- 1 Title: 2 Linking environmental salinity to respiratory phenotypes and metabolic rate in fishes: a data 3 mining and modelling approach 4 5 Running title: 6 Salinity affects gill and blood phenotypes 7 8 Authors: Till S. Harter¹, Christian Damsgaard^{2,3}, Matthew D. Regan⁴* 9 10 ¹Marine Biology Research Division, Scripps Institution of Oceanography, University of 11 California San Diego, La Jolla, CA 92093, USA 12 13 ²Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark 14 ³Aarhus Institute of Advanced Studies, Aarhus University, Aarhus Denmark 15 ⁴Département de sciences biologiques, Université de Montréal, Montreal, Quebec H3T 1J4, 16 Canada 17 *Corresponding author: matthew.regan@umontreal.ca 18 19 20 ORCID IDs: 21 TSH 0000-0003-1712-1370 22 CD 0000-0002-5722-4246 23 MDR 0000-0001-9341-5747 24 25 Keywords: 26 Teleost, osmorespiratory compromise, ionoregulation, aerobic metabolism, exercise, hypoxia 27 28 Summary statement:
- 30 affinities than seawater species; both groups use different combinations of these traits to

Freshwater teleosts have lower gill oxygen conductances and higher haemoglobin-oxygen

31 maintain similar metabolic rates and hypoxia tolerance.

29

Abstract

The gill is the primary site of ionoregulation and gas exchange in teleost fishes. However,
those characteristics that benefit diffusive gas exchange (large, thin gills) may also enhance the
passive equilibration of ions and water that threaten osmotic homeostasis. Our literature review
revealed that gill surface area and thickness were similar in freshwater (FW) and seawater (SW)
species; however, the diffusive oxygen (O2) conductance (Gd) of the gill was lower in FW
species. While a lower G _d may reduce ion losses, it also limits O ₂ uptake capacity and possibly
aerobic performance in situations of high O_2 demand (e.g., exercise) or low O_2 availability (e.g.,
environmental hypoxia). We also found that FW fishes had significantly higher haemoglobin
(Hb)- O_2 binding affinities than SW species, which will increase the O_2 diffusion gradient across
the gills. Therefore, we hypothesized that the higher Hb-O ₂ affinities of FW fishes compensate,
in part, for their lower G _d . Using a combined literature review and modelling approach, our
results show that a higher Hb-O2 affinity in FW fishes increases the flux of O2 across their low-
G_d gills. In addition, FW and SW teleosts can achieve similar maximal rates of O_2 consumption
$(M \square O_{2max})$ and hypoxia tolerance (P_{crit}) through different combinations of Hb-O $_2$ affinity and
G _d . Our combined data identified novel patterns in gill and Hb characteristics between FW and
SW fishes and our modelling approach provides mechanistic insight into the relationship
between aerobic performance and species distribution ranges, generating novel hypotheses at the
intersection of cardiorespiratory and ionoregulatory fish physiology.

Gill oxygen conductance and Hb-O₂ binding affinity are associated with salinity

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

Seawater (SW) and freshwater (FW) environments present different osmoregulatory challenges to resident species. Teleosts in both environments have similar internal ion concentrations (Holmes and Donaldson, 1969) and therefore, are hypo-osmotic compared to ionrich SW where they risk losing water to the environment, and hyper-osmotic compared to ionpoor FW where they risk losing ions (Evans et al., 2005). The fish gill is the primary site of gas exchange and presents a large, thin epithelium to the surrounding water that facilitates the uptake of oxygen (O₂) and the excretion of the metabolic by-products carbon dioxide and ammonia. However, those gill morphometrics that maximize diffusive gas exchange may also increase passive ion and water fluxes that, if unopposed, would lead to osmotic disturbances. These conflicting requirements for ionoregulation and O₂ uptake at the fish gill were recognized over 100 years ago by August Krogh (Ege and Krogh, 1914; Krogh, 1937) and later substantiated in seminal work by Randall et al. (1972), Gonzalez and McDonald (1992) and others, Today, the effect is known as the osmorespiratory compromise, and it has been treated in detailed reviews (Gilmour and Perry, 2018; Gonzalez, 2011; Nilsson et al., 2012; Perry, 1998; Sardella and Brauner, 2007; Wood and Eom, 2021). The present study builds on previous work to uncover general patterns among teleost fishes that link the environmental salinity to gill and blood phenotypes and to provide mechanistic insight into the physiology underlying these observations by using a modelling approach.

FW and SW teleosts have evolved divergent strategies to overcome the osmotic challenges imposed by their respective environments, involving anatomical and physiological adaptations at different organ systems. Briefly, FW fishes take up ions at the gills and excrete dilute urine via the kidneys, whereas SW fishes take up water and ions via their digestive tracts and excrete ions via the gills, kidneys and with their faeces (Evans et al., 2005; Grosell, 2010; Marshall and Grosell, 2006). These divergent mechanisms enable FW and SW fishes to maintain water and ion homeostasis in their respective environments and are well-studied, but their effects on gill morphometrics and, thus, O₂ uptake capacity, have not been studied broadly. To address this knowledge gap, we conducted a systematic literature review of gill, blood and metabolic characteristics in 355 teleost species in relation to their aquatic habitat (155 FW, 200 SW species; see Appendix for details on literature review and the Supplement for raw data).

Our initial analysis indicated that FW fishes, on average, had significantly smaller massspecific gill surface areas (GSA) than SW fishes (P = 0.019; Fig. 1A), consistent with what has long been reported in the literature. However, we also observed differences in body mass between the investigated FW and SW fishes, which biases this analysis because GSA scales allometrically with body mass. Furthermore, these interspecific comparisons are dominated by a few hyper-diverse taxa (Ostariophysi in FW and Percomorpha in SW; Vega and Wiens, 2012), which may introduce an additional phylogenetic bias. Therefore, to test if salinity affected GSA while taking into account allometric scaling and phylogenetic non-independence of species, we fitted a phylogenetically-corrected linear model to the log₁₀-transformed GSA and body mass data (Fig. 1B), and then calculated the vertical residuals that provided a body mass-independent measure of GSA (Garland et al., 1992). These residuals were independent of salinity (P = 0.672; Fig. 1C), indicating that, once corrected for mass and phylogenetic relatedness, teleosts in FW and SW had similar GSAs. These findings illustrate the importance of accounting for body mass and species relatedness in interspecific comparisons of traits that scale allometrically with body mass. In contrast, the blood-water diffusion distance (hereafter, gill thickness; Fig. 1 D) was unaffected by body mass (P = 0.789; Fig. E) and, thus, these data were only corrected for the phylogenetic relatedness of the species. As with GSA, we found no significant effect of salinity on gill thickness (P = 0.140; Fig. F), indicating that other factors must determine the observed variability.

To explore the interacting effects of GSA and thickness, we calculated the O_2 diffusive conductance of the gills (G_d) in FW and SW species, which describes the amount of O_2 that can diffuse across the gills for a given PO_2 gradient. In our study, G_d was calculated from GSA and gill thickness values from the literature, and from the gill characteristics described in Table S1 (Dejours, 1981). We found 33 species with reported values for both GSA and thickness (Fig. 1G) and, after correcting for body mass and phylogenetic relatedness (Fig. 1H), FW fishes had significantly lower G_d values than SW fishes (P = 0.017; Fig. 1I). This result should be interpreted in light of the relatively few species with thickness measurements and the fact that some species with extreme gill characteristics may disproportionately influence the analysis (such as the highly active Scombridae in SW and some facultative air-breathing fishes in FW). We tried expanding our analysis to all actinopterygian fishes to obtain additional values for G_d but found that gill thickness values were also largely unavailable. Additional measurements of

gill thickness in other FW and SW fishes are needed to strengthen the relationships between Gd and environmental salinity that we found in our analysis. Nevertheless, the data that are currently available indicate that, even after mass and phylogenetic corrections, FW teleosts have lower Gd than SW teleosts, and if substantiated more broadly this finding may change our understanding of the physiological implications of environmental salinity on gill phenotypes.

Smaller and thicker gills can benefit fishes by reducing the rate of passive ion and water fluxes that can disrupt osmotic homeostasis (Greco et al., 1996; Henriksson et al., 2008; Perry, 1998; Sollid et al., 2003). However, the gill is also the primary site for gas exchange and smaller and thicker gills will result in lower G_d. In FW fishes, lower G_d may limit O₂-uptake capacity and could impair their performance in situations of high O₂ demand (e.g., exercise) or low O₂ availability (e.g., environmental hypoxia). Interestingly, our data revealed a potential compensatory mechanism, as FW species had ~2-fold higher haemoglobin (Hb) O₂ affinities than SW species (expressed as lower P₅₀ values of Hb; the PO₂ at which Hb is 50% saturated with O_2 ; P < 0.001; Fig. 1L). Hb P_{50} values were corrected for phylogenetic relatedness and a significant temperature effect using a Van't Hoff Plot (P < 0.001; Fig. 1K). Because Hb is the principal O₂ carrier in the blood and its O₂-binding characteristics determine the kinetics of O₂ loading at the gills and unloading at the tissues, the higher Hb-O₂ affinities of FW species could enhance the diffusion gradient of O₂ across the fish gill and theoretically support higher rates of metabolic O_2 consumption (M $\square O_2$; a proxy for metabolic rate). These observations led us to hypothesize that the high Hb-O₂ affinities of FW species compensate for their lower G_d, allowing FW species to maintain similar $M \square O_2$ as SW species during aerobic challenges, such as exercise and hypoxia.

To test this hypothesis, we explored the interacting effects of G_d and Hb P_{50} using a mathematical model (based on Malte and Weber, 1985) that predicts the maximal $M \square O_2$ ($M \square O_{2max}$) that a fish can support over a range of gill and blood characteristics, as well as environmental conditions (see Appendix for detailed model description). Specifically, we tested three predictions derived from our hypothesis: all else being equal, 1) higher Hb-O₂ affinities will compensate for lower G_d to maintain arterial O_2 transport; 2) FW and SW teleosts will achieve similar $M \square O_{2max}$ using different combinations of G_d and Hb-O₂ affinity; and 3) FW and SW teleosts will achieve similar hypoxia tolerances (represented by P_{crit} ; the lowest water PO_2 at which a fish can maintain its standard $M \square O_2$; $M \square O_{2Std}$) using different combinations of G_d and

- 143 Hb-O₂ affinity. We then compared the modelled results with empirical values mined from the
- literature that revealed novel patterns in the divergent gill and Hb phenotypes of FW and SW
- teleosts in relation to environmental salinity.

Prediction 1: Higher Hb-O $_2$ affinities will compensate for lower G_d to maintain arterial O_2 transport

146147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

First, we used our $M \square O_{2max}$ model to investigate the effects of gill and blood characteristics on the equilibration of PO₂ across the gill epithelium using the lowest, median and highest G_d values for FW and SW fishes that we observed in the literature(using only values that were based on N > 1), over the range of Hb-O₂ affinities reported in Fig. 1. FW fishes with the lowest G_d were severely diffusion-limited, reflected in a poor equilibration of PO₂ between the counter-current flows of water and blood (Fig. 2A). $M \square O_{2max}$ in these fishes was generally low, but the highest values were achieved at the lowest Hb P₅₀. Therefore, when all else is equal, a higher Hb-O₂ affinity can partially compensate for a low G_d by increasing the PO₂ gradient across the epithelium. This finding is consistent with previous work that modelled the diffusion of O₂ across the fish gill and found an increased O₂ extraction from the water and lower ventilatory requirements at high Hb-O₂ affinities (Malte and Weber, 1987). In addition, a reduction in Hb-O₂ affinity caused a steep decline in the arterial O₂ saturation of Hb (S_aO₂), which determines the maximum capacity for blood O_2 transport and $M \square O_{2max}$ (Gallaugher et al., 2001). In SW species, the lowest, highestand median values for G_d were higher than in FW fishes. Consequently, O₂ uptake at the gills in SW was generally more efficient, as indicated by a nearly complete equilibration of PO₂ across the gill epithelium, especially at the lowest Hb P₅₀ values (Fig. 2D). An increase in G_d to median values increased $M \square O_{2max}$ in both FW and SW fishes and shifted the optimal Hb P₅₀ to higher values (Fig. 2B and E). Higher G_d also reduced the effect of Hb P₅₀ on S_aO₂ because O₂ uptake became less dependent on the PO₂ diffusion gradient. The fact that a high Hb-O₂ affinity exerts the greatest benefits in fish with the lowest G_d is consistent with our literature-mined data. Combined, these findings indicate that the higher Hb-O₂ affinities observed in FW fishes may have adaptive significance to compensate for their low-G_d gills, an idea that could be substantiated by investigating G_d in additional species. SW fishes with median G_d achieved full O₂ saturation during blood transit through the gill, suggesting that $M \square O_{2max}$ is limited by maximal cardiac output $(Q \square_{max})$, rather than the diffusion characteristics of the gill (Fig. 2 D), and the same was true for those FW and SW

species with the highest G_d (Fig. 2 C and F). These findings generally agree with experimental

work, indicating that O₂-uptake at the gill is not diffusion-limited in normoxia, but rather a

177	function of maximal perfusion and/or ventilation rates (Daxboeck et al., 1982; Malte and Weber,
178	1985; Randall and Daxboeck, 1984). However, in >50% of the FW species in our mined data set,
179	$M\square O_{2max}$ may be limited by gill diffusion characteristics, where increases in $Q\square$ are
180	inconsequential. These results must be interpreted with respect to the $Q\square_{max}$ value for rainbow
181	trout that we used in our simulations, which may be higher than those of many low- $G_d \ FW$
182	species. Nevertheless, our results highlight systematic differences in cardiorespiratory
183	phenotypes between FW and SW teleosts that have ecological consequences. Those species with
184	the highest G_d may achieve increases in $M \square O_{2max}$ through increases in $Q \square$, enabling more active
185	lifestyles that are not available to low- G_d species. A broader assessment of $G_d,M\squareO_{2max}$ and $Q\square$
186	in relation to environmental salinity in teleosts may shed light on the mechanistic basis for our
187	observations and their ecological significance.
188	Finally, our simulations also showed that the Hb P_{50} values that achieved the highest S_aO_2
189	did not necessarily produce the highest $M \square O_{2max}.$ Lower Hb P_{50} values can safeguard $S_a O_2$ and
190	improve $M \square O_{2max}$ in those fish with the lowest G_d . However, the higher G_d we observed in SW
191	species would lessen the benefits of a lower Hb P ₅₀ , potentially enabling them to exploit a higher
192	range of Hb P ₅₀ values that promote the offloading of O ₂ at the tissues, which we explored in
193	more detail.

Prediction 2: FW and SW teleosts will achieve similar $M \square O_{2max}$ using different combinations of G_d and Hb-O₂ affinity

194 195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

The optimal Hb P₅₀ is a compromise between the physiological requirements for O₂ loading at the gas exchange surface and unloading at the tissue capillaries (Brauner and Wang, 1997; Harter and Brauner, 2017; Wang and Malte, 2011). To highlight this trade-off in more detail, Figure 3 shows the $M \square O_{2max}$ that can theoretically be attained over the range of Hb P_{50} and G_d values in FW and SW teleosts. Generally, those species with the lowest G_d achieved the lowest $M \square O_{2max}$ and increasing G_d improved $M \square O_{2max}$, consistent with a diffusion limitation on O_2 uptake. However, $M \square O_{2max}$ in species with median G_d already matched those of species with the highest G_d , indicating a progressive perfusion limitation, which is in line with the results shown in Figure 2. Since the upper boundary for $M \square O_{2max}$ was set by perfusion, both groups achieved similar $M \square O_{2max}$ of ~13 µmol g⁻¹ h⁻¹ at the $Q \square_{max}$ for rainbow trout (53 ml kg⁻¹ min⁻¹). Increasing Hb-O₂ affinity also had beneficial effects on $M \square O_{2max}$, but only until an optimum value was reached, after which further increases in Hb-O₂ affinity severely decreased $M \square O_{2max}$. The effect of Hb-O₂ affinity on $M \square O_{2max}$ depended on G_d , where a reduced G_d shifted the optimal P_{50} for $M \square O_{2max}$ to lower values. For example, when G_d was reduced from median to lowest values, the optimal P₅₀ shifted from 31 to 3 mmHg in FW fishes (Fig. 3A) and from 39 to 25 mmHg in SW fishes (Fig. 3B). These ranges of optimal P₅₀ map well onto the mined P₅₀ values for FW and SW fishes, respectively (Fig. 1). Our simulations are also in line with data on rainbow trout acclimated to soft water that thickened their gills from 3 to 6 µm due to ionocyte proliferation and compensated for the impaired G_d by decreasing P₅₀ from 18 to 12 mmHg (Greco et al., 1996; Perry, 1998; Perry et al., 1996). Gill morphology and P₅₀ are plastic traits, and it seems that they may respond in concert to overcome physiological challenges to O₂ uptake in a way that depends on environmental salinity. The situation is complicated as the diffusive pathways for O₂, water and ions may differ and many species exert some control over these passive fluxes, such as observed in extremely hypoxia-tolerant species (Wood et al., 2009), active species (Gonzalez and Mcdonald, 1994), and after exercise training (Gallaugher et al., 2001; Postlethwaite and McDonald, 1995). A salinityspecific effect on gill permeability has not been studied broadly, but data for a few species exist. FW-acclimated killifish have higher branchial water permeabilities than SW conspecifics, but both display similar diffusive ion fluxes (in opposite directions) during hypoxic hyperventilation

(Giacomin et al., 2019; Wood et al., 2019). However, while FW-acclimated killifish do not alter ionocyte density, they do decrease their overall GSA (Giacomin et al., 2019), which is consistent with our observation of lower G_d in FW fishes that may perhaps occur via different mechanisms in different species and conditions. If this effect is substantiated more broadly, one may hypothesize that the hyper-osmoregulatory strategy of FW fishes has not only led to lower G_d , but also to higher Hb-O₂ affinities that balance the requirements for O₂ uptake and tissue O₂ extraction at the prevailing gill diffusion characteristics. Likewise, the hypo-osmoregulatory strategy of SW fishes may be permissive of high- G_d gills that are best matched by higher P_{50} and that enable increases in $Q\Box$ and $M\Box O_{2max}$ in species with active lifestyles where exercise performance is linked to evolutionary fitness.

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249250

251

252

253

254

255

To further explore the interacting effects of G_d and Hb-O₂ affinity on $M \square O_{2max}$, we plotted the upper and lower boundaries for G_d as a function of Hb P₅₀, resulting in areas of theoretical $M \square O_{2max}$ that can be achieved by the gill and blood characteristics of FW and SW fishes (Figure 4A). The lower areas were calculated at the Q_{max} for rainbow trout, and due to the perfusion limitation of $M \square O_{2max}$, FW and SW fishes with the highest G_d achieved similar $M \square O_{2max}$. To corroborate these modelling results, we then plotted empirically measured $M \square O_{2max}$ values onto the theoretical areas. Generally, the measured and calculated values agreed well. However, one cluster of FW fishes with high Hb-O₂ affinities fell above the predicted lines, which is likely explained by higher tissue O₂ conductances that maintain tissue O₂ extraction from high-affinity Hbs, and perhaps by lower Hill coefficients that enhance O₂ extraction from the water (Malte and Weber, 1987); both these values were kept constant in our model. Other FW and SW species may achieve $Q \square_{max}$ values that exceed those of rainbow trout. For instance, sockeye salmon swimming in FW reached M \square O_{2max} of 27.2 μ mol g⁻¹ h⁻¹ at a Q \square _{max} of 67.8 ml kg⁻¹ min⁻¹ (Steinhausen et al., 2008) and in some sockeye salmon populations with longer migration routes, $Q \square_{max}$ can exceed 100 ml kg⁻¹ min⁻¹, nearly 2-fold the value of rainbow trout (Eliason et al., 2013). Whether the gill characteristics of these anadromous sockeye salmon are truly representative of a FW species is unclear, but despite their semelparous life history, they appear to exert tight control over ion homeostasis, even during their final FW stage.

We then explored whether a salinity-specific pattern in $M \square O_{2max}$ exists across empirically measured values for 130 fish species (51 FW, 79 SW), and we corrected these data for allometric scaling with body mass, temperature and phylogenetic relatedness (Fig. 4B).

Across all species, there was no significant effect of salinity on M \square O_{2max} (P < 0.067; Fig. 4C), 256 257 consistent with our prediction that FW and SW teleosts may achieve similar $M \square O_{2max}$ through 258 different combinations of gill and blood characteristics. However, the low P-value in our 259 analysis on 130 species suggests that future studies, especially those with a larger sample sizes, 260 may be able to resolve potential differences in $M \square O_{2max}$ between FW and SW teleosts. Finally, 261 $M \square O_{2max}$ is a complex physiological trait that is strongly influenced by methodology, animal condition and behaviour (Killen et al., 2017; Norin and Clark, 2016); exploring these sources of 262 263 variability and accounting for them by statistical means may be a worthwhile avenue for future 264 analyses. 265 Some of the highest $M \square O_{2max}$ values are found in the fast-swimming, pelagic, SW 266 teleosts (Wegner et al., 2010), including billfishes (Istiophoridae and Xiphiidae), dolphinfishes 267 (Coryphaenidae), jacks (Carangidae) and tunas (Scombridae). Reliable data during maximal 268 exercise in these animals are notoriously difficult to obtain, but a few measurements are 269 available. Based on submaximal swimming trials, the $M \square O_{2max}$ in skipjack tuna has been estimated at 68.7 µmol g⁻¹ h⁻¹ (Brill, 1987; Dewar and Graham, 1994; Gooding et al., 1981) and 270 271 therefore exceeds the value for rainbow trout by more than 5-fold. These high $M \square O_{2max}$ are enabled by GSAs of nearly 20 cm g⁻¹ in yellowfin and skipjack tunas (Brill and Bushnell, 2001), 272 273 and gill thicknesses as low as 0.5 µm (Hughes, 1970; Hughes, 1984), resulting in G_d values that 274 are three-fold higher than the highest values of any FW species. Clearly, a unique physiology in 275 tunas is required to sustain such high $M \square O_{2max}$ that cannot be achieved with the cardio-276 respiratory characteristics of rainbow trout or most other teleosts. Therefore, to determine what physiological adaptations are required in tuna to attain their high $M \square O_{2max}$, we re-calibrated our 277 278 model to the skipjack tuna (Fig. 4; light-shaded areas). This adjustment revealed that the high $M \square O_{2max}$ in tuna are feasible only if $Q \square_{max}$ is increased ~6-fold (to 318 ml kg⁻¹ min⁻¹), blood 279 280 [Hb] is increased 2.3-fold, and O₂ conductance at the tissues is increased ~3-fold over the values 281 in rainbow trout. Whether these values are representative of some tuna species remains to be 282 validated experimentally; however, the available data indicate that they may not be unreasonable estimates. Even in spinally blocked skipjack tuna, Q \(\sigma\) has been measured at 132 ml kg⁻¹ min⁻¹ 283 284 (Brill, 1987; Bushnell, 1988), blood [Hb] can reach 2.3 mM (Brill and Bushnell, 1991), and

tissue O₂ conductance is undoubtedly increased by extremely high capillary densities (Hulbert et

al., 1979) and myoglobin concentrations (George and Stevens, 1978; Stevens and Carey, 1981).

285

286

287	Theoretically, high $Q\square_{max}$, [Hb] and tissue O_2 conductances may also be attainable by FW
288	teleosts; but matching high- G_d gills may not. Our simulations show that even the highest G_d
289	values in FW fishes are insufficient to produce tuna-like $M \square O_{2max}$ and the upper boundary levels
290	off at ~40 $\mu mol~g^{1}~h^{1}$. These values are still higher than any $M \square O_{2max}$ recorded for a FW
291	teleost, indicating that factors other than G _d may set the actual limit. Regardless, these
292	fundamental relationships may explain why no FW fishes match the high $M\square O_{2max}$ found in
293	some SW species. Whether FW tuna-like fishes are, in fact, absent from the fossil record is a
294	worthwhile avenue for future investigations. However, based on our findings it would seem that
295	FW environments should remain devoid of fast-swimming pelagic analogues to the tunas.

Prediction 3: FW and SW teleosts will achieve similar P_{crit} using different combinations of GSA and Hb-O₂ affinity.

296297

298 Another important driver for variation in gill characteristics and Hb-O₂ affinity among 299 fishes is the availability of environmental O₂ (Mandic et al., 2009). Under conditions of low 300 environmental O_2 (hypoxia), a fish's indefinite survival depends on its ability to sustain $M \square O_{2std}$ 301 (Hughes, 1973). The lowest water PO₂ at which a fish can sustain $M \square O_{2std}$ is termed the critical 302 O₂ tension (P_{crit}), and at PO₂ below P_{crit}, a fish's survival becomes dependent on some 303 combination of anaerobic glycolysis and metabolic depression, both of which are unsustainable 304 in the long term (Beamish, 1964; Regan et al., 2016; Ultsch and Regan, 2019; Ultsch et al., 305 1978). P_{crit} is therefore a common metric of hypoxia tolerance that represents the suite of aerobic 306 contributions to hypoxia survival in a single value (Regan et al., 2019), and thus, we explored 307 this metric in our simulations. 308 To estimate how differences in G_d and Hb-O₂ affinity may influence P_{crit}, we adjusted our 309 model to predict M \(\text{O}_{2max} \) at progressively decreasing inspired water PO₂ (from 150 to 0 mmHg) and then fixed a horizontal line representing MO_{2std} at 1.5 μ mol g⁻¹ h⁻¹, which is the 310 311 value reported for resting rainbow trout (Kiceniuk and Jones, 1977). The PO₂ at which the 312 $M \square O_{2max}$ and $M \square O_{2std}$ lines intersect represented the theoretical P_{crit} for a given set of gill and 313 blood characteristics. Our approach assumed that $M \square O_{2max}$ and $M \square O_{2std}$ respond similarly to 314 reductions in PO₂ below P_{crit}, and that the typical P_{crit} curve is biphasic. The former assumption is 315 consistent with previous theoretical work (Esbaugh et al., 2021), empirical measurements (Claireaux et al., 2000), and the fact that aerobic scope for activity at sub-P_{crit} PO₂ is zero 316 317 (Claireaux and Chabot, 2016; Ern et al., 2016). The latter assumption is true for some fish 318 species, but not all (Wood, 2018; Farrell et al., 2021). However, most important for our 319 simulations was not the shape of the $M \square O_{2std}$ curve at PO_2 below P_{crit} , but rather the presence of 320 a benchmark $M \square O_{2std}$ value to which the sub- $P_{crit} M \square O_{2max}$ line could be compared. A biphasic 321 P_{crit} curve enabled this. 322 The outcomes of these simulations are shown in Figure 5 for the lowest, median and 323 highest G_d that we observed in FW and SW fishes (Fig. 1). In all cases, increasing Hb-O₂ affinity 324 or G_d led to lower P_{crit} values, representing a higher hypoxia tolerance of the fish. SW fishes 325 achieved lower P_{crit} than FW fishes when G_d was at lowest or median values. However, the 326 lowest overall P_{crit} values were achieved by FW fishes with high G_d and high Hb-O₂ affinities.

These and our previous results show that an increased Hb-O₂ affinity can generally compensate for impaired diffusion characteristics at the gill caused by either low G_d or low environmental O_2 . In both cases, $M \square O_2$ is limited by the reduction in S_aO_2 that can be improved by increasing Hb-O₂ affinity, and these results are in close agreement with previous work (Wang and Malte, 2011).

To validate our simulations, we plotted the P_{crit} values for high and low G_d as a function of Hb-O₂ affinity, spanning the area of theoretical P_{crit} that were predicted by the model. We then overlayed empirically measured P_{crit} values from the literature for FW and SW fishes (Fig. 6A). For FW fishes, we found an excellent agreement between the model predictions and measured P_{crit} values. In addition, P_{crit} values in FW fishes were highly variable, spanning an order of magnitude. GSA and gill thickness are plastic traits that respond to hypoxia, environmental ion concentration and temperature. The underlying mechanisms include dynamic changes in the redistribution of branchial blood flow and cellular responses that reversibly alter the morphology of the gill (Wood and Eom, 2021). For example, the crucian carp can increase GSA by ~7.5-fold after an acclimation period to hypoxia, largely through the receding of an interlamellar cell mass (Sollid et al., 2003). These acclimation responses can occur quickly, as in goldfish, where GSA increases ~2-fold in just hours (Regan et al., 2017). High GSA plasticity is often found in hypoxia-tolerant rather than -intolerant species (Dhillon et al., 2013), and in more FW than SW species (Gilmour and Perry, 2018). This may be because many FW environments are particularly hypoxia-prone (Diaz and Breitburg, 2009) or simply because relatively few SW species have been studied in this respect.

In contrast, SW fishes occupied a narrow band in P_{crit} values over a broad range of Hb P_{50} , which is supported by the modelled and empirical data (Fig. 6A). However, the modelled data were generally offset to lower P_{crit} values. The reasons for this discrepancy may relate to our model assumptions not accurately representing some of the *in vivo* characteristics of SW fishes, e.g.: i) many SW species may have higher $M \square O_{2std}$ than rainbow trout, and/or ii) the boundaries for G_d in our dataset may not match those of SW species for which P_{crit} and Hb P_{50} data are available, both representing only a small subset of SW species. Regardless, the combined data revealed that FW and SW fishes occupy different quadrants in the P_{crit} vs. Hb P_{50} relationship, which indicates that they achieve their hypoxia tolerance by different mechanisms. SW fishes rely on their higher G_d to maintain branchial O_2 uptake in hypoxia (Fig. 5), resulting in P_{crit}

values that are largely independent of Hb P_{50} and thus fall within a narrow range (Fig. 6A). On the other hand, FW fishes rely on their high Hb-O₂ affinities to maintain branchial O₂ uptake in hypoxia and, when combined with high G_d values, achieve the lowest P_{crit} observed in teleosts.

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

To test whether there is a systematic difference in P_{crit} between FW and SW teleosts, we mined literature values for 142 species (46 FW and 96 SW). After correcting for phylogenetic relatedness of species (Fig. 6B), we found no significant difference in P_{crit} between FW and SW teleosts (P = 0.891; Fig. 6B). This stands in contrast with our data set when not corrected for phylogeny, which showed significantly lower P_{crit} in FW than SW fish, and to the metanalysis of Rogers et al. (2016) and intraspecific salinity trials of Haney and Nordlie (1997), which reported lower P_{crit} in FW fishes under some, but not all, conditions. Therefore, the variation in P_{crit} across salinity environments appears to be driven by a few teleost clades with extreme P_{crit} values, again highlighting the importance of applying appropriate corrections of the raw data. Relatedly, most SW species on which P_{crit} experiments have been performed are native to environments that regularly experience hypoxia, such as coral reefs and intertidal zones. The mean SW P_{crit} value may therefore be skewed towards these hypoxia-adapted SW species and away from pelagic species that are less likely to regularly encounter hypoxia. Fewer P_{crit} values for pelagic species exist, perhaps because these fishes are not easily caught and experimented on. However, their addition to this comparison could further distinguish the salinity groups and is a worthwhile direction for future studies. Finally, there is substantial variability in P_{crit} values in the literature and, as with other complex performance metrics, P_{crit} should be interpreted with some caution regarding differences in methodology, animal condition and behaviour (Wood, 2018). Part of this variability may be due to the plasticity in gill morphology and blood characteristics in teleosts, perhaps coupled with different methodologies regarding the rates of hypoxia onset (Rogers et al., 2016). Nevertheless, the close agreement of the empirical and modelling data indicates that the general patterns in P_{crit} between FW and SW fishes are largely driven by factors that are manipulated in the model. Therefore, studying the interspecific variability in G_d, Hb-O₂ affinity and their interactions may provide a roadmap for future investigations into the mechanistic basis for P_{crit} in fish.

Conclusion and Perspectives

Our analysis provides compelling evidence for systematic differences in gill and blood phenotypes between FW and SW teleosts that may be related to the osmotic characteristics of their aquatic environments. However, aerobic performance, assessed as $M \square O_{2max}$ and P_{crit} , did not differ between FW and SW fishes; therefore, the two groups may use different combinations of gill and blood characteristics to support similar aerobic capacities. FW fishes generally had lower G_d , which has consequences for aerobic metabolism and may reflect a physiological constraint by their hyper-osmoregulatory strategy. The higher Hb-O₂ affinity of FW fishes may thus have adaptive significance, as it increases the diffusion gradient for O_2 across the gills. The benefits of a higher Hb-O₂ affinity may not fully compensate for the disadvantages of a low G_d , but rather, will enable a higher $M \square O_{2max}$ within this constraint, by balancing the conflicting requirements for O_2 loading at the gills and unloading at the tissues. In contrast, the hypoosmoregulatory strategy of SW teleosts is clearly permissive of higher G_d , which in turn may have lifted the brakes on the evolution of higher $Q \square_{max}$ and [Hb]. In tunas, these coordinated adaptations of their cardio-respiratory systems ultimately enabled extremely high $M \square O_{2max}$ that are not attainable even by FW fishes with the highest G_d .

Finally, gill morphology and Hb-O₂ binding characteristics are highly plastic traits in teleosts, and many species with euryhaline, anadromous or catadromous life cycles routinely transition between the FW and SW environments and similar transitions occurred repeatedly in the course of teleost evolution (Betancur-R et al., 2015). The evolutionary dynamics that govern these transitions are worthy of further investigation and fish clades that include species that have recently transitioned between FW and SW may be well-suited for this purpose. The osmorespiratory compromise describes the conflicting requirements for O₂ uptake and ion/water fluxes at the gills and has typically been studied with respect to gill surface area. Our data indicated that gill thickness and G_d are important factors that determine $M \square O_{2max}$ in fishes and should be considered in future studies on the osmorespiratory compromise by measuring O₂ uptake and unidirectional ion/water fluxes in more species in both FW and SW. Ideally, future studies should use standardized protocols for determining gill morphometrics, unidirectional ion/water fluxes, $M \square O_{2max}$, P_{crit} , and Hb characteristics in animals acclimated to a clearly defined set of environmental conditions, allowing for more reproducible interspecies comparisons. These future studies may lay the foundation to test our hypothesis that invasions of

- 417 the FW environment and the divergent selective pressures of the osmorespiratory compromise
- 418 gave rise to adaptations that reduced G_d and Hb P_{50} , thus profoundly shaping the aerobic
- pathway of FW fishes.

Acknowledgements

420

We thank Nick Wegner and Rod Wilson for insightful discussions and help with our literature review, Tommy Norin for critical feedback on our manuscript, and the two anonymous reviewers for their insightful comments.

- 424 Competing Interests:
- The authors declare no competing interests.

426 Funding

427	This study was supported by a Natural Science and Engineering Research Council of
428	Canada Discovery Grant (NSERC RGPIN-2021-03109) to MDR. CD is supported by the
429	Carlsberg Foundation (CF18-0658), the Lundbeck Foundation (R346-2020-1210), the European
430	Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant
431	agreement (No. 754513), and the Aarhus University Research Foundation. TSH is supported by a
432	National Science Foundation (NSF) Grant to Dr. Martin Tresguerres (1754994).

Data availability

433

All R code is publicly available on GitHub ($M \square O_{2max}$ model and data analyses:

github.com/tillharter/Fish_MO2max_models_in_R) and the raw data from our literature review

is available in the supplement.

- 438 **Beamish, F. W. H.** (1964). Respiration of fishes with special emphasis on standard oxygen
- consumption: II. Influence of weight and temperature on respiration of several species.
- 440 *Can. J. Zool.* **42**, 177–188.
- Berenbrink, M. (2006). Evolution of vertebrate haemoglobins: Histidine side chains, specific
- buffer value and Bohr effect. *Respir. Physiol. Neurobiol.* **154**, 165–184.
- Betancur-R, R., Ortí, G. and Pyron, R. A. (2015). Fossil-based comparative analyses reveal
- ancient marine ancestry erased by extinction in ray-finned fishes. *Ecology Letters* **18**,
- 445 441–450.
- Brauner, C. J. and Wang, T. (1997). The optimal oxygen equilibrium curve: a comparison
- between environmental hypoxia and anemia. *Am. Zool.* **37**, 101–108.
- Brill, R. W. (1987). On the standard metabolic rates of tropical tunas, including the effect of
- body size and acute temperature change. Fish. Bull 85, 25–35.
- 450 **Brill, R. W. and Bushnell, P. G.** (1991). Effects of open- and closed-system temperature
- changes on blood oxygen dissociation curves of skipjack tuna, *Katsuwonus pelamis*, and
- yellowfin tuna, *Thunnus albacores*. Can. J. Zool. **69**, 1814–1821.
- 453 **Brill, R. W. and Bushnell, P. G.** (2001). The Cardiovascular System of Tunas. In *Fish*
- 454 Physiology (ed. Block, B. A.) and Stevens, E. D.), pp. 79–120. Academic Press: San
- Diego.
- **Bushnell, P. G.** (1988). Cardiovascular and respiratory responses to hypoxia in three species of
- obligate ram ventilating fishes, skipjack tuna (*Katsuwonus pelamis*), yellowfin tuna
- 458 (*Thunnus albacares*), and bigeye tuna (*T. obesus*).
- 459 Claireaux, G. and Chabot, D. (2016). Responses by fishes to environmental hypoxia:
- integration through Fry's concept of aerobic metabolic scope. *J. Fish Biol.* **88**, 232–251.
- 461 Claireaux, G., Webber, D. M., Lagardère, J.-P. and Kerr, S. R. (2000). Influence of water
- temperature and oxygenation on the aerobic metabolic scope of Atlantic cod (Gadus
- 463 morhua). *Journal of Sea Research* **44**, 257–265.
- Damsgaard, C., Baliga, V. B., Bates, E., Burggren, W., McKenzie, D. J., Taylor, E. and
- Wright, P. A. (2020). Evolutionary and cardio-respiratory physiology of air-breathing
- and amphibious fishes. *Acta Physiologica* **228**, e13406.
- Daxboeck, C., Davie, P. S., Perry, S. F. and Randall, D. J. (1982). Oxygen uptake in a
- spontaneously ventilating, blood-perfused trout preparation. J. Exp. Biol. 101, 35–45.
- **Dejours, P.** (1981). *Principles of comparative respiratory physiology*. Amsterdam:
- 470 Elsevier/North-Holland Biomedical Press.

- Dewar, H. and Graham, J. (1994). Studies of Tropical Tuna Swimming Performance in a 471 Large Water Tunnel - Energetics. J. Exp. Biol. 192, 13–31. 472
- 473 Dhillon, R. S., Yao, L., Matey, V., Chen, B.-J., Zhang, A.-J., Cao, Z.-D., Fu, S.-J., Brauner, 474 C. J., Wang, Y. S. and Richards, J. G. (2013). Interspecific Differences in Hypoxia-
- 475 Induced Gill Remodeling in Carp. Physiol. Biochem. Zool. 86, 727–739.
- 476 Diaz, R. J. and Breitburg, D. L. (2009). Chapter 1 The Hypoxic Environment. In Fish
- 477 Physiology Hypoxia (ed. Dr. Jeffrey G. Richards, D. A. P. F. and D. C. J. B.), pp. 1–23.
- 478 Academic Press.
- 479 Ege, R. and Krogh, A. (1914). On the Relation between the Temperature and the Respiratory 480 Exchange in Fishes. Int. Rev. Gesamten Hydrobiol. Hydrogr. 7, 48–55.
- 481 Eliason, E. J., Clark, T. D., Hinch, S. G. and Farrell, A. P. (2013). Cardiorespiratory
- 482 performance and blood chemistry during swimming and recovery in three populations of
- 483 elite swimmers: adult sockeye salmon. Comp. Biochem. Physiol., A: Mol. Integr. Physiol.
- 484 **166**, 385–397.
- 485 Ern, R., Norin, T., Gamperl, A. K. and Esbaugh, A. J. (2016). Oxygen dependence of upper 486 thermal limits in fishes. *Journal of Experimental Biology* **219**, 3376–3383.
- 487 Esbaugh, A. J., Ackerly, K. L., Dichiera, A. M. and Negrete, B., Jr (2021). Is hypoxia 488 vulnerability in fishes a by-product of maximum metabolic rate? J. Exp. Biol. 224,..
- 489 Evans, D. H., Piermarini, P. M. and Choe, K. P. (2005). The multifunctional fish gill:
- 490 dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of 491 nitrogenous waste. *Physiolog. Rev.* **85**, 97–177.
- 492 Gallaugher, P. and Farrell, A. P. (1998). Hematocrit and blood oxygen-carrying capacity. In
- 493 Fish Physiology (ed. Perry II, S. F.) and Tufts, B. L.), pp. 185–227. New York: Academic
- 494 press.
- 495 Gallaugher, P. E., Thorarensen, H., Kiessling, A. and Farrell, A. P. (2001). Effects of high
- 496 intensity exercise training on cardiovascular function, oxygen uptake, internal oxygen
- 497 transport and osmotic balance in chinook salmon (Oncorhynchus tshawytscha) during
- 498 critical speed swimming. J. Exp. Biol. 204, 2861–2872.
- 499 Garland, T., Jr., Harvey, P. H. and Ives, A. R. (1992). Procedures for the Analysis of 500 Comparative Data Using Phylogenetically Independent Contrasts. Syst. Biol. 41, 18–32.
- 501 Garland, T., Jr., Dickerman, A. W., Janis, C. M. and Jones, J. A. (1993). Phylogenetic 502 Analysis of Covariance by Computer Simulation. Syst. Biol. 42, 265–292.
- 503 George, J. C. and Stevens, E. D. (1978). Fine structure and metabolic adaptation of red and 504 white muscles in tuna. Environ Biol Fish 3, 185–191.

505 Giacomin, M., Bryant, H. J., Val, A. L., Schulte, P. M. and Wood, C. M. (2019). The 506 osmorespiratory compromise: physiological responses and tolerance to hypoxia are 507 affected by salinity acclimation in the euryhaline Atlantic killifish (Fundulus 508 heteroclitus). J. Exp. Biol. 222,. 509 Gilmour, K. M. and Perry, S. F. (2018). Conflict and Compromise: Using Reversible 510 Remodeling to Manage Competing Physiological Demands at the Fish Gill. *Physiology* 511 **33**, 412–422. 512 Gonzalez, R. J. (2011). ROLE OF THE GILLS | The Osmorespiratory Compromise. In 513 Encyclopedia of Fish Physiology (ed. Farrell, A. P.), pp. 1389–1394. San Diego: 514 Academic Press. 515 Gonzalez, R. J. and McDonald, D. G. (1992). The relationship between oxygen consumption 516 and ion loss in a freshwater fish. J. Exp. Biol. 163, 317–332. 517 Gonzalez, R. and Mcdonald, D. (1994). The relationship between oxygen uptake and ion loss 518 in fish from diverse habitats. J. Exp. Biol. 190, 95–108. 519 Gooding, R. M., Neill, W. H. and Dizon, A. E. (1981). Respiration rates and low-oxygen 520 tolerance limits in skipjack tuna, *Katsuwonus pelamis*. Fish. Bull. 79, 31–48. 521 **Graham, J. B.** (1997). Air-breathing fishes: Evolution, Diversity, and Adaptation. New York: 522 Academic Press. 523 Greco, A. M., Fenwick, J. C. and Perry, S. F. (1996). The effects of soft-water acclimation on 524 gill structure in the rainbow trout *Oncorhynchus mykiss*. Cell Tissue Res. 285, 75–82. 525 Grosell, M. (2010). The role of the gastrointestinal tract in salt and water balance. In Fish 526 Physiology. The multifunctional gut of fish (ed. Grosell, M.), Farrell, A. P.), and Brauner, 527 C. J.), pp. 135-164. London, UK: Academic Press. 528 Hadfield, J. D. (2010). MCMC Methods for Multi-Response Generalized Linear Mixed Models: 529 The MCMCglmm R Package. J. Stat. Soft. 33, 1–22. 530 Hadfield, J. D. and Nakagawa, S. (2010). General quantitative genetic methods for 531 comparative biology: phylogenies, taxonomies and multi-trait models for continuous and 532 categorical characters. J. Evol. Biol. 23, 494–508. 533 Haney, D. and Nordlie, F. (1997). Influence of Environmental Salinity on Routine Metabolic 534 Rate and Critical Tension of Cyprinodon variegatus. Physiol. Zool. 70, 511–518. Harter, T. S. and Brauner, C. J. (2017). The O₂ and CO₂ transport system in teleosts and the 535 specialized mechanisms that enhance Hb-O₂ unloading to tissues. In Fish Physiology (ed. 536 537 Gamperl, A. K.), Gillis, T. E.), Farrell, A. P.), and Brauner, C. J.), pp. 1–107. New York: Academic Press. 538

- Henriksson, P., Mandic, M. and Richards, J. G. (2008). The osmorespiratory compromise in
- sculpins: Impaired gas exchange is associated with freshwater tolerance. *Physiol*.
- 541 *Biochem. Zool.* **81**, 310–319.
- Holmes, W. N. and Donaldson, E. M. (1969). The Body Compartments and the Distribution of
- Electrolytes. In *Fish Physiology* (ed. Hoar, W. S.) and Randall, D. J.), pp. 1–90. New
- York: Academic Press.
- Hughes, G. M. (1970). Morphological measurements on the gills of fishes in relation to their
- respiratory function. Folia Morphol (Praha) 18, 78–95.
- Hughes, G. M. (1973). Respiratory responses to hypoxia in fish. Am. Zool. 13, 475–489.
- Hughes, G. M. (1984). General Anatomy of the Gills. In *Fish Physiology* (ed. Hoar, W. S.) and
- Randall, D. J.), pp. 1–63. New York: Academic Press.
- Hulbert, W. C., Guppy, M., Murphy, B. and Hochachka, P. W. (1979). Metabolic Sources of
- Heat and Power in Tuna Muscles: I. Muscle Fine Structure. *J. Exp. Biol.* **82**, 289–301.
- Kiceniuk, J. W. and Jones, D. R. (1977). The oxygen transport system in trout (Salmo
- *gairdneri*) during sustained exercise. *J. Exp. Biol.* **69**, 247–260.
- Killen, S. S., Norin, T. and Halsey, L. G. (2017). Do method and species lifestyle affect
- measures of maximum metabolic rate in fishes? *J. Fish Biol.* **90**, 1037–1046.
- Krogh, A. (1937). Osmotic regulation in fresh water fishes by active absorption of chloride ions.
- 557 J. Comp. Physiol. A 24, 656–666.
- Malte, H. and Weber, R. E. (1985). A mathematical model for gas exchange in the fish gill
- based on non-linear blood gas equilibrium curves. *Resp. Physiol.* **62**, 359–374.
- Malte, H. and Weber, R. E. (1987). The effect of shape and position of the oxygen equilibrium
- curve on extraction and ventilation requirement in fishes. *Resp. Physiol.* **70**, 221–228.
- Malte, H. and Weber, R. E. (1989). Gas exchange in fish gills with parallel inhomogeneities.
- 563 Resp. Physiol. **76**, 129–137.
- Mandic, M., Todgham, A. E. and Richards, J. G. (2009). Mechanisms and evolution of
- 565 hypoxia tolerance in fish. Proc. R. Soc. Lond., Ser. B: Biol. Sci. 276, 735–744.
- Marshall, W. S. and Grosell, M. (2006). Ion transport, osmoregulation and acid-base balance.
- In *The Physiology of Fishes* (ed. Evans, D.) and Claiborne, J. B.), pp. 177–230. Boca
- Raton: CRC Press.
- Mazzia, F., Cash, J. R. and Soetaert, K. (2014). Solving boundary value problems in the open
- source software R: package bypSolve. *Opuscula Mathematica* Vol. 34,...

- Nelson, J. S., Grande, T. C. and Wilson, M. V. (2006). *Fishes of the World*. 4th ed. Hoboken, NJ: John Wiley & Sons.
- Nilsson, G. E., Dymowska, A. and Stecyk, J. A. W. (2012). New insights into the plasticity of gill structure. *Resp. Physiol. Neurobiol.* **184**, 214–222.
- Norin, T. and Clark, T. D. (2016). Measurement and relevance of maximum metabolic rate in fishes. *Journal of Fish Biology* **88**, 122–151.
- Perry, S. F. (1998). Relationships Between Branchial Chloride Cells and Gas Transfer in Freshwater Fish. *Comp. Biochem. Physiol.*, *A: Mol. Integr. Physiol.* 119, 9–16.
- Perry, S. F., Reid, S. G., Wankiewicz, E., Iyer, V. and Gilmour, K. M. (1996). Physiological Responses of Rainbow Trout (*Oncorhynchus mykiss*) to Prolonged Exposure to Soft Water. *Physiological Zoology* **69**, 1419–1441.
- Postlethwaite, E. K. and McDonald, D. G. (1995). Mechanisms of Na+ and Cl- regulation in freshwater-adapted rainbow trout (*Oncorhynchus mykiss*) during exercise and stress. *J. Exp. Biol.* 198, 295–304.
- Rabosky, D. L., Chang, J., Title, P. O., Cowman, P. F., Sallan, L., Friedman, M., Kaschner, K., Garilao, C., Near, T. J., Coll, M., et al. (2018). An inverse latitudinal gradient in speciation rate for marine fishes. *Nature* 559, 392–395.
- Randall, D. J. and Daxboeck, C. (1984). Oxygen and carbon dioxide transfer across fish gills.
 In *Fish Physiology* (ed. Hoar, W. S.) and Randall, D. J.), pp. 263–314. New York:
 Academic Press.
- Randall, D. J., Baumgarten, D. and Malyusz, M. (1972). The relationship between gas and ion transfer across the gills of fishes. *Comp Biochem Physiol A Comp Physiol* 41, 629–37.
- Regan, M. D., Gill, I. and Richards, J. G. (2016). Calorespirometry reveals that goldfish prioritize aerobic metabolism over metabolic rate depression in all but near-anoxic environments. *J. Exp. Biol.* **220**, 564–572.
- Regan, M. D., Gill, I. S. and Richards, J. G. (2017). Metabolic depression and the evolution of hypoxia tolerance in threespine stickleback, *Gasterosteus aculeatus*. *Biol. Lett.* 13,.
- Regan, M. D., Mandic, M., Dhillon, R. S., Lau, G. Y., Farrell, A. P., Schulte, P. M., Seibel,
 B. A., Speers-Roesch, B., Ultsch, G. R. and Richards, J. G. (2019). Don't throw the
 fish out with the respirometry water. *J. Exp. Biol.* 222,
- Revell, L. J. (2012). phytools: an R package for phylogenetic comparative biology (and other things). *Methods Ecol. Evol.* **3**, 217–223.
- Rogers, N. J., Urbina, M. A., Reardon, E. E., McKenzie, D. J. and Wilson, R. W. (2016). A new analysis of hypoxia tolerance in fishes using a database of critical oxygen level (*P*_{crit}). *Conserv Physiol* 4, cow012.

- Sardella, B. A. and Brauner, C. (2007). The Osmo-respiratory Compromise in Fish. In *Fish Respiration and Environment* (ed. Fernandes, M. N.), Rantin, F. T.), Glass, M. L.), and
 Kapoor, B. G.), pp. 147–165. Enfield: Science Publishers.
- 609 **Schliep, K. P.** (2011). phangorn: phylogenetic analysis in R. *Bioinformatics* **27**, 592–593.
- Sollid, J., De Angelis, P., Gundersen, K. and Nilsson, G. E. (2003). Hypoxia induces adaptive and reversible gross morphological changes in crucian carp gills. *J. Exp. Biol.* **206**, 3667–3673.
- 613 **Steinhausen, M. F., Sandblom, E., Eliason, E. J., Verhille, C. and Farrell, A. P.** (2008). The 614 effect of acute temperature increases on the cardiorespiratory performance of resting and 615 swimming sockeye salmon (*Oncorhynchus nerka*). *J. Exp. Biol.* **211**, 3915–3926.
- Stevens, E. D. and Carey, F. G. (1981). One why of the warmth of warm-bodied fish. Am. J.
 Physiol. Regul. Integr. Comp. Physiol. 240, R151–R155.
- 618 **Ultsch, G. R. and Regan, M. D.** (2019). The utility and determination of P_{crit} in fishes. *J. Exp. Biol.* **222**, jeb203646.
- 620 **Ultsch, G. R., Boschung, H. and Ross, M. J.** (1978). Metabolism, Critical Oxygen Tension, and Habitat Selection in Darters (Etheostoma). *Ecology* **59**, 99–107.
- Vega, G. C. and Wiens, J. J. (2012). Why are there so few fish in the sea? *Proc. R. Soc. Lond.*,
 Ser. B: Biol. Sci. 279, 2323–2329.
- Wang, T. and Malte, H. (2011). O2 uptake and transport: the optimal P50. In *Encyclopedia of Fish Physiology: From Genome to Environment* (ed. Farrell, A. P.), Stevens, E. D.),
 Chech, J. R.), and Richards, J. G.), pp. 893–898. Elsevier.
- Wegner, N. C., Sepulveda, C. A., Bull, K. B. and Graham, J. B. (2010). Gill morphometrics in relation to gas transfer and ram ventilation in high-energy demand teleosts: Scombrids and billfishes. *J. Morphol.* **271**, 36–49.
- Wood, C. M. (2018). The fallacy of the Pcrit are there more useful alternatives? *J. Exp. Biol.* 221,.
- Wood, C. M. and Eom, J. (2021). The osmorespiratory compromise in the fish gill. *Comp. Biochem. Physiol., A: Mol. Integr. Physiol.* **254**, 110895.
- Wood, C. M., Iftikar, F. I., Scott, G. R., De Boeck, G., Sloman, K. A., Matey, V., Domingos,
 F. X. V., Duarte, R. M., Almeida-Val, V. M. and Val, A. L. (2009). Regulation of gill transcellular permeability and renal function during acute hypoxia in the Amazonian oscar (*Astronotus ocellatus*): new angles to the osmorespiratory compromise. *J. Exp. Biol.* 212, 1949–1964.

Wood, C. M., Ruhr, I. M., Schauer, K. L., Wang, Y., Mager, E. M., McDonald, M. D.,
 Stanton, B. and Grosell, M. (2019). The osmorespiratory compromise in the euryhaline killifish: water regulation during hypoxia. *J. Exp. Biol.* 222,.

Figure Legends

Figure 1: Systematic differences in the gill and blood characteristics of freshwater (FW, green) and seawater (SW, blue) teleost fishes. A) The effect of salinity on mass-specific gill surface area GSA (cm² g⁻¹). B) There was a significant effect of body mass on GSA, as determined by a generalized linear mixed model that accounted for phylogenetic nonindependence of species. Regression line: $\log_{10}[\text{gill surface area (mm}^2)] = 0.63 + 0.93 \log_{10}[\text{body}]$ mass (g)]. C) The residuals of this model provide a mass-independent measure of GSA and the effect of salinity was tested by a phylogenetic ANOVA simulation that revealed no differences between FW and SW species D) The blood-water diffusion distance (gill thickness, µm), E) was independent of body mass and F) the phylogenetically corrected residuals were not significantly different between FW and SW species. G) Mass-specific gill oxygen (O2) conductance (Gd, µmol mmHg⁻¹ g⁻¹ h⁻¹) was calculated from GSA and thickness (and the parameters reported in Table S1). H) G_d was dependent on mass (regression line: $log_{10}[G_d (\mu mol mmHg^{-1} h^{-1})] = 0.86 + 0.92$ log₁₀[body mass (g)]), and I) the residuals of log₁₀G_d were lower in FW than SW species. J) Haemoglobin (Hb) O₂ affinity (expressed as P₅₀ of Hb; the PO₂ at which Hb is 50% saturated with O_2), K) was dependent on temperature (regression line: $log_{10}[P_{50} \text{ (mmHg)}] = 6.332 - 1534$ temp (K)⁻¹) and L) the phylogenetically- and temperature-corrected residuals of log P₅₀ were significantly lower in FW than SW fishes. All values were mined from the literature according to the search protocols described in the Appendix. Points are values for individual fish species.

Figure 2 Simulations modelling the outcome of counter-current oxygen (O_2) uptake at the fish gill. The partial pressures of O_2 (PO_2 , mmHg) in blood (red) and water are shown along the length of the gill, where blood is oxygenated in the zero to one direction and water is deoxygenated from one to zero. Panels A-C show O_2 uptake in freshwater fishes (FW, green) for the values of gill O_2 conductance (G_d) shown in Figure 1 (Lowest 0.02, Median 0.13 and Highest 0.36 µmol mmHg⁻¹ g⁻¹ h⁻¹). Panels D-F show O_2 uptake in seawater fishes (SW, blue) for their range of G_d values (Lowest 0.10, Median 1.2 and Highest 11.4 µmol mmHg⁻¹ g⁻¹ h⁻¹). Haemoglobin (Hb) O_2 affinity (Hb P_{50} , the partial pressure at which Hb is 50% saturated with O_2) was set to cover the ranges shown in Figure 1 for both groups. The $M \square O_{2max}$ and arterial Hb saturation (S_aO_2) values resulting from these simulations are listed in each panel.

Figure 3 The maximal rate of oxygen consumption ($M \square O_{2max}$) as a function of haemoglobin O_2 affinity (Hb P_{50} , the partial pressure at which Hb is 50% saturated with O_2) and gill O_2 conductance (G_d). Panels A and B show the results for freshwater (FW; green) and seawater (SW; blue) fishes, respectively. G_d and Hb P_{50} values were chosen to cover the ranges reported in Figure 1 for both groups (see Fig. 2 caption for details).

Figure 4 The maximal rates of oxygen consumption ($M \square O_{2max}$) of freshwater (FW; green) and seawater (SW; blue) teleosts. A) Haemoglobin O_2 affinity (Hb P_{50} , the partial pressure at which Hb is 50% saturated with O_2) was chosen to span the ranges reported in Figure 1 for both groups. $\square O_{2max}$ was calculated for the upper and lower boundaries of gill diffusive conductance (G_d) observed in FW and SW fishes (see Fig. 2 caption for details). The dark shaded areas

represent the model results using the cardio-respiratory characteristics of rainbow trout (see Table S1). The light shaded areas represent simulations after the model was adjusted to the high $Q\Box$, [Hb] and tissue diffusive conductance of tunas (respectively, 6-fold, 2.3-fold and 3-fold higher values than in rainbow trout). Empirically measured values for Hb P_{50} and $\Box O_{2max}$ from the literature were overlayed for FW and SW species whenever both parameters were available (1 rainbow trout, *Oncorhynchus mykiss*; 2 skipjack tuna, *Katsuwonus pelamis*; see search protocols described in the Appendix). B) There were significant effects of body mass and temperature on $\Box O_{2max}$, as determined by a generalized linear mixed model that accounted for phylogenetic non-independence of species. Regression line: $log_{10}[M\Box O_{2max} (\mu mol h^{-1})] = 0.84 + 0.019$ temp (C°) + 0.88 $log_{10}[body mass (g)]$. C) The residuals of this model provide mass- and temperature-independent measures of $\Box O_{2max}$ and the effect of salinity was tested by a phylogenetic ANOVA simulation that revealed no significant differences between FW and SW species.

Figure 5 Calculated critical oxygen (O_2) tensions (P_{crit}) for freshwater (FW; green) and seawater (SW; blue) teleost fishes. Simulations were run for the lowest, median and highest gill O_2 conductances (G_d) in FW (green; panels A-C) and SW (blue; panels D-F) fishes, respectively (see Fig. 2 for details). The rate of O_2 consumption ($M \square O_2$) at decreasing water PO_2 (mmHg) was calculated with an $M \square O_{2max}$ model (see Appendix), and standard $M \square O_2$ ($M \square O_{2std}$) was set to the value reported for rainbow trout, of 1.5 μ mol g⁻¹ h⁻¹ (Kiceniuk and Jones, 1977). P_{crit} was determined as the intersection between the $M \square O_2$ and $M \square O_{2std}$ curves over the range of haemoglobin O_2 affinities (Hb P_{50} ; the PO_2 at which Hb is 50% saturated with O_2) that we observed in FW and SW fishes (Fig. 1).

Figure 6 Modelled and empirically measured critical oxygen (O₂) tensions (P_{crit}) for freshwater (FW; green) and seawater (SW; blue) teleosts. A) Modelling results for P_{crit} of FW and SW fishes as a function of haemoglobin-oxygen affinity (Hb P₅₀; the PO₂ at which Hb is 50% saturated with O₂). The solid symbols and lines represent the calculated P_{crit} values in FW and SW fish, as shown in Figure 5, and the shaded areas represent the combinations of P_{crit} and Hb P₅₀ that are possible based on the gill and blood characteristics observed in both groups (Fig. 1). Empirically measured values for Hb P₅₀ and P_{crit} from the literature were overlayed for FW and SW species whenever both parameters were available. Dashed lines indicate linear regressions through the empirical datasets for FW and SW fishes and their respective 95% confidence intervals. B) There were no significant effects of body mass on P_{crit}, as determined by a generalized linear mixed model that accounted for phylogenetic non-independence of species. C) The residuals of this model provide a mass-independent measure of P_{crit} and the effect of salinity was tested by a phylogenetic ANOVA simulation that revealed no significant differences between FW and SW species.

Appendix: Materials and Methods

Literature review

We conducted literature reviews of five cardio-respiratory variables in teleost fishes: gill surface area (GSA), blood-water diffusion distance (gill thickness), Hb-O₂ affinity (expressed as P_{50} ; the PO₂ at which Hb is 50% saturated with O₂), maximal O₂ consumption rate (M \square O_{2max}), and critical O₂ tension (P_{crit}, the lowest PO₂ at which a fish can maintain standard M \square O₂). We included only teleost species in our data sets, which are by far the most diverse group of fishes and account for ~95% of all extant species (Nelson et al., 2006). The reasons for excluding other groups, such as the Chondrichthyes were based on their osmo-conforming physiology that changes the relationship between respiratory and ionoregulatory demands at the gill, and this group is almost exclusively found in the marine environment. We also excluded amphibious and obligatory air-breathing fishes (Damsgaard et al., 2020), as these traits fundamentally change the relationship between osmoregulation and respiration that we sought to examine (Graham, 1997). Additionally, the values we used were limited to those from individuals in juvenile or adult developmental stages, measured under control conditions (i.e., untreated and non-acclimated individuals).

Commenting on the methodological approaches used in literature studies was outside the scope of this review and generally, we considered data generated with different methods, while being aware that our variables of interest are sensitive to different experimental protocols. However, we did limit our search to Hb P₅₀ measured on whole blood, and excluded those on haemolysates, which are less representative of *in vivo* conditions even when standardising for allosteric effectors (Berenbrink, 2006). For GSA, we limited our search to measurements of total gill surface area or lamellar surface area.

All literature searches were performed on Clarivate's Web of Science®, in 2020 and 2021, using the following search terms: GSA (gill AND surface area AND fish; lamellar surface area AND fish); Hb P_{50} (oxygen* binding affinity AND fish; hemoglobin* AND P50 AND fish); P_{crit} (critical oxygen* AND fish; Pcrit + fish; Pcrit + hypoxia + fish); $M \square O_{2max}$ (maximum metabolic rate + fish; MO_{2max} + fish). In instances where the mined studies cited other studies that our search did not uncover, we included these data if they were appropriate. Two recent reviews were particularly valuable in our search, providing many of the mined data points

(Killen et al., 2017; Rogers et al., 2016). Values, references and URLs for all cited studies can be found in the Excel spreadsheets in the supplementary materials.

We analysed our data in R Studio (v. 1.3.1056) using a generalized linear mixed model (GLMM) to identify correlations between continuous variables using the *MCMCglmm()*-function in the MCMCglmm-package in R (Hadfield, 2010; Hadfield and Nakagawa, 2010). This method treats individual studies on same species as a random effect (i.e., taking into account intraspecific variation) and accounted for phylogenetic non-independence of species. Here, we used a maximum clade credibility tree generated from 100 Bayesian posterior probability trees from Rabosky et al. (2018) using the *maxCladeCred()* □ function in the *phangorm* □ package in R (Schliep, 2011).

To test the effect of salinity on GSA and G_d , while taking into account the hypoallometric scaling with body mass, we fitted a GLMM-model to the log_{10} -transformed data and calculated the residuals. These residuals provide a mass-independent measure of GSA and G_d (Garland et al., 1992). We then tested for an effect of salinity on the residuals with a phylogenetic analysis of variance simulation (Garland et al., 1993), using the *phylANOVA()*-function in the *phytools*-package in R (Revell, 2012). Similar approaches were used for the other variables:

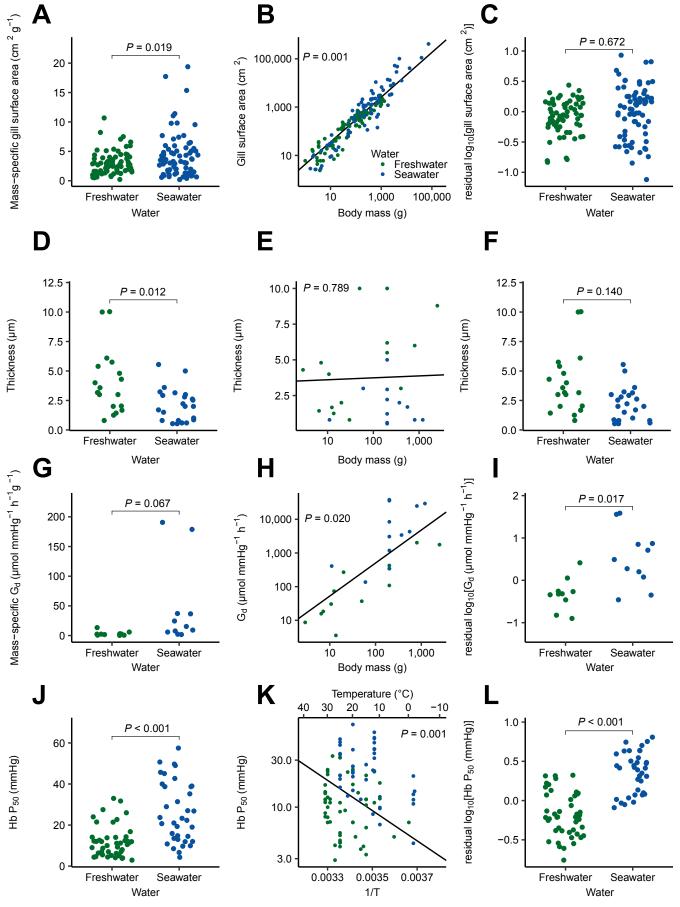
To test for the effect of salinity on $M \square O_{2max}$, while taking into account temperature and body mass, we fitted three GLMM-models to the data:

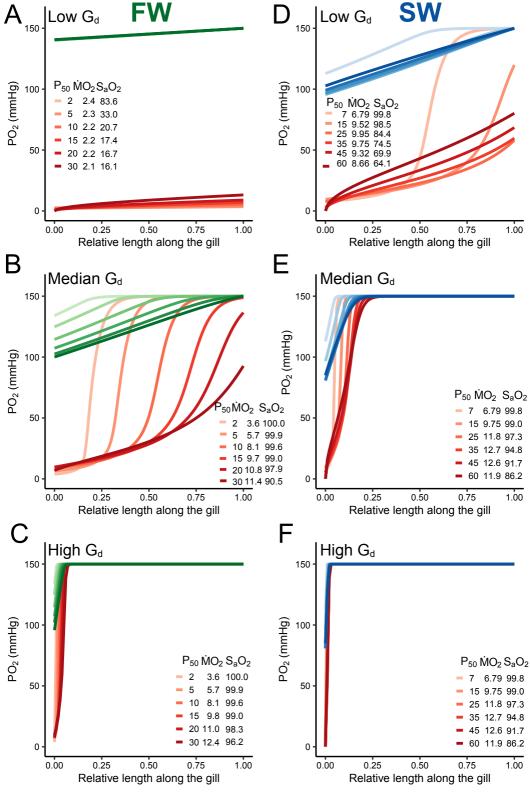
 $\log_{10}(M \square O_{2max}) \sim \log_{10}(body \ mass) + temperature \ (DIC = -124)$ 773 $\log_{10}(M \square O_{2max}) \sim temperature \ (DIC = -81.6)$

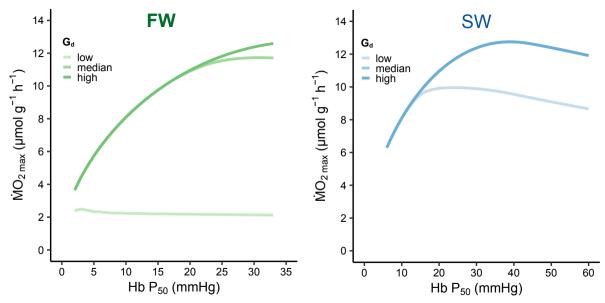
 $log_{10}(M \square O_{2max}) \sim log_{10}(body \ mass) \ (DIC = 205)$

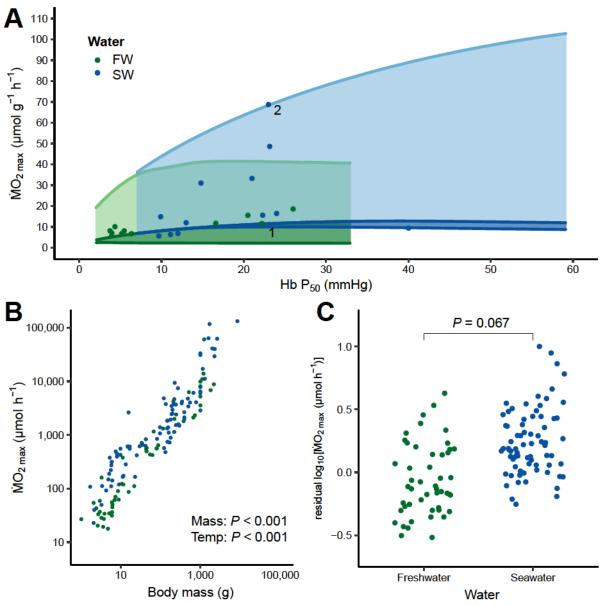
We selected the full model based on the lowest deviance information criterion value (DIC), calculated the residuals, and tested for an effect of salinity on the $M \square O_{2max}$ residuals, as described above. To test for the effect of salinity on Hb-O₂ affinity (P₅₀), we first fitted a GLMM-model to $log_{10}(P_{50})$ versus absolute temperature⁻¹, calculated the residuals that we tested for an effect of salinity. P_{crit} and gill thickness were body-mass independent thus, we used the raw values in a phylogenetic ANOVA to test for an effect of salinity.

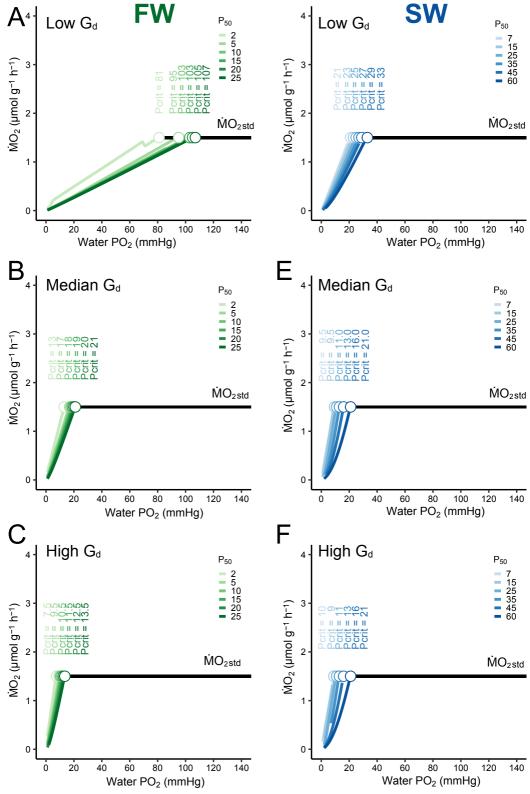
Mathematical model of gas exchange


To study the effects of Hb P_{50} and G_d on gas exchange at the fish gills we implemented the previously published mathematical model of Malte and Weber (1985) using R v.3.6.2. in


RStudio v.1.2.5033. Briefly, the model solves a system of differential equations to calculate the changes in water and blood PO₂ during counter-current gas exchange along the length of a model fish gill. In R, the differential equations were solved as a boundary value problem with venous PO₂ and inspired water PO₂ as the input parameters, using the bypsolve package (Mazzia et al., 2014), with byptwp that uses a mono-implicit Runge-Kutta (MIRK) method with deferred corrections (Cash and Mazzia, 2005; Cash and Wright, 1991) and a continuation method. The output from these gas exchange simulations are the calculated values for expired water PO₂ and arterial PO₂, which is then used to calculate other arterial blood parameters. Next the model predicts the outcome of gas exchange at the tissues to calculate venous PO₂ and other venous blood parameters that are then used for the next iteration of gas exchange at the gills; the cycle is repeated until the final calculated venous PO₂ is in equilibrium with the gas exchange systems at the gills and at the tissues (Malte and Weber, 1985; Malte and Weber, 1987; Malte and Weber, 1989; Wang and Malte, 2011). Our model focused only on the exchange of O₂ at the fish gill and does not take into account changes in CO₂ excretion, however the model does simulate a pH shift at the tissues that leads to an increase in Hb P₅₀ by the Bohr effect and recovery of Hb P₅₀ during venous transit.


The model was "calibrated" against the cardio-respiratory characteristics measured in rainbow trout (*Oncorhynchus mykiss*) at 10° C, by Kiceniuk and Jones (1977). Specifically, the diffusion coefficient for O_2 at the gills (D_{O2}) and the tissue O_2 conductance, two values for which no reliable measurements exist, were adjusted so that the model output matched the empirically measured $M \square O_{2max}$, arterial and venous PO_2 , and tissue O_2 extraction in rainbow trout. All other input parameters for the model calibration are listed in Table S1 with their respective references.


In all simulations, [Hb] was set to 1 mM based on the summary data by Gallaugher et al. (1998) and the cooperativity of Hb-O₂ binding (the Hill coefficient) was set to n = 2. While this represents a simplistic approach, the effects of cooperativity on gas exchange at the fish gill have been addressed previously (Malte and Weber, 1987) and we observed no systematic differences in cooperativity between FW and SW teleosts that would warrant a more detailed investigation within the context of our study. In addition, some groups (e.g., Cottidae) display a wide range of Hb P_{50} at rather constant Hill coefficients, indicating that phylogeny may be a better predictor of Hill coefficients than e.g. Hb P_{50} (Mandic et al., 2009). Finally, to test our hypothesis, we


- adjusted the parameters of G_d and Hb P_{50} based on the values for FW and SW fishes that resulted
- from our review of the literature.

