integration scheme for fracturing porous media

1: procedure Given un,pw,n,pf ,n, tn and Δt, Compute u, pw and pf
2: t = tn + Δt
3: while t ≤ tfinal do
4: Apply boundary conditions
5: Compute the effective force and fluid force via Algorithm 2.
6: Compute the balance of momentum residual u,0

7: Set k = 0 and tol = 10−6

8: if |u,0|>tol then
9: while |u,k|∕|u,0|>tol do

10: Construct the tangent operator for balance of momentum 
u,k =

[
𝜕u,k∕𝜕Δuk

]
11: Solve the linear system 

u,k𝛿Δuk+1 = −u,k for 𝛿Δuk+1

12: Update uk+1, u̇k+1 and ük+1 using (64), (65), and (66)
13: Update the effective force and fluid force via Algorithm 2
14: Update the residual u,k+1

15: Set k ← k + 1
16: end while
17: end if
18: Update the list of broken bonds and fracture points via Algorithm 3
19: Compute the fluid flow in the bulk and fracture via Algorithm 4
20: Compute the balance of mass residual pf ,0 = {p,0;f ,0}
21: Set k = 0
22: if |pf ,0|>tol then
23: while |pf ,k|∕|pf ,0|>tol do
24: Construct the tangent pf ,k =

[
{𝜕pf ,k∕𝜕Δpk

w}, {𝜕
pf ,k∕𝜕Δpk

f }
]

25: Solve the linear system 
pf ,k{𝛿Δpw; 𝛿Δpf }k+1 = −{p;f }k for {𝛿Δpw; 𝛿Δpf }k+1

26: Update pk+1
w and pk+1

f using (81) and (82)
27: Update the fluid flow in the bulk and fracture via Algorithm 4
28: Update the residual pf ,k+1

29: Set k ← k + 1
30: end while
31: end if
32: Update un ← u, pw,n ← pw, pf ,n ← pf
33: end while
34: end procedure

coupling between the phases. However, it can lead to large complex systems that may be asymmetric and cannot leverage
the different phenomenological time scales of individual phases.25 We refer to the distinguished literature (e.g., Refer-
ences 25 and 26) for an in-depth discussion of the monolithic and fractional step/staggered algorithms for numerically
implementing coupled multiphysics frameworks for porous media.

Figure 5 provides a flowchart of the proposed implicit fractional step algorithm, and Algorithm 1 presents a detailed
step-by-step procedure.

3.1.1 Time discretization of the equation of motion under undrained condition

In the mechanical stage, the equation of motion will be solved first under undrained condition through Newton’s
method.

At time step n, un, u̇n, ün are known. Let Δun+1 = un+1 − un, in line with Newmark’s method73 the displacement,
velocity, and acceleration of the solid skeleton at time step n + 1 can be written as
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F I G U R E 6 Schematic representation of (A) a point in the bulk and (B) a fracture point adjacent to the crack

Algorithm 2. Compute the effective force and fluid force

1: procedure Given uk, u̇k, ük, 𝜚
n
, Γn Construct effective force vector 𝓣k and fluid force vector 𝓣k

w
2: for all points do
3: Compute weighted volume mv and shape tensor K
4: Compute deformation gradient F̃

k
using (12)

5: Compute effective Piola-Kirchhoff stress P
k

using constitutive model
6: Compute volume coupling term 𝓥k using (100)

7: Compute force states T
k
, Tk

w and Tk
f using (46), (47), and (53)

8: Compute bulk fluid pressure rate ̇̃pk
w using (72)

9: Compute fracture fluid pressure rate ̇̃pk
f using (73)

10: Compute bulk fluid pressure p̃k
w using (74) and fracture fluid pressure p̃k

f using (75)
11: Compute effective force vector 𝒯 k using (94)
12: Compute fluid force vector 𝒯 k

w using (95)
13: end for
14: end procedure

un+1 = un + Δun+1, (64)

u̇n+1 = 2𝛽2

𝛽1Δt
Δun+1 −

(
2𝛽2

𝛽1
− 1

)
u̇n − Δt

(
𝛽2

𝛽1
− 1

)
ün, (65)

ün+1 = 2
𝛽1Δt2 Δun+1 −

2
𝛽1Δt

u̇n −
(

1
𝛽1

− 1
)

ün, (66)

where 𝛽1 and 𝛽2 are numerical integration parameters. For unconditional stability,26 𝛽1 ≥ 𝛽2 ≥ 0.5.
Figure 6 presents a schematic of (a) a material point in the bulk and (b) a material point adjacent to the fracture. At

tn+1, the residual of the equation of motion at a bulk point reads

ru
n+1 = 𝜌ü − ∫

𝜚
n

(
T − T

′)
dV ′ + ∫

(
SrTw − S′

rT′
w
)

dV ′ − 𝜌g. (67)

For a fracture point, the residual of the equation of motion (from 51) is expressed as

ru
n+1 = 𝜌ü − ∫

𝜚
n

(
T − T

′)
dV ′ + ∫

(1 − Γn)
(

SwTw − S′
wT′

w
)

dV ′ + ∫
Γn

(
Sf Tf − S′

f T′
f

)
dV ′ − 𝜌g, (68)
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where

Γn =

{
1, if x & x′ are fracture points at tn,

0, otherwise.
(69)

We note that in (67) and (68) the subscript n + 1 of variables at time step n + 1 is omitted for brevity. This notation is
followed in the remaining section unless otherwise for clarity. The fluid pressure terms in (67) and (68) are determined
from the explicit fluid pressure predictors under undrained condition that are defined in what follows. At time step n,
pw,n and pf ,n, and their rate forms, ṗw,n and ṗf ,n are known. Let p̃w,n+1 and p̃f ,n+1 be the explicit fluid pressure predictors at
time step n + 1 under undrained condition. It follows from Newmark’s method24,26 that the rate forms of p̃w,n+1 and p̃f ,n+1
can be written as

̇̃pw,n+1 = 1
𝛽3Δt

Δp̃w,n+1 −
(

1
𝛽3

− 1
)

ṗw,n, (70)

̇̃pf ,n+1 = 1
𝛽3Δt

Δp̃f ,n+1 −
(

1
𝛽3

− 1
)

ṗf ,n, (71)

where Δp̃w,n+1 = p̃w,n+1 − pw,n and Δp̃f ,n+1 = p̃fn+1 − pf ,n, and 𝛽3 is an integration parameter (𝛽3 ≥ 0.5 for unconditional
stability). Under undrained condition, p̃w,n+1 and p̃f ,n+1 can be determined from the mass balance equations of unsaturated
fluid flow in the bulk and fracture as follows.

̇̃pw,n+1 = −
(
𝜙
𝜕Sr,n

𝜕pw,n

)−1 [
Sr,n ∫

𝜚
n

(̇ − ̇ ′
)

dV ′ + 1
𝜌w ∫

𝜚
n

(
Q − Q′

)
n

dV ′ +s,n

]
, (72)

̇̃pf ,n+1 = −
(
𝜕Sr,f

𝜕pf

)−1

n

[
1
𝜌w ∫

Γn

(
Q

f
− Q′

f

)
n

dV ′ −s,n

]
= ṗf ,n. (73)

We note that s,n = 0 in (72) at a mixed point in the bulk. Thus, (72) represents the rates of water pressure predictors at
the bulk and fracture points. Then, it follows from (70)–(73) that the explicit fluid pressure predictors can be written as

p̃w,n+1 = 𝛽3Δt ̇̃pw,n+1 + (1 − 𝛽3) Δtṗw,n + pw,n, (74)

p̃f ,n+1 = 𝛽3Δt ̇̃pf ,n+1 + (1 − 𝛽3) Δtṗf ,n + pf ,n

= Δtṗf ,n + pf ,n. (75)

The fluid pressure predictors from (74) and (75) are then used to determine the fluid force states in (67) and (68). Substi-
tuting (64)–(66) into (67) and (68) and using (74) and (75), Δun+1 can be solved by Newton’s method in what follows (see
Algorithm 2). Let k be the iteration number


u,k+1 = 

u,k +u,k𝛿Δuk+1 ≈ 0, (76)

where 
u is the global residual vector of (68) and 

u is the global tangent operator that is defined as

u,k = 𝜕u,k

𝜕Δuk
. (77)

Solving (76) we obtain

𝛿Δuk+1 = −(k)−1


u,k. (78)

Finally, we have

Δuk+1 = Δuk + 𝛿Δuk+1. (79)
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At the end of the mechanical stage, the broken bonds and indicator functions (i.e., 69) are updated following
Algorithm 3. The energy dissipation of individual bonds is written as

𝜛n+1 = 𝜛n +
(

T − T
′)

n+1
Δ𝜼

= 𝜛n +
(

T − T
′)

n+1
(Δu′ − Δu). (80)

The database of damaged bonds is updated for bonds with𝜛 > 𝜛cr via (38) and then 𝜑 is updated at each material point.
Using 𝜑, the database of fracture points is updated.

Algorithm 3. Update the database of broken bonds and fracture points

1: procedure Given T and Δ𝜼 Update indicator 𝜚 and damage variable 𝜑
2: for all points do
3: for each neighbor do
4: Compute bond energy 𝜛 using (80)
5: if 𝜛>𝜛cr then
6: Update 𝜚 using (38) to reflect bond damage status
7: Update damage variable 𝜑 using (39)
8: Sum the energy in the bond into the total energy dissipated at the point
9: end if

10: end for
11: if 𝜑 ≥ 𝜑cr then
12: set material point x as fracture point
13: end if
14: end for
15: end procedure

The solution of the mechanical stage and the rate forms of the fluid pressure predictors at time tn+1 from the
mechanical solver are passed to the unsaturated fluid flow solver for the fluid flow stage at time step tn+1.

3.1.2 Time discretization of the mass balance equation in the deformed configuration

Given pw,n, pf ,n, ṗw,n, ṗf ,n, and u̇n+1, the unsaturated fluid flow stage solves pw,n+1 and pf ,n+1 in the updated solid config-
uration (i.e., un+1) at tn+1 using Newton’s method. Let Δpw,n+1 = pw,n+1 − pw,n and Δpf ,n+1 = pf ,n+1 − pf ,n. It follows from
Newmark’s method73 that

pw,n+1 = pw,n + Δpw,n+1, (81)
pf ,n+1 = pf ,n + Δpf ,n+1, (82)

ṗw,n+1 = 1
𝛽3Δt

Δpw,n+1 −
(

1
𝛽3

− 1
)

ṗw,n, (83)

ṗf ,n+1 = 1
𝛽3Δt

Δpf ,n+1 −
(

1
𝛽3

− 1
)

ṗf ,n. (84)

At tn+1, the residuals of the mass balance equations can be written as

rp
n+1 = 𝜙

(
𝜕Sr

𝜕pw

)
ṗw + 1

𝜌w ∫
𝜚
(

Q − Q′
)

dV ′ + Sk
r ∫

𝜚
(̇ − ̇ ′

)
dV ′ +s, (85)

rf
n+1 =

(
𝜕Sr,f

𝜕pf

)
ṗf +

1
𝜌w ∫

Γ
(

Q
f
− Q′

f

)
dV ′ −s. (86)
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Algorithm 4. Compute the unsaturated fluid flow in the bulk and fracture

1: procedure Given pk
w,pk

f , u̇, 𝜚, Γ Construct bulk fluid flow 𝓠k and fracture flow 𝓠k
f

2: for all points do
3: Compute pressure potential states Φk

4: Compute weighted volume mv and shape tensor K
5: Compute pressure gradient ∇̃Φ

k
using (15)

6: Compute relative permeability kr,k using (18)
7: Compute flux vector qk using (15)
8: Compute flow states Qk using (14)
9: Compute bulk fluid flow 𝒬k using (99)

10: end for
11: for all fracture points do
12: Compute fracture width af using (45)
13: Compute fracture permeability kf using (61)
14: Compute k

s using (56)
15: for each neighboring fracture point do
16: Compute fracture pressure states Φk

f using (63)

17: Compute fracture pressure gradient ∇̃Φ
k
f and fracture flux qk

f using (62) and (59)
18: Compute fracture flow states Qk

f
using (58)

19: end for
20: Compute fracture flow 𝒬k

f using (103) and source term 𝒬k
s using (101)

21: end for
22: end procedure

Substituting (81)–(84) into (85) and (86), Δpw,n+1 and Δpf ,n+1 can be solved by Newton’s method in what follows (see
Algorithm 4 for details). Again, let k be the iteration number{


p,k+1


f ,k+1

}
=

{


p,k


f ,k

}
+

pf ,k

{
𝛿Δpk+1

w

𝛿Δpk+1
f

}
≈ 0, (87)

where p and 
f are the global residual vectors of the mass balance equations of the bulk and fracture, respectively, Δpw

and Δpf are the global fluid pressure increments in the bulk and fracture, respectively, and 
pf is the coupled tangent

operator of the mass balance equations


pf ,k =

⎧⎪⎪⎨⎪⎪⎩

𝜕p,k

𝜕Δpk
w

𝜕p,k

𝜕Δpk
f

𝜕f ,k

𝜕Δpk
w

𝜕f ,k

𝜕Δpk
f

⎫⎪⎪⎬⎪⎪⎭
. (88)

Solving (87) gives {
𝛿Δpk+1

w

𝛿Δpk+1
f

}
= −(pf ,k)−1

{


p,k


f ,k

}
. (89)

It is noted that ̇̃pw,n+1 and ̇̃pf ,n+1 from the undrained mechanical stage are used as the initial values of ṗw,n+1 and ṗf ,n+1
(i.e., k = 0). Finally, we have

Δpk+1
w = Δpk

w + 𝛿Δpk+1
w , (90)

Δpk+1
f = Δpk

f + 𝛿Δpk+1
f . (91)
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3.2 Mixed meshfree spatial discretization

The formulated fracture periporomechanics model is discretized in space by a mixed Lagrangian–Eulerian meshfree
scheme.24 The uniform mixed material points are used in this study. Let i be the number of mixed material points in
the horizon of a mixed material point i,  be the number of total mixed material points in the problem domain, and 𝒜
be the assembly operator.24

3.2.1 Spatial discretization of the equation of motion

It follows from (67) and (68) that the global residual vector of the equation of motion 𝓡u at time step n + 1 can be
constructed as24


u
n+1 = 𝒜

i=1
(
ℳi +𝒯s,i −𝒯w,i

)
, (92)

where ℳi, 𝒯s,i, and 𝒯w,i are the inertial and gravity load, the effective force, and the fluid force at the mixed material
point i.

ℳi =
[
𝜌s(1 − 𝜙i) + 𝜌wSr,i𝜙i

]
(üi − g)Vi, (93)

𝒯s,i =
i∑
j=1
𝜚

ij,n

(
Tij − Tji

)
VjVi, (94)

𝒯w,i =
i∑
j=1

(1 − Γij,n)
(

Sr,iTw,ij − Sr,jTw,ji

)
VjVi +

i∑
j=1

Γij,n

(
Srf ,iTf ,ij − Srf ,jTf ,ji

)
VjVi, (95)

where j denotes material points in the horizon of the mixed material point i.

3.2.2 Spatial discretization of the mass balance equation

From (85) and (86), the global residual vectors of the mass balance equations 
p and 

f at time step n + 1 can be
respectively written as

𝓡p
n+1 = 𝒜

i=1(𝒳i + 𝒬i +𝒱i + 𝒬s,i), (96)

𝓡f
n+1 = 𝒜

f

i=1(𝒳f ,i + 𝒬f ,i − 𝒬s,i), (97)

where f is the number of fracture points and

𝒳i = −Δt𝜙i
𝜕Sr,i

𝜕si
ṗw,iVi, (98)

𝒬i =
Δt
𝜌w

i∑
j=1
𝜚

ij,n+1

(
Q

ij
− Q

ji

)
VjVi, (99)

𝒱i = ΔtSr,i

i∑
j=1
𝜚

ij,n+1

(̇ ij − ̇ ji

)
VjVi, (100)

𝒬s,i = Δt
[
−krkw

𝜇w

(pf ,i − pw,i

li

)]
Ai, (101)

𝒳f ,i = −Δt
𝜕Srf ,i

𝜕pf , i
ṗf ,iVi, (102)

𝒬f ,i =
Δt
𝜌w

i∑
j=1

Γij,n+1

(
Q

f ,ij
− Q

f ,ji

)
VjVi. (103)
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4 NUMERICAL EXAMPLES

4.1 Example 1: Mode I crack propagation

In this example, we simulate mode I crack propagation and unsaturated fluid flow in a porous body under two dimensions.
Figure 7 depicts the problem geometry, boundary conditions, and loading protocol. The pre-existing crack is modeled by
eliminating interaction between material points across the crack plane.56 All fluid phase boundaries of the specimen are
assumed impermeable. The problem domain is discretized into 20,000 mixed material points with d = 2.5 mm.

The solid phase is modeled using an isotropic elastic correspondence constitutive model.22,23 This applies to all subse-
quent examples in this section. It is assumed that 𝜌s = 2000 kg/m3, 𝜌w = 1000 kg/m3, 𝜇w = 1 × 10−3 Pa s, initial porosity
𝜙0 = 0.25 and Gc = 95 J/m2. Unless otherwise noted, these parameters are also used in all subsequent examples. The
remaining material parameters in Reference 74 are K = 13.46 × 106 kPa, 𝜇s = 10.95 × 106 kPa, kw = 6 × 10−21 m2, n =
1.7844, sa = 18.6 × 103 kPa. The horizon 𝛿 = 3.05d. The stabilization parameter G= 1.0.24 As in Reference 74, the specimen
is prescribed zero initial effective stress and water pressure. The loading rate u̇y = 2.35 × 10−5 mm/s. The total loading
time t = 2000 s with the time increment Δt = 1 s. We investigate the influence of 𝛿 and m = 𝛿∕d on the crack propagation
and unsaturated fluid flow. The loading curves are compared with the numerical results from the extended finite element
method (XFEM) in Reference 74.

4.1.1 Influence of 𝛿

The horizon 𝛿 plays a critical role in modeling the actual behavior of materials using peridynamics. However, its cali-
bration for specific applications is still an open question in peridynamics. To examine the sensitivity of the results to the
horizon 𝛿, we run the simulations with three values of horizon, 𝛿 = 11.3, 7.5, and 6 mm assuming m = 3. The corre-
sponding spatial discretizations consist of 9000, 20,000, and 36,000 mixed points, respectively. All other parameters are
identical. The results are presented in Figures 8–10.

Figure 8 plots the loading curves from the PPM simulations and the result from the XFEM simulation in Reference 74.
The results in Figure 8 show that the loading curves from the simulations in this study are consistent with the results from
the XFEM method. The loading curve for the simulation with 𝛿 = 11.3 mm deviates from the results with 𝛿 = 7.5 mm
and 𝛿 = 6 mm. Recall that the micromechanical modulus C in (7) is an inverse function of the horizon. The smaller peak
load of the simulation using 𝛿 = 11.3 could be related to C in the stabilization term. Figures 9 and 10 plot the contours
of damage variable 𝜑 and water pressure at uy = 2.5 × 10−2 mm, respectively. The results in Figure 9 show that 𝛿 could
slightly affect the damage zone and crack propagation length. Specifically, the lengths of the new crack are 93, 97, and 98
cm for the simulations with 𝛿 = 11.3, 7.5, and 6.0 mm, respectively. Figure 10 shows that the water pressure is negative

F I G U R E 7 Problem setup for Example 1
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F I G U R E 8 Comparison of the loading curves from the simulations using three values of 𝛿 and the XFEM result74

F I G U R E 9 Contours of the damage variable 𝜑 from the simulations with (A) 𝛿 = 11.3 mm, (B) 𝛿 = 7.5 mm, and (C) 𝛿 = 6 mm, at
uy = 2.5 × 10−2 mm (×50)

F I G U R E 10 Contours of water pressure (MPa) from the simulations with (A) 𝛿 = 11.3 mm, (B) 𝛿 = 7.5 mm, and (C) 𝛿 = 6.0 mm, at
uy = 2.5 × 10−2 mm (×50)

(i.e., matric suction) around the propagated crack for all three cases. Consistent with the results in Figure 9, the value of 𝛿
affects the distribution of negative water pressure around the newly formulated crack. The negative water pressure near
the new crack can be caused by the competing factors between the crack opening space and the amount of water flowing
into the fracture space. Following this reasoning, the negative water pressure could be generated by the crack opening
and dilation in the bulk around the crack.

4.1.2 Influence of m

The ratio m = 𝛿∕d is a measure of the number of mixed points within the horizon of a mixed point. It is another factor
that could affect the numerical results with peridynamics. To study the influence of m on the results, we rerun the simu-
lations with m = 2, 3, and 4 and 𝛿 = 7.5 mm. The spatial discretizations consist of 9000, 20,000, and 36,000 mixed points,
respectively. All other parameters remain the same.

Figure 11 plots the loading curves of the three simulations and the XFEM result.74 Figures 12 and 13 compare the
contours of damage variable and water pressure, respectively, at uy = 2.5 × 10−2 mm.
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F I G U R E 11 Comparison of the loading curves from the PPM simulations using a constant 𝛿 = 7.5 mm and three m-ratios and the
XFEM result74

F I G U R E 12 Contours of the damage variable 𝜑 from the simulations with (A) m = 2, (B) m = 3, and (C) m = 4 at uy = 2.5 × 10−2 mm
(×50)

F I G U R E 13 Contours of water pressure (MPa) from the simulations with (A) m = 2, (B) m = 3, and (C) m = 4 at uy = 2.5 × 10−2 mm
(×50)

In the early stage, the loading curves in Figure 11 are identical for all simulations. However, the simulations using
m = 3 and m = 4 predict larger peak loads than the XFEM result. As shown in Figure 12A–C, there is a noticeable decrease
in crack length from the simulations using larger values of m. For instance, the crack length is 135 mm from m = 2 and
the crack length is 90 mm from m = 4. These differences in crack length are reflected in the force plot (Figure 11), for
example, a larger peak load for a larger value of m. It is noted that previous studies conducted using PPM24 or hybrid
FEM-PD (peridynamics)44,55 have successfully used m = 2 to reproduce static and dynamic coupling phenomena in the
continuum analysis of porous media. From this example, it appears that m = 3 is an appropriate choice when modeling
mode I crack propagation in unsaturated porous media.

4.2 Example 2: Mode II crack propagation

In this example, we model mode II crack propagation by simulating shear loading of a pre-cracked porous body as inspired
by an example in Reference 13. We note that the example in Reference 13 was simulated by a saturated poromechanics
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F I G U R E 14 Problem setup for Example 2

F I G U R E 15 Contours of the damage variable 𝜑 at (A) ux = 2.0 × 10−2 mm, (B) ux = 2.5 × 10−2 mm, and (C) ux = 3.0 × 10−2 mm (×50)

model. Figure 14 depicts the problem domain, boundary conditions, and loading protocol. All fluid phase boundaries are
assumed impermeable. The porous body is discretized into 19,200 mixed points with d = 0.5 mm. All material parameters
are the same as adopted in Example 1. The specimen is prescribed zero initial effective stress and water pressure as
assumed in Reference 13. As shown in Figure 14, the loading rate u̇x = 1 × 10−3 mm/s. The total loading time t = 30 s and
Δt = 0.02 s. We first present the base simulation results to show the crack propagation and water pressure variation in the
specimen under the shear loading. Figure 15 presents the snapshots of the contour of the damage variable𝜑 superimposed
on the deformed configuration at three loading stages. Figure 16 plots the contours of water pressure at three load stages.
The results in Figure 15 indicate that the crack under the shear loading propagates upward following a slightly curved
path. As shown in Figure 16, the water pressure is negative (i.e., matric suction) around the newly propagated crack and
the area above the initial crack. Next, we repeat the base simulation with different horizons and m to study the influence
of 𝛿 and m on the numerical results.

4.2.1 Influence of 𝛿

To study the influence of 𝛿 on the mode II crack propagation, we conduct the simulations using three different horizons
𝛿 = 1.5, 1.2, and 0.9 mm, respectively, with m = 3. The spatial discretizations consist of 19,200, 31,000, and 53,000 mixed
material points, respectively. The results are shown in Figures 17–19.

Figure 17 presents the contours of the damage variable 𝜑 for the three simulations superimposed on the deformed
configuration at ux = 6 × 10−2 mm. The results in Figure 17 show that the crack propagation follows a similar path for
the three simulations. This is consistent with the results in Figure 19 that compare the crack path for the three cases.
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F I G U R E 16 Contours of water pressure (kPa) at (A) ux = 2.0 × 10−2 mm, (B) ux = 2.5 × 10−2 mm, and (C) ux = 3.0 × 10−2 mm (×50)

F I G U R E 17 Contours of the damage variable 𝜑 from the simulations using (A) 𝛿 = 1.5 mm, (B) 𝛿 = 1.2 mm, and (C) 𝛿 = 0.9 mm at
ux = 3 × 10−2 mm (×50)

Figure 18 plots the contours of water pressure in the problem domain for the three simulations. For all three cases, the
water pressure around the crack and above the initial crack is negative (matric suction) and the water pressure below the
initial crack is positive.

4.2.2 Influence of m

To study the influence of m on the mode II crack propagation in porous media, we conduct simulations using m = 3,
4, and 5 with 𝛿 = 1.5 mm. The discretizations consist of 19,200, 31,000, and 53,000 mixed material points, respectively.
Figure 20 presents the contours of damage for the simulations at ux = 3 × 10−2 mm. Figure 21 plots the contours of water
pressure for the simulations. The crack paths from the three cases are compared in Figure 22.
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F I G U R E 18 Contours of water pressure (kPa) from the simulations using (A) 𝛿 = 1.5 mm, (B) 𝛿 = 1.2 mm, and (C) 𝛿 = 0.9 mm at
ux = 3 × 10−2 mm (×50)

F I G U R E 19 Comparison of the crack path from the simulations using different 𝛿 and m = 3

F I G U R E 20 Contours of the damage variable 𝜑 from the simulations using (A) m = 3, (B) m = 4, and (C) m = 5 at ux = 3 × 10−2 mm
(×50)
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F I G U R E 21 Contours of water pressure (kPa) from the simulations using (A) m = 3, (B) m = 4, and (C) m = 5 at ux = 3 × 10−2 mm (×50)

F I G U R E 22 Comparison of the crack path from the simulations using (A) m = 3, (B) m = 4, and (C) m = 5 at ux = 3 × 10−2 mm

It is indicated from Figure 22 that the choice of m has a mild impact on the crack propagation path. However, the
value of m has a noticeable impact on the water pressure in the problem domain as shown in Figure 21. Comparison of
the results in Figures 19 and 22 shows that m = 3 could be a sufficient choice for modeling unguided mode II cracks in
variably saturated porous media. We note that more studies should be conducted to guide the appropriate choice of m for
realistically modeling arbitrary cracks in unsaturated porous media through the proposed framework.

4.3 Example 3: Wing crack propagation

In this example, we simulate the wing crack propagation in an unsaturated porous medium through the implemented
unsaturated fracturing periporomechanics model. Figure 23 depicts the problem geometry and loading protocol. The
problem domain is discretized into 20,000 uniform mixed material points with d= 1 mm. The material parameters adopted
are K = 70 × 104 kPa, 𝜇s = 15 × 104 kPa, 𝜙0 = 0.33, kw = 1 × 10−15 m2, n = 1.5, sa = 500 kPa. The horizon 𝛿 = 3.05d. The
porous body is prescribed an initial uniform effective stress −49.5 kPa and initial suction 50 kPa (i.e., the zero initial total
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F I G U R E 23 Problem setup for Example 3

F I G U R E 24 Plot of the loading curve over applied horizontal displacement

stress). Sr = 0.99 from (17). The loading rate u̇ = 1.41 × 10−5 mm/s as shown in Figure 23. The total loading time t = 3000
s and Δt = 1 s.

Figure 24 plots the loading curve versus the applied horizontal displacement. The vertical dash lines denote the applied
displacements ux = uy = (a) 1.0 × 10−2 mm, (b) 1.1 × 10−2 mm, and (c) 1.2 × 10−2 mm. The snapshots of contours of the
damage variable 𝜑 and water pressure at these three loading stages are presented in Figures 25 and 26, respectively. The
results in Figure 25 show that the propagation path of the wing cracks is parallel to the diagonal line of the specimen.
This crack propagation path matches the experimental result and the wing crack propagation in a single-phase solid
under the same loading condition through peridynamics (e.g., References 53 and 56). The contours of water pressure in
Figure 26 indicate that the crack propagation has led to the increase of matric suction around the wing cracks. This may
imply that the formation rate of new fracture space is larger than the rate of the volume of water flowing into the newly
formed fracture space. Therefore, the degree of saturation in the fracture space is smaller than that in the bulk (see 17).
The overall low hydraulic conductivity (i.e., intrinsic permeability multiplied by the relative permeability) in the bulk
under unsaturated condition could be a contributing factor for the low flow rate of water from the bulk into the fracture
space. In what follows, we study the influence of initial matric suction and intrinsic permeability on the wing crack
propagation by repeating the simulation with different initial matric suctions and intrinsic permeabilities while keeping
other parameters unchanged.
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F I G U R E 25 Contours of the damage variable 𝜑 superimposed on the deformed configuration at (A) ux = 1.0 × 10−2 mm, (B)
ux = 1.1 × 10−2 mm, and (C) ux = 1.2 × 10−2 mm (×50)

F I G U R E 26 Contours of water pressure (kPa) superimposed on the deformed configuration at (A) ux = 1.0 × 10−2 mm, (B)
ux = 1.1 × 10−2 mm, and (C) ux = 1.2 × 10−2 mm (×50)

F I G U R E 27 Comparison of the loading curves from the simulations with different initial matric suctions

4.3.1 Influence of initial matric suction

To study the influence of initial matric suction on the wing crack propagation, the simulations were repeated with another
two values of initial matric suction 100 and 200 kPa. To maintain the zero initial total stress condition, the corresponding
initial effective stress is −96 and −180 kPa, respectively. The values of degree of saturation Sr are respectively 0.96 and
0.9. All other parameters remain unchanged.

Figure 27 plots the loading curves from the simulations with the three initial matric suctions. The initial matric suction
has a mild impact on the peak loading. Once the crack propagates, the reaction load for the specimen with larger matric
suction is generally larger than that with smaller initial matric suction over the loading process. This could be due to
the larger tensile strength of the specimen with larger matric suction. Figures 28 and 29 present the contours of damage
variable and water pressure superimposed on the deformed configuration at the same loading stage. The comparison in
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F I G U R E 28 Contours of the damage variable 𝜑 from the simulations with three initial matric suctions (A) s1 = 50 kPa, (B) s2 = 100
kPa, and (C) s3 = 200 kPa at ux = 1.2 × 10−2 mm (×50)

F I G U R E 29 Contours of water pressure (kPa) from the simulations with three initial matric suctions (A) s1 = 50 kPa, (B) s2 = 100 kPa,
and (C) s3 = 200 kPa at ux = 1.2 × 10−2 mm (×50)

F I G U R E 30 Comparison of the loading curves for the simulations with three intrinsic permeabilities

Figure 28 shows that the length of the wing cracks is correlated with the initial matric suction under the same mechanical
loading stage. The wing cracks are shorter in the specimen with larger initial matric suction. The magnitude of the initial
suction does not impact the direction of the wing cracks due to the isotropic assumption. As shown in Figure 29, matric
suction increases around the wing cracks for the simulations with different initial matric suctions.

4.3.2 Influence of intrinsic permeability

We study the influence of intrinsic permeability on the wing crack propagation in unsaturated porous media by comparing
the results from the simulations with three intrinsic permeabilities k1 = 1 × 10−13 m2, k2 = 1 × 10−14 m2, and k3 = 1 ×
10−15 m2. Figure 30 plots the loading curves from the three simulations. The loading curves are almost identical before
the peak value from the simulation with k1 = 1 × 10−13 m2. After that the loading curves for the three simulations diverge
from each other. For the two simulations with smaller intrinsic permeabilities the specimen has a larger peak load. For all



MENON and SONG 2865

F I G U R E 31 Contours of the damage variable 𝜑 for the simulations with three intrinsic permeabilities (A) k1 = 1 × 10−13 m2, (B)
k2 = 1 × 10−14 m2, and (C) k3 = 1 × 10−15 m2 on the deformed configuration at ux = 1.2 × 10−2 mm (×50)

F I G U R E 32 Contours of water pressure for the simulations with three intrinsic permeabilities (A) k1 = 1 × 10−13 m2, (B)
k2 = 1 × 10−14 m2, and (C) k3 = 1 × 10−15 m2 on the deformed configuration at ux = 1.2 × 10−2 mm (×50)

F I G U R E 33 Problem setup for Example 4

three cases, the crack starts propagating at the peak load. Figures 31 and 32 plot the snapshots of the contours of damage
variable and water pressure for the three simulations at the same loading stage, respectively. The results show that intrinsic
permeability could have a dramatic influence on the length of wing cracks, as well as the matric suction around the wing
cracks. As shown in Figure 31, at the same loading stage the length of the wing cracks from the simulation with smaller
intrinsic permeability is smaller than the simulation with larger intrinsic permeability. The larger matric suction has
generated around the wing crack for the simulation with smaller intrinsic permeability as shown in Figure 32. The larger
matric suction may explain the reduced wing crack propagation for the simulation with smaller intrinsic permeability.
The results have demonstrated that intrinsic permeability could have a significant impact on the wing crack propagation
and the matric suction around the wing crack in unsaturated porous media.

4.4 Example 4: Nonplanar cracking in an unsaturated parallelepiped soil specimen

In this example, we simulate the formation of nonplanar cracks in an unsaturated parallelepiped soil specimen triggered
by matric suction variations. Figure 33 sketches the problem setup and boundary conditions. The problem domain is
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F I G U R E 34 Plot of the total energy dissipation over time due to the crack formation

F I G U R E 35 Contours of the energy dissipation density due to bond breakage (MJ/m3) superimposed on the deformed configuration at
(A) t = 1.2 h, (B) t = 1.8 h, and (C) t = 2.3 h

discretized into 20,000 mixed points with d= 1.8 mm. The material parameters adopted are K = 5 × 103 kPa,𝜇s = 2.1 × 103

kPa,𝜙0 = 0.1, Gc = 0.5 J/m2, kw = 1 × 10−14 m2, n= 1.25, sa = 100 kPa. The horizon 𝛿 = 3.05 d. The initial uniform effective
stress in the specimen is assumed −47 kPa. The initial matric suction is assumed 50 kPa and Sr = 0.94 from (17). In this
case, the initial total stress in the specimen is null. A water flow boundary with a constant density rate qy = 1.5 kg/(m3

s) is imposed on the top surface through a fictitious boundary layer with the thickness of 𝛿. Specifically, this constant
flow density rate is assigned on all the material points in the fictitious boundary layer. The total flow rate on the top
boundary is equal to the flow density rate qy multiplied by the volume of the boundary layer. All other fluid boundaries
are impermeable. The total simulation time t = 3 h and Δt = 1 s.

First, we present the energy dissipation characteristics due to the formation of nonplanar cracks in the specimen. We
note that the dissipated energy due to bond breakage is determined from (37) based on the effective force state concept. The
dissipated energy density represents the energy consumed due to bond breakage at a material point. Figure 34 shows the
total energy dissipation over the simulation time due to bond breakage. Here the total energy dissipation in the specimen
is defined as the summation of the energy dissipation at all fracture points. Figure 35 presents the snapshots of the contour
of dissipated energy associated with the bond breakage and the formation of nonplanar cracks at three load steps denoted
in Figure 34. The results demonstrate that the energy dissipation rate due to bond breakage has increased dramatically
upon the inception and propagation of cracks.

Second, we present the zoom-in snapshots of nonplanar crack topology and the contour of matric suction in the
specimen. The results are shown in Figures 36–38. Figure 36 plots the contours of the horizontal displacement and the
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F I G U R E 36 Snapshots of the contour of the horizontal displacement ux (m) and zoom-in crack topology at (A) t = 1.2 h, (B) t = 1.8 h,
and (C) t = 2.3 h

F I G U R E 37 Snapshots of the contour of dissipation energy density (MJ/m3) superimposed on the zoom-in crack topology at (A) t =
1.2 h, (B) t = 1.8 h, and (C) t = 2.3 h

zoom-in crack topology at three time steps. Figure 37 depicts the snapshots of the dissipation energy density on the crack
surface in the deformed configuration. Two major nonplanar cracks have formed in the specimen due to the shrinkage in
the x direction. Figure 36 demonstrates that the two major cracks initiate on the top and side surfaces and then propagate
downward within the specimen. Figure 38 plots the contours of water pressure (or negative matric suction) on the crack
surface. The matric suction on the top surface is the largest due to the outward water flow boundary condition. From the
results in Figures 36 and 38, we could conclude that in this example the nonplanar cracks within the specimen have been
triggered by the increasing matric suction from the top surface. We note that the retention mechanism of water could play
an important role in crack growth75,76 that deserves further study, which is beyond the scope of this article. In summary,
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F I G U R E 38 Snapshots of the contour of water pressure (kPa) superimposed on the zoom-in crack topology in the deformed
configuration at (A) t = 1.2 h, (B) t = 1.8 h, and (C) t = 2.3 h

through this example we have demonstrated the efficacy of the proposed fracturing periporomechanics framework for
modeling unguided nonplanar cracking in unsaturated porous media.

5 CLOSURE

In this article, as a new contribution we have formulated and implemented an unsaturated fracturing periporomechan-
ics framework for unguided cracking in unsaturated porous media. In this new coupled periporomechanics paradigm
crack nucleation and propagation are modeled by an effective force based criterion that incorporates the effect of matric
suction on cracking. It is noted that crack formation is completely autonomous and requires no external criteria nor a
priori knowledge/assumption of the crack path. Unsaturated fluid flow in the fracture space is modeled via a simplified
formation in line with the unsaturated fluid flow in the bulk. A fractional step algorithm via the celebrated two-stage
operator split and a two-phase mixed meshless method are utilized to solve the coupled fracturing periporomechanics
paradigm. At each time step, an undrained deformation stage of the skeleton by fixing fluid flow is solved first, and then
unsaturated fluid mass transport is solved in the updated fractured skeleton configuration. The implementation of the
coupled fracturing periporomechanics paradigm has been validated using numerical examples based on the extended
finite element method in the literature. Through the numerical simulations, we have demonstrated the capability and
robustness of the proposed nonlocal poromechanics in modeling mode I and mode II crack propagation in unsatu-
rated porous media. The efficacy of the fracturing unsaturated periporomechanics paradigm for nonplanar cracks has
been demonstrated by modeling unguided cracking in a three-dimensional soil specimen triggered by matric suction
variations.
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