Taylor & Francis
Taylor & Francis Group

European Journal of Environmental and Civil Engineering

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tece20

Shear banding in unsaturated geomaterials
through a strong nonlocal hydromechanical model

Shashank Menon & Xiaoyu Song

To cite this article: Shashank Menon & Xiaoyu Song (2020): Shear banding in unsaturated
geomaterials through a strong nonlocal hydromechanical model, European Journal of
Environmental and Civil Engineering, DOI: 10.1080/19648189.2020.1797889

To link to this article: https://doi.org/10.1080/19648189.2020.1797889

@ Published online: 30 Jul 2020.

\]
CA/ Submit your article to this journal

||I| Article views: 7

A
& View related articles &'

_—

@ View Crossmark data (&

CrossMark

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=tece20


https://www.tandfonline.com/action/journalInformation?journalCode=tece20
https://www.tandfonline.com/loi/tece20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/19648189.2020.1797889
https://doi.org/10.1080/19648189.2020.1797889
https://www.tandfonline.com/action/authorSubmission?journalCode=tece20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tece20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/19648189.2020.1797889
https://www.tandfonline.com/doi/mlt/10.1080/19648189.2020.1797889
http://crossmark.crossref.org/dialog/?doi=10.1080/19648189.2020.1797889&domain=pdf&date_stamp=2020-07-30
http://crossmark.crossref.org/dialog/?doi=10.1080/19648189.2020.1797889&domain=pdf&date_stamp=2020-07-30

EUROPEAN JOURNAL OF ENVIRONMENTAL AND CIVIL ENGINEERING Taylor & Francis

https://doi.org/10.1080/19648189.2020.1797889 Taylor & Francis Group

‘ W) Check for updates‘

Shear banding in unsaturated geomaterials through a strong
nonlocal hydromechanical model

Shashank Menon and Xiaoyu Song

Engineering School of Sustainable Infrastructure & Environment, University of Florida, Gainesville, FL, USA

ABSTRACT ARTICLE HISTORY
We present a strong nonlocal hydromechanical model formulated based Received 30 December 2019
on state-based peridynamics for simulating strain localisation in unsatur- ~ Accepted 29 June 2020

ated geomaterials. The governing equations are integro-differential equa-
tions in which length scales are assumed for both the skeleton
deformation and pore fluid flow. Recently proposed hydromechanical cor- s

S . . . . geomaterials; strong
respondence principle is adopted to implement the classical local constitu- nonlocal; hydromechanical
tive model for the solid skeleton, and the generalised Darcy's law for model; coupled
unsaturated water flow into the nonlocal hydromechanical model.
Numerical simulations of shear bands in unsaturated geomaterials were
conducted to investigate the effect of the hydromechanical length scale
and the mechanical loading rate on the formation of shear bands. The
numerical results have shown that both the deformation and pore water
pressure are concentrated in the shear bands with a finite thickness. The
numerical results have demonstrated that both the hydromechanical
length scale and the mechanical loading rate affect the formation of shear
bands in unsaturated geomaterials and the peak value of the load capacity
of unsaturated geomaterials.
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1. Introduction

Shear banding or strain localisation is a significant issue in geomaterials (e.g. clay and sand) under vari-
ably saturated conditions because it signifies the failure of such materials (e.g. Borja, Song,
Rechenmacher, et al, 2013; Chang et al., 2009; Jrad et al., 2012; Song, 2014; Song, Wang, & Ye, 2018).
Shear banding in unsaturated geomaterials is of interest in a broad spectrum of fields, including geo-
physics, petroleum engineering (Li & Laloui, 2017), nuclear waste storage (Pardoen et al., 2015), and geo-
technical engineering (Likos et al, 2019; Song et al, 2017; Song, Wang, & Bate, 2018; Wang & Song,
2020). Unsaturated geomaterials are three-phase porous media that consist of a solid skeleton and two
immiscible fluid phases, i.e. pore water and pore air. In unsaturated geomaterials, the pore water pressure
is under tension. The difference between pore air pressure and pore water pressure is called matric suc-
tion. The degree of saturation is defined as the ratio between the volume of pore water and the total
volume of pore space. Both the matric suction and degree of saturation are critical variables in modeling
unsaturated geomaterials (Lu & Likos, 2004). For instance, unsaturated soil slope failure can be triggered
by the heavy rain-fall induced reduction of matric suction and increase of the degree of saturation
(Askrinejad et al., 2012). It has also been demonstrated that the heterogeneities of matric suction and the
degree of saturation of the water phase can trigger shear bands in unsaturated soils (Song & Borja,
2014a). Physically, shear banding in unsaturated geomaterials involves the intricate coupling processes of
the solid deformation and unsaturated fluid flow (Song, 2017). In the localised failure zone, not only the
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deformation of the solid phase but also the negative fluid pressure or matric suction can be concentrated
in narrow banded zones with a finite thickness provided the general plastic behavior of the geomaterial
is dilatant.

Hence, a fully coupled mathematical model is needed to incorporate the complex multiphysical proc-
esses for modeling shear banding in unsaturated geomaterials. The mixed finite element method has
been used to simulate shear banding in unsaturated geomaterials (Borja, Song, & Wu, 2013; Song &
Borja, 2014b). However, these studies have been focused on the inception of shear banding in unsatur-
ated geomaterials triggered by material heterogeneities (e.g. porosity and the degree of saturation). It is
well recognised the thickness of shear bands in geomaterials is related to the microstructure of geomate-
rials (e.g. grain size) (e.g. Ando et al., 2012; Desrues et al., 1996). For the numerical simulations with the
finite element method, the thickness of shear bands strongly depends on the finite element size because
of the mesh sensitivity issue. Numerical models based on Cosserat theory and second gradient theory
(e.g. Ehlers et al.,, 2003; Pardoen et al., 2015; Rattez, 2017) have been developed to simulate geomaterials
under saturated and unsaturated conditions. In general, a length scale is needed to regularise the finite
element model for simulating strain localisation. For modeling the coupled fluid flow and solid deform-
ation in unsaturated geomaterials, there is a natural length scale related to Darcy’s law under the
dynamic condition. Numerical simulations have demonstrated that the length scale related to fluid flow
may disappear under the quasi-static condition (Zhang & Schrefler, 2004).

The peridynamics theory which is nonlocal is a reformulation of the classical continuum mechanics to
deal with discontinuities (Silling, 2000; Silling et al., 2007). Peridynamics is formulated based on the spa-
tial integral equation in lieu of partial differential equations, which are not defined at discontinuities, e.g.
shear bands. The peridynamic governing equations are defined at shear bands, and material failure is
part of the peridynamic constitutive models. Hence, peridynamics can model the inception and propaga-
tion of shear bands with arbitrary paths without a special treatment to guide the propagation of shear
bands. Peridynamics has been applied to model shear banding in unsaturated soils under drained condi-
tion (or uncoupled) and desiccation cracking (Song & Khalili, 2019; Song & Menon, 2019; Menon & Song,
2019). Song and Khalili (2019) formulated and implemented a correspondence peridynamics constitutive
model for unsaturated soils through the peridynamic constitutive correspondence principle. Song and
Menon (2019) developed a nonlocal chemo-hydromechanical model for unsaturated soils through state-
based peridynamics. It shall be noted that the numerical simulations in the literature (e.g. Song & Khalili,
2019; Song & Menon, 2019) were conducted under drained conditions, and the coupling effect of the
unsaturated fluid flow was not explicitly accounted for.

In this article, we present a strong nonlocal coupled hydromechanical model formulated based on
peridynamics for simulating strain localisation in unsaturated geomaterials. The governing equations are
integro-differential equations in which length scales are assumed for both the skeleton deformation and
pore fluid flow. Recently proposed hydromechanical correspondence principle is adopted to implement
the classical local constitutive model for the solid skeleton, and the generalised Darcy’s law for unsatur-
ated water flow into the nonlocal hydromechanical model. Numerical simulations of shear bands in
unsaturated geomaterials were conducted to investigate how the spatial length scale and the mechanical
loading rate impact the formation of shear bands. The numerical results showed that both the deform-
ation and pore water pressure are concentrated in the shear bands with a finite thickness. The numerical
results have demonstrated that both the spatial length scale and the mechanical loading rate affect the
formation of shear bands and the load capacity of unsaturated geomaterials. The remainder of the article
is structured as follows. Section 2 presents the nonlocal hydromechanical model. Section 3 deals with the
numerical simulations of strain localisation in unsaturated geomaterials and the impact of the length
scale and mechanical loading rate on the formation of shear bands in unsaturated geomaterials, followed
by a summary in Section 4.

2. Nonlocal hydromechanical model

This section presents a strong nonlocal hydromechanical model cast in the framework of state-based
peridynamics through the recently proposed hydromechanical correspondence principle (Song & Silling,
2019). State-based peridynamics is a nonlocal reformulation of classical continuum mechanics in terms of
integro-differential equations. In this formulation, it is assumed that the porous media are composed of
material points that interact with each other in a nonlocal region called the ‘horizon'. Passive atmospheric
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pressure is assumed for the pore air pressure in the mathematical formulation, as usually adopted in geo-
technical engineering (Zienkiewicz et al., 1999). Thus, each material point has four degrees of freedom,
e.g. three for displacement and one for pore water pressure. In line with the classic poromechanics, solid
skeleton is described by Lagrangian coordinate system, and pore water is described by the relative
Eulerian coordinate system with respect to the solid skeleton. Next, we first introduce the governing
equations for the coupled hydromechanical process. Then we introduce the non-local constitutive laws
for the solid skeleton and fluid flow through the hydromechanical correspondence principle.

2.1. Governing equations

The governing equations consist of the linear momentum balance equation of the mixture and the mass
balance equation of the fluid phase coupled with the deformation of the solid skeleton. Both equations
will be formulated through the state concept of the state-based peridynamics (Silling et al., 2007). For
the solid skeleton, let x be the position vector of a material point in the problem domain, and x’ be the
position vector of any material point within its horizon in the reference configuration. Furthermore, let
y(x) and y’(x) be the position vectors of material points x and x’ respectively in the deformed configur-
ation. The reference position vector state and the deformation vector state for the solid skeleton at
material point x are defined as

X(&) =&=x—x, 0]
Y(&) =y(x)-y(x), @)

where the angle bracket denotes the bond that the vector state is imposed on. Given the deformation
state, the effective force state of the skeleton can be determined by the constitutive model (see subsec-
tion 2.2). It is noted that the effective force state also depends on the negative pressure (or suction). Let
T be the effective force state of the soil skeleton. Following the generalised effective stress concept in
unsaturated soil mechanics (Lu et al., 2010), the total force state of the mixture can be decomposed into
the effective force state of the skeleton and the pore water force state as follows:

T=T-5T,, (3)

where S, is the degree of saturation which can be determined by soil water retention curve (Cao et al.,
2018) and T, is the force state of the pore water (negative for unsaturated soils) which is defined in
Section 2.2. Then the linear momentum balance equation of the mixture at material point x under quasi-
static condition is written as

J.H (T(&) —T(=&)dVe + [(1 — d)ps + $Sipulg = O, 4)

where T is the total force vector state at the point x acting on the bond & T is the total force vector
state at the point X’ acting on the bond —¢&, Hy is the horizon of material point x, ¢ is porosity, p, and
p,, are the intrinsic density of the solid and the water respectively, and g is the gravity acceleration.

Let p,, and p), are the pore water pressures at the material points x and x’, respectively. We define
the pressure potential scalar state at material points x in the current configuration associated with &
respectively as follows:

Dy (&) = pl,—Pw (5)

Let Q, and Q,, be the mass flow scalar states of the pore water phase with respect to the solid skel-
eton at the material points x and x’, respectively. Let V and V' be the rate of change of volume in the
solid phase at the material points x and x’, respectively. Then, the peridynamic equation of mass balance
for material point x can be written as

.. 1
¢—+——+5,J (V—v’)dv/+—J (Qu—Q,)dV' =0, ©)
Hy w JHy

where K, is the bulk modulus of pore water, and the third term represents the nonlocal volume change
of the solid phase, which is in line with how the state-based peridynamics approximates the divergence
operator. Note that Equations (4) and (6) are general in the sense that the constitutive models for the
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solid skeleton and the pore water phase are not defined yet. Next, we define the total force state and
the mass flow state in terms of the local constitutive models for the solid deformation and the fluid flow.

2.2. Hydromechanical correspondence principle

We define the approximate nonlocal deformation gradient for the solid skeleton and the approximate
nonlocal water pressure gradient through the hydromechanical correspondence principle (Song & Silling,
2019), which extends the original constitutive correspondence principle for the solid material (Silling
et al., 2007). The correspondence principle allows the incorporation of the local constitutive model in the
framework of the state-based peridynamics. The approximate nonlocal deformation gradient and nonlo-
cal fluid pressure gradient at material point x of the mixture are respectively defined as

F- (J oY X dV’) K, %

Vo, = (J Xw<§>q>wx<§>dv’) K, )

where w(x) is a weighting function, ® is the tensor product operator, and K is the shape tensor which is
defined as

K = j o(&)(E® E)aV. ©)
Hx

Given the deformation gradient of the solid skeleton, the effective stress ¢ of the solid skeleton can
be calculated through the classical constitutive model. In this article, the material model in Song and
Khalili (2019) is used to model the solid skeleton. Then through the correspondence principle the total
force state at the material point x can be written as

T = welF K¢, (10)

where J is the determinant of the nonlocal deformation gradient F and ¢ = (6—Sipw1) is the total stress.
Similarly, given the nonlocal water pressure gradient, the fluid flux vector g,, at material point x can
be determined by the generalised Darcy’s law as

q., = 7kgvﬁﬁw = 7kgvﬁ (J w(wa@)dv’)K—], (11)
luW iuW X

where k, is the relative permeability (Niu et al., 2020) which is determined by water retention curve (Van

Genuchten, 1980), k is the isotropic permeability, and ,, is the viscosity of water. The fluid flow state at

material point x is defined as

Qn = wp,Jq, K¢ (12)

Given the total force state in terms of the total stress tensor, the linear momentum balance at the
material point x can be written as

L [(waJF*TK—%) - (wa’JF'*TK—%/)]dV’ + [ps(1—¢) + p,#Slg =0 (13)

where ¢ and ¢’ are the total stress tensors at the material points x and x’, respectively. The rate of vol-
ume change of the solid skeleton in the framework of state-based peridynamics at the material point x
can be written as

J v -V)av = J (wYK’T - wY’K"é’) av'. (14)
Hy Hy

where ¥ and Y’ are the rate of the deformation states at the material points x and x’, respectively.

Then, assuming that water is incompressible the mass balance equation of the mixture can be written as

ds . .

¢>d—t’ + S,J (wYK—1§ — V'K c’) av’

Hx (15)

+J (wJq, K& — wig K 'E)dV' =0
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The governing equations are solved through the Lagrangian meshfree method originally proposed by
Silling and Askari (2005). A general discussion of meshfree methods is beyond the scope of the article.

3. Numerical simulations

In this section, we investigate the impact of length scales and the loading rate on the formation of shear
banding in unsaturated geomaterials through two-dimensional compression tests under constant lateral
confining pressure.

We first conduct a base simulation of the formation of shear bands in unsaturated soils. Then numer-
ical results are presented to study the impact of length scale and loading rate on shear banding. All
numerical simulations are conducted under two-dimensional condition. The correspondence plastic
model for unsaturated soils in Song and Khalili (2019) is adopted for the solid skeleton. In this model,
the yield surface f is determined by

2

(p.9.p0) = 15+ (P—pIP <0, (16)

where p’ is the effective mean stress, g is the equivalent shear stress, M is the slope of the critical state
line, and p is the apparent effective preconsolidation pressure. As a hardening law, p. is expressed as

Pe = —exp (ar)(—po)”, (17)

where a; and a, are two variables that evolve with matric suction and the degree of saturation (Borja,
2004; Song & Khalili, 2019), and p. is the apparent preconsolidation pressure under saturated condition
which evolves with plastic volumetric strain. The rate form of p. reads as,
=

where 1 and « are the swelling index and the compression index, respectively, and & is the rate form of
the plastic volumetric strain of the solid skeleton. The input material parameters are: the bulk modulus K
= 34 MPa, the shear modulus G = 25 MPa, the swelling index x = 0.03, the critical state line slope M =
1.0, the compression index 4 = 0.11, the soil density p, = 2500 kg/m>, the water density p, = 1000 kg/
m?, the initial porosity ¢ = 0.5, and the saturated permeability is 1 x 1077 m/s. The soil-water retention
curve and the relative permeability of water are assumed as follows (Van Genuchten, 1980).

Se=1[1+/5)"", (19)
k = \/?,[1 - (1752/’”)’"} 2,

where s is matric suction, and s,, n and m are material parameters. For all numerical simulations below,
we assume s, = 10kPa, n = 2.0 and m = 0.5.

Figure 1 presents the geometry of the unsaturated soil specimen, boundary conditions, and loading
protocol. The specimen (in blue) has a rectangular cross-section with dimensions 10cm x 20cm and
0.4 cm thickness. Fictitious boundaries (in grey) are used to apply the boundary conditions. The problem
domain is discretised into 2500 material points with Ax= 0.4 cm. The horizon 6 = 0.8cm. The bottom is
fixed, and fluid-flow is prohibited on all boundaries of the specimen. For the initial state, mean effective
stress is —100 kPa, suction is 20kPa and a saturated preconsolidation pressure p. = —120kPa. The lateral
confining pressure (equivalent total stress is —87 kPa) is applied through a linear ramp function in 1s.
Here, the lateral confining pressure is determined through the effective stress concept, i.e. the effective
stress plus matric suction multiplied by the degree of saturation. From t=1s, the top boundary of the
specimen is compressed in 1500s with a rate v,= 0.006 mm/s. The total displacement of the top bound-
ary is 9mm.

Figure 2 plots the reaction force versus the applied vertical strain. Figures 3-5 show the contours of
plastic shear strain (the second invariant of deviatoric plastic strain tensor), plastic volume strain, and
water pressure superimposed on the deformed configuration at three vertical strains, respectively. The
results in Figures 3 and 4 show that two conjugate shear bands have developed in the specimen. The
comparison of Figures 4 and 5 shows that the dilative shear band caused the matric suction in the shear

Pe (18)

(20)
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Figure 1. Model set-up and boundary and loading conditions.
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Figure 2. Reaction force vs. vertical strain. Note: markers are at vertical strains of 2.36%, 3.23%, and 4.0%.

band higher than that outside the shear band. The results in Figure 5 show that the pore water pressure
does not change a lot, which is due to the choice of loading rates versus permeability.

3.1. Effect of length scales

This part concerns the effect of the length scale on shear banding. We rerun the base simulation with
two additional horizons: § = 10mm and 6 = 12mm. We compare the numerical results generated with
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Figure 5. Contours of water pressure at vertical strains of (a) 2.36%, (b) 3.23%, and (c) 4.0%, respectively.

these two horizons and the base simulation. Figure 6 plot the reaction force vs. the applied vertical strain
for all three cases. The loading curves show that the length scale does not affect the reaction force in
the elastic deformation regime while it affects the reaction force in the post-localisation regime. Contours
of the plastic shear and volumetric strains and water pressure are presented at two load steps. The first
corresponds to the peak applied load, and the second is in the post-localisation regime. Both load steps
(i.e. vertical strains) are represented by vertical dashed lines in Figure 6. For all three cases, the loading
curves are almost identical in the elastic deformation range of the specimen. The results in the figure



8 S. MENON AND X. SONG

1000

875
750
625
500

375

Reaction Force (N)

250

125

| !

0 | !
0 0.9 1.8 2.7 3.6 4.5
Vertical Strain (—%)

Figure 6. Reaction force vs. vertical strain for 6 = 8 mm, 6 = 10 mm, and 6 = 12 mm, respectively.
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Figure 7. Contours of equivalent plastic shear strain at the peak applied load for (a) 6 =8 mm, (b) 6 = 10mm, and (c) 6 =
12 mm, respectively.

show that the chosen horizon or the length scale impacts the maximum loading capacity of the speci-
men. For instance, the simulation with a larger horizon generates a higher peak load capacity.

Figures 7 and 8 portray the contours of equivalent plastic shear strain at the peak applied load and in
the post-localisation regime as denoted in Figure 6, respectively. Similarly, Figures 9 and 10 present the
contours of plastic volumetric strains at both load steps, respectively. The results in these figures demon-
strate that the length scale impacts both the inception and propagation of shear bands. For instance, the
comparison of Figures 7 and 8 shows that the smaller length scale generates a larger magnitude of shear
strains in the localised deformation zone at the same load steps. This is corroborated by the loading cap-
acity curves in Figure 6. For the simulation with 6= 12 mm, the plastic strain is concentrated at the cen-
ter of the specimen. It may be concluded that the magnitude of plastic strain in the shear band is
correlated to the spatial length scale. The contours of plastic volumetric strains in Figures 9 and 10 show
that the shear bands are dilative ones in that the plastic volumetric strain is positive on the inception of
shear bands and in the post-localisation regime which is due to the specimen being highly over-
consolidated.

Figures 11 and 12 present the contours of water pressure superimposed on the deformed configur-
ation at the pre-defined two load steps for all three cases. Cases (a), (b) and (c) stand for the simulations
with 6 = 8mm, 10mm, and 12 mm, respectively. At the peak applied load step, despite the disparity in
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Figure 8. Contours of equivalent plastic shear strain in the post-localisation regime: (@) 6 =8 mm, (b) 6 = 10mm, and (c) 6 =
12 mm, respectively.

Figure 9. Contours of plastic volumetric strain at the peak applied load for (@) 6 =8 mm, (b) 6 = 10mm, and () 6 = 12mm,
respectively.

Figure 10. Contours of plastic volumetric strains in the post-localisation regime for (a) 6 = 8 mm, (b) 6 = 10mm, and (c) § =
12 mm, respectively.
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— -19.60

-19.66

Figure 11. Contours of water pressure (Unit: kPa) at the peak applied load for (a) 6 = 8 mm, (b) 6 = 10mm, and (c) 6 = 12mm,
respectively.
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Figure 12. Contours of water pressure (Unit: kPa) in the post-localisation regime for (a) 6 = 8 mm, (b) 6 = 10mm, and (c) é =
12 mm, respectively.

predicted plastic deformation, water pressure is largely identical for all three cases. However, this does
not hold in the post-localisation regime. In the post-localised regime, Case (a) predicts a well defined
localised zone of negative water pressure (i.e. matric suction) whereas Cases (b) and (c) show that nega-
tive water pressure have localised in wider conjugate zones. This may be interpreted by the fact that the
simulations using a smaller length scale cause larger plastic volumetric strains (Figure 10) in the shear
bands, which lead to the greater value of matric suction predicted by Case (a) in the post-localisation
regime. For Cases (b) and (c) in Figure 12, the numerical results show smaller plastic volumetric strains
and consequently smaller changes in negative water pressure or matric suction in the localised zone. It is
evident that the length scale impacts both the solid deformation and fluid flow and the localised zone of
both fields.

3.2. Effect of loading rates

This part deals with the influence of loading rates on the formation of shear bands. We report the
numerical results for the same vertical compression with three loading rates. The three loading rates are
(@) vy = 0.003 mm/s, (b) v, = 0.006 mm/s and (c) v, = 0.009 mm/s. The total vertical strain is 4.5% for
the three cases. Figure 13 plots the reaction force over the vertical strain generated by the simulations
with the three loading rates. The results in Figure 13 show that the loading curves are almost identical in
the elastic deformation regime, and then they start diverging when plastic deformation occurs.
Furthermore, the loading rate also affects the peak reaction force. For instance, the peak reaction force
increases with the increase of the loading rate. Next, we compare the results of the plastic shear and
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Figure 13. Reaction force versus vertical strain for three loading rates v, = 0.003 mm/s, v, = 0.006 mm/s, and v, = 0.009 mm/s,
respectively.

(a) 0.020
I—0.015
-0.01
0.005

0.0

Figure 14. Contours of equivalent plastic shear strain at the applied peak load for (a) v, = 0.003 mm/s, (b) v, = 0.006 mm/s,
and (c) v, = 0.009 mm/s, respectively.

volumetric strains as well as water pressures at two loading steps, as shown by the vertical dash lines in
Figure 13. Figures 14 and 15 plot the contours of the equivalent plastic shear strain for all cases at the
peak reaction force and in the post-localised regime, respectively. Similarly, Figures 16 and 17 present
the contours of plastic volumetric strains at the two load steps, respectively. The results in Figures 14
and 16 show that the plastic strains are similar at the peak reaction force for the three loading rates. As
shown in Figures 15 and 17, the increase of loading rate generates a slight increase of both shear and
volumetric plastic strains in the shear bands. This observation is corroborated by the loading capacity
curves in Figure 13.

Figures 18 and 19 portray the contours of water pressure on the deformed configuration for the three
loading rates at two vertical compressions in Figure 13, respectively. The results in Figure 18 show that
no obvious banded zone of water pressure forms in the specimen at the peak applied load. However,
the smaller loading rate (longer physical time for the same vertical compression) generates larger pore
water pressure (smaller matric suction) in the specimen under the same vertical compression. In the
post-localised loading regime, as shown in Figure 19, larger matric suction is generated inside and
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Figure 15. Contours of equivalent plastic shear strain in the post-localisation regime for (a) v, = 0.009 mm/s, (b) v, = 0.006
mm/s, and (c) v, = 0.009 mm/s, respectively.
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Figure 16. Contours of plastic volumeteric strain at the applied peak load for (a) v, = 0.003 mm/s, (b) v, = 0.006 mm/s, and (c)
vy = 0.009 mm/s, respectively.
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Figure 17. Contours of plastic volumetric strain in the post-localisation regime for (a) v, = 0.003 mm/s, (b) v, = 0.006 mm/s,
and (c) v, = 0.009 mm/s, respectively.

outside the shear band for the simulation with a larger loading rate. This may explain why the loading
capacity is larger for the simulation with a larger loading rate because a larger matric suction generally
increases the overall strength of unsaturated soils (Lu & Likos, 2004). Similarly, the observed bifurcations
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Figure 18. Contours of water pressure (unit: kPa) at the applied peak load for (a) v, = 0.003 mm/s, (b) v, = 0.006 mm/s, and (c)
vy = 0.009 mm/s, respectively.

Figure 19. Contours of water pressure (unit: kPa) in the post-localisation regime for (a) v, = 0.003 mm/s, (b) v, = 0.006 mm/s,
and (c) v, = 0.009 mm/s, respectively.

of the load capacity curves in Figures 6 and 13 may be due to the different variations of matric suctions
in the unsaturated soil specimen under different length scale or loading rate scenarios.

4, Conclusions

This article focuses on studying the impact of spatial length scales and loading rates on the formation of
shear bands in unsaturated geomaterials through a fully coupled nonlocal hydromechanical model. For
the purpose, we present a strong nonlocal hydromechanical model formulated based on state-based
peridynamics for simulating strain localisation in unsaturated geomaterials assuming passive atmospheric
pressure (i.e. zero air pressure). The governing equations are integro-differential equations in which
length scales are assumed for both the skeleton deformation and pore fluid flow. Numerical simulations
of shear bands in unsaturated geomaterials were conducted to investigate the impact of the spatial
length scale and the mechanical loading rate on the formation of shear bands. The numerical results
have shown that both the deformation and negative pore water pressure are concentrated in the shear
bands with a finite thickness. The preliminary results have demonstrated that both the length scale and
the mechanical loading rate affect the formation of shear bands in unsaturated geomaterials as well as
the peak value of the load capacity of such materials.
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